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Overcon�dence? (Preliminary)

Jean-Pierre Benoît Juan Dubra�

Abstract

Many studies have shown that people display an apparent overcon�dence. In par-

ticular, it is common for a majority of people to describe themselves as better-than-

average. The literature takes for granted that this better-than-average is problematic.

We argue, however, that, even accepting these studies on their own terms, there is

nothing at all wrong with a strict majority of people rating themselves above the

median.

When it comes to overcon�dence, there is a consensus on a consensus: writers agree that

researchers have found overcon�dence to be common. Typical comments include �Dozens of

studies show that people...are generally overcon�dent about their skills� (Camerer, 1997),

�Perhaps the most robust �nding in the psychology of judgment is that people are overcon-

�dent� (DeBondt and Thaler, 1995), and �The tendency to evaluate oneself more favorably

than others is a staple �nding in social psychology� (Alicke et al. 1995). While the study

of overcon�dence originated in the psychology literature, the phenomenon has migrated into

the economics and �nance literature, taking its place in the growing list of �irrational� as-

pects of human attitudes and behaviour that have moved from the fringes to the forefront

of mainstream thinking.1

If people are indeed overcon�dent there are important implications for our understanding

of the economy, and for public policy. For instance, a basic principle of competition is that

�rms will enter an industry only up to the point that they earn zero expected pro�ts. But

if, to take one industry, restaurateurs overestimate their abilities, we can expect too many

restaurants to open only to close shortly thereafter, and the restaurant business to lose

�We thank Stefano Sacchetto for his research assistance.
1Papers on overcon�dence in economics include Camerer and Lovallo (1999), Garcia, Sangiorgi and Uro-

sevic (2007), Hoelzl and Rustichini (2005), Koszegi (2006), Menkho¤ et al. (2006), Noth and Weber (2003),

Van den Steen (2004), Zabojnik (2004). In �nance, recent (published) papers include Barber and Odean

(2001), Biais et al. (2005), Bernardo and Welch (2001), Chuang and Lee (2006), Daniel, Hirshleifer and

Subrahmanyam (2001), Kyle and Wang (1997), Malmendier and Tate (2005), Peng and Xiong (2006), Wang

(2001).

1



money on average. At the same time, if people overestimate their driving ability, then

merely informing them of general risks will not induce them to take su¢cient care.

Overcon�dence has been reported in peoples� beliefs in the precision of their estimates,

in their beliefs about the likelihood their answers to questions are correct, and in their

appraisal of their relative skills and virtues. In this paper, we are concerned with the last

form of overcon�dence.2 As Myers (1999; p:57) writes, �on nearly any dimension that is

both subjective and socially desirable, most will see themselves as better than average.� As

evidence, he cites research showing that most people perceive themselves as more intelligent

than their average peer, most business managers rate their performance as better than

their average peers, and most high school students rate themselves as more original than

the average high-schooler. In an oft-quoted study, Svenson found that 77% of Swedish

subjects felt they were safer drivers than the median, and 69% felt they were more skillful.

These �ndings, and others like them, are typically cited as evidence of overcon�dence, at

least in peoples� estimation of their relative skills, without any explanation as to why such

data is indicative of mistaken self-appraisals. For instance, Alicke et al. (1995)) simply

assert that �the better-than-average e¤ect provides compelling evidence that people maintain

unrealistically positive images of themselves relative to others� [italics added]. Presumably,

the reason for this lack of explanation is that, since �it is logically impossible for most people

to be better than average� (Taylor and Brown (1988)), it seems obvious that some people

must be making errors in their self-evaluations. But the simple truism that most people

cannot be better than average � more precisely, the median � does not imply that most

people cannot rationally rate themselves above average. Indeed, we will show that none of

the evidence cited above is evidence of unrealistically positive images at all. This is true

even if we accept the evidence described on its own terms (and do not, for example, argue

that subjects misunderstood the questions, or disagreed in their interpretations). Failure to

recognize this fact comes from a failure to frame the issue of overcon�dence precisely.

To illustrate the main point of this paper, consider a large population with three types

of drivers, low skilled, medium skilled, and high skilled, and suppose that the probabilities

of any one of them causing an accident in any single period are pL =
4
5
; pM = 2

5
; and pH = 0,

respectively. In period 0, nature chooses a skill level for each person with equal probability.

Initially no driver knows his or her own skill level, and so each person (rationally) evaluates

himself as no better or worse than average. In period 1, everyone drives and learns something

about his skill, based upon whether or not he has caused an accident. Each person is then

asked how his driving skill compares to the rest of the population. How should a driver who

2Some authors, such as Burson et al. (2005) reserve the term �overcon�dence� for people who overestimate

their absolute abilities, but we see no reason for this restriction. In any case, the literarture uses the term

in all the ways we have listed, and more.
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has not caused an accident reply?

Using Bayes� rule, he evaluates his own skill level as follows:

p (High skill j No accident) =
1
3

1
3
+ 1

3
3
5
+ 1

3
1
5

=
5

9

p (Medium skill j No accident) =
1
3
3
5

1
3
+ 1

3
3
5
+ 1

3
1
5

=
1

3

p (Low skill j No accident) =
1
3
1
5

1
3
+ 1

3
3
5
+ 1

3
1
5

=
1

9

Such a driver thinks there is over a 1
2
chance (in fact, 5

9
) that his skill level is in the top

third of all drivers. His mean probability of an accident is 5
9
0+ 1

3
2
5
+ 1

9
4
5
= 2

9
, which is better

than for 2
3
of the drivers, and better than the population mean. Furthermore, his beliefs

about himself strictly �rst order stochastically dominate the population distribution. Any

way he looks at it, a driver who has not had an accident should evaluate himself as better

than average. Since 3
5
of drivers will not have an accident, 3

5
will rank themselves better than

average. Thus, the population of drivers will seem overcon�dent on the whole. However,

rather than being overcon�dent, which implies some error in their judgements, they will

simply be using all the information available to them in the best possible manner.

We emphasize that we are not providing an explanation for overcon�dence. Quite the

contrary, we are showing that, as in the above example, much of the supposed evidence

does not indicate overcon�dence at all; the apparent overcon�dence is illusory. Missing from

the discussion in the literature has been the recognition that when a person ranks himself,

this is just a summary statistic which provides only limited information about the entire

distribution of his beliefs. In the above driving example, although the statement �3
5
of the

people rank themselves above average� appears to be problematic, an examination of the

complete beliefs of the population shows that there is no anomaly. Indeed, since the 2
5
of the

population that do cause an accident have beliefs �I am low skill with probability 2
3
, medium

with probability 1
3
, and high with probability 0,� the beliefs of the population average out

to the actual population distribution, as they should.

Moreover, we will show that not only can a majority of people rationally rank themselves

above the median, but, depending upon the de�nitions one adopts, even 99% of the popula-

tion can rank itself in the top 1% without any cognitive error being implied. Moreover, the

failure to properly frame the issue has led authors to make plausible sounding statements

that are simply wrong, such as Camerer�s (1997, p. 173) claim that two �rms cannot both

think they are each more likely to have the most skill (assuming a common prior). We will

return to Camerer�s claim in Section 1.3.

In some experiments, subjects are asked to take actions, rather than answer questions.

Overcon�dence is then inferred from their actions. But actions, too, provide only a summary
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statistic of beliefs, and the same errors that have been made in interpreting answers to

questionnaires have been made in interpreting the actions that subjects take.

The remainder of this paper is organized as follows. In Section 1, we provide a careful

framework for analyzing overcon�dence. We distinguish between apparent overcon�dence,

which gives a possibly misleading impression of overcon�dence (as in the above driving

example), and (true) overcon�dence. We show that much of the evidence in the literature

purporting to show overcon�dence does nothing of the sort. In this section, we analyze

experiments in which subjects are asked to evaluate themselves. In Section 2, we look

at two papers in which subjects are asked to take actions, rather than make statements.

Using the framework developped in Section 1, we show that, despite the authors� claims, the

experiments in these papers do not provide a proper test of overcon�dence. In Section 3 we

suggest two experiments that do provide a proper test of overcon�dence.

Recent work has challenged the universality of the �nding that most people rate them-

selves as above average. In particular, there is evidence that this e¤ect is attenuated when

the attribute under consideration is objectively measurable, and even reversed when the skill

under consideration is a di¢cult one to master. In Section 4, we provide an explanation for

these �ndings. In Section 5, we discuss why it is important to distinguish between apparent

overcon�dence and overcon�dence. In Section 6, we review some of the literature.

1 Questionnaires

Consider a person who asserts �I am very intelligent.� How are we to tell whether or not this

con�dence is merited? It may well be impossible, given the vagueness of the term �very�.

Suppose that instead the person asserts �I am more intelligent than most people.� The

concept �more than most� is clearer than �very,� but the statement remains di¢cult to

assess, since it is unclear how to measure intelligence, IQ tests notwithstanding.

Researchers have attempted to surmount these di¢culties by considering entire popula-

tions at once. The idea is that, while it may be di¢cult to judge whether or not a speci�c

individual is overcon�dent, it may be possible to determine that a population is overcon-

�dent on the whole. For instance, if everyone in a room asserts �I am de�nitely the most

intelligent person in this room�, it could be concluded that all but one of them is overcon-

�dent, at least in their evaluations of their relative abilities3 (and assuming that they agree

on what constitutes intelligence).

3Each individual may or may not also have an over�ated opinion of his absolute level of intelligence.

In fact, individuals may not even have a clear notion of what this absolute level is. Note that for many

economic problems, the relative ranking is the relevant one. For instance, the wisdom of attempting a career

as a professional football player, depends on a person�s relative, not absolute, ability.
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This research can be divided into two types: work that proceeds by means of question-

naires and work that asks subjects to take actions. We consider the questionnaire work �rst,

and subdivide this work into two categories, one ordinal and one cardinal:

1. Ranking questionnaires: People are asked to rank themselves relative to others on some

attribute (�I am more intelligent than 80% of the people in this room�).

2. Scale questionnaires: People are asked to compare themselves to the population on a

scale (�On a scale of �5 (much less intelligent than average) to 5 (much more intelligent
than average), I am a 3.�

We consider the ranking literature �rst.

1.1 Ranking Questions

Svenson�s (1981) work is a prototypical example of a ranking questionnaire. Svenson gathered

subjects into a room and presented them with the following instructions (among others):

We would like to know about what you think about how safely you drive an

automobile. All drivers are not equally safe drivers. We want you to compare

your own skill to the skills of the other people in this experiment. By de�nition,

there is a least safe and a most safe driver in this room. We want you to indicate

your own estimated position in this experimental group. Of course, this is a

di¢cult question because you do not know all the people gathered here today,

much less how safely they drive. But please make the most accurate estimate

you can.

Each subject was then asked to place himself or herself into a safety decile. In one respect,

Svenson was very careful. Realizing that the subjects had little information about the other

drivers in the room, he explicitly stated: Of course, this is a di¢cult question because you

do not know all the people gathered here today, much less how safely they drive. But there

is another aspect he left unaddressed: Does a driver know how safely he himself drives? Of

course, a driver has more information about himself than about a stranger (for instance,

he knows the number of accidents he has had), but there is no reason to presume that he

knows precisely how safe his driving is (even assuming that he knows exactly what it means

to drive �safely�)4. This raises the question of what exactly a respondent means when he

ranks himself as being, say, in the 7th decile of drivers when it comes to safety.

4One well-recognized problem with interpreting Svenson�s data is that people may have di¤erent notions

of what it means to drive safely (see Dunning (1993)). Here, we give the best case for the data and assume

that all subjects agree on the meaning.
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To isolate the nature of the problem, let us consider a more carefully delineated problem.

Suppose a subject is asked to rank her �reaction time�. She is told that reaction time is

measured to the nearest tenth of a second, and that it varies in the general population

uniformly from 1 second to 0:1 seconds, so that, for instance, a time of :3 seconds places

a person in the 8th decile (smaller reaction times are better). She is asked to estimate her

position in the population. Suppose that her beliefs about her own reaction time are given

by Chart I below (she estimates that with probability 0:16, her reaction time is :5 seconds,

with probability 0:2 her reaction time is :4 seconds, etc...). The chart also lists population

deciles.

Reaction Time 1 :9 :8 :7 :6 :5 :4 :3 :2 :1

Prob. own time 0 0 0 0:16 0:16 0:16 0:20 0:30 0:02 0

Decile 1 2 3 4 5 6 7 8 9 10
Chart I

In what decile will she place herself? Three reasonable answers immediately come to

mind, corresponding to three common notions of �average�.

(�) She can reasonably place herself in the 7th decile. After all, there is over a 50% chance

that her reaction time will be :4 or better, and this is the fastest time for which she

can make such a claim. Another way of saying this is that :4 is the median of her

distribution, and this places her in the 7th decile .

(�) She can reasonably place herself in the 6th decile. After, all :462 is her mean reaction

time, which rounds up to :5 which is in the 6th decile.

(�) She can reasonably place herself in the 8th decile. After all, her modal time :3 places

her in the 8th decile.

Certainly, this list is not exhaustive. Thus, when a person places herself in a certain

decile, we, as researchers, have no real way of knowing the signi�cance of her answer. Is

there a �correct� or �rational� answer? No; she is being asked to summarize her beliefs with

a single parameter, but no single reply supplies the best information for all circumstances.

For instance, if she is risk-neutral, and we are interested in knowing whether she would place

an even money bet that her reaction time is better than that of x% of the population, then

her median belief provides the requisite information. On the other hand, if we would like

to know whether she would place a bet where she receives a payment based on how much

faster or slower she is than other people, her mean answer may be more informative. If she

is not risk-neutral, then no single parameter may be of much use.

