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Abstract

This paper analyzes the solution of linear mixed-type functional differential
equations with either predetermined or non-predetermined variables. Condi-
tions characterizing the existence and uniqueness of a solution are given and
related to the local stability and determinacy properties of the steady state. In
particular, it is shown that the relationship between the uniqueness of the solu-
tion and the stability of the steady-state is more subtle than the one that holds
for ordinary differential equations, and gives rise to new dynamic configurations.
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1 Introduction

Mixed-type functional differential equations (MFDEs) allow us to describe the

dynamics of a variable whose time derivative depends on its past and future val-

ues. A great number of dynamic economic problems in continuous time could be

written with an MFDE; however, some simplifying assumptions are commonly

used in order to reduce the problem to a system of ordinary differential equations

(ODE). As an illustration, the unrestricted form of dynamics of an overlapping

generations model1 results in an MFDE except in the case where exponential

forms are retained for the survival, discount, and endowment functions (Blan-

chard [6]). Similarly, models that consider lagged price contracts (Whelan [24])

or vintage capital2 generally have dynamics characterized by an MFDE. The

purpose of this article is to put forward conditions for the uniqueness of the

solution and the asymptotic stability of such MFDEs. These conditions are the

equivalent for the MFDEs of the Blanchard and Kahn conditions that apply to

finite-dimensional systems (Blanchard and Kahn [7], Buiter [11]).

The Blanchard and Kahn conditions are based upon the set of initial condi-

tions of the system and a spectral decomposition of the characteristic equation.

More precisely, by comparing the dimensions of the space of predetermined

variables with those of the stable eigenspace (or equivalently, by comparing the

dimension of the space of non-predetermined variables and those of the un-

stable eigenspace) they characterize the local uniqueness and stability in the

neighborhood of a steady state. On the other hand, for functional differential

equations, some of the spaces are infinite-dimensional and the Blanchard and

Kahn conditions do not apply. This is the case for the stable eigenspace for

delay differential equations (DDE). In the standard case where the variables

are predetermined and continuous, there is at most one solution to this type of

equation (Diekmann et al. [15]). Otherwise, multiple solutions may arise if the

dimension of the space of predetermined variables is greater than that of the

1Demichelis [12], Boucekkine et al. [8], d’Albis and Augeraud-Véron [1] and Edmond [13].
2Benhabib and Rustichini [5] and Boucekkine et al. [9].
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unstable eigenspace (d’Albis et al. [3], [4]). On the contrary, advance differ-

ential equations (ADE) are characterized by an unstable eigenspace of infinite

dimension and it is necessary to compare the dimension of the stable eigenspace

with that of the predetermined variables.

The difficulty with MFDEs, which contain both delays and advances, is that

both the stable manifold and the unstable manifold are infinite-dimensional. In

order to establish our results, we use and extend the results of Mallet-Paret

and Verduyn Lunel [20]. This approach consists of analyzing a factorization of

the characteristic equation of the MFDE in question, written as the product of

two characteristic equations associated with a DDE and an ADE, respectively.

Existence and uniqueness of solutions to either differential equation depend on

the number of misplaced roots of the respective characteristic function. Taking

the difference between these numbers, we are able to provide conditions for

existence and uniqueness of solutions to the MFDE, and to characterize the

stability properties and degree of indeterminacy in the neighborhood of a steady

state. We then extend these results to certain algebraic equations of mixed type.

The advantage of the technique we propose is that it is simple enough to

implement, as we illustrate in three examples. It is an alternative to the existing

procedures based on a formulation in discrete time (Gautier [14]) or to numerical

methods (Collard et al. [10]), which are well suited when the characteristic

functions are complicated.

Most importantly, the theoretical analysis of MFDEs gives rise to new and

interesting dynamic configurations and reconsiders the link between the local

uniqueness of a solution and the stability of a steady state. In particular, we

show that the dynamics of a predetermined variable may be both stable and

indeterminate, while with an ODE stability implies uniqueness. In addition, the

dynamics of a non-predetermined variable may be both stable and determinate,

while with an ODE stability implies indeterminacy. Finally, we show that a

non-predetermined variable does not generally jump to its steady state value.

