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ABSTRACT: We examine productivity changes in Japan and South Korea during 1973–2006 

and 1980–2009, respectively, in order to assess how investment in ICT affects energy demand. A 

dynamic factor demand model is applied to link inter-temporal production decisions by explicitly 

recognizing that the level of certain factors of production (refer to as quasi-fixed factors) cannot 

be changed without incurring so-called adjustment costs, defined in terms of forgone output from 

current production. This study quantifies how ICT capital investment in Korea and Japan affects 

economic growth in general and industrial energy demand in particular. We find that ICT and 

non-ICT capital investment serve as substitutes for the inputs of labor and energy use. The 

results also demonstrate a decreasing trend for labor productivity as well as significant cost 

differences across industries in both countries. 
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1. Introduction 

The overall consumption of energy worldwide is continuously increasing. According to the 

international energy outlook report published in 2011 by the US energy information 

administration (EIA), the energy consumption will increase worldwide by 53% in 2035. In 2008 

the total energy consumption was 505 quadrillion BTU (British thermal unit). It is expected to 

reach 770 BTU by the year 2035 (EIA 2011). This steady increase in energy demand will 

negatively affects the environment and the availability of depletable energy sources of fuel, or 

primary energy needed to produce energy output such as electricity. 

The estimated world energy demand by region for the period 2008-2035 is shown in table 1 

(the 2008 numbers are actual energy demand). This noticeable increase in energy consumption is 

due to the rapid economic development, industrialization, and population growth, especially in 

developing countries such as China and India with a vast population size. Strong economic 

development leads to an increase in the demand for energy in the industrial sector. The industrial 

sector consumes at least 37% of the total energy supply, which is relatively more energy 

intensive than any other major sectors including household, agriculture, and public services 

(Abdelaziz et al. 2011; Friedemann et al. 2010).  
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Table 1 

World Estimated Energy Demand 2008-2035 (in Quadrillion Btu) 

Region 2008 2015 2020 2025 2030 2035 

Average Annual  

Percentage 

Change  

2008-2035 

OECD 244.3 250.4 260.6 269.8 278.7 288.2 0.6 

Americas 122.9 126.1 131 135.9 141.6 147.7 0.7 

Europe 82.2 83.6 86.9 89.7 91.8 93.8 0.5 

Asia 39.2 40.7 42.7 44.2 45.4 46.7 0.6 

Non-OECD 260.5 323.1 358.9 401.7 442.8 481.6 2.3 

Europe and 

Eurasia 

50.5 51.4 52.3 54 56 58.4 0.5 

Asia 137.9 188.1 215 246.4 274.3 298.8 2.9 

Middle East 25.6 31 33.9 37.3 41.3 45.3 2.1 

Africa 18.8 21.5 23.6 25.9 28.5 31.4 1.9 

Central and  

South 

America 

27.7 31 34.2 38 42.6 47.8 2 

Source: EIA (2011)  
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The steady increase in the demand for energy leads to increase in energy price. According to 

EIA (2011), the crude oil price will average 100 USD per barrel for the next twenty years, it will 

reach more than 200 USD per barrel in 2030. This increase in energy price according to the 

report is due to increase in the demand for oil and in the production cost. Industrial policy 

decision makers need to understand the importance of the energy in the industrial production 

structure, in order to assess and formulate the necessary energy conservation measures. 

Accordingly, it is essential to acquire knowledge about the energy demand and its characteristics 

such as the possible substitutability between energy and other factors of production (Dargay 

1983; Koetse et al. 2008). 

Unlike normal goods where supply response is applied to meet any possible increase in 

demand, in the case of energy the market demand response is employed to reduce the increase in 

demand. For example, the use of smart grid technology as part of demand response program 

allows for the application of price variation/discrimination by type of consumer, location, season, 

and hours used per day, with the aim to reduce energy consumption. It improves the producer’s 

and consumer’s ability to optimize generation and energy use. Hence, better optimization 

improves energy use and efficiency, reduces energy generated by peak time reserve capacity at 

high cost, and also reduces energy consumption during peak time at high price (Heshmati 2013). 

In the last twenty years the information and communications technology (ICT) has witnessed 

an advanced improvement, diffusion and use in all areas of production, distribution and 

consumption. It has spilled over into every industrial sector such as agriculture, water 

management, manufacturing, and most service sectors. It is considered as one of the most 

important driver of economic growth and effectiveness (Jaeger 2003; Friedemann et al. 2010). 

The important of the rapid substitution toward ICT for other factors is emphasized by Jorgenson 
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and Stiroh (1999) due to induce in the rapid decline in ICT price. An average of more than 20% 

annual reduction in ICT price provides a strong incentive for the substitution of ICT for other 

factors of production.    

Indeed, this recent improvement and increase in the diffusion of ICT capital goes together 

with a reduction in energy intensity in the production defined as the consumption of energy-to-

output ratio (or consumption of energy-to-value-added ratio). According to Romm (2002), the 

US GDP and energy use grew together at an annual average rate of growth 3.2% and 2.4%, 

respectively in the pre-internet ear (1992–1996), while the growth was reported to be 4% and 1% 

during the internet era (1996–2000). As reported by Laitner (2002)  energy intensity was 4.4%, 

while it was only 0.8% for ICT sectors in 1996. 

ICT investment has grown at a rapid rate in Japan since 1980 and in South Korea (Korea 

hereafter) since 1990. Nevertheless, according to Lu et al. (2007), Korea’s CO2 emissions from 

1990 to 2002 were almost double those of Japan (42.4 million versus 24.2 million metric tons). 

This discrepancy suggests that the economic growth that occurred in parallel with ICT 

development has had no effect on energy supply and demand. However, few studies have thus 

far considered the link between ICT investment and energy consumption (Y. Cho et al. 2007). To 

that end, this study investigates whether ICT capital investment influences energy demand. In 

particular, we empirically examine the industrial productivity changes in Japan and Korea during 

1973–2006 and 1980–2009, respectively, by applying and extending the dynamic factor demand 

model proposed by Nadiri and Prucha (2001). 

The Korean government has implemented a number of industrial and technological policy 

initiatives to promote economic development (Khayyat and Heshmati 2014). In the 1980s, 
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policymakers focused on growing foreign direct investment by concentrating on technology-

based industries as a source for economic growth. Such a technology-led policy encouraged the 

private sector to invest in innovativeness and R&D as well as called for collaboration between 

ministries’ R&D activities. In the 1990s, the Korean government continuously supported foreign 

direct investment in technology sectors and enhanced innovation capabilities in the private sector. 

Therefore, high-tech sectors were encouraged to internationalize. The globalization era in the 

2000s was the last stage of the process of economic growth in Korea, where growth was mainly 

driven by technological progress and innovation. In general, Korea refocused its industrial 

strategy from being based on heavy industry to concentrating on technology-intensive sectors. 

Moreover, the government’s intervention shifted from direct, sector-specific involvement to 

indirect, sector-neutral support. The aim of Korea’s technology policy also evolved from the 

absorption of foreign technologies to the creation of new ones. 

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature 

and Section 3 discusses industrial demand as the input factors of production. A general 

theoretical model is specified in Section 4, the empirical model is introduced in section 5, where 

the first-order conditions for the optimal input path are derived. Finally, the discussion and 

concluding remarks are presented in Sections 6 and 7, respectively. 

2. Methodology 

Previous studies have found not only substitutability but also complementarity among factor 

inputs. Thompson (2006), for example, emphasized the degree and direction of energy use–

capital substitutability by using Cobb–Douglas and translog production and cost functions to 

describe the substitution of capital and energy use through the derivation of cross-price elasticity. 
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By contrast, Kander and Schön (2007) found a high degree of complementarity between energy 

use and capital for Swedish industrial and manufacturing sectors during 1870–2000. By using a 

direct measure of technical efficiency, they investigated both short- and long-run energy use–

capital relationships. 

Arnberg and Bjorner (2007) applied translog and linear logit approximations in order to 

estimate factor demand models for capital, labor, and energy use based on Danish microdata for 

1993–1997 and found labor to be substitutable with energy use and capital. Ma et al. (2008) 

applied a two-stage translog cost function to a panel dataset of 31 autonomous regions in China 

for 1995–2004 to measure the elasticities of substitution and found inter-factor substitutability 

(i.e., capital and labor are substitutes for energy use). In a literature survey on the elasticity of 

substitution, Koetse et al. (2008), using a meta-regression analysis of previous research results, 

found that energy use and capital are substitutes, with the degree of substitutability differing 

across regions and time periods. 

Many scholars in recent years have studied the rapid diffusion of information and 

communication technology and its related hardware such as computers. Some studies suggested 

that this fact is a direct consequence of the dramatic decline in the price of computer related 

equipment, which has led to substitution of ICT equipment for other forms of capital and labor. 

Accordingly, they suggested that this substitution has generated substantial returns for those who 

undertake ICT investment and, also, had a very significant impact on economic growth (Ketteni 

et al. 2013). Earlier studies based on aggregated data suggested that ICT have no effect on 

productivity growth (Berndt and Morrison 1995; Jorgenson and Stiroh 1999; J. 2000). However, 

most of these studies were based on the aggregate production function. They assumed constant 

returns to scale and competitive markets and factor shares are often used as proxy for output 
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elasticities. These limitations may affect the estimated relationship between ICT and productivity 

growth. 