Returning to Svenson�s driving question, a person may consider herself to be quite a

safe and skillful driver since she has never had an accident and always manoeuvres well in
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tra¢c, but at the same time realize that her limited experience restricts her ability to make

a precise self-appraisal. In ranking herself, she must estimate her own ability as well as that

of the others in the room. As a result, it is unclear what to make of her answer to Svenson�s

question and, hence, of Svenson�s data. Rather than ascribe a particular meaning, we will

consider several possibilities.

1.1.1 Population Median Data

Consider a population where each person is asked to rank his or her skill level relative to the

other people in the population. (We use the word �skill� loosely here to denote the attribute

under consideration.) The literature is not always very careful in de�ning when this popu-

lation displays overcon�dence (or, equivalently for this paper, when the population displays

the so-called better-than-average e¤ect), but the general idea is that there is overcon�dence

if, as Myers (1999; p:57) writes, most people �see themselves as better than average.�

An immediate di¢culty with this formulation is the ambiguity in the notion of �average�

� does this refer to the mean or the median? It is easy to see that the mean cannot possibly

provide the right de�nition, at least when the underlying trait distribution may be skewed.

For example, in a population of ten people, one who has scored 0 on a test, and nine who

have scored 50, the nine have, in fact, performed better than the mean, so there is certainly

nothing wrong in them believing that they have. Thus, De�nition 1 below, which uses the

median, is what the literature has in mind, whether explicitly or implicitly.5

Given a set of individuals who are asked to rank themselves, let population median data

x be the fraction of people who rank themselves strictly above the median.

De�nition 1 Population median data x is apparently overcon�dent if x > 1
2
.

The reader will have noticed that we have used the word �apparently� in the above

de�nition. To understand the reason, we must ask why a population that ranks itself highly

on average should be called overcon�dent, rather than simply con�dent. Clearly, the idea

is that in an overcon�dent population, there is something incorrect, or at the very least

inconsistent, in people�s self-evaluations. To determine if a population that is apparently

overcon�dent is truly overcon�dent, we need a notion of what it means for peoples� self-

evaluations to be correct and consistent. Fortunately, we have such a notion readily available,

given by the Harsanyi common prior approach in which nature picks a skill level, or type,

for each person, and over time each person receives information about her type and updates

her beliefs about herself using Bayes� rule. We formalize this below.

5For instance, Hoelzl and Rustichini say that a population exhibits overcon�dence if �a majority of people

estimates their skills or abilities to be better than the median�.
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De�nition 2 A signalling structure is a triplet � = (S;�; f), where S is a set of signals,

� � R is a type space, and f = ff�g�2� is a collection of probability distributions over S:

If, for example, S is �nite, f� (s) is the probability that a person of type � receives the

signal s.

� Throughout this paper we interpret higher types as more skillful.

De�nition 3 A signalling model consists of a population of individuals, a signalling struc-

ture � = (S;�; f), and a type � 2 � for each individual such that:
i) The distribution of types in the population has a unique median.

ii) Each person knows the distribution of types in the population; initially, each person�s

belief about her own type is given by this distribution.

ii) An individual of type �, receives the signal s 2 S according to the probability distribution
f�.

iii) Each person updates her initial beliefs using Bayes� rule.

This de�nition of a signalling model re�ects a standard approach to a situation of incom-

plete information, but since variations are possible within this standard, a few comments

are in order. The unique median merely avoids uninteresting complications. Although it

is not necessary to do, we posit that each individual knows the distribution of types in the

population. On the one hand, this is certainly a plausible condition. For instance, an indi-

vidual might know the distribution of the number of accidents a person can expect to have

in a lifetime, or the distribution of IQs in the population, without knowing either �gure

for herself.6 More importantly, this condition makes our task more di¢cult: we will show

that apparently overcon�dent data can rationally arise, even if everyone has a perfect un-

derstanding of the level of skills in the population.7 Note that, although it is not explicit in

the de�nition of a signalling model, a dynamic time structure is allowed. In particular, the

signal that an individual receives may consist of various pieces of information obtained over

time (for instance, from her driving experience).

This is quite a rational model; indeed for many it is the de�nition of full rationality. As

such, it provides a proper foundation for judging the rationality of a population. Note that

since agents in a signalling model use Bayes� rule, for a large population their beliefs average

out to the (true) population distribution.

6In experiments, the comparison population is sometimes the group of subjects in the room. Even if

a subject knows the skill distribution in the general population (or relevant subpopulation, for instance,

students), he may not know the distribution of skills in the room. However, the best case for the validity of

an experiment is when the subject group is large enough to be representative of the larger population.
7By the same token, the assumption of a unique median also makes our task more di¢cult.
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The following proposition indicates that apparent overcon�dence is incompatible with

rationality when people know their skill levels exactly.

Proposition 1 Consider a signaling model. If everybody�s updated beliefs after receiving

their signals are degenerate, the population median data cannot be apparently overcon�dent.

Proof. All proofs not in the text are in the appendix

If people are certain of their types, then a strict majority of them cannot rationally

believe they are better than the median.8 However, this is a rather implausible condition �

in most, if not all, situations each person will have only an imperfect indication of his own

skill.9 How imperfect can a rational persons� self-knowledge be? A priori, it seems di¢cult to

require more of a rational population than that its members derive their beliefs in a rational

and consistent manner; that is, that they derive them from a signalling model.

In ranking questionnaires, people do not report their full beliefs, but only a ranking.

Rational and consistent individuals report rankings that come from beliefs that are derived

from a signalling model; however, as discussed in the previous section, there are many

legitimate ways to report a ranking derived from a particular belief. Therefore, in interpreting

ranking data we need to consider several possibilities.

Suppose that people use their median beliefs about themselves in their self-evaluations (as

in � of Section 1.1). The next de�nition says that a fraction x can rationally and consistently

report themselves as being better than the population median, if, starting from a common

prior, and using Bayes� rule, a fraction x can come to believe their median type is better

than the population median.

De�nition 4 Population median data x can be �-rationalized if there exists a signalling

model in which x is the expected fraction of people who will believe that their median type is

strictly greater than the population median, after receiving their signals and updating.

(More formally, x can be �-rationalized if there exists a signalling model as follows: Let

m be the median of the prior p. Let Smed � S be the set of signals such that an individual
who receives a signal s 2 Smed has a median belief about himself that is strictly greater than
the population median. Thus, s 2 Smed if and only if P (� � m j s) < 1

2
: Let F denote the

8Propostion 1 remains true if we modify the de�nition of a signalling model to allow people to be uncertain

of the population distribution. For instance, nature could pick one of several population distributions with

probabilities that are common knowledge.
9Many authors explicitly acknowledge that people are not likely to be certain of their skill levels. Thus,

Alicke et al. (1995) ask subjects to make �point estimates� of their skill, while Hoelzl and Rusticcini (2005)

note that a subject in their experiment has only �some idea of his skills in it�. However, these and other

authors do no fully explore the implications of this uncertainty.

9



probability distribution of the signals in S, often called the �marginal�. That is, for each

(measurable) T � S let
F (T ) =

Z

�

Z

T

df� (s) dp (�)

Then, x can be �-rationalized if x = F (Smed).)

In a stochastic environment, it is possible to �explain� a wide range of experimental data

as the outcome of a random, although possibly unlikely, process. De�nition 4 avoids this

�cheat� by insisting that the data x be the expected fraction of people who believe themselves

to be above average. This can also be interpreted as restricting ourselves to data that comes

from large populations.10 Thus, De�nition 4 is a demanding notion of rationalizing. When

people self-evaluate using their median types and the data can be �-rationalized, there is no

reason prima facie case for calling it �overcon�dent�.

The following de�nition is for a population in which people use their mean beliefs about

themselves (as in � of Section 1.1) for their self-evaluations.

De�nition 5 Population median data x can be �-rationalized if there exists a signalling

model in which x is the expected fraction of people who will believe that their mean type is

strictly greater than the population median, after receiving their signals and updating.

Although reporting a modal belief strikes us a plausible way to answer a questionnaire, it

also strikes us as less compelling than reporting either a median or a mean belief. Therefore,

in the interest of space, from now on we no longer consider mode reports. (Considering mode

reports would not modify our results in any essential way.) Instead, we turn to a slightly

di¤erent approach than the one we have adopted so far.

It is reasonable for a person with no information about herself, other than that she is

a random member of the population, to rate herself as average.11 Suppose the person now

receives a signal that causes her beliefs about her own type to strictly �rst order stochastically

dominate the population distribution. It is natural for this person to now rank herself above

the median person.12 This leads to the following de�nition.

De�nition 6 Population median data x can be 
-rationalized if there exists a signalling

model in which x is the expected fraction of people who, after receiving their signals and

10In Section 1.3 we brie�y discuss small populations, where more extreme data can be rationalized.
11A person who has no private information about herself and who self-evaluates using the median of her

type, ranks herself as equal to the population median; if she uses her mean type, she ranks herself as equal to

the population median if the prior is symmetric, but not necessarily otherwise (which may be an argument

against the reasonableness of the mean).
12Note, however, that if the population distribution is not symmetric, the fact that a person�s beliefs about

herself strictly �rst order stochastically dominate the population distribution does not imply that either her

median or mean type is strictly better than the population median type.
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updating, will have beliefs about their own type that strictly �rst order stochastically dominate

the population distribution.

The existing literature assumes that apparent overcon�dence implies cognitive errors,

or inconsistencies, on the part of (some) respondents without considering the meaning of

their replies. In our terms, the literature assumes that apparent overcon�dence implies that

the data cannot be rationalized without specifying which sense of rationalizing. In some

cases, there may be a reason to focus on a particular sense (as in Section 2.2). Absent such

a reason, a stringent de�nition of overcon�dence requires that population median data be

called overcon�dent only when it cannot be rationalized using any of the above concepts, for

only then can we be sure that there is a �problem� with the data13; a lax de�nition requires

only that data be called overcon�dent when it cannot be rationalized using at least one of

the concepts.

De�nition 7 Population median data x is strongly overcon�dent if it is apparently over-

con�dent and it cannot be �-rationalized, and cannot be �-rationalized, and cannot be 
-

rationalized.

De�nition 8 Population median data x is weakly overcon�dent if it is apparently over-

con�dent and it cannot be �-rationalized, or it cannot be �-rationalized, or it cannot be


-rationalized.

In a symmetric signalling model, the population distribution is symmetric.14 In what

follows, we will note when the data can (also) be rationalized by a symmetric signalling

model (and hence the rationalizing does not depend upon a discrepancy between the mean

and median).

Theorem 1 Ostensible overcon�dence of population median data x implies weak overcon�-

dence only if x = 1. Put di¤erently, it is possible to �-rationalize, and �-rationalize, and


-rationalize any fraction x 2
�
1
2
; 1
�
rating themselves above the median. Moreover, these

rationalizations can be done with symmetric signalling models.

If people know the general distribution of skills in the population, and learn about their

own skills over time, there is nothing wrong with a strict majority of them ranking themselves

above the median. Thus, apparent overcon�dence should not be used as an indication of

overcon�dence. For instance, Svenson�s (1981) �nding that �a majority of subjects regarded

13In fact, even then we could not be sure as there could be still other reasonable ways for people to evaluate

themselves.
14If P is the distribution, and h is the midpoint of the support , P (� � h� y) = P (� � h+ y) for all y.
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themselves as more skillful and less risky than the average driver� is unproblematic. Note

that Theorem 1 restricts x to be greater than 1
2
only because we are concentrating on

overcon�dence. The theorem remains true for all x 2 (0; 1), so that apparent undercon�dence
is also not problematic. Although the three notions of rationalizing used in Theorem 1 are

independent of each other, the drivers example in the introduction illustrates the theorem

for all three.

The above theorem concerns a population of individuals who place themselves relative to

the median person. The next theorem is even more dramatic: almost everyone can rationally

believe that their mean skill level is strictly higher than the skill level of any fraction of the

population (even if the population distribution is symmetric).

Theorem 2 Data in which any fraction x 2 (0; 1) of the population ranks itself strictly

higher than any fraction q 2 (0; 1) of the population can be �-rationalized by a signalling
model. In particular, 99% of the people can rationally believe that their mean skill level is

strictly higher than the skill level of 99% of the people. Moreover, this rationalizing can be

done with a symmetric signalling model.

1.1.2 Population Ranking Data

Although the results of ranking experiments are typically summarized by the number of

people who rank themselves above the median, most of these experiments collect more de-

tailed data, such as the deciles into which subjects place themselves. While the previous

section shows that population median data is essentially useless for determining whether or

not people are overcon�dent, this more complete data is potentially helpful.

Suppose that each person is asked to place himself into a �k-cile�, where to be in the

jth k-cile means that the person ranks himself above the fraction j�1
k
of the population, and

below the fraction j
k
. Population ranking data is a vector x 2 Rk;

Pk
1 xi = 1, where xi;

i = 1; :::; k is the fraction of people who rank themselves in the ith k-cile. By de�nition, the

actual fraction of people that lies in each k-cile is 1
k
. We have the following:

De�nition 9 The population ranking data x is apparently overcon�dent if x strictly �rst

order stochastically dominates
�
1
k
; :::; 1

k

�
:

If neither one of x and
�
1
k
; :::; 1

k

�
�rst order stochastically dominates the other, then

the data has neither an unambiguously overcon�dent nor undercon�dent appearance. For

instance, the data
�
1
5
; 1
5
; 3
10
; 0; 3

10

�
contains a disproportionately large number of people who

consider themselves to be in the top �fth, but a disproportionately small number who place

themselves in the top two �fths.
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De�nition 10 The population ranking data x can be �-rationalized if there exists a sig-

nalling model in which the expected number of people who believe their median type is in the

jth k-cile is xj; j = 1; :::; k.