The article is organized as follows. In Section 2, we begin with a simple
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economic model illustrating the equations we are going to study. Then, we

explain why the presence of advances and the definition of initial conditions

imply that the mathematical problem is ill-posed, and why this may lead to

the non-existence or the multiplicity of solutions. This section also allows us

to relate our contribution to existing literature. In Section 3, we present our

results on the existence and uniqueness of solutions of MFDEs as well as two

examples that we solve in order to illustrate our theorems. In Section 4, we

extend our results to algebraic equations of mixed type and solve an example.

We also put forward a linearization theorem in order to apply our results to

non-linear MFDEs. We conclude in Section 5.

2 Presentation of the problem

2.1 A simple economic model

To introduce the equations we are going to study, let us consider a model where

the investment goods follow a “one-hoss shay" depreciation rule. Such goods

contribute to the capital stock throughout their lifetime before falling to a zero

scrap value. Let  () be the investment implemented at date  ≤  and let

 ∈ R+ be the lifespan of the investment goods. The capital stock is therefore

at date  equal to the sum of all investments made between dates −  and :

 () =

Z 

−
 ()  (1)

If one considers both a Solowian framework, where the investment chosen at time

 is proportional to the demand received by the firms in the same period (i.e.

 () =  ()), and an equilibrium on the goods market that equalizes demand

and production such that  () =  ( ()), equation (1) can be rewritten as:

 () = 

Z 

−
 ( ())  (2)

Differentiating with respect to time, one obtains a DDE:

0 () =  ( ())−  ( (− ))  (3)
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If one considers a more sophisticated framework where the investment chosen

at time  is proportional to the demand that firms expect to receive throughout

the lifetime of the investment good, equation (1) can be rewritten as:

 () = 

Z 

−

Z +



 ( ())  (4)

which is an algebraic equation of mixed type. Differentiating (4) with respect

to time yields an MFDE:

0 () = 

Z +



 ( ())  − 

Z 

−
 ( ())  (5)

In Section 4.1.3, we solve equation (4) in the particular case of a linear produc-

tion function given by  ( ()) =  (). This is, of course, an illustrative

example, as MFDEs usually arise in models with more relevant microeconomic

foundations. But in all cases, delays are due to the vintage structure of a

stock variable (e.g. capital, population, price or wage contracts, etc.) whereas

advances are due to the forecasts made by the agents. Comprehensive presen-

tations of the use of MFDEs in economics are given in Collard et al. [10] for

vintage capital models and in d’Albis and Augeraud-Véron [2] for overlapping

generation models.

2.2 The mathematical problem

Let  ∈ R+ be the time index. We consider the following scalar linear MFDE:

0() =

Z 

−
 (+ )  ()  (6)

where ( ) ∈ R2+ and where  is a measure on [− ]. Equation (6) character-

izes dynamics for which the time-derivative at time  of a variable , denoted

0 (), depends on both the delayed values of  over the interval [−  ) and

on the advanced values of  over the interval ( + ].

Due to the delay, initial conditions are defined over an interval. But, as

usual, initial conditions may be of two different types. First, variable  can be

predetermined (sometimes referred to as backward-looking), with initial condi-
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tion of equation (6) written as:

 () = 0 () for  ∈ [− 0]  (7)

where 0 ∈ C ([− 0]), the space of continuous functions on [− 0]. Second, for

a non-predetermined (or forward-looking) variable, the initial condition can be

written as:

 () = 0 () for  ∈ [− 0)  (8)

where 0 ∈ C ([− 0]), the space of continuous functions on [− 0) such that

0 (0
−) exists. Here,  (0+) is not given and may be different from 0 (0

−).

Note that equation (6) admits a unique steady state, namely  = 0, but

may also be solved by functions that grow at a constant growth rate, thereby

exhibiting a balanced growth path (BGP). This allows us to characterize the

local stability of either a steady state or a BGP.

Let us first define a solution to the problem being considered.

Definition 1. A solution with maximal growth rate  ∈ R is a function  :

[−+∞)→ R with kk := sup∈R+ − | () |∞ that is continuous on R+

and satisfies (6) together with either (7) or (8).

It is worth noting that solutions to MFDEs are defined according to their

asymptotic growth properties and that parameter  can be used to investigate

various situations. For each problem, an appropriate  is chosen and fixed for

the subsequent analysis. For dynamics that are analyzed in the neighborhood

of the steady state  = 0, the appropriate  will be fixed at , with 0  ¿ 1.