A recent movement of research using disaggregated data at industry or sectoral level is 

witnessed. Their argument is that these disaggregated data enable the researchers to use more 

adequate methods of estimation, suggesting that firms and industries that produce ICT assets 

have attracted considerable resources, and benefited from extraordinary technological progress 

that enabled them to improve the performance of ICT. This is indeed reflected in rapid total 

factor productivity growth in the ICT industries (Siegel 1997; Stiroh 2002; Jorgenson et al. 2008; 

Oliner and Sichel 2000; Indjikian and Siegel 2005). Most of the studies in the literature 

mentioned above were based on the U.S. economy. With regard to non- US studies, most 

literature concluded that there is a significant positive relationship between ICT capital and 

economic growth (Biscourp et al. 2002; Hempell 2005; Matteucci et al. 2005). For the case of 

South Korea, several studies recommended this positive relationship between ICT and economic 

growth to be further re-assessed, especially from the increase of other industries’ productivity as 

a result of using ICT in their production process (M. Kim and Park 2009; Khayyat 2013; Oh et al. 

2014). The production structure is studied by S. Park (2014) covering 26 industries in 6 countries: 

South Korea, US, UK, Germany, and Japan for the period 1971–2007 using the growth and 

productivity database of EU KLEMS. He estimated a static translog cost function on a panel data 

assuming three inputs ICT capital, non-ICT capital, and labor. He found that ICT capital and 

labor substitutes each other. His finding reveled that although utilizing ICT capital in the 

industrial production structure aiming at “Creative Economy” will increase the productivity, it 

will reduce employment opportunity. 
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ICT investment is found to depend on adjustment costs, so that it takes time for productivity 

gains to be realized (Ahn 1999; Amato and Amato 2000; Bessen 2002; Mun 2012). Another 

issue highlighted is the existence of ICT spillovers that have a significant impact on industries' 

productivity growth (Mun and Nadiri 2002; Chun and Nadiri 2008). There exists a nonlinear 

relationship between ICT and productivity, suggesting that the effect of ICT capital varies among 

units and time (Ketteni et al. 2013). 

The ICT capital investment and energy use relationship has also been extensively studied 

(Sadorsky 2012; Khayyat and Heshmati 2014; Khayyat 2013). The two oil price shocks in the 

1970s redirected scholarly interest toward ways in which to reduce energy consumption by 

increasing ICT usage (Walker 1985, 1986). Recent studies have further shown that ICT and 

energy use are substitutes. Y. Cho et al. (2007) studied the impact of ICT investment and energy 

price on electricity consumption in Korea and found that ICT reduces electricity demand in 

certain manufacturing sectors. According to a recent study conducted by J. Kim and Heo (2014), 

ICT capital substitutes electricity and fuel in US and UK manufacturing. Although ICT capital, 

electricity, and fuel has substitution effects between each other in Korean manufacturing, ICT 

capital is unlikely to decrease the demands for electricity and fuel when considering their relative 

price changes 

The literature review presented in this section suggests that different specifications are used to 

model production, cost, and energy demand, or a combination thereof, depending on whether the 

objective is cost minimization or output maximization. While different studies utilize data on 

diverse countries, regions, and industrial sectors, the findings tend to indicate substitution 

between capital (ICT and non-ICT), and energy use, although complementarity between energy 
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use and capital is also frequently observed. The degree of substitutability and complementarity 

differ significantly according to the data dimensions and unit characteristics. 

3. Industrial Demand for Factor Inputs 

The energy demand management, or the so-called demand side management DSM, is 

implemented in South Korea, targeting the energy sectors of electricity, gas, and heating. The 

Korea Electric Power Corporation (KEPCO) is responsible for the load management program 

and efficiency, and for the Variable Speed Drive (VSD) program, which aims at implementing 

high efficiency lighting. As part of the program, transformers are implemented and managed by 

the government. The Korean annual energy consumption growth reached 4.9% in year 2009. The 

per capita consumption of energy in South Korea is about 5.0 toe in 2009, in which it accounted 

for more than twice of the world average energy consumption. Although an increase in the use of 

renewable energy is expected, it will not contribute to remarkable energy supply in the South 

Korean energy systems. This poor self-sufficiency is one of the most critical components of the 

national energy system that leave South Korea vulnerable to future energy shocks. In this light, 

the stable energy supply and conservation is vital to the nation's sustainable development (Lee et 

al. 2012). Different energy conservation programs have been promoted. For example, tax breaks, 

loan and subsidy programs, energy conservation technologies, various pilot projects, energy 

exhibition, and energy service companies program. An efficient use of energy is not only 

beneficial to the nation's economy but also important for conservation of natural environment. 

The vast share of this high rate of consumption in energy comes from the electricity as its share 

from the final energy consumption has doubled from 12% to 23% by the year 2009 compared 
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with a decade ago. In the industrial sector, the electricity share of the annual final energy 

consumption growth has reached more than 5.8% (International Energy Agency IEA 2011). 

The South Korean government developed a set of five-year plan for rational utilization of 

energy since 1993. Hereafter, a basic national energy plan 2008-2030 was announced in an 

attempt to reduce the energy use intensity by the end of 2030. Within the frame of the energy 

plan, the Korean industrial sector will have to reduce its energy consumption as minimum as 44% 

(IEA 2011, 2009). The second national energy plan issued in January 2014 has mainly changed 

the policy direction from protecting the energy industry to require a paradigm shift in the policy 

direction. The paradigm shift includes changes in the policy goals, in the market system, in the 

international relation, and emphasizing on the Technology development that emerges as the core 

element of competitiveness. The energy policy to pursue a new goal of "sustainable 

development" to take into consideration economic growth, environment, and energy security 

factors. One of the essential policy direction is that energy prices and demand and supply will be 

led by market system rather than government’s intervention as it was the case. Another vital 

change in the policy is that with emphasizing on the global market competition, the 

competitiveness of the energy industry will intensively depend on the ability to develop 

internationally competitive technologies with which new markets can be cultivated. The 

monopolistic system of the past hindered the individual entities to have the motivation to 

innovate and develop advanced applied technologies. Rather, the government was taking the 

initiative in developing common-basic technologies that fit with domestic demand conditions2. 

                                                           
2 The detailed national energy plan can be found in the Korean Energy Economics Institute website: 

http://www.keei.re.kr/main.nsf/index_en.html?open&p=%2Fweb_keei%2Fen_Issues01.nsf%2Fview04%2FA7C6A4

8CA75D4CAE49256E2900483FAD&s=%3FOpenDocument  
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The rapid industrial development of South Korea in the twentieth century transformed its 

economy to a service based economy with an annual GDP growth of 2.9%. The electricity 

consumption share of total consumption of energy is rapidly growing. For example, the steel 

production is heavily depending on the electricity arc furnaces and accounted for nearly 57% in 

2009. The chemical sector is the largest energy consumer in the South Korean industrial sector, 

while the largest share of fuel mix in the industrial sector is represented by liquid fuel 

consumption for feedstock use (IEA 2011). Figure 1 shows the development of energy use in the 

Korean industrial sectors for the years 1980-2010. The figures are based on the aggregate level 

of energy used in the industrial sector. 

 

Figure 1: Total Industry Energy Consumption in South Korea (in millions of USD), 1980–2010 

The estimated models of industrial demand for the input factors of production can be 

classified into two main groups: static and dynamic. Pindyck and Rotemberg (1983) and Morana 

(2007) argued that a static model implicitly assumes that all factor inputs adjust instantaneously 

to their long-run equilibrium values and therefore cannot depict real economic activity where the 
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adjustment process can only be gradual. Dynamic factor demand models were thus introduced to 

address the problems of neglected dynamics, such as parameter instability and serially correlated 

residuals. The model used in this study is a third-generation dynamic factor demand model. 

According to Morana (2007), the key feature of factor demand models is the introduction of 

adjustment costs for quasi-fixed inputs. Mun (2002) argued that the traditional neoclassical 

model of investment assumes the existence of internal adjustment costs from the expanding 

physical capital stock. In the 1990s, for example, ICT investment showed high growth in the 

United Kingdom and the United States, thus incurring considerable adjustment costs (Groth 

2005). 

The present study expands the dynamic factor demand model proposed by (Nadiri and Prucha 

1986, 1990, 1996, 1999, 2001) by using materials, energy use, and labor as variable inputs and 

distinguishing between ICT and non-ICT capital as quasi-fixed inputs. According to the 

framework developed by these authors, firms maximize the present value of their future profit 

streams by choosing their levels of output and determining the optimal input levels of energy use, 

ICT capital, and other input factors of production accordingly. In the short run, firms use both 

quasi-fixed inputs (ICT and non-ICT capital) and variable inputs (labor, materials, and energy 

use). Variable inputs fully adjust from one period to the next, while quasi-fixed inputs are only 

adjusted partially, since adjusting them fully is costly. Thus, firms do not immediately jump to 

the long-run equilibrium level of quasi-fixed inputs. 

The econometric estimation, particularly the sensitivity analysis of input demands with 

respect to factor prices measured through both the short- and long-run price elasticities, provides 

a rich set of information on the production process. Price elasticities can be used to investigate, 

for example, how much energy demand changes when energy prices increase. When energy 
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prices rise, industries tend to economize on energy use. Hence, the reaction to a potentially 

permanent rise in energy prices may be less in the immediate future than it is in the long run. An 

industry’s technological features are captured by economies-of-scale measures and degrees of 

substitutability between the different input factors of production.  

