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SUMMARY

We prove the uniqueness of linear i.i.d. representations of heavy-tailed processes whose dis-
tribution belongs to the domain of attraction of an α-stable law, with α < 2. This shows the
possibility to identify nonparametrically both the sequence of two-sided moving average coeffi-
cients and the distribution of the heavy-tailed i.i.d. process.
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1. INTRODUCTION

By definition, a real linear process (Xt) can be written as a two-sided moving average of a
strong white noise:

Xt =

∞
∑

j=−∞

ajǫt−j , t ∈ Z, (1)

where (ǫt) is a sequence of independent and identically distributed (i.i.d.) real random variables,
and (aj) is a sequence of Moving-Average (MA) coefficients.

Provided that such a process exists, an important issue is the uniqueness of the MA represen-
tation in (1). Uniqueness of the linear representation of non-Gaussian i.i.d. processes plays an
important role in time series, for instance in the analysis of time reversibility (see Hallin, Lefèvre
and Puri (1988), Breidt and Davis (1992)). From a statistical point of view, this problem is equiv-
alent to the nonparametric identification of the sequence (ai) and of the common distribution of
the variables ǫt. See Rosenblatt (2000) for a review of statistical applications of non-Gaussian
linear processes.

While Gaussian linear processes generally admit several moving average representations, non-
Gaussian linear processes have been shown to admit an essentially unique MA representation,
under different regularity conditions on the MA coefficients and the moments of the i.i.d. pro-
cess. The literature dealing with uniqueness of MA representations of non-Gaussian processes in-
cludes Lii and Rosenblatt (1982), Findley (1986, 1990), Cheng (1992), Breidt and Davis (1992).
The sufficient uniqueness conditions obtained in these articles are summarized in Table 1. They
require at least finite variance of the independent process (ǫt), except in Breidt and Davis (1992)
(see their Remark 2, p. 286). In the present article, we provide a direct proof for the identifi-
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cation of the MA representation when the errors belong to the domain of attraction of a stable
law, with index α < 2. This case is especially important in view of the increased interest, in the
recent time series literature, in heavy-tailed distributions. In particular, it has been noted that
mixed causal/noncausal processes of the form (1) were adequate for modeling the speculative
bubbles observed on fat-tailed financial series, for instance when the noise and the observed pro-
cess do not have a finite expectation (see Gouriéroux and Zakoïan (2013)). Finally, we extend the
identification result to the multivariate framework, especially to unobserved component models.

2. UNIQUENESS RESULTS FOR UNIVARIATE PROCESSES

We start by recalling conditions ensuring the existence of a MA representation of a strictly
stationary process.

2·1. Existence

The existence of infinite MA processes, as in (1), is generally established under the assump-
tion that the variables ǫt belong to L1 or L2. An extension was established by Cline (Theorem
2.1, 1983), who gave conditions for the existence of infinite MA with i.i.d. random variables
admitting regularly varying tails. The following is a straightforward consequence of Proposition
13.3.1 in Brockwell and Davis (1991).

PROPOSITION 1. Consider the two-sided moving average

Xt =
∞
∑

j=−∞

αhZt−h, (2)

written on a process (Zt) such that, for some s ∈ (0, 1):

sup
t

E|Zt|
s < ∞ and

∞
∑

h=−∞

|αh|
s < ∞.

Then, the series Xt converges absolutely with probability one. If, in addition, (Zt) is a strictly

stationary process, then (Xt) is also strictly stationary.

We now turn to the uniqueness problem, first in the case where Xt = ǫ∗t is an i.i.d. process.