The following theorem says that, when people report the median of their beliefs, a rational

population can be �twice as con�dent� as reality would suggest, but no more. For instance,

suppose that people place themselves into deciles (k = 10). Then apparently overcon�dent

data in which 2
10
of the people rank themselves in the top decile, 4

10
rank themselves in the

top two deciles, and 2i
10
rank themselves in the top i decile for i = 3; 4; 5 can be rationalized.

However, data in which 3
10
of the population place themselves in the top decile can not

be explained as rational. (Although we have been emphasizing overcon�dent looking data,

there is a similar constraint put on undercon�dent looking data, and that is captured by

the second inequality in the theorem.) Let dne denote the least integer weakly greater than
n 2 R:

Theorem 3 The population ranking data x can be �-rationalized if and only if

kX

i

xj � 2

k
(1 + k � i) , i =

�
k + 1

2

�
; :::; k and

iX

1

xj � 2

k
i, i = 1; :::;

�
k � 1
2

�

Moreover, the rationalizing can be done with a symmetric signalling model.

Corollary 1 Population ranking data in which the median declared placement is as high as

the 75th percentile, but no higher, can be �-rationalized.

While almost everyone can rationally think they are better than the median, only half

can rationally think they are better than the 75th percentile.

Theorem 3 provides some hope for detecting overcon�dence by the use of ranking ques-

tionnaires. It is worth looking at Svenson�s data in greater detail than that provided by his

population median data. Svenson questioned students in Sweden and the United States, ask-

ing them both about their driving safety and driving skill. Swedish drivers placed themselves

into deciles in the following proportions when asked about their safety:

Decile 1 2 3 4 5 6 7 8 9 10

Reports (%) 0:0 5:7 0:0 14:3 2:9 11:4 14:3 28:6 17:1 5:7

We �rst note that although the population ranking data has an overcon�dent feel to it,

the data is not, strictly speaking, apparently overcon�dent, since fewer than 10% of the
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population ranks itself in the top 10%. More importantly, Theorem 3 implies that the data

can be �-rationalized, so that it is not indicative of cognitive biases.15 Note, for instance,

that while 65:7% of the people rank themselves among the top 40%, Theorem 3 would allow

up to 80% to rationally do so. Furthermore, the median ranking is between the seventh and

eighth decile, which Corollary 1 permits of a rational population. In fact, out of Svenson�s

four questions, only half yield answers that cannot be �-rationalized � namely, the American

answers. The median safety placement for American students is between 81% and 90%,

which violates Corollary 1. While the median skill placement is in the acceptable 61� 70%
range, 46% of the population places itself in the top 20% of skill level, which is too many

to �-rationalize. Thus, Svenson does �nd some evidence of overcon�dence (if his subjects

based their answers on their median types), but it is not as strong as commonly believed.

Note that when 46% of the population place themselves in the top 20% this is only 6% too

many, not 26%.

Theorem 3 is our �rst positive result: if people self-evaluate using their median rank-

ings, then questionnaires have the potential to detect overcon�dence. Unfortunately, our

next result indicates that if people use their mean rankings, then even the more complete

population ranking data is useless.16

De�nition 11 The population ranking data x can be �-rationalized if there exists a sig-

nalling model in which the expected number of people who believe their mean type is in the

jth k-cile is xj; j = 1; :::; k.

Theorem 4 Any population ranking data can be �-rationalized.

1.1.3 Reasonableness

The previous discussion has been in the rather abstract language of signalling models. Some

readers may wonder if the results somehow depend upon �bizarre� signalling structures. In

this section, we address this concern.

One obvious reason for a person to consider herself a safe driver is that she has not had

any accidents. Thinking of driving as a �test�, and not having an accident as passing the

test, motivates the next de�nition.

De�nition 12 A testing model consists of a test, a population of individuals, a type space

[0; 1], and a (prior) probability distribution p over [0; 1] with unique median such that:

15Theorem 4 below shows that the data can be ��rationalized as well.
16Theorem 4 is the �rst result that relies on a signalling model that is not symmetric. This could be

considered to be a �aw, if there is a reason to believe that the trait under consideration is symmetrically

distributed in the population. As far as we know, no one in the literature has argued that their data is

signi�fcant because the trait distriubtion is symmetric.
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i) Nature chooses a type � 2 [0; 1] for each individual independently according to the prior p;
initially, each person�s beliefs about his own type are described by p.

ii) Each person takes the test. A person of type �, passes the test with probability � and fails

with probability 1� �:
iii) Each person updates his beliefs about himself using Bayes� rule.

A testing model is a natural and simple signalling model. In a symmetric testing model,

the prior distribution is symmetric.

Theorem 5 Population median data x, for any x 2 (0; 1), can be �-rationalized, �-rationalized,
and 
-rationalized by a symmetric testing model. Furthermore, data in which any fraction

x 2 (0; 1) of the population rank themselves strictly above any fraction q 2 (0; 1) of the

population can be �-rationalized by a symmetric testing model.

Theorem 5 implies Theorems 1 and 2 of Section 1.1.1. As it depends only upon a

symmetric testing model, which is quite simple and straightforward, it shows that those

results do not depend upon a strained signalling model.

While the simplicity of a testing model is a virtue, it has a cost: since it involves only two

signals, pass and fail, it can only generate data in which the population�s updated beliefs

divide into at most two sets. Thus, while population median data can be rationalized by

a testing model, population ranking data in which the population places itself into more

than two k-ciles (k > 2) cannot be. At the same time, a driver, for example, self-evaluates

using not only the number of accidents she has had, but also the number of near-accidents,

her beliefs about her re�exes and eyesight, and myriad other factors, which may be better

captured by the abstractness of a signalling model than by a more concretely speci�ed model.

What makes for a reasonable signalling model? A plausible restriction is that better types

should be more likely to receive better signals (for instance, a relatively safe driver should

expect to have relatively few accidents and near-accidents). More precisely, we say that

a signalling model, with signalling structure (S;�; f), is f-reasonable if �1; �2 2 �; �1 <
�2 implies that f�2 f.o.s.d. f�1. The following proposition shows that this restriction has

implications for population ranking data.

Proposition 2 For small enough "; the population ranking data
�
"; "; 1

2
� "; 1

2
� "
�
cannot

be ��rationalized by a signalling model that is f-reasonable.

Proposition 2 stands in contrast to Theorem 3 and Theorem 4 of Section 1.1.2. This

proposition leaves open the possibility that population ranking data might be more useful

than is implied by those theorems. For instance, one might hope to argue that Svenson�s

Swedish data is, in fact, indicative of some overcon�dence, as it could not be rationalized
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by a �reasonable� signalling model. While this possibility is intriguing, the following result

shows that it is not immediate what form such an argument would take.17

Example 1 The data x =
�
1
8
; 1
8
; 3
8
; 3
8

�
can be ��rationalized by a signalling model that

is f-reasonable. For instance, let the type space be � = [0; 4], let the set of signals be

S = f1; 2; 3; 4g, and let the probability with which type � receives signal s be given by, for
any " � 1

6
, fi:

f� (s)

� 2 [0; 1)
=

8
><
>:

1
4
+ " s = 1

1
4
� " s = 2

1
4

s = 3; 4

;
f� (s)

� 2 [1; 2)
=

8
><
>:

1
4
� " s = 1

1
4
+ " s = 2

1
4

s = 3; 4

f� (s)

� 2 [2; 3)
=

(
3
4

s = 3
1
4

s = 4
,

f� (s)

� 2 [3; 4]
=

(
1
4

s = 3
3
4

s = 4

Finally, let the population be uniformly distributed on �. Then, 1
8
of the population receives

the signal 1, 1
8
the signal 2, 3

8
the signal 3 and 3

8
the signal 4. An individual who receives the

signal i has a median type that places him in the ith quartile. The population (rationally)

reports the data
�
1
8
; 1
8
; 3
8
; 3
8

�
.

The next theorem shows that when it comes to �-rationalizing, f-reasonableness imposes

no additional restrictions.

Theorem 6 Any data x with xi 2 (0; 1) for all i can be ��rationalized with an f�reasonable
signalling model.

1.2 Scale Questions

In scale questionnaires, participants are asked to make evaluations using a scale. There are

variations, but in the version we consider people are asked to compare themselves to the

average person on a designated scale.18 For instance, Alicke et al. (1995) present subjects

17The technically minded reader will notice that the information structure of Example 1 does not sat-

isfy the maximum likelihood ratio property (mlrp): for some �0 > �, f
�0
(s)

f�(s)
is not increasing. In par-

ticular, 3 = f2(3)
f0(3)

>
f2(4)
f0(4)

= 1. The failure to satisfy the mlrp is not a problem, however, since the

mlrp is just a means to an end, namely, that �high signals are good news�, and higher signals are

good news in the example, since the posteriors from higher signals f.o.s.d the posteriors from lower sig-

nals. For example, p (� 2 [0; 1)j3) = p (� 2 [1; 2)j3) = 1
6 , p (� 2 [2; 3)j3) = 1

2 , p (� 2 [3; 4j3) = 1
6 , while

p (� 2 [0; 1)j4) = p (� 2 [1; 2)j4) = p (� 2 [2; 3)j3) = 1
6 ; p (� 2 [3; 4j3) = 1

2 .
18In a common variant each person places him or herself on a scale from 1 to T and indicates the fraction

of the population that falls into each scale position. This is formally equivalent for de�ning ostensible

overcon�dence. However, the notions of rationalizing becomes relatively involved, as the di¤erent population

distributions must also be explained.
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with a personality trait, such as intelligence or dependability, and ask them �to rate the

extent to which the trait describe(s) themselves relative to the average college student of the

same sex, on a single 9-point scale (0=much less than the average college student;4=about

the same as the average college student;8=much more than the average college student).�

More generally, in a scale survey (of this type), a comparison scale T and �average�

m are speci�ed, and each person i is asked to compare himself to this average by choosing an

xi 2 T . Population scale data is a quadruple (T;m; n; �x) ; where T � R is the scale used

in the questionnaire, m 2 T is the speci�ed scale average, n is the number of individuals,
and �x = 1

n

Pn
i=1 xi, where each xi 2 T . The literature uses the notion that the population

scale data is apparently overcon�dent if �x > m.

Before proceeding, we must note that the fundamental methodology in many scale ques-

tionnaires seems a bit dubious. The basic idea, apparently, is that in a rational population,

the answers given should average out. But given the subjective nature of many of these

scales, it is unclear why this should be so, even when there is no uncertainty at all and

everyone is in perfect agreement. Imagine the following question posed to two drummers, A

and B, in a room:

On an integer scale from �5 (much worse), 0 (the same) to 5 (much better),
please rate yourself as a drummer compared to the other drummer.

Suppose that, as it happens, both A and B are of the opinion that the only skill that

matters in a drummer is accurate time keeping. Furthermore, they both agree that A�s time

keeping is 80% accurate, while B�s is 30% accurate. There seems to be little scope for �true�

overcon�dence (or undercon�dence). There also seems to be nothing wrong with A rating

himself with a 4, and B rating herself with a �2. After all, the scale markings are subjective.
Nonetheless, the standard measure indicates overcon�dence since the average rating is 1, not

0.19

Despite our reservations, we will proceed as if the scales are interpreted in a consistent

manner by all concerned. Alternatively, we will only be considering scale questionnaires in

which there is an objective scale. As an example, Weinstein (1980) asks students how their

chances of obtaining a good job o¤er before graduation compare to those of other students

at their college, with choices ranging from 100% less than average to 5 times the average.

Here, there is no ambiguity in the meaning of the scale, but another ambiguity remains;

namely, what is meant by an average student?20

19There are still other potential problems with scale questions. For instance, Schwarz et al. (1991) ask

subjects how successful they have been in life, and �nd that answers di¤er signi�cantly depending upon

whether subjects are presented with a scale from �5 to 5, or 0 to 10.
20Weinstein asks subjects to compare themselves to �other Cook students� using terms such as �50% less

than average�. Alicke et al. ask their subjects to compare themselves to the average student.
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As we saw, in ranking questionnaires the median is the only notion of an average that

it is reasonable for us to consider.21 It turns out that in scale questionnaires only the mean

provides a useful notion, although it is reasonable for respondents to use either notion.

To illustrate the issue, suppose, for the sake of discussion, that all of Weinstein�s subjects

agree that there are two types of students at their college, low and high, with job o¤er

probabilities pL = 0:3 and pH = 1, and that 80% of the population are low type. A reasonable

interpretation of an average student is one with an 0:3 chance of obtaining an o¤er. Consider

a respondent who thinks that there is a 50% chance that she is a low type. Her probability of

obtaining a good job o¤er is (:5� 0:3) + (:5� 1) = 0:65. A perfectly reasonable response to
Weinstein�s question is that her chances are 35% above average. Note that we are claiming

that a reasonable, perhaps the most reasonable, way to answer uses the median (or mode)

in determining the population average, but the mean (of her own beliefs) for self-evaluating.