4. Theoretical Framework 

Consider a firm that employs m variable and n quasi-fixed inputs to produce a single output 

from a technology with internal adjustment costs. In line with the approach taken by Nadiri and 

Prucha (1990), its production process can be described by the following generalized production 

function: 

(1)  ��� = �����, 	��
�, �	��, ��� 

Where the subscripts (i=1,2,…) and (t=1,2,…) represent industry and time, respectively, Yit 

denotes gross output, Vit is a vector of variable inputs, Xit is a vector of quasi-fixed inputs, ∆Xit = 

Xit - Xit-1 is a vector that represents the internalization of the adjustment costs in the production 

function (in terms of the foregone output) due to changes in the stock of quasi-fixed inputs, and 

Tit is an exogenous technology index3. A change in the levels of the quasi-fixed factors will result 

in incurring adjustment costs because of the resource allocation require to change the input stock 

rather than product level. 

The duality principle in production theory indicates that given a production function, under 

the appropriate regularity conditions, it is possible to derive the corresponding firm’s total 

                                                           
3 The function F is assumed to be twice continuously differentiable, while ��/�� > 0, ��/���
�	 > 0, and ��/��	 

< 0. In addition, F is strictly concave in all arguments, except, possibly, for the technology index. 
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minimum cost function C(w,Y) as the solution to the problem of minimizing the cost of 

producing a specified level of output as follows: 

(2)  ���, �� = ����� ��: ���� ≥ �� 

where x is a vector of input quantities and w is a vector of input prices. The cost function C(.) 

should validate the regularity conditions, that is it should be a concave, non-decreasing, and 

continuous function of w, and positive homogeneous of degree one. 

The production structure can then be described equivalently in terms of a restricted cost 

function. A perfectly competitive factor input market for the industry should be assumed. The 

acquisition prices for the variable and quasi-fixed inputs are as p !,"
#$�% = 1, 2, … ,�� and q !,"

*+�, =

1,2, … , ��, respectively. All prices are normalized to the price of the first variable factor—this 

procedure has been found convenient. These normalized prices are denoted as p!,"
#- = p !,"

#./p !,"
#/  

and q!,"
*- = q !,"

*0/p !,"
#/ 	, �j = 1,2, … ,m�. The normalized restricted cost function is then defined as 

follows: 

(3)  3 45�,�
6- , 	�,�
�, �	�,�, ��,�, �,�7 = ∑ 5̂�,�

6-�:;�,�<;=�  

Where �:;� denotes the cost-minimizing variable inputs required to produce output Yi,t conditional 

on Xi,t-1 and ∆Xi,t and the normalized restricted cost function G(.) is assumed to be convex in Xi,t-

1 and Xi,t, and concave in p!,"#  (Lau 1986). 

The normalized restricted cost function G(.) is a short-run cost function. As depicted by Jehle 

and Reny (2001), when the firm is constrained in the short run by a fixed amount of specific 
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inputs for its production, it cannot freely select the optimal amount, meaning that short- and 

long-run costs will differ. The firm’s cost in period t is specified as follows: 

(4)  �>	�,�, 	�,�
�, Ω�,�@ = 3>5�,�6 , 	�,�
�, �	�,� , ��,� , �,�@ + ∑ B�,�
CDEF=� GF,� 

Where Ω�,�is a vector composed of p!,"
#- , q!,"

*- , ��,� 	and	�,� . The real investment of the hth quasi-

fixed input is defined as follows: 

(5)  GF� = 	F� − �1 − LF�	F�
� 

where δh denotes the depreciation rate of the stock of the hth quasi-fixed input. 

The dynamic problem facing the firm is assumed to minimize the expected present value of 

current and future costs given the initial values of quasi-fixed inputs. The firm’s optimization 

problem can be classified according to the planning horizon into finite and infinite planning 

horizon. For the infinite planning horizon, the firm’s objective function in period τ is defined as 

follows: 

(6)  ∑ �>XO, XO
�,, EΩO@�1 + r�
ORO=S  

where E  denotes the expectations operator conditional on information available at the beginning 

of period τ and r is the real interest rate. The firm in each period τ derives an optimal plan for the 

quasi-fixed inputs for period τ, τ + 1,… such that equation (6) is minimized subject to the initial 

stocks XO
�,, and then chooses its quasi-fixed inputs in period τ according to this plan. In each 

period the firm only implement a portion of its optimal input plan. This process is repeated every 

period in which a new optimal plan is formulated as new information to the exogenous variables 

are available, and expectations on those variables are modified accordingly. In the case of a finite 
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but shifting planning horizon, where the stock of quasi-fixed inputs at the end of the horizon are 

assumed to be determined endogenously subject to the assumption of static expectations, the 

optimal plans converges rapidly to those of the infinite planning horizon model as the planning 

horizon extends (Nadiri and Prucha 1990). Accordingly, this study applies the optimal plans for 

the infinite planning horizon. 

5. Empirical Model 

The model is specified to employ the optimal levels of the variable inputs of materials (M), 

energy (E), and labor (L) as well as the quasi-fixed inputs of ICT capital (ICT) and non-ICT 

capital (K). It is assumed that the variable inputs can be adjusted instantaneously in response to a 

change in relative input prices. The adjustment of the capital stock in response to changes in 

relative input prices will be slow. 

The following dynamic cost function is solved with respect to the quasi-fixed factors with static 

expectations: 

(7)  ���TUVW,XYZUVW
∑ [3�5�,�\ , 5�,�] , �̂,�_`
�, G��,�_`
�, � �̂,�_`, �G��,�_`, ℎ���,�_`�, �,�_`� +R̀=�

5�,�T G�,�_`, + 5�,�XYZb�,�_`]�1 + d�,��
` 

Subjects to: 

G�,�_` = �̂,�_` − �1 − L� �̂,�_`
� 

b�,�_` = G��,�_` − �1 − e�G��,�_`
� 

where pE, pL, pICT, and pK are the prices for energy, labor, ICT capital, and non-ICT capital 

normalized by the price of materials, respectively, and H and I are the real investment in ICT and 
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non-ICT capital, respectively. The depreciation rates of ICT and non-ICT capital are µ and δ, 

respectively, and r denotes the discount rate. 

The normalized restricted cost function G(.) in a quadratic form, as introduced by Denny et al. 

(1981), can be described as follows: 

(8)  3>5�,�\ , 5�,�] , �̂,�
�, G��,�
�, � �̂,� , �G��,�, ��,�, �,�@ = f�,� + 5�,�\ g�,� + 5�,�] h�,� =

ijS + jk5�,�\ + jl5�,�] + jZ�,� + jZk�,�5�,�\ + jZl�,�5�,�] + jlk5�,�\ 5�,�] + �
mjkk>5�,�\ @m +

�
mjll>5�,�] @mn ��,� + jT �̂,�
� + jXYZG��,�
� + i�mjTTK�,�
�m + �

mjXYZXYZICT�,�
�m + �
mjTs Ts �K�,�m +

�
mjXYZs XYZs �ICT�,�m n �

tD,U
+ jkT5�,�\ �̂,�
� + jkXYZ5�,�\ G��,�
� + jlT5�,�] �̂,�
� + jlXYZ5�,�] G��,�
� +

jZT �̂,�
��,� + jZXYZG��,�
��,�  

The normalized restricted cost function described in equation (8) displays a linearly 

homogeneous technology that can be described in a generalized form as follows: 

(9)  3 u5�,�\ , 5�,�] , TD,Uv/
tD,U

, XYZD,Uv/
tD,U

, wTD,U
tD,U

, wXYZD,U
tD,U

, �,�x��,� 

The marginal adjustment cost needs to be equal to zero at the steady state of the quasi-fixed 

inputs when ∆K and ∆ICT are equal to zero. Hence, �3�. � ��^⁄  and �3�. � ��G�⁄  will be zero 

at ∆K = ∆ICT = 0 only if the following restrictions are imposed on the estimated parameters 

(Denny et al. 1981): 

(10)  jTs = jXYZs = jkTs = jkXYZs = jTTs = jXYZXYZs = jTs XYZs = jXYZTs = jZTs = jZXYZs = 0 

where a dot over a variable represents the growth rate of the quasi-fixed inputs. Imposing the 

separability assumption, as recommend by Nadiri and Prucha (1990), on the quasi-fixed inputs 
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will simplify the derivation of the dynamic factor demand model. In this study, the separability 

of the quasi-fixed input implies that a|}~� = a|s }~�s . Moreover, the convexity and concavity 

conditions of the normalized restricted cost function under the separability assumption imply that 

a||, a}~�}~�, a|s |s , a}~�s }~�s > 0,	and a��, a�� < 0. The optimal input paths of investment in ICT and 

non-ICT-capital must satisfy the necessary conditions given by the Euler equations (Toro 2009), 

obtained by solving equation (7) with respect to K and ICT as follows: 

 (11)  −jTs Ts �̂,�_`_� + �jTs Ts + >2 + d�,�@jTs Ts � �̂,�_` − >1 + d�,�@jTs Ts �̂,�_`
� = −4�1 −

L�5�,�T + jT + jkT5�,�\ + jlT5�,�] + jZT�,�7 ℎ���,�� 

(12)  −jXYZs XYZs G��,�_`_� + �jXYZs XYZs + >2 + d�,�@jXYZs XYZs �G��,�_` − >1 +

d�,�@jXYZs XYZs G��,�_`
� = −4�1 − e�5�,�XYZ + jXYZ + jkXYZ5�,�\ + jlXYZ5�,�] + jZXYZ�,�7 ℎ���,��  

