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Abhstract

This note examines the complexity of complete transitive binary re-
olmogorov complexity. The complexity o

A

to minimally complex tournaments defined in terms of the minimal num-

ber of examples needed to describe the tournament. The latter concept
is the concept of complexity employed by Rubinstein [6] in his economic
theory of language. A proof of Rubinsein’s conjecture on the complexity

i
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1 Introduction

Ariel Rubinstein’s work on the applications of binary relations in natural lan-
guage raises 1nterest1ng quest1ons both for the economics of language and for
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of legal contracts such as employment contracts, sales contracts, etc. employ
natural language in their formulation.

Rubinstein analyses complete and transitive binary relations or tournaments
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essary to describe the tournament. An alternative approach has been suggested
by the ph1losopher Johann van Benthem [ ] th1s employs Rlssannen s [ 5] idea of
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concept to Kolmogorov complexity is addressed. This note may also be in-
terpreted as a partial response to van Benthem’s suggestion for using minimal
description length as criteria.

In section 2 the theoretical framework and some essential definitions and no-
tations from Kolomogorov complexity theory that are employed in the derivation
of results. In section 3 Rubinstein’s conjecture and a proof of the conjecture
are presented. In section 4 an algorithm for computing the Kolmogorov com-
plexity of a tournament is suggested and two propositions relating Rubinstein
and Kolmogorov complexity are presented and discussed. Finally conclusions
are drawn in section 5 and possible extensions suggested.

2 Background

One approach to the complexity of a tournament would be to pose the question:
How does one determine a winner? Another would be to ask “How do we rank
the elements of a tournament?” Each of these questions could in principle be
examined from an algorithmic perspective. In other words one can identify
an algorithm that computes the winner of a tournament and one that ranks
the elements of a tournament. An example of this can be found in social choice
theory, imagine an algorithm that determines the Condorcet winner and another
algorithm that ranks societal alternatives. Each of these algorithms takes a
certain number of steps to compute. The complexity of a tournament could
then be measured in terms of the number of steps it takes to solve each of these



tasks. If the number of steps it takes to compute a winner is bounded by some
polynomial function of the steps.

The complexity of a tournament mav he annroached from two perspectives:

may be approached from perspectlve of Kolmogorov complex1ty using Turlng
machlnes From an algebraic perspective tournaments are complete asymmetrlc

ary I‘GIHTIOHQ F\ITPT‘hHT]VPIV/ tournaments may hP repres

Before proceeding to the main contribution of the paper it is first necessary
to 1ntroduce some basic notatlon Most notation follows Rubinstein [?] and new
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Symibols Luyucguhuu& UUJubm A set of [ agents 18 assumed to communicate in
natural language about these objects using the alphabet. The reader is referred
to Rubinstein [?] for examples.

Rubinstein defines a binary relation as follows:

Definition 1. (Binary relation with respect to f) (f,{ai, Rbi};c;) defines the
binary relation (R* on A C Q) when

o fis a sentence in predicate calculus
e R* is the unique binary relation on Q) satisfying f and Vi a; R*b; is true.

The complexity C(R*) of the binary relation R* may be computed in a
number of ways. Rubinstein [7] suggests that the complexity of a tournament
is given by the solution of the following optimization problem:

min C(R")
R*€T

where T is the set of tournaments and C(R*) = {I|R* € T'}.

An alternative method of computing the complexity of a tournament has
been suggested by Van Benthem [1]. This involves employing Solomonoff-
Kolmogorov complexity theory and the minimum description length principle
[5] to formalize the notion of a tournaments complexity. In the following this
idea will be explored to some extent but the the theory will not be dveloped to
the extent of introducing a minimum description length characterization of the
complexity of tournaments. Instead it will be shown how Rubinstein’s complex-
ity concept may be formulated in terms of Solomonoff-Kolmogorov complexity
before proceeding to prove Rubinstein’s conjecture on the complexity bound of
a tournament.

Definition 2. Solomonoff-Kolmogorov complexity Given a message x the com-
plexity of x is given in general by

Cy(x) = min{l(p) : f(p) = n(z)}



where p is some non-negative integer, f(p) a partial function defined over the
integers and n(zx) the size of x where n: X — N, and l(p) the length of p.

One way to think of this is to think of p being a program and f(p) a Turing
o A
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mav he exnressed as:

Ay CX

Clz) = min {{(T) + Cz|T) : T € {T;
e S §

where 1" is a Turing machine.
To compute the Kolmogorov complexity of a tournament one need only
write a program to compuue the minimum number of binary relations needed
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cycles are allowed (see section 4). So the complexity of a tournament reduces to
the problem of computing the Kolmogorov complexity of a minimal spanning
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Before moving on to a discussion of what such an algorithm might look like,
a conjecture of Rubinstein regarding the lower bound of the complexity of a
tournament is proved [6, 7].