It is not necessary that the the reader accept this as the most reasonable way of answering,

merely that he or she accepts that this as a plausible way. Of course, this is not to deny

that it is also reasonable for a respondent to use the population mean in de�ning the average

student and her own mean for self-evaluating. Moreover, for other questions, in particular

those not involving probabilities, it may be reasonable for subjects to use their median type,

rather than mean type, when self-evaluating. Thus, just considering medians and means,

there are four ways to interpret answers to scale questions.

We will spare the reader the formalization of all four treatments. It is fairly obvious that

in the two cases where people self-evaluate using the median of their beliefs, apparent over-

con�dence does not imply overcon�dence, since there is no particular reason why weighted

sum of medians should equal the population mean or median. Example 2 shows that the same

holds true when people self-evaluate using their mean belief, and the population �average�

is taken to be the median.

the population average represents the median. Theorem 7 below covers the fourth case.

Example 2 Consider an experiment in which 150 subjects are asked to compare themselves

to others on a scale T = f0; 1; :::; 9; 10g, where 5 is �average�, 0 indicates �much below
average�, and 10 indicates �much above average.� Suppose that the number of people who

place themselves at 5 is 50, and that for each of 6, 7, 8, 9, and 10 the number is 20. Clearly,

the data is apparently overcon�dent, since nobody places himself below the average, and 2/3

of the people place themselves strictly above. We now show how to rationally explain this

data when the average 5 represents the median type, and respondents self-evaluate using their

mean type.

21More precisely, if the trait described is not symmetrically distributed, there is no reason for 50% of the

people to be ranked above the mean. If the trait is symmetrically distributed, then the mean equals the

median anyway.
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Suppose that, in fact, of the 150 subjects, 90 are 5�s and 60 are 10�s. Note that the median

type is 5. This general information is common knowledge. Beyond this, each person receives

a signal giving him further information about his own type. The set of signals is S =

f0; 1; :::; 9; 10g and, for the two types in the population, the probability of receiving a signal
are given by:

f5 (s) =

8
><
>:

0 s < 5
5
9

s = 5
20�2i
45

s > 5

and f10 (s) =

(
0 s � 5
i�5
15

s > 5

Some simple calculations show that the expected number of people who will receive the signal 5

is 50, and that any one receiving this signal knows that his type is 5. For each i = 6; :::10, the

expected number who will receive the signal is 20, and, using Bayes� rule, a person receiving

the signal i has a mean type of i. Therefore, we expect 50 people to rationally rate themselves

as 5s, and 20 people to rationally rate themselves each of 6, 7, 8, 9, and 10, as reported in

the experiment.

The next theorem contrasts markedly with this result. It shows that if �average� is

interpreted as the mean of the population, and people self-evaluate using the mean of their

beliefs, then apparent overcon�dence implies overcon�dence. More precisely, consider a

population whose mean type is m, and whose members know the overall distribution of

types and learn about themselves over time. If individuals report their mean type, then at

any point in time, the expected average report must be m: Therefore, if the population is

large enough it will not display apparent overcon�dence.

Theorem 7 Consider a population where individual i = 1; :::; n is of type ti 2 T � R, and m
is the mean type. Suppose that each person knows the distribution of types in the population

and receives a signal about his own type. Then E
�
1
n

Pn
i=1
�ti
�
= m, where �ti is the mean of

person i�s updated beliefs.

Theorem 7 provides the �rst case where the standard interpretation of the data found in

the literature has merit. Weinstein �nds that his subjects display apparent overcon�dence.

If we assume that his subjects consider the average subject to be represented by the mean of

the population, and that they self-evaluate using their mean type, then his subjects also dis-

play overcon�dence.22 Since Weinstein asks his subjects for probability information, it does

seem most reasonable to interpret their responses as re�ecting their mean self-evaluations.

However, as we argued earlier, it may be more reasonable to assume that subjects consider

the average type to be the population median, rather than mean.

22On the other hand, as a psychological matter, asking subjects for probabillity information in and of itself

may lead to dubious replies.
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1.3 Small Samples

As we discussed in Section 1.1.1, our de�nitions of rationalizing, which rely on �expected

data�, can be understood as implicitly insisting that the data be generatable by in�nitely

large populations. Naturally, an experimenter prefers to have as large a subject pool as

possible, so that her results cannot be dismissed as a statistical aberration (or experimental

error). Thus, our implicit assumption that the data comes from an in�nitely large population

provides the best case for the data. Nonetheless, actual experimental populations are, of

course, �nite, and many experiments involve quite small numbers. It is worth noting that

�nite samples permit data that is even more (seemingly) anomalous.

Consider the following quote from Camerer (1997):

The now-standard approach to games of imperfect information pioneered by

John Harsanyi presumes that players begin with a �common prior� probability

distribution over any chance outcomes. As an example, consider two �rms A

and B, who are debating whether to enter a new industry like Internet software.

Suppose it is common knowledge that only one �rm will survive-the �rm with

more skilled managers, say- so �rms judge the chance that their managers are

the more skilled. The common prior assumption insists both �rms cannot think

they are each more likely to have the most skill.

This statement is simply wrong. We now show that, using the �standard approach,� each

of two �rms can, in fact, concurrently believe that it is more likely to be the more skillful.

Furthermore, this state of a¤airs can arise with probability arbitrarily close to one. The

following is a simple and straightforward model yielding this result.

1. Nature moves �rst. With probability 1
2
, Firm 1 has high skill, Firm 2 has low skill;

with probability 1
2
Firm 1 has low skill, Firm 2 has high skill. Both �rms know this,

but neither is told Nature�s choice.

2. Each �rm takes a test. The high skill �rm passes with probability ph, the low skill �rm

passes with probability pl, where ph > pl.

3. Each �rm uses Bayes� rule to determine the probability that it is the more skillful.

Proposition 3 For any p 2 (0; 1), the parameters in the above model can be chosen so that
with probability p each �rm will believe there is strictly more than a 1

2
chance that it is the

more skillful. In particular, the parameters can be chosen so that with a 50% chance each

�rm will believe there is a 2
3
chance that it is the more skillful; in order for the chance to be

more than 50%, the belief must be smaller than 2
3
, in order for the belief to be greater than

2
3
, the chance must be less than 50%:
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Proof of Proposition 3. The probability that a �rm that passes the test is high skill

is:

p (� = H j pass) =
1
2
ph

1
2
ph +

1
2
pl
>
1

2

The probability that both �rms past the test is phpl. Fixing p � pl <
p
p (to ensure that

1 � ph > pl), and setting ph = p
pl
establishes the �rst part.

To establish the second part, note that the solution to the problem

max
pl;ph

1
2
ph

1
2
ph +

1
2
pl

subject to phpl � 1
2
and ph > pl; is

2
3
at ph = 1; pl =

1
2
.

As an illustration, if ph = 0:99 and pl = 0:98, then with probability 0:97 both �rms will

pass the test and each will believe there is a 0:502 chance that it is the more skillful; if ph = 1

and pl = 0:5, then with probability
1
2
each of the two �rms will simultantously believe it has

a 2
3
chance of being the more skillful.

We note that the �rst part of the proposition has nothing to do with there being two

�rms � an arbitrary �nite number of �rms can all believe they are the best �rm with any

probability p 2 (0; 1).

2 Actions

We have emphasized the ambiguity inherent in the interpretation of replies to questionnaires.

A di¤erent approach to the study of overcon�dence circumvents this ambiguity by asking

subjects to take actions. The subjects� beliefs are then inferred from their actions. In this

section we look at two such studies.

2.1 Entry

In an oft-cited paper, Camerer and Lovallo (1999) test for overcon�dence using an experiment

meant to model �rms� entry decisions. N subjects (��rms�) must decide whether to play

In or Out. After the entry decisions are made, the subjects who have played In are ranked.

The payo¤ to playing In is greater than the payo¤ to playing Out if and only if an entrant

is ranked in the top k < N (hence, all subjects who play In do better than all subjects who

play Out if fewer than k choose In). There are two treatments.

1. Treatment 1. The subjects who play In are ranked randomly.

2. Treatment 2. The subjects who play In are ranked according to their results on a skill

or trivia test. (The test is administered after the entry decisions, but subjects are given

sample questions beforehand).
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Since the number of subjects that can pro�tably play In is independent of the treatment,

the authors test for overcon�dence on the part of subjects by testing if the number of

entrants is greater under Treatment 2 than under Treatment 1.23 They �nd that, indeed,

more subjects enter under the second treatment than the �rst. But is this an indication of

overcon�dence, with its implication of irrationality, or apparent overcon�dence, with no such

implication?24

We now show that if more �rms enter under Treatment 2 than Treatment 1, this only

shows apparent overcon�dence.

We proceed with a slightly simpler setup than the one used by Camerer and Lovallo;

the basic methodology and conclusions remain valid for their more intricate setup. Suppose

there are two subjects (N = 2), and that only one of them can pro�tably play In (k = 1).

Speci�cally, if both subjects enter, the higher ranked one earns 1, the lower ranked one loses

3. A subject who enters alone, again earns 1. A subject who does not enter earns 0. We can

write �the subjective expected payo¤ matrix� for the game as follows, where pi is a subject

i�s belief that he or she will be the higher ranked:

In Out

In p1 � 3 (1� p1) ; p2 � 3 (1� p2) 1; 0

Out 0; 1 0; 0

Since there are only two participants, the two treatments in this case are:

1. Under Treatment 1, if both �rms enter, the higher ranked subject is randomly chosen

with probability 1
2
.

2. Under Treatment 2, if both �rms enter, their ranking is determined by a trivia test.

The test is administered only after entry decisions have been made, but each subject

is shown a sample question before.

To explain Camerer and Lovallo�s �nding of more entry under Treatment 2 than Treat-

ment 1 as the result of apparent overcon�dence, rather than overcon�dence, we must specify

a signalling model (preferably, a �reasonable� one); Section 1.3 provides one. Suppose that,

before seeing the sample question, each subject believes there is a 1
2
chance that he will do

better on the test, and (correctly) believes that if he is to do better (resp., worse) on the

23As they write �The di¤erence in the number of entrants in the random and skill conditions is the primary

measure of interest.�
24In fact, as a test of any kind of overcon�dence, the results of the paper are muddied by several com-

plicating issues, including the risk attitudes of the participants and their ability to play to an equilibrium.

We consider the best case scenario (for their paper) in which participants are risk-neutral and play to an

equilibrium.
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test, he will know the answer to the sample question with probability ph (resp, pl, pl < ph).

Suppose also that phpl >
1
2
, so that there is a greater than 50% chance that both subjects

will correctly answer the test (and each will think he is likely to be the more skillful).

We �nd symmetric equilibria of the games induced by the two treatments:

1. Under the �rst treatment, each subject enters with probability 1
2
. The expected number

of subjects that enters is 1.

2. Under the second treatment, each subject adopts the following strategy: If I pass the

test, I enter with probability ph+pl
4phpl

> 1
2
, if I fail the test I do not enter. The expected

number of �rms that enter is 1
4phpl

(ph + pl)
2.

Note that 1
4phpl

(ph + pl)
2 > 1. Therefore, an experimenter should expect to �nd that more

subjects enter under Treatment 2 than under Treatment 1, but this is only an indication of

apparent overcon�dence, not overcon�dence.25

2.2 A Vocabulary Test

Hoelzl and Rustichini (2005) divide subjects into groups and present them with two options:

1. Option 1. You will be given a monetary prize M with probability 1
2
, as determined by

the toss of a die.

2. Option 2. Everyone in your group will be administered a vocabulary test. You will be

given M if your score places you in the top half of your group.

Hoelzl and Rustichini write, �Since only half of the subjects will win if the test decides

the winner, any excess over a half of the subjects voting for the test indicates an erroneous

evaluation of their own relative skills�. This statement, which forms the basis of their

analysis, is incorrect.

To see why the statement is incorrect, �rst note that a subject will prefer the test condi-

tion if she thinks that there is more than a 50% chance that her performance will be in the

top half. If we assume, as Hoelzl and Rusticcini do, that each person believes that test taking

ability can be summarized by a single parameter, or type, then a person will prefer the test

if the median of her beliefs about herself is better than the group median. If more than 50%

25A di¤erent test is on the expected pro�ts that �rms make, rather than the number of �rms. If �rms

are (truly) overcon�dent under Treatment 2, rather than ostensibly overcon�dent, they will make negative

expected pro�ts (see Section 5). However, Camerer and Lovallo do not �nd that �rms make negative pro�ts

(in the setting that does not su¤er from a self-selection problem, which is a separate issue that the authors

identify)
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of the people (strictly) prefer the test, then the population displays apparent overcon�dence;

this apparent overcon�dence �indicates an erroneous evaluation� only if the data cannot be

�-rationalized (given that people are using their median types). However, as Theorem 1

indicates, any amount of apparent overcon�dence can be �-rationalized.26. Thus, there is no

error in judgement implied when more than half the subjects vote for the test.

In fact, even without the formalization in this paper, it is rather trivial to see that there

is nothing wrong with more than half the subjects voting for the test. Imagine, for the sake

of argument, 10 subjects who reach the following conclusion in the waiting room: Nine of

them are native English speakers, with a perfectly ordinary command of the language, while

one is a Haitian with a more recent knowledge of English. There is certainly nothing wrong

with the nine native speakers voting for an English vocabulary test on the grounds that this

gives each of them a 5
9
> 1

2
chance of winning the prize. Thus, the experimental design of

Hoelzl and Rustichini cannot possibly prove what they set out to prove.

The authors actually run two treatments of their experiment, one in which the vocabulary

test is easy, one in which it is di¢cult. In both cases, subjects vote on the options before

the test is administered, but are shown sample questions (either easy or di¢cult) before the

vote. Hoelzl and Rustichini �nd that more subjects vote for the test option when the test

is easy, than when it is di¢cult. They write �Two interpretations of this result are possible.