The transversality conditions below will rule out the unstable roots for the Euler equations: 

limE→R>1 + d�,`@` >jTs Ts �̂,�_` − jTs Ts �̂,�_`
�@ = 0, and 

limE→R>1 + d�,`@` >jXYZs XYZs ICT�,�_` − jXYZs XYZs ICT�,�_`
�@ = 0	, 

The accelerator equations described by Nadiri and Prucha (1990) serve as a solution that 

corresponds to the stable roots for the Euler equations as follows: 

(13.1)  � �̂,� = �TT> �̂,�∗ − �̂,�
�@ 

(13.2)  �G��,� = �XYZXYZ>G��,�∗ − G��,�
�@ 

(13.3)  �TT = − �
m �>d�,� + jTT jTs Ts⁄ @ − 4>d�,� + jTT jTs Ts⁄ @m + 4jTT jTs Ts⁄ 7� m⁄ � 
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(13.4)  �XYZXYZ = − �
m �>d�,� + jXYZXYZ jXYZs XYZs⁄ @ − 4>d�,� + jXYZXYZ jXYZs XYZs⁄ @m +

4jXYZXYZ jXYZs XYZs⁄ 7� m⁄ � 

(13.5)  �̂,�∗ = − �
���

�>d�,� + L@5�,�T + jT + jkT5�,�\ + jlT5�,�] + jZT�,����,� 

(13.6)  G��,�∗ = − �
�������

�>d�,� + e@5�,�XYZ + jXYZ + jkXYZ5�,�\ + jlXYZ5�,�] + jZXYZ�,����,� 

where a star indicates the optimal or target levels of the quasi-fixed inputs. 

Substituting the steady-state solutions of the Euler equations (11) and (12) and the adjustment 

coefficient forms (13.1) and (13.2) into the accelerator coefficients (13.3) and (13.4), 

respectively, in line with Nadiri and Prucha (1990) provides the optimal quasi-fixed input path 

for ICT and non-ICT capital as follows:  

(14)  � �̂,� = �− �
m �>d�,� + jTT jTs Ts⁄ @ − 4>d�,� + jTT jTs Ts⁄ @m + 4jTT jTs Ts⁄ 7� m⁄ �� ∗

4− �
���

�>d�,� + L@5�,�T + jT + jkT5�,�\ + jlT5�,�] + jZT�,����,� − �̂,�
�7  

 (15)  �G��,� = �− �
m �>d�,� + jXYZXYZ jXYZs XYZs⁄ @ − 4>d�,� + jXYZXYZ jXYZs XYZs⁄ @m +

4jXYZXYZ jXYZs XYZs⁄ 7� m⁄ �� ∗ 4− �
�������

�>d�,� + e@5�,�XYZ + jXYZ + jkXYZ5�,�\ + jlXYZ5�,�] +

jZXYZ�,����,� − G��,�
�7 

From Shephard’s lemma, the variable input demand equations for labor L, energy use E, and 

materials M can be obtained as follows: 

(16)  g�,� = ���.�
��D,U�

= >jk + jkk5�,�\ + jlk5�,�] + jkZ�,�@��,� + jkT �̂,�
� + jkXYZG��,�
� 
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(17)  h�,� = ���.�
��D,U�

= >jl + jll5�,�] + jlk5�,�\ + jlZ�,�@��,� + jlT �̂,�
� + jlXYZG��,�
� 

From 3�. � = f�,� + 5�,�\ g�,� + 5�,�] h�,�, the demand equation for variable materials is described as 

follows: 

(18)  f�,� = 3�. � − 5�,�\ g�,� − 5�,�] h�,� = ijS + jZ�,� − �
mjkk>5�,�\ @m − �

m jll>5�,�] @m −

jlk5�,�\ 5�,�] n ��,� + jT �̂,�
� + jXYZG��,�
� + i�m jTT �̂,�
�m + �
mjXYZXYZG��,�
�m + �

mjTs Ts � �̂,�m +
�
mjXYZs XYZs �G��,�m n �

tD,U
+ jZT �̂,�
��,� + jZXYZG��,�
��,�  

The entire system of equations to be estimated consists of the two quasi-fixed input and three 

variable input equations (14) to (18). ). The demand equations for the quasi-fixed factors are in 

the form of accelerator model, while the industry’s variable inputs are directly derived from the 

normalized restricted cost function via shepherd’s lemma. The industry dummy variables and a 

stochastic error term is added to each equation in order to capture the industry fixed effects and 

random errors in cost minimization problem, respectively. The system of equations is non-linear 

in both parameters and variables; therefore, it needs to be estimated by using non-linear 

estimation methods. We thus estimate the model parameters by using the full-information 

maximum likelihood (FIML) method with the SAS 9.3 application package. 

6. Results and Discussion 

6.1 Data Sources and Construction of the Variables 

The data used in this study are obtained from different sources, mainly the harmonized Asia-

KLEMS growth and productivity accounts database released in June 2012 for Korea, and the 
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EUKELMS growth accounting database for Japan. These two databases include variables that 

measure output and input growth as well as derived variables such as multi-factor productivity at 

the industry level. The input measures include various categories of capital, labor, energy use, 

materials, and ICT capital inputs. The greatest advantage of this dataset is that it provides data 

series for almost all organized industrial sectors (O'Mahony and Timmer 2009; Pyo et al. 2012). 

Labor is measured as total hours worked. Energy use is defined as the aggregate of energy 

mining, oil refining, and electricity and gas products. Real non-ICT capital stock (converted into 

2005 prices) is taken from the Korea Industrial Productivity Database 2012. The macroeconomic 

variables are taken from the Bank of Korea’s Economic Statistics System4. 

The rental rate of capital stock is defined as p| = p|�δ + r��1 − τ�, where pk is the chained 

Fisher price index of capital stock, δ is the physical capital deflator, r is the real discount rate, 

and τ is the corporate tax rate (assumed to be 30 percent). The macroeconomic variables are 

taken from the Bank of Japan database5. The Japanese part of the EUKLEMS database includes 

72 industries, but only those matching the corresponding Korean industries are used for the 

comparative analysis. For the definition of the variables used, see Table A.1 in appendix A. In 

addition to the measures mentioned above, this study includes variables for export/import-

oriented industry, industry size, R&D intensity, and labor skills (high, medium, and low 

categories) for the 30 main industrial sectors in Korea and Japan, see table A.2 in appendix A. 

6.2 Empirical model 

The system equations include dummy variables in order to capture industry-specific effects 

because the heterogeneity across industries cannot be explained by the production structure 

                                                           
4 These data are publicly available at http://ecos.bok.or.kr/EIndex_en.jsp/. 
5 These data are publicly available at http://www.stat-search.boj.or.jp/index_en.html/. 
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alone6. The variance-covariance estimator used for the full-information maximum likelihood 

(FIML) method is from a generalized least squares estimator. Therefore, the generalized least 

squares approximation to the Hessian is used in the minimization procedure. 

The sample periods for each of the studied countries were divided into three sub-periods7: 

1980–1989, 1990–1999, and 2000–2009 for Korea and 1974–1984, 1985–1995, and 1996–2006 

for Japan. In addition, both samples were divided into knowledge-based and non-knowledge-

based industries. The parameter estimates reported in Table B.1 and Table B.2 in Appendix B for 

Korea and Japan, respectively, are in general statistically highly significant and satisfy the 

conditions of the convexity of the normalized restricted cost function in ICT and non-ICT capital, 

and the concavity in variable input prices. Further, the parameter estimates 

a||, a|s |s , a}~�}~�, and	a}~�s }~�s  are positive, while a��	and	a�� are negative. The hypothesis of the 

absence of adjustment costs for the quasi-fixed inputs of ICT and non-ICT capital, a|s |s = 0 and 

a}~�s }~�s = 0, is thus rejected. Hence, we deem the static equilibrium model to be unsuitable for 

describing the technology and structure of the factor demand of Korean and Japanese industries. 

Demand for variable inputs depends negatively on their own normalized prices. The negative 

signs of the quasi-fixed inputs of ICT and non-ICT capital in the labor and energy use demand 

functions indicate that both forms of investment are substitutes for labor and energy use. In 

addition, the positive sign of the technology index parameter in the labor demand function 

implies decreasing labor productivity. Moreover, the significant coefficients for the industry-

specific dummy variables imply that significant differences exist in the cost structure across 

                                                           
6 We use the fixed effects approach owing to the presence of panel data 
7 The aim here is to reflect the structural changes in the Korean economy because of the implementation of the 

country’s economic development plan described in Section 1. 
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industries8. Finally, because the parameter estimates are difficult to interpret, the various implied 

characteristics for the estimated factor demand systems are presented in the following estimates. 

6.2. Adjustment speed 

The estimated adjustment speed coefficients for ICT and non-ICT capital are reported in 

Table 2 and Table 3 for Korea and Japan, respectively. The optimal paths for these quasi-fixed 

inputs are described by the flexible accelerator equations, or so-called partial adjustment 

coefficients, in equations. (13.3) and (13.4). The adjustment coefficients explain the size of the 

gap between the initial stock and respective long-run optimal values, which alter over time in 

response to changes in those variables exogenous to the firm’s input decisions (Morrison and 

Berndt 1981; Nadiri and Prucha 1990). Further, the stock of quasi-fixed inputs moves slowly 

(quickly) toward the optimal value as the adjustment speed coefficient approaches zero (one). 