For dynamics that admit a BGP,  will be chosen to be just above the asymp-

totic growth rate. To simplify things, a solution with maximal growth rate  is

hereafter referred to as a solution. In addition, according to Definition 1 and

condition (8), a discontinuity at time  = 0 is permitted for problems with a

non-predetermined variable. Finally, a convergence condition is introduced in

Definition 1; this condition is not necessary for models that include a transver-

sality condition.
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The main relevant information about equation (6) is obtainable from its

characteristic function

∆ () = −
Z 

−
 ()  (9)

where  denotes the linear operator, defined as  () =
R 
−  (+ )  ().

The characteristic roots (i.e. the roots of ∆ () = 0) have been studied in

Rustichini [23], Hupkes and Verduyn Lunel [18], and Hupkes [16]. They prove

that the roots are isolated, and that for any line Re () =  in the complex plane,

each of the half-planes { ∈ C : Re ()  } and { ∈ C : Re ()  } generically

contains infinitely many roots. Because of this double infinity it is not possible

to use a spectral projection formula to prove the existence and uniqueness of

solutions, as done for DDE by d’Albis et al. [4].

In the following, we limit our analysis to dynamics with no center manifold.

Assumption 1. ∆ () = 0 has no roots that satisfy Re () = 

With Assumption 1, we therefore exclude MFDEs that may give rise to

bifurcations.

Let us now explain why equations (7) or (8) are not sufficient initial con-

ditions for a well-posed problem. Regarding the dynamics of a predetermined

variable, it is natural to consider initial conditions in  ([− ]). However, as

shown by Rustichini [23], there always exist initial conditions in  ([− ]) that

do not lead to a continuous function on [−∞) that satisfies (6). To solve

this problem, it is necessary to obtain a decomposition of  ([− ]) as a direct

sum decomposition  ([− ]) =  () ⊕  (), such that initial conditions

in space  () ⊂  ([− ]) lead to trajectories with maximal growth rates ,

while initial conditions in space  () ⊂  ([− ]) lead to functions defined

on (−∞ ] that satisfy sup∈R− 
− | ()| ∞. This decomposition, obtained

by Rustichini [23] allows for the definition of a stable manifold and an unstable

manifold —both in  ([− ])— that corresponds to a saddle-path configuration.

Similarly, in the case of a non-predetermined variable, d’Albis et al. [3] show
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that the natural state space would be  ([− 0]) ×  ([0 ]), a space of func-

tions that are continuous over [− 0] and [0 ]. These functions are multivalued

at 0 as both 0 (0
−) and the jump 0 (0

+) are considered. A decomposition of

 ([− 0])× ([0 ]), similar to the one of Rustichini [23], can then be obtained.

However, those decompositions are not enough to solve equation (6) with

initial condition (7) or (8), as those initial conditions are just functions in

 ([− 0]) or C ([− 0]). Therefore, one has to go beyond and analyze the

properties of the restriction operator that maps  () to  ([− 0])  as it is

done by Mallet-Paret and Verduyn Lunel [20] and [21]. More precisely, these

authors check whether any initial condition over [− 0] can be extended con-

tinuously over [− ] as a function that belongs to  (). When such an ex-

tension over [0 ] is not available, the non-existence of a solution to the MFDE

can be established. When the extension is available, it constitutes, together

with the initial condition over [− 0], a function in the natural state space that

leads to a unique solution. Because the extension over [0 ] may not necessar-

ily be unique, multiple solutions may emerge. D’Albis et al. [3] analyze the

case of non-predetermined variables and check whether any initial condition in

C ([− 0]) can be extended over [0 ]. They use a modified restriction operator

that maps any elements of C ([− 0]) × C ([0 ]) that lead to a solution into

C ([− 0])× C ([0+∞)). As for predetermined variables, the solution may not

exist and, if it does, may not be unique.

The multiplicity of solutions that may appear for such dynamic problems

happens to be related to certain definitions of indeterminacy that are used in

economics. More precisely, we use the following definition, proposed by Pole-

marchakis [22].