3 Rubinstein’s conjecture

The economics of language has lead to a number of interesting results including
the following conjecture by Rubinstein [6, 7]:

Conjecture 1. Rubinstein’s Conjecture Let ¢ be a sentence in the predicate
calculus language which includes a single name of a binary relation, R. then
there exists n* such that for any || > n* and any tournament R which is
defined by the sentence ¢, C(R) > |Q| — 1.

Note that [ is the order of the tournament p and that C(R) is the size ¢ of
the tournament. The first theorem of digraph theory relates these two concepts
[2, p. 32]. This theorem states that given a digraph D of order p and size g,
with V(D) = {v1,...,vp , then Y ¥ ody; = Y% | idv; = q, where ody; is the
outdegree of vertex v; and idy; is the indegree of vertex v;. Clearly, the validity
of Rubinstein’s conjecture depends on the degree of the graph.

Proof. (of Rubinstein’s conjecture) Call the first vertex the start vertex then

p—1
odvy + Z odv; = q

=2



if all vertices labelled 2 to p — 1 are identical in degree then
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holds for odv > 1 and odvy = 0 or for odv; > 1.

Furthermore. the ont-deoree of anv vertex must he a non-negative intecer
Hurthermore, the out-degree of any vertex must be a non-negative ege

so that this strict inequality will hold for all-graphs regular or otherwise, unless
the arbitrarily chosen start vertes has out-degree zero and all other vertices have

an out-decree at each vertex of at least 1. Note that strict egualitv only holds
Andend LHI VL bt aail i L Yo e LLALL LAjuiaciivy Vi

o ont-degree 1. So that for
e egr . £ IoY

x C(R) > |Q| — 1. Note

if one vertex |

s out-decree zero
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that for a graph to be a tournament n* >0 (there are no tournaments of order
7Z€ero). O

Note that that a strict equality will hold for the transitive case.
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Instead of using a Turing m chlne to compute the Kolmogorov complexity, a
i : 1 nted hyv a Th ring machine will suffice.

he Kol-
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1 Initialize the set F < () of edges of some graph (V, F)

2 Increment E pick any ¢ € E (note all weights are equal and normalized
to 1) such that e ¢ E and E U {e} is complete and asymmetric but not
necessarily acyclic, then let E — E'U {e}

e If |[E| > p—1 where p is the order of the graph, then output F and output
|E|, the size of the graph.

This algorithm computes the subdigraph which minimally spans a given set
of vertices. The Kolmogorov complexity of this algorithm is then the minimum
number of steps that the program needs to compute the size of the minimal
spanning subdigraph.

In what follows the fact that any string can be suitably encoded is utilized to
establish a relationship between Rubinstein and Kolmogorov complexity. This
comparison is a partial response to van Benthem’s suggestion of using the min-
imal description length criteria. This is because minimal description length
is based on kolmogorv complexity. A detailed discussion of coding theory is
however omitted, the reader is referred to Li and Vitanyi for this [4].



Proposition 1. (Relationship between Rubinstein and Kolmogorov complexity)
The Kolmogorov complexity C(z) is less than or equal to the Rubinstein com-

niexity nix) pius a constant.
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an arbitrary set of vertlces by calculating |F| the number of steps needed to
do this is just I(p). If the source alphabet is just the set of vertices then the
size of the spanmng dlgraph |E | = n( ) which is the Rubinstein complexity of

h is b d ﬁnltlon l( )
Flnally, from [4 p. 100] theorem 2. 1 2 it is known that
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Note that n(x) = |2 by definition. Based on the proceeding result relating
to the relationship between Kolmogorov complexity and Rubinstein complexity
the following corollary may be stated.

Proposition 2.

CR)>|Q-1>C(x)—2-c¢c

Proof. Follows by substitution and proposition 1 and proposition 2. O
Rissannen [5] has developed the idea of the minimum description length as
a model selection criteria for statistical models. To relate the notion of a sta-
tistical model back to the preceeding discussion, graph theoretic analysis would
need to be extended to a random graph setting. This implies a stochastic rank
ordering. So that Benthem’s suggestion of using minimal description length as
an alternative complexity measure should not be taken too literally. So while
theoretically a tournament could be constructed on a random graph and mini-
mal description length could be employed to evaluate the complexity of binary
relations. Rubinstein complexity is simpler and more intuitively appealing.

5 Conclusion

This note discusses the relationship between Kolmogorov complexity and Ru-
binstein complexity for tournaments. A number of results are proven showing
the relationship between Kolmogorov complexity and Rubinstein complexity for
tournaments. The main purpose of this paper has been to explain the connec-
tion between these two notions of complexity concept and to provide a proof
of Rubinstein’s conjecture regarding a complexity bound for binary relations in
natural languages. Some possible extensions are to exlore the connection be-
tween Rubinstein’s concept of indication friendliness and unique decodability in
coding theory and to develop a more explicit comparison of minimal description
length and Rubinstein complexity.
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