 

Table 2  

Korea’s adjustment speed coefficients 

 

1980–1989 1990–1999 2000–2009 

Knowledge-  

Based 

Non-

Knowledge- 

 Based 

mkk mictict mkk mictict mkk mictict mkk mictict mkk mictict 

Mean 0.131 0.084 0.188 0.341 0.16 0.238 0.134 0.195 0.211 0.301 

Std Dev 0.004 0.004 0.005 0.005 0.002 0.002 0.007 0.007 0.007 0.007 

Minimum 0.125 0.078 0.180 0.332 0.158 0.236 0.122 0.183 0.199 0.289 

Maximum 0.135 0.087 0198 0.350 0.166 0.243 0.148 0.209 0.225 0.313 

                                                           
8 The estimated coefficients for the industries’ dummy variables are not reported to save space. 
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Table 3 

 Japan’s adjustment speed coefficients 

 

1974–1984 1985–1995 1996–2006 

Knowledge-  

Based 

Non-

Knowledge- 

 Based 

mkk mictict mkk mictict mkk mictict mkk mictict mkk mictict 

Mean 0.239 0.224 0.371 0.29 0.137 0.577 0.243 0.445 0.211 0.657 

Std Dev 0.006 0.006 0.006 0.006 0.001 0.001 0.011 0.009 0.011 0.007 

Minimum 0.228 0.212 0.361 0.279 0.136 0.576 0.221 0.426 0.188 0.643 

Maximum 0.248 0.233 0.381 0.3 0.138 0.577 0.255 0.455 0.223 0.665 

 

The interpretation of the adjustment speed coefficients can be shown through an example. For 

Korea, the coefficients of ICT and non-ICT capital for 1980–1989 are 0.084 and 0.131, 

respectively. This finding implies that in Korean industries, approximately 8.4% and 13.1% of 

the gap between the optimal and actual stock of ICT and non-ICT capital, respectively, is closed 

within a year. Thus, the overall adjustment speed in Korean industries during the 1980s was 

faster for non-ICT than it was for ICT capital investment, although these adjustment processes 

do differ by industry. By contrast, the adjustment speed for non-ICT capital was slower than that 

for ICT capital during the second and third sub-periods (it tripled from the first to the second 

sub-periods and doubled in the third sub-period). These results concur with the findings of M. 
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Kim and Park (2009), who argued that technological flows across the industries that use ICT are 

positively related to time. The fast trend of the ICT adjustment speed is due to technological 

diffusion and the strengthening of technology linkages across industries since the 1990s. 

Moreover, high investment in ICT is partly due to the rapid decline in ICT capital prices, which 

allowed for substituting between different types of capital goods. Further, ICT capital investment 

might be driven by the perceived benefits that industries expect from ICT such as higher 

efficiency (Pilat and Lee 2001). 

For Japan, the adjustment speed for ICT capital was slower than that for non-ICT capital 

during the first and second sub-periods, but this became faster in the third sub-period (1996–

2006). The adjustment speed in the third sub-period was five times as fast as that in the second 

sub-period, agreeing with the findings of Kanamori and Motohashi (2007) and Fukao et al. 

(2009), who argued that ICT investment has become more feasible in Japan since the late 1990s 

given the contribution of IT to the country’s GDP growth. 

For both countries, the ICT adjustment speed was faster in traditional industries than it was in 

knowledge-based industries. Industries that have greater R&D expenditure tend to be ICT 

capital-intensive, and thus the gap between optimal and actual ICT capital investment is less than 

that in non-knowledge-based industries, which nevertheless aim to increase ICT use in the 

production process and strengthen the structured network among industries during the course of 

development. 

6.3. Elasticities 

The short- and long-run price and output elasticities of factor demand are reported in 

Appendix B: Tables B.3 and B.4 for Korea and Tables B.5 and B.6 for Japan. The short-run 
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elasticities of the variable inputs are defined when the quasi-fixed inputs are fixed, while the 

long-run elasticities occur when the inputs have adjusted fully to their steady-state levels. All 

short- and long-run own-price elasticities have a negative sign as expected. Because ICT and 

non-ICT capital are treated as quasi-fixed factors, their elasticities are equal to zero, and no 

adjustment occurs in the short run. In the long run, the own-price elasticities of ICT and non-ICT 

capital demand are both less than one, which means that their demand is inelastic. This demand 

behavior can be explained through their short- and long-run elasticities. In the short-run, the 

behavioral specifications as well as policy variables (e.g., imposed taxes) must consider that 

demand responses can only take the form of savings that eventually change to capital. In the 

long-run, however, the characteristics and degree of availability of new technologies as well as 

substitutability or complementarity become applicable as the size and technological 

characteristics of the capital stock vary (Hartman 1979). 

For both countries, ICT capital and labor are substitutes in all periods. In particular, they are 

perfect substitutes in the second and third sub-periods in Japan. Moreover, ICT diffusion caused 

a decrease in labor demand in all periods, indicating the existence of ICT and labor substitution 

effects. These results support the finding of G. Park and Park (2003) that Korean industries 

increasingly deploy ICT in order to reduce the use of labor, leading to the emergence of skills-

biased technological change. In other words, the use of ICT, although replacing low-skilled labor, 

is creating high-skilled complex jobs. As explained by Kanamori and Motohashi (2007), the 

contribution of the labor force to production and GDP growth in Japan has declined because of 

the declining birthrate, possibly leading to a negative growth rate in the long-run. As a result, the 

increase in total factor productivity and emphasis on ICT have become the most important policy 

initiatives for the Japanese government. In particular, promoting ICT investment and 
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accelerating its effective use are vital for enhancing competitiveness among Japanese industries 

and for long-run economic growth. This trend also supports the finding that the elasticity of labor 

with respect to ICT capital in traditional industries is identical to that in knowledge-based 

industries in Japan but higher in Korea. Finally, we find that firms that incur a high amount of 

R&D expenditure have more high-skilled labor, while traditional industries that aggressively 

adopt ICT tend to reduce demand for low-skilled labor. 

In Korea, ICT capital substitutes for energy use (positively in relation to time) and labor 

(negatively in relation to time). In Japan, however, ICT capital substitutes for energy use only 

during 1985–1995. During the first and third sub-periods, ICT complements energy use and 

labor (negatively in relation to time), implying that labor provides an opportunity to substitute 

for energy use, whereas employment does not influence energy consumption. The positive output 

elasticity of energy, which is less than one in both countries, suggests that economic growth 

leads to higher energy use, but also at a higher degree of energy efficiency. Therefore, although 

economic growth can improve the per-unit productivity of energy use, it increases both total 

energy use and CO2 emissions. 

Over time, no systematic pattern was observed in the trend of energy price elasticity implying 

that the economic growth–energy demand relationship has become more feasible after 

industrialization (Kamerschen and Porter 2004). The rapid development of production capacity 

in Korean industries over time has expanded these industries as well as urbanization and 

economic growth (Lee et al. 2012). As a result, changes in energy price have little effect on 

energy demand over time. 
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The industrialization process in Korea has transformed its agriculture-dominated economy 

into a services-based one that has an annual GDP growth of 2.9% (W. G. Cho et al. 2004). 

However, the high growth rates of 4–5% observed during the post-war industrialization period 

increased energy demand significantly. The shift of industry focus from labor-intensive to more 

capital- and energy-intensive production might explain this finding, while urbanization has also 

played a role by expanding services, food delivery, and infrastructural development and 

maintenance (Liu 2009). 

The energy demand in Japan started to decline since 1982 after its peak in 1979. The energy 

conservation policy was stimulated because of the oil crises. Moreover the Japanese industrial 

policy shifted from high energy intensity to low energy intensity industries. However, the energy 

demand started to rise again in 1983 but with lower growth rate compared with the past 

trend(Uchiyama 2002).  

Materials elasticity accounts for the largest proportion of elasticity in both Korea and Japan. 

Technological progress leads to greater materials efficiency in the production process by 

recycling waste and reusing materials. Technologically advanced firms are able to change their 

manufacturing processes over time by decreasing their use of expensive materials and 

redistributing resources. Moreover, the tariff exemption policy for imports of raw materials and 

investment goods, implemented by the Korean government after the 1980s as part of its 

economic development plan, and import liberalization in general have increased the supply of 

low-cost materials (Lee et al. 2012). 

7. Conclusion 
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This study quantified how ICT investment in Korea and Japan affects economic growth in 

general and industrial energy demand in particular, by using a dynamic factor demand model. 

The presented results showed that increasing ICT capital investment can improve both the global 

competitiveness and the productivity of Korean and Japanese industries. The substitution effect 

of ICT capital is manifested in energy-related activities, such as the shift from energy-intensive 

industries (e.g., iron & steel and chemicals) to electronic-based high-tech activities that are 

typically less energy-intensive. According to the elasticities calculated herein, ICT capital 

substitutes energy use. However, the magnitude of the ICT capital substitution effect determines 

whether such a capital investment decreases energy demand. 

Given these findings, future studies might aim to decompose aggregated energy consumption 

figures into different energy types in order to evaluate their individual effects on industrial 

production and specify their substitution effects more accurately. Researchers might also 

consider the direct effects of ICT on energy conservation. 

Further, the approach used in this study is rooted in individual industry optimization estimated 

from aggregated industry data. For instance, our model assumes that energy demand for all firms 

in the same industry is the same (i.e., they have identical demand curves and face similar cost 

curves). While it is common to study industries from the point of view of a representative firm, it 

should be noted that the cost function used in this study is assumed to be that of a representative 

firm in the industry. 