Definition 2. A solution has  ∈ N degrees of indeterminacy if the set of

distinct solutions contains a -dimensional open set3 .

According to this definition, the solution is unique if  = 0 and indeter-
3A -dimensional open set is the image of a continuously differentiable, one-to-one function

with domain an open neighborhood in -dimensional euclidean space (Polemarchakis [22]).
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minate for  ≥ 1. When there are infinitely many solutions, the degree of

indeterminacy allows for defining families of solutions that are parameterized

by  ∈ R . Note that we cannot use a definition of indeterminacy that is based

on the comparison between the numbers of roots with positive real parts and

missing initial conditions (as in Buiter [11] for finite-dimensional systems and

d’Albis et al. [4] for DDE). Indeed, as shown above, the missing initial condition

lies in an infinite-dimensional set as it is a continuous function on (0 ] or [0 ].

To compute the degree of indeterminacy according to Definition 2, we are

going to use a theoretical concept put forth by Mallet-Paret and Verduyn Lunel

[20] that is based on “misplaced" characteristic roots. More precisely, they show

that characteristic function (9) can be factorized as:

(− 0)∆() = ∆−()∆+() (10)

where 0 ∈ R, ∆− () is the characteristic equation of a DDE, and ∆+ ()

is the characteristic equation of an ADE. Let us note that factorization (10) is

not uniquely defined as one can swap roots from one factor to another. Further-

more, an explicit factorization is generally difficult to obtain. Mallet-Paret and

Verduyn Lunel then define an integer, denoted (), that can be written as:

() = −+()− +−() + 0() (11)

where −+() is the number of characteristic roots of ∆+() = 0 such that

Re ()   +−() is the number of characteristic roots of ∆−() = 0 such

that Re ()  , and 0() is equal to 1 if 0   and to 0 if 0  . The local-

ization of roots of DDE or ADE implies that both +−() and 
−
+
() are finite,

which consequently implies that () is also finite. Depending on whether the

variable is predetermined or not, the positivity of +−() and −+() would be

an indication of the non-existence of the solution of the differential equations

related to ∆− () and ∆+ () (see d’Albis et al. [3]). The difference between

+−() and 
−
+
() is thus an indication of the “misplaced" characteristic roots

of the factorization.
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Under the assumption that the measure  is atomic at both at  = − and

 = , Mallet-Paret and Verduyn Lunel [20] proved that () is an invariant of

equation (6). For the models in economics that we are aware of, however, this

assumption is too restrictive. Hupkes and Augeraud-Véron [17] have extended

Mallet-Paret and Verduyn Lunel’s results by showing that it is enough to as-

sume the atomicity asymptotically. It is thus sufficient to make the following

assumption:

Assumption 2. There exist ± ∈ R+ and ± ∈ R∗ such that the following

asymptotic expansions hold true:

∆() =

⎧
⎨
⎩

−+(+ + (1)) as → +∞

−−−(− + (1)) as → −∞
(12)

In the next section, we demonstrate how to relate the value of () to

the existence and uniqueness of the solution. However, first let us show how to

compute the invariant integer in the most likely case, where explicit factorization

is not available. The method, developed by Hupkes and Augeraud-Véron [17],

consists of building a continuous path Γ () for  ∈ [0 1], which allows a family

of operators associated with MFDEs to be defined. Such a path is built so

that Γ (1) is operator  while Γ (0) is an operator for which the characteristic

equation can be explicitly factorized. Let us then suppose the following:

Assumption 3. ∆Γ() () = 0 has roots with Re () =  for only a finite

number of values of  ∈ (0 1), while ∆Γ(0) () = 0 and ∆Γ(1) () = 0 have no

roots with Re () = 

Assumption 3 is not restrictive as a continuous path Γ () always exists.

The example in section 3.3.1 illustrates how to build a path that satisfies the

properties exhibited in Assumption 3. In the following, we use this assumption

to prove that the explicit computation of the invariant integer of equation (6)

is always possible.
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Lemma 1. Let Assumptions 1, 2, and 3 prevail. The invariant integer ()

of equation (6) can be computed explicitly.

Proof. See Appendix.