The �rst interpretation is that subjects confuse �being good� with �being better�... A second

interpretation is possible in terms of ambiguity aversion�. In fact, a third interpretation is

possible within a completely rational framework. In Section 4.2 we show that one should

expect apparent overcon�dence when the test is easy and apparent undercon�dence when

the test is di¢cult.27 To understand this result in the present context, imagine that the

di¢cult (on average) test is a Haitian Creole vocabulary test. Now we should expect nine

of the subjects to vote against the test, on the grounds that it would give each of them a
4
9
< 1

2
chance of winning.

3 Testing for Overcon�dence

While the experiment run by Hoelzl and Rustichini does not provide a proper test of over-

con�dence, we now provide two modi�cations that do provide a proper test. The validity of

both experiments derives from Theorem 8 below, which generalizes the necessary conditions

26More precisely, Theorem 1 says that any degree of ostensible overcon�dence short of 100% can be

�-rationalized. In fact, given that any experiment must allow a margin for error, one could argue that

even 100% ostensible overcon�dence is not problematic. Moreover, �-rationalization is (implicitly) for an

in�nite population; for a �nite rational population 100% ostensible overcon�dence can be obtained without

experimental error.
27In fact, Propostion 3 can also be turned on its head to the same e¤ect.
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of Theorem 3.

First Experiment

Suppose subjects are given the following two options:

1. Option 1. You will be given a monetary prize M with probability 1
2
, determined by

the toss of a die.

2. Option 2. Everyone in your group will be administered a vocabulary test. You will be

given M if your score places you in the top x% of your group.

A subject prefers the test condition if she thinks that there is more than a 50% chance

that she will perform in the top x% of her group. That is, a person will prefer the test if her

median type is in the top x%. From Theorem 8, at most 2x% of the people can rationally

hold such a belief (at least if the population is large), so that a choice of x smaller than 50

by the experimenter provides a viable test. For instance if x = 30 so that a subject wins if

he or she places in the top 30%, then at most 60% can rationally vote for the test.28

Second Experiment

Suppose that 10 subjects are given the option between winning M with probability 6
10
,

and winningM if they place among the top 5 in a vocabulary test. As the following theorem

indicates, at most 8 of the subjects can rationally prefer the test.

Theorem 8 A fraction y or greater of a population can rationally believe that there is at

least a probability p that their types are strictly better than the worse type in the top x% of

the population if and only if py � x:

4 Ostensible Overcon�dence?

Recent work has questioned the universality of overcon�dence. In particular, there is evidence

that when the skill under consideration is objectively measurable, populations do not display

much apparent overcon�dence, and that they even display apparent undercon�dence when

the skill is a di¢cult one to master. In this section, we explain these facts within our rational

framework.

4.1 Objectivity

Moore (2007) writes �Attributes that are speci�c, public, and objectively measurable tend to

show the weakest BTA [better-than-average] e¤ects, whereas vague, private and subjective

28We gratuitously (since we have not run an experiment) remark that we doubt that more than 60% would

vote for the test.
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attributes tend to show the strongest BTA e¤ects�. It is reasonable to presume that people

have more information and, hence, tighter estimates of their own abilities for attributes that

are more objectively measurable. The following proposition indicates that when people are

quite certain of their types, there cannot be much apparent overcon�dence.

For simplicity, suppose the type space � is �nite. For any two probability distributions

p and q on �, let the distance between them be

d (p; q) = max
j
jpj � qjj :

We say that a distribution q is ��close to a degenerate if there exists a j � j�j such that
for ej (the jth canonical vector) d (q; ej) � �:

Proposition 4 Consider a signalling model where the proportion of individuals strictly above

the median of the population distribution is �: For all " there are a � and a t such that, if at

least a fraction t of the population have beliefs, after receiving their signals, that are ��close
to a degenerate, then jxm � �j < " and jx� � �j < ", where xm (x�) is the population median
data when people self-evaluate using their median type (mean type).

Recall that Proposition 1 showed that when people�s beliefs about themselves are degener-

ate the population median data cannot be apparently overcon�dent. Technically, Proposition

4 tells us that that result was �continuous�.

We motivated the above proposition with reference to objectively de�ned traits. On a

di¤erent dimension, people updating using Bayes� rule will have tighter estimates of their skill

as they gather more information. This suggests that, if our reasoning is correct, we should

expect, say, older drivers, to display less apparent overcon�dence than younger drivers.

4.2 Con�dence and Di¢culty

Kruger (1999) �nds a �below-average e¤ect in domains in which absolute skills tend to

be low�. Moore (2007), summarizing similar work, writes �When the task is di¢cult or

success is rare, people believe that they are below average�. Standard explanations for this

discrepancy focus on cognitive errors, such as a tendency for people to �focus egocentrically

on their own skills and insu¢ciently take into account the skills of the comparison group�

(Kruger (1999)). In this section, we o¤er a rational explanation (of course).

Imagine a large pool of subjects who are informed that the level of �g-ability� in the

population varies uniformly from 0 to 1. Since none of them has ever heard of g-ability, each

one (rationally) considers that his or her g-ability is equally likely to be anywhere from 0 to

1. Now suppose that they are given a test which measures g-ability. They are told that the

test is an easy one: a person with ability t will pass with probability 0:7 + 0:2t.
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What will a person who passes the test conclude about his ability? He certainly will

not be surprised that he passed, since he expected to pass the test regardless of his ability.

Nonetheless, his con�dence in his g-ability will increase, if only slightly. More precisely,

using Bayes� rule, he will ascribe probability 0:7+0:2t
:8

= 0:25t + 0:875 to being of type t. His

median type will be :53 and his mean type will be :52,29 both better than the median (or

mean) of the population. Thus, whether he ranks himself by his median type or mean type,

he will consider himself to be better than average. Furthermore, his beliefs about himself

will strictly �rst order stochastically dominate the prior. But, (about) 80% of population

will pass the test, and so the population will exhibit apparent overcon�dence. While the

population is apparently overcon�dent, it is not overcon�dent.

Now let us change just one thing: The test is a di¢cult one, and everyone is so informed.30

Speci�cally, the probability of passing the test is now 0:1+0:2t, so that 80% of the people are

expected to fail. Using Bayes� rule, those who fail will have a median type of 0:47, and mean

type of 0:48, and the population distribution will strictly �rst order stochastically dominate

their beliefs. Thus a population facing a di¢cult test will exhibit apparent undercon�dence.

Theorem 9 below formalizes the above argument using a testing model (de�ned in Section

1.1.3). Let p be the prior that nature uses in the testing model and P be the associated

cumulative distribution function. Then E (�) =
R
�dP is the average number of people who

pass the test, and this number is naturally interpreted as the di¢culty of the test. We say

that a test is easy if E (�) < 1
2
and di¢cult if E (�) > 1

2
. Let m be the median type.

Theorem 9 Suppose that beliefs are generated by a non-degenerate symmetric testing model.

Following the test, on average a fraction E (�) will consider that their mean type is strictly

better than the population median and will have beliefs about themselves that strictly f.o.s.d the

population distribution; a fraction 1�E (�) will consider that their mean type is strictly worse
than the population median and will have beliefs about themselves that are strictly f.o.s.d by

the population distribution. Furthermore, the fraction E (�) will consider that their median

type is weakly better than the population median. If p is a density, or p (m) is small enough,

the fraction E (�) (1 � E (�)) will consider that their median type is strictly better (worse)
than the population median. Thus, if the test is easy the population will exhibit apparent

overcon�dence, while if it is di¢cult, the population will exhibit apparent undercon�dence.

Thus, when a �task is di¢cult or success is rare� we can expect apparent undercon�dence,

and when a task is easy, we can expect apparent overcon�dence.

29The median is the solution to
R t
0
(0:25t+ 0:875) dt = 1

2 , while the mean is given by
R 1
0
(0:25t+ 0:875) tdt:

30The crucial di¤erence between our discussion here and the reasoning of Healy and Moore (2007), is that

here everybody knows precisely the di¢culty of the test they are taking. See Section 6 for a discusiion of

Healy and Moore (2007).
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5 Does it Matter?

In Section 2.1, we saw that apparently overcon�dent entrepreneurs might enter an industry

at a greater rate than entrepreneurs with neutral beliefs about their abilities. The same,

of course, is true about (actually) overcon�dent entrepreneurs. This invites the question:

does it really matter if a population is apparently overcon�dent but not overcon�dent, or

is the distinction merely semantic minutia? In this section, we argue that the distinction is

important.

Recall that in the two player game analyzed in Section 2.1, under the random ranking

treatment the equilibrium expected number of �rms is 1 while under the test treatment �

which leads to apparent overcon�dence � the equilibrium expected number of �rms is greater

than 1. Crucially, however, the expected pro�ts of each �rm is zero under both treatments

(as is easily veri�ed). In contrast, let us posit that the �rms are truly overcon�dent. For

instance, suppose each �rm irrationally believes there is a 3
4
chance that it is the more skillful.

Then in equilibrium, each �rm enters with probability one and earns �1. Thus, while the
presence of overcon�dence requires us to rethink the basic economic tenet that �rms will

not enter an industry if there are negative pro�ts to be made, the presence of apparent

overcon�dence does not.

Some authors use overcon�dence as a springboard for assuming that agents have an irra-

tional bias. For instance, in an in�uential �nance paper, Malmendier and Tate (2005) write

�Our overcon�dence story builds upon a prominent stylized fact from the social psychology

literature, the �better-than-average� e¤ect. When individuals assess their relative skill, they

tend to overstate their acumen relative to the average�. Armed with this supposed evi-

dence of irrationality, Malmendier and Tate go on to assume that the CEOs in their model

overestimate the returns to their projects. However, if, as we have argued, the evidence is

only that people are apparently overcon�dent, then the evidence is consistent with agents

using all the information available to them in the best possible way, in which case it supplies

no justi�cation for assuming that agents make biased estimates. In particular, apparently

overcon�dent CEOs who are not overcon�dent will, on average, have a correct estimate of

the returns to their projects.

Should authorities regulate the behaviour of drivers by imposing speed limits, mandating

seat belt use, etc..., rather than simply informing them of the risks? One argument in

favour of such regulation would be that drivers have too much con�dence in their abilities.

As Svenson writes, �Why should we pay much attention to information directed towards

drivers in general if [we believe] we are safer and more skillful than they are?� But if drivers

are only apparently overcon�dent, they may well pay attention. Note that in the driving

example from the introduction, the 3
5
of the population who rate themselves above average

still believe that with a probability of 4
9
they are no more skilled than average, so there is
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certainly no reason for them to ignore advice pitched at the general population.

6 Literature

There is a vast literature on overcon�dence, both testing for it and providing explanations.

We have already mentioned some of the evidentiary literature. On the explanatory side, most

of the literature accepts that there is something wrong when a majority of people believe

they are above average, and either explains the phenomenon as resulting from a psychological

�error�, or �nds a rational way around the data.

The �rst category of explanations include egocentrism (Kruger (1999)), incompetence

(Kruger and Dunning (1999)) and self-serving biases (Greenwald (1980)).

In the second category of explanations, Dunning (1993) �nds that people may have

varying notions of what, say, constitutes a good driver. If people are interpreting the question

di¤erently, there is not even an apparent contradiction when most people report themselves

to be better than average. Van den Steen (2004) and Santos-Pinto and Sobel (2005) push

this further and propose that as a result of these variances, people invest in skills in di¤erent

ways. Santos-Pinto and Sobel write �Without the ability to add to skills... precisely p percent

of the population would claim to be better than 1 � p percent of the others.� However, we
have shown that there is no need for there to be this perfect calibration, even if everyone

agrees on the evaluative criteria of skill, provided only that people do not know their own

skills exactly.

In Healy and Moore (2007), people take a test that may be either di¢cult or easy. Each

person is uncertain about his own ability, and about the di¢culty of the test he is taking.

A person who takes the easy test and does well, is uncertain if this is because he is of high

ability or because the test is easy; hence he rationally assigns weight to both possibilities

and considers himself to be above average. Since most people who take the easy test do

well, those who take the easy test appear to be overcon�dent. By the same token, those

who take the di¢cult test appear to be undercon�dent. More precisely, following the logic

of Healy and Moore, averaging over the entire population of test takers (both easy and

di¢cult), one should �nd no apparent overcon�dence or undercon�dence, but the analyst

makes a mistake by focussing on the groups separately. Again following their logic, if subjects

understand the di¢culty of their tasks, then their respective populations, even viewed in

isolation, should not rate themselves above or below average. However, we have shown that

there may be apparent overcon�dence and undercon�dence even in subjects who understand

their environments perfectly. As noted in Section 2.2, Hoelzl and Rustichini �nd apparent

overcon�dence when their subjects are given an easy test and undercon�dence when they

are given a di¢cult test. In their experiment subjects are told which test they are taking
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(and it is obvious), so that Healy and Moore�s analysis does not apply. Similarly, Kruger

(1999) subjects� consider easy tasks (e.g., riding a bicycle) and di¢cult tasks (e.g., juggling)

that are clearly delineated. Nonetheless, there are doubtless areas where it is hard to judge

di¢culty and, even though that additional assumption is not necessary to generate apparent

overcon�dence, it may yield greater overcon�dence. Furthermore, Healy and Moore provide

experimental evidence in favour of their thesis.