Moreover, the model lends itself to modifications in future research. For example, studies that 

use more flexible functional forms (e.g., a translog function) under rational expectations may 

provide more insights into how ICT capital influences energy demand. Finally, incorporating 
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important intangible input factors into the model and relaxing the separability between the quasi-

fixed factors may also allow us to understand the interaction between these factors and examine 

more in depth their effects. 
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Appendix A 

Data Sources and Construction of the Variables 

Table A.1 

Definition of Variables 

Variable Description Source 

Sector 32 industries are selected  Asia KLEMS Growth and Productivity Database for 

Korea and EUKLEMS Growth and Productivity Database 

for Japan 

Year 1980-2009 for Korea, 1973-

2006 for Japan 

Same as above 

GO Gross output at current 

purchasers' prices (in millions 

of Korean Won) 

Same as above 

GO_P Price Index of Gross Output 

(Index, 2005=100) 

Same as above 

VA Gross value added at current 

basic prices (in millions of 

Korean Won) 

Same as above 

   

CAPIT ICT capital Stock (share in total 

capital compensation) 

Same as above 

H_EMPE Total Hours worked by 

Employees (in Millions) 

Same as above 

LAP_QPH The labor services per hour 

worked, 2005 reference 

Same as above 

PMM Intermediate materials inputs at 

current purchasers' prices (in 

millions of Korean Won) 

Same as above 
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IIE Intermediate energy inputs at 

current purchasers' prices (in 

millions of Korean Won) 

Same as above 

Ip_ICT Price Index of ICT Capital 

Stock, 2005 = 100 

Same as above 

Ip_NonICT Price Index of non-ICT Capital 

Stock, 2005 = 100 

Same as above 

II_P Intermediate inputs, price 

indices, 2005 = 100 

 

TXSP Other taxes minus subsidies on 

production (in millions of 

Korean Won) 

Same as above 

Kstock The capital stock (in millions of 

Korean Won) 

The Capital Stock is taken from the Korea Industrial 

Productivity Database for Korea, and from EUKLEMS for 

Japan. 

CITR Corporate Income Tax Rate OECD Statistics Database 

LTGOVBR Long-Term Government Bond 

Interest Rate 

Bank of Korea, Bank of Japan 

INFLATR CPI Inflation Rate Bank of Korea, Bank of Japan 

RIR Real Interest Rate=LTGOVBR 

- INFLATR 
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Table A.2 

Constructed Variables 

Variable Formula Source 

ICTDR ICT Capital Depreciation Rate 

=0.248% 

The service life is 7 years for hardware, 5 years for 

software, 11 years for telecommunication equipment, 

and 30 years for other assets (aggregated as non-ICT 

assets. These service lives can be approximated by 

using a geometric depreciation rate of 0.315% for 

hardware and software, 11% for telecommunication 

equipment, and 7.5% for non-ICT assets (O'Mahony 

and Timmer 2009); 

CDR Non-Capital Depreciation 

Rate: The Average 

Depreciation Rate of 

Machinery, Transport 

Equipment, and Non-

Residential Structure 

Asia KLEMS Growth and Productivity Database for 

Korea and EUKLEMS Growth and Productivity 

Database for Japan 

Ip_Lab Price Index of Labor  Calculated based on LAP_QPH 

I ICT Capital Stock (in 2005 

Prices), i.e . (CAPIT * Kstock) 

The share is taken from the Asia KLEMS database, 

multiplied by the Capital Stock 

K Non-ICT Capital Stock (in 

2005 Prices), i.e. [Kstock-

(CAPIT*Kstock)] 

The physical share of non-ICT Capital is calculated 

after subtracting the real share of ICT Capital 

PFPICT (Ip_ICT)*(RIR+ICTDR)*(1-

CITR) 

ICT Capital Rental Price Index 

PFPK (Ip_NonICT)*(RIR+CDR)*(1-

CITR) 

Non-ICT Capital Rental Price Index 

QICT (I/PFPICT)*100 Quantity of ICT Capital Stock 

QK (K/PFPK)*100 Quantity of Non-ICT Capital Stock 

QL (H_EMPE/LAP_P)*100 Quantity of Labor  
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QE (IIE/II_P)*100 Quantity of Energy  

QM (IIM/II_P)*100 Quantity of Materials  

QGO GP/GO_P Quantity of Gross Output 

DIFQK QK(t)-QK(t-1) Internal non-ICT Capital Adjustment Cost (in terms of 

foregone output due to changes in quasi-fixed factors) 

DIFQICT QICT(t)-QICT(t-1) Internal ICT Capital Adjustment Cost (in terms of 

foregone output due to changes in quasi-fixed factors) 
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Table A. 3 

Industry Sectors Classification* 

ID Description 
Technology 

 Level 

Export  

Market 

Orientation 

R&D 

Intensity 

1 Agriculture, Hunting, Forestry and Fishing L L M 

2 Mining and Quarrying L L L 

3 Food , Beverages and Tobacco L M M 

4 Textiles, Leather and Footwear L I M 

5 Wood and Cork L L L 

6 Pulp, Paper, Printing and Publishing L M H 

7 Coke, Refined Petroleum and Nuclear Fuel H L H 

8 Chemicals and Chemical Products H I M 

9 Rubber and Plastics H I M 

10 Other Non-Metallic Mineral M M M 

11 Basic Metals and Fabricated Metal M M L 

12 Machinery, NEC H I H 

13 Electrical and Optical Equipment H I H 

14 Transport Equipment H I M 

15 Manufacturing NEC; Recycling H I M 

16 Electricity, Gas and Water Supply M L H 

17 Construction H I H 

18 

Sale, Maintenance and Repair of Motor Vehicles and 

Motorcycles; Retail Sale of Fuel 

L L L 

19 

Wholesale Trade and Commission Trade, Except of 

Motor Vehicles and Motorcycles 

L L L 

20 

Retail Trade, Except of Motor Vehicles and Motorcycles; 

Repair of Household Goods 

L L L 
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21 Hotels and Restaurants L L L 

22 Transport and Storage M L L 

23 Post and Telecommunications H I H 

24 Financial Intermediation M L H 

25 Real Estate Activities L L L 

26 Renting of M&Eq and Other Business Activities L L L 

27 Public Admin and Defense; Compulsory Social Security L L L 

28 Education L L H 

29 Health and Social Work H L L 

30 Other Community, Social And Personal Services L L L 

*The letters H, M, and L refer to High, Medium, and Low, respectively. 
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Table A. 4 

Summary Statistics of the Raw Data, in 2005 prices-South Korea, No of Obs. =900 

Variable Mean Std. Dev Min Max 

Coeff. of 

Variation t Value 

sector 15.5 8.6603 1 30 55.8726 53.69 

year 1994.5 8.6603 1980 2009 0.4342 6909.2 

Gross Output 31205044.1 38595815.4 277866 294907540 123.6845 24.26 

Energy 2304646.6 7096103.76 12211 107224600 307.9042 9.74 

Labor 6464268.46 8402458.18 42838 48853944 129.9831 23.08 

Labor Hours 4839.0398 5120.2863 44.85 32876.26 105.812 28.35 

High Skill Labor 0.1352 0.0563 0.04 0.55 41.6678 72 

Mid- Skill Labor 0.6104 0.0658 0.38 0.74 10.7806 278.28 

Low Skill Labor 0.2537 0.0986 0.01 0.56 38.867 77.19 

Materials 10738245.6 20785299.2 21156 168760400 193.5633 15.5 

Share of ICT 0.1384 0.0844 0.0003 0.3632 60.9927 49.19 

Interest Rate 11.5697 5.5373 4.45 28.76 47.8606 62.68 

Tax 149689.183 340698.809 1107 3878578 227.6042 13.18 

Inflation Rate 4.4867 2.2975 0.3 8.7 51.2065 58.59 

discount Rate 4.564 1.7781 1.27 7.83 38.9596 77 

GDP Deflator 69.12 26.2466 26.8 108.5 37.9726 79 

Capital Stock 33609982 61665236.7 460051.4223 506521566 183.473 16.35 

ICT Stock 3719493.37 4420097.07 9690.3419 23701822.8 118.836 25.24 

∆Capital 2440805.66 4455005.59 -4558392.97 42602862.4 182.5219 16.44 

∆ICT 278423.428 389798.06 -933905.291 3088019.22 140.0019 21.43 
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Table A. 5 

Summary Statistics of the Raw Data, in 2005 prices-Japan, No of Obs. 1020 

Variable Mean Std. Dev Min Max 

Coeff. of 

Variation t Value 

Sector 15.5 8.6597 1 30 55.869 57.16 

Year 1989.5 9.8155 1973 2006 0.4934 6473.37 

Gross Output 24003615 17894379 1189386 93636658 74.5487 42.84 

Energy 476775.2 590175.5 3176.147 4966420 123.7849 25.8 

Labor 7439580 7062330 19286.79 33978632 94.9291 33.64 

Labor Hours 2549.668 978.3643 550.0959 5129.71 38.3722 83.23 

High Skill Labor 22.6371 13.4025 4.1756 77.743 59.206 53.94 

Mid- Skill Labor 55.0189 11.4415 21.6831 80.6896 20.7955 153.58 

Low Skill Labor 22.344 16.3463 0.5739 70.8348 73.1574 43.66 

Materials 6596859 6836323 64011.09 34843152 103.63 30.82 

Share of ICT 0.0914 0.1177 0.0007 0.7067 128.815 24.79 

Interest Rate 2.8294 1.6535 0.84 6.96 58.441 54.65 

Inflation Rate 3.4106 2.5547 0.28 9.25 74.9037 42.64 

Discount Rate 3.2838 2.7211 0.1 9 82.8648 38.54 

Capital Stock 38512432 78893331 1394313 6.84E+08 204.8516 15.59 

ICT Stock 1201295 3010083 1596.546 33509975 250.5698 12.75 
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Appendix B 