We conclude this presentation of the problem with a discussion of the sta-

bility of the steady state (or, equivalently, of the BGP). As mentioned above,

even if the variable is a scalar, the configuration is a saddle path with stable and

unstable manifolds that are infinite-dimensional. Within this configuration, and

by analogy with finite-dimensional problems (such as those involving ODEs),

the stability of the steady state may be defined as follows:

Definition 3. The steady state is said to be stable if at least one solution with

a non-positive growth rate exists and unstable if this is not the case. The steady

state is said to be saddle-point stable if this solution is unique.

Definition 3 links the existence and uniqueness of a solution to the stability

of the steady state. If any initial condition can be extended in the natural

state space, one obtains functions that initiate solutions which converge to the

steady state, which is thus stable. The saddle path configuration implies that

any initial condition can also be extended to initiate functions that diverge.

In order to keep the analogy with finite-dimensional problems, we nevertheless

restrict the notion of saddle-point stability to cases where a unique solution is

initiated by any function defined in the natural state space. Alternatively, if for

any initial condition it is not possible to find an extension, all initiated functions

are divergent and the steady state becomes unstable. As we are in a saddle path

configuration, initial conditions that lead to a solution always exist, but those

conditions are not generic. Definition 3 extends to BGP by considering solutions

with maximal growth rate .
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3 Main theorems

3.1 Equations with predetermined variables

Consider the following problem with a predetermined variable:
⎧
⎨
⎩

0() =
R 
−  (+ )  () 

 () = 0 () for  ∈ [− 0] 
(13)

Theorem 1. Let Assumptions 1, 2, and 3 prevail. If () ≥ 1, the degree

of indeterminacy of problem (13) is equal to ()− 1 and the steady state, or

the BGP, is stable. If ()  1 problem (13) has no solution and the steady

state, or the BGP, is unstable.

Proof. See Appendix.

Theorem 1, which is a corollary of Theorem 6.2 in Mallet-Paret and Verduyn

Lunel [20], relates () to the existence and uniqueness of solutions to equation

(13) and can thus be used to asses the determinacy and stability properties of

any model characterized by such an equation.

In particular, for  ()  1, any initial condition in C ([− 0]) can be ex-

tended in C ([− ]) to initiate a solution. These extensions are not unique.

Any initial condition can lead to many solutions that converge to a steady

state, or a BGP, which are thus both stable and indeterminate. Contrary to

finite-dimensional systems (e.g. with ODEs) and to DDEs, the dynamics of a

predetermined variable in the neighborhood of the steady state, or the BGP,

can be simultaneously stable and indeterminate. There are an infinite number

of solutions and the degree of indeterminacy indicates the number of missing

real parameters in the equation of the solution. More precisely, the solutions

are parameterized by a vector of dimension # ()− 1, namely ()=1# ()−1.

For one solution, all other solutions may be written as:

 () = (00) () +

()−1X

=1

 ()  (14)

where  () can be explicitly computed using only the initial conditions.
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If  () = 1, any initial condition in C ([− 0]) can be extended in C ([− ])

to initiate a solution, but this extension is unique. The steady state, or the

BGP, is both stable and determinate or, according to Definition 3, saddle-point

stable. In order to solve equation (6) with initial condition (7), one needs the

explicit factorization (10) for which we know there exists a DDE associated to

function ∆− (), if 0 is not a root of ∆− () = 0 or otherwise associated

to ∆− ()  (− 0). The solution is the one obtained by solving the DDE in

initial conditions (7). According to Diekmann et al. [15], the solution can be

written asymptotically as:

 () =
X

=1

 () 
 + 

¡

¢
for → +∞ (15)

where  ∈ R and ()=1 are the roots of either equation ∆− () = 0 or

∆− ()  (− 0) = 0 such that Re ()   and  () are polynomials in .

If ()  1 there exist initial conditions in C ([− 0]) that cannot be

extended within C ([− ]) to initiate a solution. However, there exists a non-

empty subspace of C ([− 0]) that contains initial conditions leading to a solu-

tion. The codimension of this subspace is finite and equal to 1− ().

The figures below represent the beginning of trajectories that converge to

(Figures (1a) and (1b)) or diverge from (Figure (1c)) steady state  = 0, given

the different values of (0). Figure (1b) represents the dynamic configuration

that is specific to MFDEs and that cannot be found when an ODE is considered.