2·2. Uniqueness of the MA representation of an heavy-tailed i.i.d. process

Let (ǫt) and (ǫ∗t ) denote two i.i.d. processes. Suppose that

ǫ∗t =
∞
∑

j=−∞

ajǫt−j , t ∈ Z, (3)

and, for some s ∈ (0, 1),

E|ǫt|
s < ∞ and

∞
∑

j=−∞

|aj |
s < ∞. (4)

By Proposition 1, the latter conditions entail the existence of the infinite MA appearing in the
right-hand side of (3). Note also that this entails E|ǫ∗t |

s < ∞, using the inequality (x+ y)s ≤
xs + ys for x, y ≥ 0. Let Ψ,Ψ∗ denote the characteristic functions of ǫ and ǫ∗, respectively.
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The characteristic function of (ǫ∗t , ǫ
∗
t−h) with h 6= 0 is, for u, v ∈ R,

E
(

ei(uǫ
∗

t+vǫ∗
t−h

)
)

= Ψ∗(u)Ψ∗(v) = E





∞
∏

j=−∞

ei(uaj+vaj+h)ǫt−j



 =

∞
∏

j=−∞

Ψ(uaj + vaj+h).

The last equality holds by the dominated convergence theorem, which applies because the prod-

ucts
n
∏

j=−n

ei(uaj+vaj+h)ǫt−j have unit norm.

Hence, for u, v ∈ R,

log |Ψ∗(u)|+ log |Ψ∗(v)| =

∞
∑

j=−∞

log |Ψ(uaj + vaj+h)|. (5)

For expository purpose, we first consider stable variables.

a) Stable variables

Let us recall that the distribution of a stable variable X with parameters (α, β, σ, µ), denoted
X ∼ S(α, β, σ, µ), has the characteristic function

Ψ(s) =







exp[−σα|s|α
{

1− iβ (sign s) tan
(

πα
2

)}

+ iµs], if α 6= 1,

exp[−σ|s|
{

1 + iβ (sign s) 2
π log |s|

}

+ iµs], if α = 1.

For a stable distribution with index of stability α ∈ (0, 2), the moment condition in (4) is satis-
fied for s ∈ (0,min{α, 1}). See Samorodnitsky and Taqqu (1994) for further details on stable
variables.

PROPOSITION 2. If (ǫt) and (ǫ∗t ) have stable laws, ǫt ∼ S(α, β, σ, µ) and ǫ∗t ∼
S(α∗, β∗, σ∗, µ∗) with α, α∗ < 2, if

∑∞
j=−∞ |aj |

s < ∞ for s ∈ (0,min{α, 1}), then all the MA

coefficients aj’s except one are equal to zero in the MA representation (3).

b) Variables in the domain of attraction of a stable law

By definition, a variable X belongs to the domain of attraction of an α−stable law, denoted

X ∈ DA(α), with α < 2, if for any i.i.d. sequence (Xi), with X1
d
= X , there exist sequences of

constants An ∈ R and Bn > 0 such that

X1 + · · ·+Xn −An

Bn

d
→ Z, (6)

where
d
→ denotes the convergence in distribution, and the distribution of Z is α-stable. The tails

of variables belonging to DA(α) have the following characterization: X ∈ DA(α) if and only if
its cumulative distribution function is such that:

F (−x) ∼
c1L(x)

xα
, 1− F (x) ∼

c2L(x)

xα
, when x → ∞,

where L is a slowly varying function1 and c1, c2 ≥ 0, c1 + c2 6= 0 (see for instance Em-
brechts, Klüppelberg, Mikosch (1997), Theorem 2.2.8). Hence, if X ∈ DA(α), E|X|s < ∞ for
s ∈ (0, α). Note that we can have E|X|α < ∞ which is not possible for α−stable variables.

Let us start with a simple extension of Proposition 2.
1 that is, L is measurable positive, defined on (0,∞), such that limx→∞ L(tx)/L(x) = 1 for all t > 0.
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PROPOSITION 3. If ǫ∗t ∈ DA(α∗) and ǫt has a stable distribution with index α, with α, α∗ < 2,

if
∑∞

j=−∞ |aj |
s < ∞ for s < α, then all the MA coefficients aj’s except one are equal to zero in

(3).