Parameter Estimates  

Table B.1 

Korea’s non-linear FIML estimates-dynamic factor demand, 30 sectors (1980–2009)  

 1980–1989 1990–1999 2000–2009 

Knowledge- 

 Based 

Non-Knowledge- 

Based 

Parameter Estimate t-value Estimate t-value Estimate t-value Estimate t-value Estimate t-value 

akk 
0.073*** 

(0.011) 
6.390 

0.085*** 

(0.007) 
11.880 

0.066*** 

(0.009) 
7.440 

0.039*** 

(0.006) 
6.850 

0.094*** 

(0.006) 
14.640 

akoko 
2.522*** 

(0.427) 
5.910 

1.506*** 

(0.153) 
9.820 

1.848*** 

(0.242) 
7.640 

1.382*** 

(0.155) 
8.920 

1.365*** 

(0.102) 
13.370 

ak 
-0.142*** 

(0.035) 
-4.030 

-0.169*** 

(0.014) 
-11.880 

-0.078*** 

(0.11) 
-7.120 

-0.163*** 

(0.018) 
-9.130 

-0.101*** 

(0.011) 
-9.010 

alk 
-0.048*** 

(0.016) 
-3.080 

-0.037*** 

(0.008) 
-4.880 

0.000 

(0.008) 
-0.040 

-0.016** 

(0.007) 
-2.110 

-0.021*** 

(0.004) 
-5.510 

aek 
-0.040*** 

(0.017) 
-2.430 

-0.055*** 

(0.007) 
-7.870 

-0.034*** 

(0.004) 
-9.160 

-0.046*** 

(0.005) 
-10.180 

-0.026*** 

(0.003) 
-8.510 

atk 
-0.001 

(0.003) 
-0.320 

0.002** 

(0.001) 
1.700 

-0.002** 

(0.001) 
-2.530 

0.004*** 

(0.0001) 
8.220 

-0.002*** 

(0.000) 
-5.410 

aii 
0.201*** 

(0.025) 
7.930 

0.169*** 

(0.018) 
9.650 

0.105*** 

(0.007) 
14.750 

0.119*** 

(0.011) 
10.800 

0.143*** 

(0.007) 
21.340 
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aioio 
15.300*** 

(0.066) 
7.400 

0.826*** 

(0.069) 
11.950 

1.283*** 

(0.125) 
10.250 

2.033*** 

(0.225) 
9.020 

0.963*** 

(0.048) 
20.010 

ai 
-0.225*** 

(0.058) 
-3.860 

-0.259*** 

(0.021) 
-12.430 

-0.123*** 

(0.011) 
-10.970 

-0.292*** 

(0.030) 
-9.610 

-0.118*** 

(0.010) 
-12.000 

ali 
-0.094*** 

(0.028) 
-3.350 

-0.083*** 

(0.015) 
-5.620 

-0.013 

(0.011) 
-1.240 

-0.033** 

(0.020) 
-1.670 

-0.051*** 

(0.006) 
-8.480 

aei 
-0.059** 

(0.031) 
-1.920 

-0.085*** 

(0.009) 
-9.700 

-0.059*** 

(0.005) 
-12.090 

-0.071*** 

(0.011) 
-6.300 

-0.056*** 

(0.004) 
-13.570 

ati 
-0.008 

(0.005) 
-1.470 

0.002* 

(0.002) 
0.860 

-0.007*** 

(0.001) 
-5.090 

0.005*** 

(0.001) 
4.430 

-0.005*** 

(0.001) 
-9.220 

al 
0.993*** 

(0.195) 
5.100 

1.423*** 

(0.219) 
6.510 

0.735*** 

(0.262) 
2.810 

1.269*** 

(0.201) 
3.160 

0.226 

(0.256) 
0.880 

all 
-0.361*** 

(0.040) 
-9.140 

-0.036*** 

(0.010) 
-3.580 

-0.023* 

(0.014) 
-1.620 

-0.018 

(0.016) 
-1.130 

-0.008* 

(0.006) 
-1.470 

ael 
0.204*** 

(0.029) 
6.990 

0.031*** 

(0.008) 
4.070 

0.005 

(0.007) 
0.700 

0.009 

(0.009) 
0.990 

0.005* 

(0.003) 
1.630 

alt 
0.003 

(0.024) 
0.140 

-0.045 

(0.030) 
-1.490 

0.043 

(0.029) 
1.510 

-0.015 

(0.016) 
-0.920 

0.037*** 

(0.009) 
4.010 

ae 
0.922*** 

(0.109) 
8.450 

0.966*** 

(0.057) 
16.960 

0.917*** 

(0.058) 
15.890 

1.338*** 

(0.154) 
8.690 

0.744*** 

(0.037) 
20.220 

aee 
-0.120*** 

(0.036) 
-3.350 

-0.014** 

(0.006) 
-2.160 

0.012*** 

(0.004) 
3.080 

-0.015** 

(0.007) 
-2.020 

0.000 

(0.002) 
-0.170 
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aet 
-0.023** 

(0.011) 
-2.100 

0.008* 

(0.007) 
1.190 

0.003 

(0.006) 
0.490 

-0.021*** 

(0.005) 
-3.850 

0.006*** 

(0.001) 
4.330 

a0 
1.067*** 

(0.241) 
4.420 

1.122*** 

(0.063) 
17.770 

0.901*** 

(0.060) 
15.080 

1.505*** 

(0.161) 
9.340 

0.758*** 

(0.043) 
17.440 

at 
-0.006 

(0.030) 
-0.190 

0.007 

(0.008) 
0.830 

0.008 

(0.006) 
1.260 

-0.027*** 

(0.006) 
-4.810 

0.012*** 

(0.002) 
7.170 

Log Likelihood 1054 634.01 470.81 155.9 685.1 
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Table B.2 

Japan’s non-linear FIML estimates-dynamic factor demand, 30 sectors (1973–2006)  

 1973–1982 1983–1999 2000–2009 
Knowledge- 

 Based 

Non-Knowledge- 

Based 

Parameter Estimate t-value Estimate t-value Estimate t-value Estimate t-value Estimate t-value 

akk 
0.128*** 

(0.018) 
6.990 

0.175*** 

(0.012) 
14.700 

0.068*** 

(0.011) 
6.280 

0.122*** 

(0.013) 9.080 

0.128*** 

(0.010) 13.510 

akoko 
1.372*** 

(0.192) 
7.150 

0.736*** 

(0.089) 
8.240 

3.082*** 

(0.497) 
6.200 

1.383*** 

(0.252) 5.490 

1.991*** 

(0.204) 9.780 

ak 
-0.105*** 

(0.022) 
-4.720 

-0.162*** 

(0.013) 
-12.630 

-0.059*** 

(0.015) 
-3.930 

-0.134*** 

(0.020) -6.750 

-0.146*** 

(0.012) -12.310 

alk 
-0.161*** 

(0.018) 
-8.920 

-0.119*** 

(0.016) 
-7.460 

-0.095*** 

(0.013) 
-7.580 

-0.131*** 

(0.018) -7.400 

-0.097*** 

(0.012) -8.130 

aek 
-0.019* 

(0.010) 
-1.960 

-0.024*** 

(0.007) 
-3.300 

-0.015* 

(0.009) 
-1.640 

-0.030*** 

(0.010) -3.000 

-0.023*** 

(0.006) -3.690 

atk 
0.000 

(0.001) 
0.130 

-0.003*** 

(0.001) 
-3.950 

-0.001*** 

(0.000) 
-2.760 

0.002*** 

(0.000) 4.200 

0.001** 

(0.000) 1.800 

aii 
0.404*** 

(0.025) 
16.340 

0.116*** 

(0.010) 
11.090 

0.032*** 

(0.002) 
14.940 

0.052*** 

(0.006) 8.780 

0.092*** 

(0.005) 20.420 

aioio 
4.955*** 

(0.362) 
13.700 

0.883*** 

(0.059) 
14.870 

0.041*** 

(0.005) 
8.760 

0.136*** 

(0.019) 7.010 

0.070*** 

(0.004) 16.030 

ai -0.275*** -9.860 -0.089*** -7.100 -0.042*** -5.620 -0.149*** -4.810 -0.062*** -4.860 
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(0.028) (0.013) (0.007) (0.031) (0.013) 