Figures 1a, 1b, 1c about here

3.2 Equations with non-predetermined variables

Now consider the problem with a non-predetermined variable
⎧
⎨
⎩

0() =
R 
−  (+ )  () 

 () = 0 () for  ∈ [− 0)
(16)

Theorem 2. Let Assumptions 1, 2, and 3 prevail. If () ≥ 0, the degree

of indeterminacy of problem (16) is equal to () and the steady state, or the

12



BGP, is stable. If ()  0 problem (16) has no solution and the steady state,

or the BGP, is unstable.

Proof. See Appendix.

Theorem 2 is the counterpart of Theorem 1 for non-predetermined variables.

The permitted initial jump provides extra degrees of freedom, which explains

why the critical value of the invariant integer is now 0 rather than 1. The

determinacy and stability properties are outlined below.

If ()  0, the solution is indeterminate. In the case where () = 1,

for every  (0+) ∈ R a unique extension that leads to a solution exists. This is

an indeterminacy of degree 1, corresponding to the case of a stable steady state

in a problem described by an ODE. When ()  1, for every  (0+) ∈ R

families of solutions defined on [0∞) exist. The height of the initial jump,

given by  (0+)− 0 (0
−), is not determined and starting from  (0+) there are

an infinity of solutions converging to the steady state or the BGP. This kind of

dynamic is specific to MFDEs and does not exist with scalar ODEs.

If () = 0, any initial condition within C ([− 0]) can be extended in

C ([0 ]) to initiate a solution and this extension is unique. A unique solution

that converges to the steady state or the BGP exists. According to Definition 3,

this corresponds to saddle-point stability. In this case, the non-predetermined

variable does not jump onto the steady state but onto a path that converges to

it.

Finally, if ()  0, there are initial conditions in C ([− 0]) that cannot

be extended to initiate a solution and there is no generic solution to (16).

The figures below represent the initial trajectories of the dynamics that

converge to steady state  = 0. Figure (2a) represents a problem for which

the invariant integer is 0. Here, there is an initial jump and a unique trajectory

converging to the steady state. Note that the solution does not consist of a jump

to the steady state. Figure (2b) represents an indeterminacy of degree 1, where

the initial jump is not determined. Figure (2c) represents an indeterminacy of

a degree larger than 1, where the initial jump is not determined and a family of

13



trajectories is possible for each jump. This latter case is specific to MFDEs.

Figures 2a, 2b, 2c about here

A summary of Theorems 1 and 2 is presented in Table 1.

Table 1: Existence and uniqueness of solutions

  0
 = 0
 = 1
  1

Predetermined variable Non-predetermined variable
Non-existence Non-existence
Non-existence Existence and uniqueness

Existence and uniqueness Indeterminacy of degree 1
Indeterminacy of degree  − 1 Indeterminacy of degree 

The cases where   1 are specific to MFDEs and lead to dynamic configura-

tions that do not exist with ODEs.

3.3 Examples

Let us now analyze two MFDEs that clearly illustrate Theorems 1 and 2. In

the first example, we consider an equation in which the factorization of the

characteristic equation is not explicit. We show how to compute the invariant

integer by using Lemma 1. In the second example, we show that the solution

of a scalar MFDE can display an indeterminacy of degree 2, corresponding to a

situation that cannot occur with an ODE.

3.3.1 An application of Lemma 1

Let us consider the following equation:

0 () =  (+ 1) +  (− 1)  (17)

which was first analyzed in Rustichini [23]. He shows that a solution may not

exist for a given initial condition in C ([−1 1]). We focus on the existence and

uniqueness of solutions that converge to the unique steady state  = 0. Variable

 can be predetermined (i.e.  () is given in C ([−1 0])), or non-predetermined

(i.e.  () is given in C ([−1 0])). Our results can be summarized as follows:

Proposition 1. If  is predetermined, equation (17) has no solution. If  is

non-predetermined, equation (17) has a unique solution.
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These results are proven by characterizing the roots of ∆ () = 0, where:

∆ () = −  − − (18)

First of all, we show that Assumption 1 is satisfied for  = 0 (as we consider

trajectories that converge to the steady state).

Lemma 2. ∆ () = 0 has no pure imaginary root.

Proof. See Appendix.