Let us now extend the identification result, when both i.i.d. processes (ǫt) and (ǫ∗t ) are in the
attraction domain of a stable law.

PROPOSITION 4. If ǫt ∈ DA(α) and ǫ∗t ∈ DA(α∗) are such that

|E
(

eiuǫt
)

| = e−|u|αL1(1/u), |E
(

eiuǫ
∗

t

)

| = e−|u|α∗L∗

1
(1/u), (7)

with α, α∗ < 2, where L1, L
∗
1 are slowly varying functions, if for any τ > 0 there exist constants

M,K > 0 such that for all t > 0,

sup
|x|>M

∣

∣

∣

∣

L1(tx)

L1(x)

∣

∣

∣

∣

≤ K(1 + tτ ), (8)

and if
∑∞

j=−∞ |aj |
s < ∞ for s < α, then all the MA coefficients aj’s except one are equal to

zero in (3).

2·3. Uniqueness of the MA representation of an heavy-tailed linear process

We now study the uniqueness of representation (1). Assume that

Xt =

∞
∑

j=−∞

ajǫt−j =

∞
∑

j=−∞

a∗jǫ
∗
t−j , t ∈ Z (9)

where (ǫt) and (ǫ∗t ) are two sequences of i.i.d. real random variables, and (aj), (a∗j ) are two
sequences of MA coefficients with, for some s ∈ (0, 1):

∞
∑

h=−∞

|ah|
s < ∞ and

∞
∑

h=−∞

|a∗h|
s < ∞. (10)

The random series in (9) converging a.s., we may define a(B)ǫt :=
∑∞

j=−∞ ajǫt−j and
a∗(B)ǫ∗t :=

∑∞
j=−∞ a∗jǫ

∗
t−j where B stands for the backward shift operator. The next propo-

sition shows that under appropriate assumptions on the i.i.d. sequence and the MA coefficients,
the representation (1) of Xt is essentially unique.

PROPOSITION 5. Assume that ǫt ∈ DA(α) and ǫ∗t ∈ DA(α∗), satisfying conditions (7)-(8),

that a∗(B) is invertible, with {a∗(B)}−1 =
∑∞

j=−∞ cjB
j such that

∑∞
j=−∞ |cj |

s < ∞, and

that
∑∞

j=−∞ |aj |
s < ∞, for s < α. Then, if (9)-(10) hold, we have

ǫ∗t = cǫt−ℓ and aj = ca∗j+ℓ, ∀j ∈ Z

for some constants c ∈ R and ℓ ∈ Z.

From Proposition 5, we see that the MA representation is identifiable up to a change of scale and
a drift of the time index on ǫt.

3. UNIQUENESS RESULTS FOR MULTIVARIATE HEAVY-TAILED LINEAR PROCESSES

The literature on the identification of multivariate MA processes is rather limited. Sets of
conditions for identification have been derived in Chan, Ho and Tong (2006), when the p-
dimensional observed process and the q-dimensional noise processes are square integrable, when
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p ≥ q (i.e. an order condition), and when the q components of the noise are i.i.d. (see their Con-
dition 3). The order condition is required in the proof to be able to apply the approach by Cheng
(1992, 1999).

This section will complete such results by considering processes with fat tails. We start by an
extension of Proposition 3.

3·1. Uniqueness of the decomposition of an heavy-tailed i.i.d. process as a sum of independent

stable MA

The next result extends Proposition 3 by considering the decomposition of a non-Gaussian
stable one-dimensional noise as the sum of independent stable MA processes:

ǫ∗t =
K
∑

k=1

∞
∑

j=−∞

ak,jǫk,t−j , t ∈ Z (11)

where (ǫk,t) are K independent sequences of stable i.i.d. real random variables, and the {ak,j ; j ∈
Z} are K sequences of real numbers such that, for some s ∈ (0, 1),

0 <
∞
∑

j=−∞

|ak,j |
s < ∞.