ali 
-0.162*** 

(0.059) 
-2.750 

-0.198*** 

(0.020) 
-9.930 

-0.171*** 

(0.017) 
-9.980 

-0.271*** 

(0.029) -9.410 

-0.236*** 

(0.014) -17.330 

aei 
0.047*** 

(0.022) 
2.100 

-0.020** 

(0.009) 
-2.200 

0.016** 

(0.008) 
1.990 

0.081*** 

(0.010) 8.330 

0.024*** 

(0.007) 3.580 

ati 
0.004*** 

(0.001) 
3.240 

-0.002*** 

(0.000) 
-5.030 

-0.003*** 

(0.001) 
-3.800 

0.002** 

(0.001) 2.380 

-0.003*** 

(0.000) -6.380 

al 
1.050*** 

(0.054) 
19.570 

1.144*** 

(0.034) 
33.880 

1.258*** 

(0.041) 
30.820 

0.959*** 

(0.097) 9.950 

0.835*** 

(0.033) 25.610 

all 
-0.067*** 

(0.024) 
-2.810 

0.015*** 

(0.034) 
0.450 

0.124*** 

(0.029) 
4.250 

0.152*** 

(0.051) 2.960 

-0.115*** 

(0.018) -6.490 

ael 
0.040*** 

(0.023) 
1.740 

-0.008 

(0.016) 
-0.490 

-0.079*** 

(0.018) 
-4.430 

-0.103*** 

(0.028) -3.690 

0.074*** 

(0.012) 6.250 

alt 
0.016*** 

(0.006) 
2.780 

0.021*** 

(0.004) 
5.160 

0.003 

(0.006) 
0.510 

0.012*** 

(0.004) 3.100 

0.020*** 

(0.001) 13.720 

ae 
0.866*** 

(0.068) 
12.770 

1.137*** 

(0.022) 
52.510 0.843*** 16.790 

1.555*** 

(0.060) 25.990 

1.055*** 

(0.025) 42.930 

aee 
-0.030*** 

(0.017) 
-1.780 

0.001 

(0.008) 
0.110 

0.035*** 

(0.012) 
2.840 

0.029* 

(0.019) 1.520 

-0.056*** 

(0.008) -6.890 

aet 
0.033*** 

(0.009) 
3.830 

-0.022*** 

(0.003) 
-6.710 

-0.008 

(0.006) 
-1.510 

-0.032*** 

(0.002) -13.330 

-0.009*** 

(0.001) -10.160 

a0 0.999*** 14.730 1.204*** 53.330 0.878*** 19.110 1.488*** 24.350 1.110*** 42.380 
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(0.068) (0.023) (0.046) (0.061) (0.026) 

at 
0.031*** 

(0.009) 
3.370 

-0.018*** 

(0.004) 
-5.020 

-0.003 

(0.005) 
-0.520 

-0.027*** 

(0.003) -10.410 

-0.006*** 

(0.001) -5.070 

Log Likelihood 1848 2211 1070 535 1974 
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Table B.3 

Korea’s short- and long-run price and output elasticities for the studied three decades 

Short-Run Elasticities 

 1980–1989 1990–1999 2000–2009 

L E M K ICT L E M K ICT L E M K ICT 

PL -0.22 0.24 0.29 0 0 -0.03 0.03 0.77 0 0 -0.01 0.01 0.34 0 0 

PE 0.24 -0.09 0.54 0 0 0.03 -0.01 0.43 0 0 0.01 -0.02 0.49 0 0 

PM 0.29 0.54 -0.03 0 0 0.78 0.43 -0.94 0 0 0.34 0.49 -0.13 0 0 

CK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CICT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

T 0.08 -0.23 0.64 0 0 -0.30 0.05 0.74 0 0 0.16 0.01 0.32 0 0 

Q 0.02 0.55 0.20 0 0 1.09 0.20 0.10 0 0 1.01 0.90 0.10 0 0 

Long-Run Elasticities 

PL -0.26 0.21 0.29 0.22 0.18 -0.08 -0.04 1.00 0.27 0.35 -0.02 -0.01 0.70 -0.01 0.08 

PE 0.21 -0.11 0.20 0.18 0.30 -0.04 -0.08 0.65 0.37 0.40 -0.01 -0.01 0.95 0.11 0.44 

PM 0.29 0.20 -0.03 -0.08 0.16 1.00 0.65 -1.00 -0.22 -0.16 0.70 0.95 -0.00 -0.04 0.03 

CK 0.22 0.18 -0.08 -0.08 0 0.27 0.37 -0.22 -0.16 0 -0.01 0.11 -0.04 -0.12 0 

CICT 0.18 0.30 -0.16 0 -0.25 0.35 0.40 -0.16 0 -0.42 0.08 0.44 0.03 0 -0.30 

T 0.08 -0.22 1.28 0.04 0.23 -0.30 0.03 1.50 -0.15 -0.05 0.16 0.06 0.60 0.12 0.23 
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Q 0.11 0.52 0.48 1.00 1.00 1.13 0.58 0.42 1.00 1.00 1.01 0.90 0.11 1.00 1.00 
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Table B.4 

Korea’s short- and long-run price and output elasticities of knowledge- and non-knowledge-

based industries 

Short-Run Elasticities 

 Knowledge-Based Industries Non-Knowledge-Based Industries 

L E M K ICT L E M K ICT 

PL -0.01 0.001 0.73 0 0 -0.01 0.01 -0.05 0 0 

PE 0.001 -0.02 0.84 0 0 0.01 -0.00 0.39 0 0 

PM 0.73 0.84 -0.96 0 0 -0.05 0.39 -0.01 0 0 

CK 0 0 0 0 0 0 0 0 0 0 

CICT 0 0 0 0 0 0 0 0 0 0 

T -0.23 -0.34 1.07 0 0 0.55 0.10 -0.15 0 0 

Q 0.57 0.81 0.12 0 0 0.58 0.59 0.26 0 0 

Long-Run Elasticities 

PL -0.03 -0.04 1.5 0.08 0.20 -0.03 -0.02 -0.06 0.04 0.27 

PE -0.04 -0.12 -0.01 0.10 0.42 -0.02 -0.03 0.81 0.05 0.38 

PM 1.5 -0.01 -0.96 0.01 -0.07 -0.06 0.81 -0.49 -0.16 -0.05 

CK 0.08 0.10 0.01 -0.04 0 0.04 0.05 -0.16 -0.10 0 

CICT 0.20 0.42 -0.07 0 -0.31 0.27 0.38 -0.05 0 -0.18 

T -0.23 -0.44 1.13 -0.37 -0.41 0.55 0.12 -0.31 0.20 0.44 

Q 0.60 0.93 0.54 1.00 1.00 0.68 0.60 0.41 1.00 1.00 
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Table B.5 

Japan’s short- and long-run price and output elasticities for the three studied decades 

Short-Run Elasticities 

 1974–1984 1985–1995 1996–2006 

L E M K ICT L E M K ICT L E M K ICT 

PL -0.17 -0.06 0.40 0 0 -0.01 -0.01 0.41 0 0 -0.14 -0.11 0.65 0 0 

PE -0.06 -0.11 0.47 0 0 -0.01 -0.001 0.64 0 0 -0.11 -0.05 0.69 0 0 

PM 0.40 0.47 -0.46 0 0 0.41 0.64 -0.99 0 0 0.65 0.69 -1.00 0 0 

CK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

CICT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

T 0.06 0.14 0.17 0 0 0.11 -0.13 0.53 0 0 0.02 -0.06 0.54 0 0 

Q 0.91 0.86 0.09 0 0 1.00 0.98 0.001 0 0 1.00 0.96 0.001 0 0 

Long-Run Elasticities 

PL -0.37 -0.06 0.81 0.90 0.36 -0.46 -0.06 0.99 0.73 1.00 -1.41 -0.03 1.00 0.97 1.00 

PE -0.06 -0.12 0.50 0.26 -0.19 -0.06 -0.01 1.00 0.18 0.16 -0.03 -0.06 1.00 0.39 -0.65 

PM 0.81 0.50 -0.80 -0.90 0.30 0.99 1.00 -0.99 -0.69 -0.99 1.00 1.00 -1.00 -0.98 0.30 

CK 0.90 0.26 -0.90 -0.95 0 0.73 0.18 -0.69 -0.88 0 0.97 0.39 -0.98 -0.99 0 

CICT 0.36 -0.19 0.30 0 -0.88 1.00 0.16 -0.99 0 -0.83 1.00 -0.65 0.30 0 -0.68 

T 0.06 0.14 0.24 -0.02 -0.24 0.10 -0.11 1.00 0.12 0.09 0.01 -0.03 1.00 0.18 0.14 
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Q 0.91 0.85 0.15 1.00 1.00 1.00 1.00 0.02 1.00 1.00 1.00 0.97 0.04 1.00 1.00 
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Table B.6 

Japan’s short- and long-run price and output elasticities of knowledge- and non-knowledge-

based industries 

Short-Run Elasticities 

 Knowledge-Based Industries Non-Knowledge-Based Industries 

L E M K ICT L E M K ICT 

PL -0.03 -0.14 0.40 0 0 -0.15 0.05 0.14 0 0 

PE -0.14 -0.03 1.27 0 0 0.05 -0.09 0.70 0 0 

PM 0.40 1.27 -1.00 0 0 0.14 0.70 -0.89 0 0 

CK 0 0 0 0 0 0 0 0 0 0 

CICT 0 0 0 0 0 0 0 0 0 0 

T 0.20 -0.61 0.84 0 0 0.33 -0.20 0.33 0 0 

Q 0.96 0.83 0.03 0 0 0.95 0.87 0.03 0 0 

Long-run Elasticities 

PL -1.60 0.25 0.95 0.90 0.93 -0.83 0.09 0.54 0.71 0.94 

PE 0.25 -0.16 1.00 0.36 -0.98 0.09 -0.10 0.99 0.27 -0.30 

PM 0.95 1.00 -1.00 -0.93 0.98 0.54 0.99 -0.91 -0.75 -0.40 

CK 0.90 0.36 -0.93 -0.91 0 0.71 0.27 -0.75 -0.88 0 

CICT 0.93 -0.98 0.98 0 -0.69 0.94 -0.30 -0.40 0 -0.62 

T 0.21 -0.63 1.00 -0.37 -0.24 0.32 -0.21 0.64 -0.11 0.28 

Q 0.97 0.85 0.17 1.00 1.00 0.96 0.88 0.13 1.00 1.00 

 

 

 