Next, we need to factorize the characteristic function. Let us denote:

∆+ () = − 1−  (19)

∆− () = − 1− − + −1 (20)

We obtain

∆+ ()∆− () = (− 1)
∙
∆ () + −1 − 1−

Z 1

0

(−1)

¸
 (21)

which does not have the same form as (10). In order to apply Lemma 1 we

define a path operator, denoted Γ (), whose characteristic equation is given by:

∆Γ() () = ∆ () + (1− )

µ
−1 − 1−

Z 1

0

(−1)

¶
 (22)

implying that ∆Γ(1) () = ∆ () and (− 1)∆Γ(0) () = ∆+ ()∆− ().

The characteristic function ∆Γ(0) () can thus be explicitly factorized as in (10)

with 0 = 1. Furthermore, it has no pure imaginary roots.

Lemma 3. ∆Γ() () = 0 has no pure imaginary root.

Proof. See Appendix.

As a consequence, Lemma 1 applies to equation (17) and the associated

invariant integer  (0) can be computed.

Lemma 4.  (0) = 0.

Proof. See Appendix.

Using Theorems 1 and 2, Proposition 1 is deduced from Lemma 4.
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3.3.2 An equation that gives rise to an indeterminacy of degree 2

Consider the following MFDE:

0 () =  ()− 

Z 

−1
(−) () + 

£
− (+ 1)−  ()

¤

+ 

Z +1



Z +1



−(−) ()  (23)

where (  ) ∈ R3++ and 
R 0
−1 

−  −1. The characteristic function

can be written as:

∆ () = − − 

µ
−(−) − 1

− 

¶
− 

¡
− − 1

¢

+ 

µ
− − 1
− 

¶µ
−(−) − 1

− 

¶
 (24)

This function can be explicitly factorized as:

∆ () = (− )∆+ ()∆− ()  (25)

where

∆+ () = −−
¡
− − 1

¢
and ∆− () = −−

µ
−(−) − 1

− 

¶
 (26)

Using Theorems 1 and 2, the localization of the roots allows us to establish

the existence and uniqueness of a solution that converges to zero as  tends to

infinity. The next Lemma proposes a characterization of the roots.

Lemma 5. If 
R 1
0
−  1 each root of ∆+ () = 0 has a non-negative

real part. If 
R 1
0
−  1, ∆+ () = 0 has at least one negative real root.

Proof. See Appendix.

Lemma 6. If 
R 0
−1 

−   each root of ∆− () = 0 has a non-positive

real part. If 
R 0
−1 

−   ∆− () = 0 has one positive real root.

Proof. See Appendix.

With these two lemmas the following result can be established:

Proposition 2. If 
R 1
0
−  1 and 

R 0
−1 

−   then −+ (0) = 1

+− (0) = 0 0 (0) = 1 and thus 

 (0) = 2.

16



If 
R 1
0
−  1 and 

R 0
−1 

−   then −+ (0) = 0 
+
− (0) = 0

0 (0) = 1 and thus 

 (0) = 1.

If 
R 1
0
−  1 and 

R 0
−1 

−   then −+ (0) = 0 
+
− (0) = 1

0 (0) = 1 and thus 

 (0) = 0.

Depending on whether  () is a predetermined or not, and on the values of

the parameters, the solution may or may not exist and, upon existence, may be

unique or indeterminate. In particular, if  () is a non-predetermined variable

with initial condition  () = 0 () for  ∈ C ([−1 0]), an indeterminacy of

degree 2 (i.e. for each jump, there is a one-parameter family of solutions that

solve the equation) may occur.

4 Extensions

4.1 Algebraic equations of mixed type

As we have seen in the example presented in Section 2.1, algebraic equations

of mixed type, like (4), may arise in economic models. Below we consider alge-

braic equations that reduce to differential equations when differentiated a finite

number of times. Theorems 1 and 2 may not, however, be applied immediately

to these equations as the differentiation creates some extra roots that have to

be eliminated in order to compute the invariant integer.