PROPOSITION 6. If ǫ∗t ∈ DA(α∗) with α∗ < 2, the variables ǫk,t have stable laws, ǫk,t ∼
S(αk, βk, σk, µk) with αk ∈ (s, 2) for k = 1, . . . ,K, then in each sequence {ak,j ; j ∈ Z} all

the ak,j’s except one are equal to zero in (11).

3·2. Uniqueness of the MA representation of a vector process with fat tails

We now show that, under appropriate conditions, a vector process (Xt) has at most one rep-
resentation of the form

Xt = A(B)ǫt, (12)

where is (ǫt) is a vector i.i.d. process, with independent components following stable dis-
tributions with distinct tail indices. More precisely, consider a p-dimensional process Xt =
(X1t, . . . , Xpt)

′ admitting two MA(∞) representations given by

Xt = A(B)ǫt = A
∗(B)ǫ∗t , t ∈ Z, (13)

where (ǫt), (ǫ
∗
t ) are two K-dimensional i.i.d. processes with stable and independent compo-

nents, and A(B) = (ai,k(B))i=1,...,p;k=1,...,K ,A∗(B) = (a∗i,k(B))i=1,...,p;k=1,...,K are infinite-
order lag polynomials with matrix coefficients. Let ai,k(B) =

∑∞
j=−∞ ai,k,jB

j and a∗i,k(B) =
∑∞

j=−∞ a∗i,k,jB
j . Assume that, for some s ∈ (0, 1),

0 <

∞
∑

j=−∞

|ai,k,j |
s < ∞, 0 <

∞
∑

j=−∞

|a∗i,k,j |
s < ∞.

PROPOSITION 7. Assume that (ǫt) and (ǫ∗t ) are two K-dimensional i.i.d. processes satis-

fying (13), with stable and independent components ǫk,t and ǫ∗k,t having stable laws, ǫk,t ∼

S(αk, βk, σk, µk) and ǫ∗k,t ∼ S(α∗
k, β

∗
k, σ

∗
k, µ

∗
k), with αk, α

∗
k ∈ (s, 2) for k = 1, . . . ,K and

α1 < . . . < αK . Suppose that, for any i, k, the lag polynomial a∗ik(B) is invertible, with

{a∗i,k(B)}−1 =
∑∞

j=−∞ ci,k,jB
j such that

∑∞
j=−∞ |ci,k,j |

s < ∞. Then, for i = 1, . . . , p, and
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k = 1, . . . ,K

ai,k,j = ci,ka
∗
i,k,j+ℓi,k

, ∀j ∈ Z,

for some constants ci,k ∈ R and ℓi,k ∈ Z.

4. CONCLUDING REMARKS

The identification results of this paper can be used in both parametric and nonparametric
analyses of linear processes. The proofs also suggest a nonparametric estimation method, for
a linear process Xt based on an i.i.d. sequence of heavy-tailed variables ǫt, as in (1), by the
following steps.

i) Estimation of α. Since Xt ∈ DA(α) when ǫt ∈ DA(α) (see for instance Embrechts, Klüp-
pelberg, Mikosch (1997), Theorem A3.26), the tail index α can be consistently estimated by a
standard approach. For instance, the Hill estimator can be used (for its main properties under
various assumptions see Embrechts, Klüppelberg, Mikosch (1997) Theorem 6.4.6).

ii) Estimation of the MA coefficients. The analysis of the joint characteristic function
of (Xt, Xt−h) for h 6= 0 and v = tu in a neighborhood of u = 0, provides estimation of
∑∞

j=−∞ |aj + taj+h|
α when ǫt ∼ S(α, β, σ, µ). Estimates of (a finite number of) MA coeffi-

cients can be deduced by truncating the infinite sum and solving the moment restrictions.
iii) Estimation of the distribution of ǫt. Having estimated the lag polynomial a(B), approx-

imations of the variables ǫt can be deduced by computing the residuals ǫ̂t = â(B)−1Xt, where
the Xu for u < 0 are replaced by 0. Then, the common distribution of the ǫt’s will be estimated
from the residuals.