While the above literature tries to explain how anomalous data can arise, we show that

the data is, in fact, not anomalous at all. In this regard, Zábojnik (2004) is more in the

spirit of our paper, although his approach is very di¤erent. In his model, agents can choose

to forego consumption in order to learn about their abilities, which may be either high or

low. Given certain technical assumptions � in particular U (at), an individual�s utility as

a function of his ability, is strictly convex, and EU (at) =U (at) is decreasing � the optimal

learning rule of agents leads them to halt their learning in a biased fashion. As a result,

a disproportionate number end up ranking themselves as high in ability, despite the fact

that they are all rational Bayesians. Hence, like us, Zábojnik �nds that the mere fact that

a disproportionate number of people rank themselves in the top x% does not indicate a

problem. However, as Zábojnik readily admits, he is not really concerned with explaining

much of the experimental evidence, where his experimentation story is not very compelling.

Furthermore, he requires technical assumptions which play no role in our work. For instance,

we show that apparent overcon�dence can rationally arise whether or not an agent�s utility

is convex.

7 Conclusion

Consider two populations. In population A, about 50% of the people declare themselves

to be better than the median. In population B, about 80% of the people make the same

declaration. On the face of it, population A has good self knowledge, while population B

is somewhat delusional. Nonetheless, we have shown that, unless agents have a very good

idea of their own skills, the declaration of population B is no more aberrational than the

declaration of population A. Put di¤erently, there is no more reason to try and �justify� B�s

data than A�s; both sets of data can naturally arise as the result of agents learning about

their own skills.31

31Preston and Harris (1965) �nd that drivers who have recently had accidents still rate themselves �much

closer to the expert driver than to the poor driver�, in a comparable fashion to a control group that has

not had any accidents (the actual data is not reported). This �nding tends to go against our reasoning.

However, the accident drivers were interviewed while still in the hospital, and many faced severe legal and

�nancial consequences as a result of the accidents, so there is considerable reason to view their answers

with skepticism. We note that only 15 admitted responsibility, while police reports blamed 34. Given the
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Is there a tendency for people to be overcon�dent? We do not know, and have no stake

in the answer one way or the other. Psychologists do have theories independent of the

�better-than-average� evidence we have cited for believing in overcon�dence. However, it is

imperative to have a clear statement of the problem (which we hope to have provided), and

to conduct proper empirical tests (such as the ones suggested in Section 3). As it stands,

much of the supposed evidence for overcon�dence shows nothing of the sort, even if the

evidence is completely accepted on its own terms.

Recent evidence has shown that the supposed universality of overcon�dence has been

overstated. In particular, populations appear to be undercon�dent with respect to di¢-

cult skills, and there is little apparent overcon�dence or undercon�dence when the skill is

objectively de�ned. Our theory predicts these di¤erences.

8 Appendix

Proof of Proposition 1. We present the proof for the case in which the type space and

the signal space are �nite; the proof when either is in�nite is technically more involved, but

the essential reasoning is the same.

Let p describe the distribution of types in the population. Suppose that person i is of

type �̂
i
and has received the signal si. Since the posterior of i is degenerate, there is a e�

i

such that

Pr
�
e�
i j si

�
= 1,

Pr
�
si j e�i

�
Pr
�
e�
i
�

Pn
i=1 Pr

�
si j �i

�
Pr
�
�i
� = 1, 8� 6= e�is.t. p (�) > 0;Pr

�
si j �i

�
= 0:

Since only type e�
i
receives the signal si, we have �̂

i
= e�

i
: Thus, if beliefs are generated by

a signalling model and these beliefs are degenerate, they are correct, and it cannot be that

more than half the population believes it is better than the median.

Proof of Theorem 1. Fix the population median data that is to be rationalized,

1 > x > 1=2 and �x y < 1
2
� x

1+x
: We now de�ne the elements of a symmetric signalling

model that will �, �, and 
 rationalize the population data x. The signalling structure

consists of the signal space S = f0; 1g, the type space� =
�
3x�1
2
; x; 1+x

2

	
, and the probability

distributions f� (1) = �. The types are distributed in the population according to the prior p,

which assigns probability 2y to x, and 1
2
� y to each of 3x�1

2
and 1+x

2
. The expected fraction

of people who observe 1 is x. A person that observes 1 has a posterior belief given by

p (� j 1) =

8
><
>:

1+x
2x

�
1
2
� y
�

� = 1+x
2

2y � = x
3x�1
2x

�
1
2
� y
�
� = 3x�1

2

:

circumstances, these 19 denials can hardly be deemed irrational.
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We now check that this posterior distribution (strictly) �rst order stochastically dominates

the prior:

p

�
1 + x

2
j 1
�

=
1 + x

2x

�
1

2
� y
�
>
1

2
� y = p

�
1 + x

2

�

p (x j 1) = 2y = p (x)

p

�
3x� 1
2

j 1
�

=
3x� 1
2x

�
1

2
� y
�
<
1

2
� y = p

�
3x� 1
2

�

Thus, the population ranking data x can be 
 rationalized.

To see that the population ranking data x can be � rationalized, notice that the posterior

mean of a person who observes 1 is strictly larger than the prior mean, x, which is also the

prior median.

To see that the population ranking data x can be � rationalized, notice that the posterior

median of a person that observes 1 is (1+x)
2
, since

p

�
1 + x

2
j 1
�
>
1

2
, 1 + x

2x

�
1

2
� y
�
>
1

2
, 1

2
� x

1 + x
> y

by construction. Furthermore, (1+x)
2
> x.

Proof of Theorem 2. Pick any 1 > x; q > 1=2. Let the signalling structure be given

by S = f0; 1g, � =
�
3x�1
2
; x; 1+x

2

	
, and f� (1) = �. On �, de�ne a probability distribution

p that assigns probability 2q � 1 to x, and 1 � q to each of 3x�1
2
and 1+x

2
. Notice that the

fraction of the population whose type is at most x is q.

An observation of 1 occurs with probability x. A person that observes 1 has a posterior

belief given by

p (� j 1) =

8
><
>:

1+x
2x
(1� q) � = 1+x

2

2q � 1 � = x
3x�1
2x
(1� q) � = 3x�1

2

and an expected type that is strictly larger than x. Therefore, the expected fraction of people

who will have a mean type strictly greater than the fraction q of the population is x.

The case 0 < x; q < 1
2
is symmetrical, while the remaining cases are easy.

We prove necessity in Theorem 3 with a lemma that will be used elsewhere.

Lemma 1 A fraction y or greater of a population can rationally believe that there is at least

a probability p that their types are: strictly better than the worse type in the top x% of the

population only if py � x; weakly better than a type �� such that P (� � ��) = x only if

py � x; weakly worse than a type �� such that P (� � ��) = x only if py � x

Proof. For the �rst claim, we say that given P; the distribution of types in the population,

a type z is in the top x% of the population if P (� � z) � 1 � x; so the worse type in the
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top x% is �� = min fz : P (� � z) � 1� xg ; which implies P (� > ��) � x: Let Sw � S be

the set of signals s such that P (� > �� j s) � p; and let F denote the marginal distribution
over signals so that y = F (Sw). Then,

x � P (� > ��) =
Z
P (� > �� j s) dF (s) �

Z

Sw

P (� > �� j s) dF (s) �
Z

Sw

pdF (s) = py:

For the second claim, Let S�w � S be the set of signals s such that P (� � �� j s) � p;

and let F denote the marginal distribution over signals so that y = F (S�w). Then,

x = P (� � ��) =
Z
P (� � �� j s) dF (s) �

Z

S�w

P (� � �� j s) dF (s) �
Z

S�w

pdF (s) = py:

The third claim is analogous to the second, and omitted.

Proof of Theorem 3. Necessity. To prove necessity, simply apply claims 2 and 3 of

Lemma 1 with p = 1=2 and x = i=k for i = 1; 2; ::; k.

Su¢ciency. Let � = [0; k] and the prior is uniform. We then get that �ki = i; and the

k�cile i is Di = [i� 1; 1] =
�
�ki�1; �

k
i

�
.

Case 1: xi < 2=k for all i: We will construct the posterior beliefs given signal s
j for all

j; assuming �rst that for all i; xi � 2=k: Let the posterior distribution over types after a

signal sj be

D1 ::: Dj ::: Dk

1
k
� x1

2
::: 1

k
� xj

2
+ 1

2
::: 1

k
� x10

2

which adds up to 1 :

X�
1

k
� xi
2

�
+
1

2
= 1�

P
xi
2

+
1

2
= 1� 1

2
+
1

2
= 1:

Given these posterior distributions, we build a joint probability distribution for signals and

types that gives as a result the observed data (in a �law-of-large numbers�) large population.

Let Qj =
�
qj1; q

j
2; :::; q

j
k

�
denote the posterior probability distribution over types, after having

observed sj; where qji is the probability that Q
j assigns to the types in k�cile i: Then, the

initial joint probability distribution for types and signals is given by

k�cile!
signal#

1 2 ::: k Marginal

s1 q11x1 q12x1 ::: q1kx1 x1

s2 q21x2 q22x2 ::: q2kx2 x2
...

...
...

...
...
...

...
...

sk qk1xk qk2xk ::: qkkxk xk

Marginal 1
k

1
k

::: 1
k

1
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That the probability of s1 with this joint distribution is x1 follows immediately from the

fact that Qj is a probability distribution, and that therefore
P

i q
j
i = 1: We now show that

indeed the probability of the ith k�cile is indeed 1
k
: We have

X

j

qjixj =
X

j 6=i

qjixj + q
i
ixi =

X

j 6=i

qjixj +

�
1

k
� xi
2
+
1

2

�
xi

=
X

j 6=i

�
1

k
� xi
2

�
xj +

�
1

k
� xi
2
+
1

2

�
xi =

X

j

�
1

k
� xi
2

�
xj +

xi
2

=
1

k
� xi
2
+
xi
2
=
1

k
:

Su¢ciency. Case 2: xi > 2=k for some i:

Step 1. For all xi � 2=k; the posterior after si initially allocates 50% to the ith k�cile.
For xj > 2=k; the posterior after s

j initially allocates a probability 1=kxj to the j
th k�cile,

Dj:

Step 2. Take the largest j such that xj > 2=k (notice that by the necessity part of the

Theorem, j < k) and allocate the probability mass

1

2
� 1

kxj
(1)

on Dj+1; :::; Dk. Before clarifying how, notice that if j � 1 + k=2 the following argument

shows that there is enough �space� on the k�ciles larger than j to allocate the left over mass
from j :

xj + xj+1 + :::+ xk � 2k � 2 (j � 1)
k

, xj+1 + :::+ xk �
2k � 2 (j � 1)

k
� xj ,

�xj+1
2
� :::� xk

2
� xj

2
� k � (j � 1)

k
,

1

k
� xj+1

2
� :::+ 1

k
� xk
2

� k � j
k

+
xj
2
� k � (j � 1)

k
=
1

2
xj �

1

k
(2)

Then, the total mass to be allocated (from those who receive signal sj; who are a proportion

xj of the population), the quantity in (1), times the probability of signal s
j happening, which

is xj; yields the right hand side of (2), which is less than the �space� available in the k�ciles
greater than j: In each k�cile i greater than j; we have only used 1

k
� xi

2
of the mass available

and that is the left hand side of (2). Similarly, if j � 1 + k=2; the �total space� available in
k�ciles 1 + k=2 and greater is also enough to allocate at least 50% of the mass of

P
i�j xi;

since the sum is at most 100%; and k�ciles 1 + k=2 through k accumulate more than 50%
of the total probability.

Allocate as much as possible (of 1
2
xj � 1

k
) in Dk; if Dk is enough go to the next step; if

Dk is not enough, allocate as much as possible in Dk�1; continue in this fashion until
1
2
xj� 1

k
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has been exhausted (we know from equation (2) that it will be exhausted before getting to

j).

Step 3. Repeat Step 2 with the largest h < j such that xh > 2=k; starting to allocate its

left over probability in the largest k�cile that has less than 1=k probability already allocated
to it (generically, that will be the last k�cile �used� by xj). Continue with the largest k < h
such that xk > 2=k; starting to allocate its left over probability in the largest k�cile that
has less than 1=k probability already allocated to it; continue in this fashion until there are

no other xjs such that xj > 2=k.

Step 4. For each signal sj we have now allocated 50% of the posterior probability

distribution. In the case of xj � 2=k; 50% of the posterior is allocated in k�cile Dj; for

xj > 2=k; 50% of the probability has been allocated through Steps 2 and 3. Hence for each

signal sj we need to allocate 50% more. Of course, since the sum of the �masses supplied�

by each signal is the same as the masses received by the k�ciles, there is exactly room for

the 50% that we need to allocate now. A more formal proof of that argument now follows.