APPENDIX 1

Uniqueness of non-Gaussian MA representations in the literature

Table 1 gives a summary of the main conditions obtained in the literature for the uniqueness of the MA
representation in (1). Apart from such conditions, it is generally also assumed that the spectral density of
Xt is positive almost everywhere.

Note that the condition given by Breidt and Davis (Remark 2, p.386, 1992), as an alternative proof to
their Proposition 3.1, is based on the following result:

THEOREM 1 (KAGAN ET AL. (1973, P.94)). Let ǫj be a sequence of independent random variables,

and {aj}, {bj} be two sequences of real constants such that

i) The sequences {aj/bj : ajbj 6= 0} and {bj/aj : ajbj 6= 0} are both bounded;
∑

ajǫj and
∑

bjǫj converge a.s. to random variables U and V respectively;

ii) U and V are independent.

Then, for every j such that ajbj 6= 0, ǫj is normally distributed.

In the context of MA processes, this result can be used as follows. Suppose that (3)-(4) hold, where (ǫt)
and (ǫ∗t ) are two i.i.d. processes. Then the variables

ǫ∗t =

∞
∑

j=−∞

ajǫt−j and ǫ∗t−h =

∞
∑

j=−∞

aj+hǫt−j

are independent. It follows that if the sequences

{aj/aj+h : ajaj+h 6= 0} and {aj+h/aj : ajaj+h 6= 0} are both bounded, (A1)
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Table 1. Uniqueness conditions for the non-Gaussian MA representation (1)

Papers Condition on ǫt Condition on MA coefficients
Lii and Rosenblatt (1982) All moments finite

∑
j|aj | < ∞

Findley (1986) All moments finite
∑

a2
j < ∞

Findley (1990) Finite non-zero rth cumulant
∑

a2
j < ∞

Cheng (1992) Finite variance
∑

a2
j < ∞

Breidt and Davis (Prop. 3.1, 1992) Finite variance Fractionally Integrated ARMA
Breidt and Davis (Rem. (2) p. 386, 1992) E log+ |ǫt| < ∞ Fractionally Integrated ARMA

then either the variables ǫt and ǫ∗t are normally distributed, or all the aj’s except one are equal to zero.
The conclusion thus coincides with that of our Proposition 4, but is obtained under (a) less restrictive
distributional assumptions on the i.i.d. processes, but (b) more restrictive assumptions on the sequence
of coefficients aj . Breidt and Davis (Remark 2, p. 386, 1992) showed that (A1) is satisfied for a MA
polynomial of the form A(z) = Ψ(z)/Φ(z) =

∑∞
j=0 ajz

j , where Ψ(z) and Φ(z) are finite-order polyno-
mials under standard assumptions. For more general processes, the boundedness assumption can be very
restrictive. For instance, it precludes sequences recursively defined by aj = 0 for j ≤ 0 and aj = λjaj−1

for j ≥ 1, where (λj) is a sequence converging to zero or to infinity.

APPENDIX 2

Proof of Proposition 2

In view of (5) with v = 0, we have, for all u ∈ R,

−σα∗

∗ |u|α∗ = −
∞
∑

j=−∞

σα|aj |
α|u|α.

Thus α = α∗ and, without loss of generality, we can take σ = σ∗ and
∑∞

j=−∞ |aj |
α = 1. We then have,

by taking v = tu in (5),

∞
∑

j=−∞

|aj + taj+h|
α = 1 + |t|α, ∀t ∈ R. (A2)

The right-hand side of this equality is a differentiable function of t except at t = 0. Let us study the
differentiability of the left-hand side. Suppose that there exists j0 such that aj0 6= 0 and aj0+h 6= 0. The
function t 7→ |aj0 + taj0+h|

α is everywhere differentiable except at t0 = −aj0/aj0+h, with t0 6= 0. The
contribution of all terms of the infinite sum displaying non differentiability at t0 is

∑

j∈J

|aj + taj+h|
α = |t− t0|

α
∑

j∈J

|aj+h|
α,

where J = {j ∈ Z | aj + t0aj+h = 0}. This contribution must vanish; otherwise, we would have in the
right-hand side of (A2) a function which is differentiable at t0 while the left-hand side is not. Hence
∑

j∈J |aj+h|
α = 0, in contradiction with the fact that this sum is bounded below by |aj0+h|

α 6= 0. There-
fore, there exists no integer j0 such that aj0 6= 0 and aj0+h 6= 0, which establishes the property.

✷

Proof of Proposition 3

By Ibragimov and Linnik (Theorem 2.6.5, 1971), for a variable ǫ∗ ∈ DA(α∗), where the limiting stable
distribution has location parameter µ = 0, we have

|E
(

eiuǫ
∗

)

| = e−|u|α∗L∗

1(1/u), (A3)
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in the neighborhood of the origin, for some slowly varying function L∗
1. This equality also holds if µ 6= 0,

the limit law in (6) being uniquely determined up to positive affine transformations. By (5) with v = 0,
we thus have

−|u|α∗L∗
1

(

1

|u|

)

= −

∞
∑

j=−∞

σα|aj |
α|u|α, (A4)

in the neighborhood of 0. Thus α = α∗ and L∗
1 is constant in the neighborhood of 0. It is not restrictive to

assume σα = L∗
1(1/|u|) in the neighborhood of 0 and

∑∞
j=−∞ |aj |

α = 1. We thus are lead to the proof
of Proposition 2.

✷

Proof of Proposition 4

By (5) with v = 0 and (A3), we have in the neighborhood of 0,

−|u|α∗L∗
1

(

1

|u|

)

= −

∞
∑

j=−∞
aj 6=0

|aj |
α|u|αL1

(

1

|aju|

)

. (A5)

i) Let us first show that α∗ = α. If α∗ < α, the left-hand side term in

|u|α∗−αL∗
1

(

1

|u|

)

= −

∞
∑

j=−∞
aj 6=0

|aj |
αL1

(

1

|aju|

)

,

tends to 0 when u → 0, while the right-hand side term does not. We also get a contradiction if α∗ < α,
hence α = α∗.

ii) Now we will show that

L∗
1

(

1

|u|

)

∼





∞
∑

j=−∞

|aj |
α



L1

(

1

|u|

)

, when u → 0. (A6)

We will use the next property (see for instance Embrechts, Klüppelberg, Mikosch (1997), Theorem A3.2).

LEMMA 1. If L is a slowly varying function, for any a, b > 0, the convergence L(tx)/L(x) → 1 when

x → ∞ is uniform on the segment [a, b].

Using Lemma 1 and (A5) with α = α∗ we have, in the neighborhood of 0, for some constants a, b > 0 to
be chosen later,

∣

∣

∣

∣

∣

∣

L∗
1

(

1
|u|

)

L1

(

1
|u|

) −

∞
∑

j=−∞

|aj |
α

∣

∣

∣

∣

∣

∣

≤

∞
∑

j=−∞
aj 6=0

|aj |
α

∣

∣

∣

∣

∣

∣

L1

(

1
|aju|

)

L1

(

1
|u|

) − 1

∣

∣

∣

∣

∣

∣

≤





n
∑

j=−n

|aj |
α



 sup
t∈[a,b]

∣

∣

∣

∣

∣

∣

L1

(

t
|u|

)

L1

(

1
|u|

) − 1

∣

∣

∣

∣

∣

∣

+
∑

|j|>n
aj 6=0

|aj |
α

∣

∣

∣

∣

∣

∣

L1

(

1
|aju|

)

L1

(

1
|u|

)

∣

∣

∣

∣

∣

∣

+
∑

|j|>n

|aj |
α

:= S1,n(u) + S2,n(u) + S3,n.
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We have, in the neighborhood of 0, for τ = α− s,