Suppose that k�ciles i+ 1; :::; k are �full� (in the sense that the probability allocated to
them from their own xi�s and the j�s such that xj > 2=k already accounts for 1=k) while

only part of k�cile i has been used: Note that the space available in Di before Step 3 was
1
k
� xi

2
; and that in Step 3 we allocated

X

j:xj>2=k

xj
2
� jfj : xj > 2=kgj

k
| {z }
excess in the j�s such that xj>2=k

�
 
k � i
k

�
kX

i+1

xm
2

!

| {z }
part absorbed by k�ciles Di+1;:::;Dk

to Di: Therefore, the available space in Di after Step 3 is

Ri �
1

k
� xi
2
�

X

j:xj>2=k

xj
2
+
jfj : xj > 2=kgj

k
+
k � i
k

�
kX

i+1

xm
2
:

Note that since

jff < i : xf � 2=kgj+ jfj : xj > 2=kgj+ jfi; i+ 1; :::; kgj = k

the total space available in all k�ciles after Step 3 is

jff < i : xf � 2=kgj
k

�
X

f<i:xf�2=k

xf
2
+
1

k
� xi
2
�

X

j:xj>2=k

xj
2
+
jfj : xj > 2=kgj

k
+
k � i
k

�
kX

i+1

xm
2

=
jff < i : xf � 2=kgj

k
+
jfj : xj > 2=kgj

k
+
k � i
k

+
1

k
�

X

f<i:xf�2=k

xf
2
� xi
2
�

X

j:xj>2=k

xj
2
�

kX

i+1

xm
2

= 1�
X

f<i:xf�2=k

xf
2
� xi
2
�

X

j:xj>2=k

xj
2
�

kX

i+1

xm
2
= 1�

kX

1

xm
2
=
1

2
:
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We now construct the remainder of the probability distribution conditional on any signal sj.

destination!
source#

Dm : xm � 2=k Di Dh : xh > 2=k Di+1; :::; Dk Total

sj 1
k
� xm

2
Ri 0 0 1

2

Weighted Total 1
k
� xm

2
Ri 0 0 1

2

Step 5. Build the joint probability distribution of signals and deciles by multiplying the

conditional distributions given sj by xj:

Proof of Theorem 4. For any xi we will have a collection
�
yji
	
such that

P
j y

j
i = xi

and yji will be the proportion of people announcing xi that actually belong to percentile j:

For all i; de�ne �i = 1=k � xi: If xi > 1=k; we de�ne yii = 1
k
; if xi � 1=k; de�ne yii = xi.

The number �i is the amount of probability needed or in excess in k�cile i:
Step 1. Consider x1:

� If x1 > 1=k; take

j� = min

(
j : �j > 0 and

X

i�j:�i>0

�i � x1 �
1

k

)
:

The index j� is the smallest k�cile that accumulates enough left over probability to cover
all the people who claimed x1: The min is well de�ned because some large j belongs to the

set, because
Pk

1 �j = 0 implies that

X

j�2:�j>0

�j �
X

j�2

�j = x1 �
1

k
:

For all j 2 E = fj : j < j� and �j > 0g ; let yj1 = �j; and let yj
�

1 = x1 � 1
k
�PE y

j
1: For all

j =2 E [ f1; j�g ; let yj1 = 0: Go to step 2.
� If x1 � 1=k; let yj1 = 0 for all j > 1: Go to Step 2.
The Step 2 will be repeated for i = 2; :::; k: Start Step 2 with i = 2:

Step 2.

� If xi > 1=k let n be the last index whose excess probabilitiy (�n � 0) was used to �cover�
the needs of the �needy� j (�j < 0) with the largest index still lower than i. That is, for

h = max fj < i : �j < 0g which is the last needy index before i; either through step 1, or
some previous iteration of Step 2, we used probability from other k�ciles in order to get thatXk

m=1
ymh = xh � 1

k
: Let n be the largest index such that ymh > 0: n = max fm : ymh > 0g :

Just as we identi�ed j� (as the smallest index that accumulated enough probability to cover

the needs of x1) in Step 1, we now �nd the smallest index larger than n that accumulates

enough probability to cover xi � 1
k
(when one subtracts from �n the probability used for

indexes h and below). Formally

j� = min

8
<
:j � n : �j > 0 and �k �

X

g:n6=g

yng +
X

n<g�j:�1i>0

�g � xi �
1

k

9
=
; :
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� If j� > n (i.e. the left-overs in index n are not enough to cover the needs of xi), let

yni = �n �
X

n6=g<i

yng ;

for all j 2 E = fj : n < j < j� and �j > 0g ; let yji = �j; and let yj
�

i = xi � 1
k
� yni �

P
E y

j
i :

For all j =2 E [ fi; j�g ; let yji = 0:
� If j� = n; let yni = xi � 1

k
and for all j =2 fi; j�g ; let yji = 0.

� Go to Step 2, and repeat it with i+ 1 in place of i, or stop if i = k:
� If xi � 1=k, let yji = 0 for all j 6= i: Go to Step 2, and repeat it with i+ 1 in place of i, or
stop if i = k:

The process allocates all the probability in k�ciles where xi < 1=k to k�ciles where
xi � 1=k: For each i we have:

Pk
j=1 y

j
i = xi; so that all the individuals who actually belong

to k�cile j and declare i; are exactly xi;
P100

j=1 y
i
j =

1
k
; so that all the individuals in k�cile i

declare that they are in some (potentially other) k�cile. The resulting matrix is
declared!
actual#

1 2 ::: k Sum

1 y11 y12 ::: y1k
1
k

...
...

...
...

...

k yk1 yk2 ::: ykk
1
k

Sum x1 x2 ::: xk 1

To build the signalling structure let S =
�
s1; s2; :::; sk

	
be the set of signals, let � = R+

be the set of types and in order to build the prior density, start with p (�) = 1=k for all

� 2 [0; 1] ; also, let f� (si) = 100y1i for all i and all � 2 [0; 1] : Notice that �k0 = 0 and �k1 = 1
are the lower and upper bound of the �rst k�cile. Also, since

E
�
� j s1

�
=

Z
�p
�
� j s1

�
d� =

Z
�
f� (s

1) p (�)

P (s1)
d� =

Z
�
f� (s

1) p (�)

x1
d�

we have that E (� j s1) depends on the values of the �s that receive signal s1: If x1 � 1=k;
those �s are just the interval [0; 1] since x1 = y

1
1: If x1 > 1=k; the value of E (� j s1) depends

on the values of the �s that receive signal s1 that are outside [0; 1] : If we assume that all

such �s are equal to 1, we have

E
�
� j s1

�
= P

�
1st k � cile j s1

�
E
�
� j s1&1st

�
+ P

�
not 1st k � cile j s1

�
E
�
� j s1&not1st

�

=
1
k

x1
E
�
� j s1&1

�
+
x1 � 1

k

x1
E
�
� j s1&not1

�
=

1
k

x1

1

2
+
x1 � 1

k

x1
E
�
� j s1&not1

�

=
1
k

x1

1

2
+
x1 � 1

k

x1
1 =

2kx1 � 1
2kx1

2 (0; 1) :

Since this conditional expected value is in the interior of (0; 1) ; we have some leeway in

choosing the types that will �feed� E (� j s1) ; so that we can choose the types close enough
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to 1 and their densities in such a manner that the conditional expected value is still in the

interior of (0; 1) : We need this, so that after observing s1; individuals will claim that the

mean of their beliefs is in the �rst k�cile.
The main di¢culty now will be allocating the probability in such a manner that: types

in the ith k�cile receive signal sj with probability yij (that is f� (sj) = kyij for types � in the
ith k�cile); E (� j si) 2

�
�ki�1; �

k
i

�
.

Suppose we have already allocated probability on some interval [0; z] ; and that the prob-

ability allocated so far is (i� 1) =k: Assume also as an inductive hypothesis that if all the
remaining probability, k+1�i

k
; were allocated to � = z; we would have E (� j sj) 2

�
�kj�1; �

k
j

�

for j � i� 1:
Consider now k�cile i:

� Start with the easiest case, one in which Pi�1
1 xi�1 = (i� 1) =k: This is the easiest case

because the total mass of people claiming to be in k�ciles less than i� 1 is the same as the
total mass in the prior, so we can re-start the process of de�ning the prior (as if i were the

lowest k�cile). In this case then, we repeat the �rst step, de�ning p (�) = 1=k and letting
f� (s

j) = kyij for all j and all � 2 (z; z + 1]. It is then easy to check that: since yjm = 0 for
all m � i� 1 and all j > i� 1; the expected value of � for k�ciles below i� 1 is una¤ected
by how we de�ne k�ciles weakly above i; and hence, E (� j sm) 2

�
�km�1; �

k
m

�
for m � i� 1;

E (� j si) 2
�
�ki�1; �

k
i

�
if all the remaining probability, (k � i) =k were allocated to � = z + 1:

� Suppose
Pi�1

1 xi�1 > (i� 1) =k; which means that k�ciles i�1 and below are �borrowing�
probability mass from k�ciles above: for some j � i � 1; and some m > i � 1; ymj > 0:

Therefore, the expected value of � conditional on sj for j � i� 1 will depend on the values
of the �s in k�ciles m > i � 1; such that ymj > 0: Since, by the induction hypothesis,

E (� j sj) 2
�
�kj�1; �

k
j

�
for j � i�1; there exists an " > 0 such that if we de�ne p (�) = 1

k"
and

f� (s
j) = kyij for all j and all � 2 (z; z + "] ; and assume that if all the remaining probability,

(k � i) =k; were allocated to � = z + "; we still keep E (� j sj) 2
�
�kj�1; �

k
j

�
for j � i� 1 plus

we obtain:

� if xi � 1=k; E (� j si) = z+z+"
2

= z + "
2
2 (z; z + ") =

�
�ki�1; �

k
i

�
;

� if xi > 1=k;

E
�
� j si

�
= P

�
ith k � cile j si

�
E
�
� j si&i

�
+ P

�
not ith k � cile j si

�
E
�
� j si& not i

�

=
1
k

xi
E
�
� j si&i

�
+
xi � 1

k

xi
E
�
� j si& not i

�
=

1
k

xi

2z + "

2
+
xi � 1

k

xi
E
�
� j si& not i

�

=
1
k

xi

2z + "

2
+
xi � 1

k

xi
(z + ") = z + "� "

2kxi
2 (z; z + ") =

�
�ki�1; �

k
i

�
:

Therefore, we have shown that we can move the induction hypothesis to k�cile i:
� Suppose

Pi�1
1 xi�1 < (i� 1) =k; which means that k�ciles i � 1 and below are �lending�

probability mass to the k�ciles above: for some j � i � 1; and some m > i � 1; yjm > 0:
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Therefore, the expected value of � conditional on sj for j > i� 1 will depend on the values
of the �s in k�ciles m � i � 1; such that ymj > 0: However, and this is important, the

expected value of � conditional on sj for j � i� 1 will not depend on the values of the �s in
k�ciles m > i�1: This means that we can choose the types and the density in k�ciles i and
above without a¤ecting the induction hypothesis, that E (� j sj) 2

�
�kj�1; �

k
j

�
for j � i � 1:

In particular, we will have to choose a (potentially large) m to play the role of " before.

For su¢ciently large m; de�ne p (�) = 1
km
and f� (s

j) = kyij for all j and all � 2 (z; z +m] :
Note that if we assume that if all the remaining probability, (k � i) =k; were allocated to
� = z +m; we still keep E (� j sj) 2

�
�kj�1; �

k
j

�
for j � i� 1 plus we obtain:

� if xi � 1=k; E (� j si) = z+z+m
2

= z + m
2
2 (z; z +m) =

�
�ki�1; �

k
i

�
;

� if xi > 1=k; for some y < z we have

E
�
� j si

�
= P

�
j < i j si

�
E
�
� j si&j < i

�
+ P

�
i j si

�
E
�
� j si&i

�
+ P

�
j > i j si

�
E
�
� j si& j > i

�

= P
�
j < i j si

�
y +

1
k

xi

2z +m

2
+ P

�
j > i j si

�
(z +m) < z +m

and also, for m > 2kxi (z � P (j < i j si) y)� 2z; we obtain

E
�
� j si

�
= P

�
j < i j si

�
y+

1

kxi

2z +m

2
+P

�
j > i j si

�
(z +m) � P

�
j < i j si

�
y+

1

kxi

2z +m

2
> z:

This means that for largem; the induction hypothesis is kept and we can repeat the previous

steps with k�cile i+ 1:
This concludes the proof.

Proof of Theorem 5. The proofs of Theorems 1 and 2 used symmetric testing models,

in which a signal of 1 is �pass the test�, so there is nothing left to prove.

Proof of Proposition 2. Proposition 2 follows immediately from Lemma 2.