S2,n(u) =
∑

|j|>n
aj 6=0

|aj |
s|aj |

τ

∣

∣

∣

∣

∣

∣

L1

(

1
|aju|

)

L1

(

1
|u|

)

∣

∣

∣

∣

∣

∣

≤
∑

|j|>n
aj 6=0

|aj |
s|aj |

τK
(

1 + |aj |
−τ

)

,

which is smaller than an arbitrarily small ς > 0 for n sufficiently large, n > N say. The same property
holds for S3,n. Now let [a, b] =

[

min|j|≤N{|aj |
−1, aj 6= 0},max|j|≤N{|aj |

−1, aj 6= 0}
]

in S1,n(u). We
have

S1,n(u) ≤





∞
∑

j=−∞

|aj |
α



 sup
t∈[a,b]

∣

∣

∣

∣

∣

∣

L1

(

t
|u|

)

L1

(

1
|u|

) − 1

∣

∣

∣

∣

∣

∣

,

which tends to zero using the uniform convergence of L1.
Thus we have established (A6) and, without generality loss, we can make a scale change on the aj’s to

get, for u 6= 0,

L∗
1

(

1

|u|

)

=





∞
∑

j=−∞

|aj |
α



L1

(

1

|u|

)

. (A7)

iii) Using (A7), Equation (5) can now be written, for u, v in the neighborhood of 0, uv 6= 0, as

|u|αL∗
1

(

1

|u|

)

+ |v|αL∗
1

(

1

|v|

)

=

∞
∑

j=−∞
aju+aj+hv 6=0

|aju+ aj+hv|
αL1

(

1

|aju+ aj+hv|

)

=

∞
∑

j=−∞

|aju|
αL1

(

1

|u|

)

+ |aj+hv|
αL1

(

1

|v|

)

.

Hence, for v = tu, t > 0, we get, for u in the neighborhood of 0,

∞
∑

j=−∞
aj+taj+h 6=0

|aj + taj+h|
αL1

(

1

|aj + taj+h||u|

)

=
∞
∑

j=−∞

|aj |
αL1

(

1

|u|

)

+ |taj+h|
αL1

(

1

t|u|

)

.

By the same argument as before, using the uniform convergence of the slowly varying function L1 (see
Lemma 1), the asymptotic behavior of these sums in the neighborhood of u = 0 is the same if we replace

terms of the form L1

(

1
x|u|

)

, with x > 0, by L1

(

1
|u|

)

. We thus have, for any t > 0,

∞
∑

j=−∞

|aj + taj+h|
α =

∞
∑

j=−∞

(|aj |
α + |taj+h|

α) ,

and we are led to the discussion of Proposition 2.

✷

Proof of Proposition 5

We use Theorem 2.1 in Kokoszka (1996), which establishes sufficient conditions for two infinite-order
lag polynomials whose coefficients may not be absolutely summable to commute. From the assumptions
made on the coefficients of the polynomials a(B) and {a∗(B)}−1, we have ǫ∗t = {a∗(B)}−1a(B)ǫt,
where the random series {a∗(B)}−1a(B)ǫt converges absolutely a.s. By Proposition 4, it follows that
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{a∗(B)}−1a(B) = cBℓ for some constant c and some integer ℓ ∈ Z. Thus a(B) = ca∗(B)Bℓ and the
proof is complete.

✷

Proof of Proposition 6

Similarly to (5), we have for u, v ∈ R,

log |Ψ∗(u)|+ log |Ψ∗(v)| =

K
∑

k=1

∞
∑

j=−∞

log |Ψ(uak,j + vak,j+h)|, (A8)

by the independence between ǫk,t and ǫℓ,t′ for any (k, t) 6= (ℓ, t′). By the arguments leading to (A4) we
thus have

−|u|α∗L∗
1

(

1

|u|

)

= −

K
∑

k=1

∞
∑

j=−∞

σαk

k |ak,j |
αk |u|αk , (A9)

in the neighborhood of 0. Thus αk = α∗ =: α for all k, and L∗
1 is constant in the neighborhood of 0,

L∗
1

(

1

|u|

)

=

K
∑

k=1

∞
∑

j=−∞

σα
k |ak,j |

α.

Now by taking v = tu in the neighborhood of u = 0, we find that, similarly to (A2),

K
∑

k=1

∞
∑

j=−∞

σα
k |ak,j + tak,j+h|

α = (1 + |t|α)

K
∑

k=1

∞
∑

j=−∞

σα
k |ak,j |

α, ∀t ∈ R. (A10)

Now we can use the following elementary lemma.

LEMMA 2. For α > 0, let fγ : t ∈ R 7→ fγ(t) = |1 + γt|α and let f∗ : t ∈ R 7→ f∗(t) = |t|α. Let Γ =
{γi}i∈I a family of distinct real numbers, with I ⊂ Z. The family of functions {f∗, fγ ; γ ∈ Γ} is linearly

independent.

It follows from (A10) and Lemma 2 that for any (k, j) either ak,j or ak,j+h is equal to zero. Thus, for any
k, the set {ak,j , j ∈ Z} reduces to a singleton. The conclusion follows.

✷

Proof of Proposition 7

By the independence between ǫ∗k,t and ǫ∗ℓ,t′ in the one hand, and ǫk,t and ǫℓ,t′ in the other hand, for any
(k, t) 6= (ℓ, t′), we get from the i-th equation of (13)

K
∑

k=1

∞
∑

j=−∞

log |Ψ∗(ua∗i,k,j + va∗i,k,j+h)|, =
K
∑

k=1

∞
∑

j=−∞

log |Ψ(uai,k,j + vai,k,j+h)|.

Thus, by arguments already used,

K
∑

k=1

∞
∑

j=−∞

(σ∗
k)

α∗

k |a∗i,k,j |
α∗

k |u|α
∗

k =

K
∑

k=1

∞
∑

j=−∞

σαk

k |ai,k,j |
αk |u|αk ,

in the neighborhood of 0. It follows that {αk; k = 1, . . . ,K} = {α∗
k; k = 1, . . . ,K} and thus α1 = α∗

1 <
. . . < αK = α∗

K and
∑∞

j=−∞(σ∗
k)

αk |a∗i,k,j |
α∗

k |u|α
∗

k =
∑∞

j=−∞ σαk

k |ai,k,j |
αk |u|αk for k = 1, . . . ,K. It

is thus not restrictive to assume σk = σ∗
k and

∑∞
j=−∞ |a∗i,k,j |

α∗

k |u|α
∗

k =
∑∞

j=−∞ |ai,k,j |
αk |u|αk . Now,
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similarly to (A10),

K
∑

k=1

∞
∑

j=−∞

(σ∗
k)

αk |a∗i,k,j + ta∗i,k,j+h|
αk =

K
∑

k=1

∞
∑

j=−∞

σαk

k |ai,k,j + tai,k,j+h|
αk , ∀t ∈ R,

which, using the fact that the powers αk are different, entails, for k = 1, . . . ,K,
∞
∑

j=−∞

|a∗i,k,j + ta∗i,k,j+h|
αk =

∞
∑

j=−∞

|ai,k,j + tai,k,j+h|
αk , ∀t ∈ R. (A11)

Let (ηt) be an i.i.d. sequence of symmetric αk- stable distributed random variables,
ηt ∼ S(αk, 0, 1, 0). The left hand side of (A11) characterizes the distribution of the

process (a∗i,k(B)ηt). It follows that a∗i,k(B)ηt
d
= 1

σk
ai,k(B)ǫk,t. Therefore, we have

ηt
d
= 1

σk
{a∗i,k(B)}−1ai,k(B)ǫk,t and we can conclude as in the proof of Proposition 5.

✷
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