Lemma 2 Suppose data (x1; x2; x3; 1� x2 � x3) can be rationalized by distributions f� =
p� =

�
p�1; p

�
2; p

�
3; p

�
4

�
for � = 1; 2; 3; 4: Then, if higher types observe higher signals, in a sense

weaker than fosd, namely p14 � p24 � p34; then we get

p33 + p
4
3 � p13 + p23 � 2� 8x1 � 8x2 + 3

�
p31 + p

4
1 + p

3
2 + p

4
2

�
� 2� 8x1 � 8x2:

This implies that if x1 and x2 are small, the data is very close to (0; 0; 1; 0)

Proof. Since the signalling structure rationalizes the data, the expected number of

people who observe signal j must be xj; and hence we must have,

4X

i

pi1 = 4x1;
4X

i

pi2 = 4x2 and
4X

i

pi3 = 4x3
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In order for those who observe signal s3 to declare that their median is in quartile 3 (and

similarly for s4) it must be the case that

1� p41 � p42 � p43
4�

P
pi1 �

P
pi2 �

P
pi3

� 1

2
,
X

pi1 +
X

pi2 +
X

pi3 � 2 + 2p41 + 2p42 + 2p43
p33 + p

4
3P

pi3
� 1

2
, 2p33 + 2p

4
3 �

X
pi3

Putting together the two lines, we get

2p33+2p
4
3 �

X
pi3 � 2+2p41+2p42+2p43�

X
pi1�

X
pi2 ) p33 �

2 + p41 + p
4
2 �

P
i<4 p

i
1 �

P
i<4 p

i
2

2
:

Then,

p34 = 1�p31�p32�p33 � 1�p31�p32�
2 + p41 + p

4
2 �

P
i<4 p

i
1 �

P
i<4 p

i
2

2
=
p11 + p

2
1 � p31 � p41 + p12 + p22 � p32 � p42

2

So if higher types observe higher signals in the sense that p14 � p24 � p34, we get

p14 � p24 � p34 �
p11 + p

2
1 � p31 � p41 + p12 + p22 � p32 � p42

2
: (3)

Then by this last equation, and since for j = 1; 2 we have
P

i p
i
j = 4xj, we obtain that

p13 + p
2
3 = 2�

�
p11 + p

2
1

�
�
�
p12 + p

2
2

�
�
�
p14 + p

2
4

�
� 2�

�
p11 + p

2
1

�
�
�
p12 + p

2
2

�
�
�
p11 + p

2
1 � p31 � p41 + p12 +

= 2� 2
�
p11 + p

2
1

�
� 2

�
p12 + p

2
2

�
+ p31 + p

4
1 + p

3
2 + p

4
2 = 2� 2

�
4x1 � p31 � p41

�
� 2

�
4x2 � p32 � p42

�
+

= 2� 8x1 � 8x2 + 3
�
p31 + p

4
1 + p

3
2 + p

4
2

�
:

Given this, and the requirement that enough of the mass that goes to quartile 3 must come

from quartiles 3 and 4, which is

2p33 + 2p
4
3 �

X
pi3 , p33 + p

4
3 � p13 + p23;

we obtain

p33 + p
4
3 � p13 + p23 � 2� 8x1 � 8x2 + 3

�
p31 + p

4
1 + p

3
2 + p

4
2

�
� 2� 8x1 � 8x2:

Proof of Theorem 6. Since the case of k = 2 is already covered with the teting models,

we will concentrate on the case in which k > 2: Moreover, we will use a signalling structure

that has the monotone likelihood ratio property: for �0 in k�cile j and � is in k�cile i; for
j > i; f�0 (s) =f� (s) is increasing in s (if the signalling structure has this property, it is also

f-reasonable). De�ne d � k � 2Pk
1 ixi, �x a small "; and de�ne

g"k (s) = xs

�
1� "k � 2s

k � 2

�
+

"d

k (k � 2) and g"1 (s) = xs

�
1 + "

k � 2s
k � 2

�
� "d

k (k � 2) :
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The distribution g"k is (for small ") a probability distribution, since for all s; g
"
k (s) 2 (0; 1)

and

kX

i=1

g"k (i) =

kX

i=1

�
xi

�
1� "k � 2i

k � 2

�
+

"d

k (k � 2)

�
=

kX

i=1

xi

�
1� "k � 2i

k � 2

�
+

"d

k � 2

= 1� "

k � 2

kX

i=1

xi (k � 2i) +
"d

k � 2 = 1�
"

k � 2

 
k � 2

kX

i=1

ixi

!
+

"d

k � 2 = 1:

A similar calculation applies to g"1: For types � in k�cile i; the distribution over S will be
(for any small " such that g"k and g

"
1 are probability distributions)

f� (s) =
i� 1
k � 1g

"
k (s) +

�
1� i� 1

k � 1

�
g"1 (s) = xs +

�
1� 2 i� 1

k � 1

�
"

�
xs
k � 2s
k � 2 �

d

k (k � 2)

�
:

If �0 is in k�cile j and � is in k�cile i; for j > i;

f�0 (s)

f� (s)
=

j�1
k�1
g"k (s) +

�
1� j�1

k�1

�
g"1 (s)

i�1
k�1
g"k (s) +

�
1� i�1

k�1

�
g"1 (s)

=
xs +

�
1� 2 j�1

k�1

�
"
�
xs

k�2s
k�2

� d
k(k�2)

�

xs +
�
1� 2 i�1

k�1

�
"
�
xs

k�2s
k�2

� d
k(k�2)

�

that is increasing in s; so the signaling structure has the monotone likelihood ratio property.

In addition, with this signalling structure, and setting P (k � cile j) = 1=k; the probability
of signal s = i is

P (i) =

kX

j=1

P (i j � 2 k � cile j)P (k � cile j) =
kX

j=1

j�1
k�1
g"k (i) +

�
1� j�1

k�1

�
g"1 (i)

k

=
kX

j=1

xi +
�
1� 2 j�1

k�1

�
"
�
xs

k�2i
k�2

� d
k(k�2)

�

k
=
kxi + "

�
xs

k�2i
k�2

� d
k(k�2)

�Pk
j=1

�
1� 2 j�1

k�1

�

k
= xi:

Letting A be the k � k matrix where row i is

[P (� 2 k � cile 1 j s = i) ; P (� 2 k � cile 2 j s = i) ; :::; P (� 2 k � cile k j s = i)]

the Perron-Frobenius theorem tells us that there exists a vector � such that A� = � (it tells us

that there exists a largest eigenvalue r, which in this case, A being a right stochastic matrix,

is 1; so that A� = r�). This means that if we set � to be the elements of �; � = f�1; :::; �kg ;
we have that the expected value of your type, conditional on signal s = i is �i:Moreover, since

the posterior P (� j s = i) is increasing in i (that is, higher signals increase the posterior) we
have that �i < �j for i < j (since �i is the expected value of � conditional on signal i; and

similarly for j).

In order to make the median of the population distribution unique, we: make the type

space [�1 � 1; �k + 1] ; for each i pick a �i+ 1

2

2 (�i; �i+1) ; and a density hi on
�
�i� 1

2

; �i+ 1

2

�

such that the expected value is �i. Then, we make the population distribution
P
hi=k:
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Proof of Theorem 7. We start by showing that i p is the distribution of types in the

population, E (�t) = E (p) : Let ps denote the posterior of p given signal s, which is drawn

from the distribution ft for a type t: The following �beliefs are a martingale� argument

X

s

Pr (s) ps (t) =
X

s

(
X

�

p (�) f� (s)

)
ft (s) p (t)P
� f� (s) p (�)

=
X

s

ft (s) p (t) = p (t)

and �t (s) =
P

t tps (t) imply that

E (�t) =
X

s

Pr (s) �t (s) =
X

s

Pr (s)

 
X

t

tps (t)

!
, E (�t (s)) =

X

t

t
X

s

Pr (s) ps (t) =
X

t

tp (t) = E (p) :

as was to be shown.

Then, since E (�t (s)) = E (p) = m, we get E
�
1
n

Pn
i=1
�ti
�
= E (p) = m; as was to be

shown.

The proof of Theorem 9 is a simple corollary of the following Lemma, versions of which

are well known (see Wolfstetter (1999) Chapter 4) we will use the strict inequalities in this

version of our Lemma, and in addition we do not require that P has a density.

Lemma 3 The posterior after passing a test fosd the prior, which fosd the posterior after

failing the test. Moreover, letting n denote a fail, y a pass, and letting P be the population

distribution, for any x such that 1 > P (� � x) > 0,

P (� � x j n) > P (� � x) and P (� � x) > P (� � x j y)

Proof of Lemma 3. We only compare the prior to the posterior after n; since the

comparison between the prior and the posterior after y is symmetric. Because of Bayes� Rule

we must show that

P (� � x j n) =

R x
0
(1� z) dP

R 1
0
(1� z) dP

�
R x
0
dP = P (� � x),

R x
0

"
1� z

R 1
0
(1� z) dP

� 1
#
dP � 0

,
R x
0

�
1� z

1� E (�) � 1
�
dP � 0,

R x
0

E (�)� z
1� E (�)dP � 0 (4)

and that the inequality is strict whenever P (� � x) > 0. The integrand in the last inequality
is strictly decreasing in z, and is 0 for z = E (�) : First notice that for any x � E (�) ; the
inequality is satis�ed (because it is the integral of a positive function). If for some x > E (�)

we had R x
0

E (�)� z
1� E (�)dP < 0; (5)

for any x0 > x we would also have

R x0
0

E (�)� z
1� E (�)dP �

R x
0

E (�)� z
1� E (�)dP < 0;
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since E(�)�z
1�E(�)

< 0 for x � z � x0 (because E(�)�z
1�E(�)

is decreasing, and E(�)�x
1�E(�)

< 0 must hold if

equation 5 holds). This contradicts that for x0 = 1 we must have
R x0
0
E(�)�z
1�E(�)

dP = 0:

Now lets turn to the strict inequalities. Pick any x � E (�) ; with 1 > P (� � x) > 0: If
x = E (�) ; we know that P (� < x) > 0 (because P is non degenerate, and it can�t assign

positive probability only to � � E (�)), and since the integrand in the last inequality of

equation (4) is strictly positive for all z < E (�), we must have that the integral is strictly

positive, as was to be shown. If x < E (�) ; the strictly positive integrand and P (� � x) > 0
ensure that the integral is also strictly positive.

Pick any x > E (�) ; and assume that

R x
0

E (�)� z
1� E (�)dP � 0:

Since 1 > P (� � x) holds, we must have P (� > x) > 0: But then, E(�)�z
1�E(�)

< 0 for all

z � x > E (�) and P (� > x) > 0 imply that

0 =
R 1
0

E (�)� z
1� E (�)dP =

R x
0

E (�)� z
1� E (�)dP + inf

w>x

R 1
w

E (�)� z
1� E (�)dP

� 0 + inf
w>x

R 1
w

E (�)� z
1� E (�)dP < 0

which is a contradiction.

Proof of Theorem 8. Necessity is proved by the �rst claim in Lemma 1. For

su¢ciency take any p; y and x such that py � x: Assume that y � x (the opposite case

is treated similarly). Let the type space be � = [0; 1] ; let the population be distributed

uniformly on [0; 1] ; and let S = f0; 1g : The signalling structure is such that f� (1) = y�x
1�x

for

� � 1� x; and f� (1) = 1 for � > x. Then,

P (� � x j s = 1) = P (1 j � � x)P (� � x)
P (1 j � � x)P (� � x) + P (1 j � < x)P (� < x) =

x

x+ (1� x) y�x
1�x

=
x

y
� p:

Proof of Proposition 4. Let p be the population distribution, m be the median of p.

Let � < 1
2
be such that if a distribution q over� is �-close to degenerate for any � � �; and the

mean of q is strictly larger than m; then the type �i such that d (q; e
i) = maxj

��qj � eij
�� � �

satis�es �i > m: Similarly, let �� < 1
2
be such that if a distribution q over � is �-close to

degenerate for any � � ��; and the mean of q is weakly lower than m; then the type �i such
that d (q; ei) = maxj

��qj � eij
�� � � satis�es �i � m: Set t and � < min

�
�; ��

	
such that

� < (1� �) (� + "+ t� 1) and 1� � < (1� �) (t� � + ")
Assume that xm � �+" for some S and ff�g that have the property that P fs : posterior after s is � � cl

t: For this signalling model, and letting B (p j s) denote the posterior of p given s; de�ne
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S� = fs : B (p j s) is �-close to degenerateg ; Sm = fs 2 S� : B (p j s) has median > mg
and S� = fs 2 S� : B (p j s) has mean > mg : Then, since � < � < 1=2, if the median of

B (p j s) is > m; the type �i on which B (p j s) is close to degenerate (for s 2 S�) is larger
than m, so that P (� > m j s) � 1� �, and therefore

� = P f� > mg =
X

s
P (� > m j s)P (s) �

X
Sm
P (� > m j s)P (s)

�
X

Sm
(1� �)P (s) = (1� �)

X
Sm
P (s) � (1� �) (xm � 1 + t)

� (1� �) (� + "� 1 + t) ;

which is a contradiction. Similarly (with S� playing the role of Sm; and using the de�nition

of � in the second inequality) we obtain that x� < � + ":

Assume now that xm � � � "; and let Sm = fs 2 S� : B (p j s) has median � mg and
S� = fs 2 S� : B (p j s) has mean � mg : Then,

1� � = P f� � mg =
X

s
P (� � m j s)P (s) �

X
Sm
P (� � m j s)P (s)

�
X

Sm
(1� �)P (s) = (1� �)

X
Sm
P (s) � (1� �) (1� xm � 1 + t)

� (1� �) (t� xm) � (1� �) (t� � + ") ;

which is a contradiction. Again, the argument for x� is similar and omitted, so the proof is

complete.

Proof of Theorem 9. We will develop the arguments for the posterior after y; since

those for n are analogous. The probability of observing y in the test is E (�) ; and then,

by Lemma 3, the posterior P (� j y) strictly fosd the population distribution, which also
implies that the posterior mean is strictly larger than the prior mean (which is the median

by symmetry). Also by Lemma 3 the fraction E (�) (who observed y) will consider that their

median type is weakly larger than the population median.

Suppose �rst that the population distribution has a density. Then,

P (� � m j y) =
R m
0
�dP

E (�)
<
m
R m
0
dP

E (�)
=
mP (� � m)

E (�)
= P (� � m) = 1

2

so thatm is no longer the median of the posterior. If the distribution does not have a density,

and the median is not unique, still P (� � m�) = 1=2 for all but the highest median, so the

argument above establishes that none of those remains a median after a y:

If the distribution does not have a density and the median is unique, assume that p (m)

is small enough that

p (m)m+ p (� < m)E (� j � < m) < m=2
(notice that if p (m) = 0 the inequality is satis�ed). Then, as before (and using the assump-

tion for the strict inequality),

P (� � m) =
Z m

0

dP � 1

2
>
p (m)m+ p (� < m)E (� j � < m)

m
=

R m
0
�dP

E (�)
= P (� � m j y)
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which establishes that m is not a median of the posterior after y:
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