4.1.1 Equations with predetermined variables

We now extend Theorem 1 to scalar algebraic equations of mixed type. These

can be written as:

Z 

−
 (+ )  () =

Z 

−
 (+ )  () (27)

with initial condition (7). The characteristic equation of (27) is

Z 

−
 () =

Z 

−
 ()  (28)

We are only concerned with algebraic equations that satisfy the following con-

dition:

17



Assumption 4. There exist  ∈ N∗, for all  ∈ R, such that the character-

istic function of (27), denoted  (), satisfies  () (− )

= ∆ () where

where ∆ () is the characteristic function of a scalar MFDE whose operator

is denoted .

For all  = 1   let  denote the operator associated with the algebraic

equation whose characteristic function is  () (− )

= ∆

(); in particular

 =  . Note that for  = 0, Assumption 4 states that differentiating equation

(27)  times leads to an MFDE with associated operator 0.4 Contrary to

differential equation (6), an algebraic equation of type (27) would display 

additional constraints at time  = 0 For   1 the constraints are written as:
⎧
⎨
⎩

R 
−  ()  () =

R 
−  ()  () 

 (0) = 0 for all  = 1− 1
(29)

For  = 1, which corresponds to the case where equation (27) reduces to

 () =

Z 

−
 (+ )  ()  (30)

the initial constraint is one-dimensional and is given by

0 (0) =

Z 

−
 ()  ()  (31)

We characterize a solution with maximal growth rate  as in Definition

1 except that it now refers to equation (27) instead of (6). Note that it is

equivalent to say that  is a solution to (27) or to say that  is a solution of

an MFDE defined by an operator  that satisfies the initial condition  () =

0 () for  ∈ [− 0], the growth condition kk ∞, and the constraints given

by equation (29). The associated problem is stated as:
⎧
⎨
⎩

R 
−  (+ )  () =

R 
−  (+ )  () 

 () = 0 () for  ∈ [− 0] 
(32)

Theorem 3. Let Assumption 4 prevails. Let us consider  such that   , no

root of  () = 0 satisfies Re () ∈ [ ), and Assumptions 1, 2 and 3 prevail
4Note that  corresponds to the equation that arise after having applied (− ) to

(27).
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for . If  () ≥ 1, the degree of indeterminacy of problem (32) is equal to

 ()− 1 and the steady state, or the BGP, is stable. If  ()  1 problem

(32) has no solution and the steady state, or the BGP, is unstable.

Proof. See Appendix.

The relevant integer is now the one associated with the MFDE whose op-

erator is  . As detailed in Assumption 4,  appears as an extra root of the

characteristic equation with multiplicity . Theorem 3 shows that the pro-

jection of the initial conditions on these extra roots is the null vector. As a

consequence, the determinacy and stability properties of the algebraic equation

can be assessed with the invariant integer  (). As the latter is associated

with an MFDE characterizing a predetermined variable, the critical value for

the integer is the same as in Theorem 1.

4.1.2 Equations with non-predetermined variables

Let us now extend Theorem 2 to scalar algebraic equations of mixed type that

can be written as (27), with initial condition (8). The problem can now be

written as: ⎧
⎨
⎩

R 
−  (+ )  () =

R 
−  (+ )  () 

 () = 0 () for  ∈ [− 0) 
(33)

As for predetermined variables, we are only concerned with algebraic equations

that satisfy Assumption 4 and establish the following:

Theorem 4. Let Assumption 4 prevails. Let us consider  such that   , no

root of  () = 0 satisfies Re () ∈ [ ), and Assumptions 1, 2 and 3 prevail

for . If  () ≥ 0, the degree of indeterminacy of problem (33) is equal to

 () and the steady state, or the BGP, is stable. If 


()  0 problem (33)

has no solution and the steady state, or the BGP, is unstable.

Proof. See Appendix.

The interpretation of Theorem 4 is similar to that of Theorem 3. As we

consider a non-predetermined variable, the only difference lies in the critical

number for the invariant integer that is now zero.
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4.1.3 An example

The simple example presented in Section 2.1 can be used to illustrate Theorem

3. With a linear production function, equation (4) can be rewritten as:

 () = 

Z 

−

Z +



 ()  (34)

for all  ∈ R+, while the initial condition can be written as:

 () = 0 () for  ∈ [− 0]  (35)

We will now assume that 2  1.

Proposition 3. Problem (34)-(35) has a unique solution.

This result is proven by characterizing the zeros of the characteristic function

of (34) that satisfies

 () = 1− 

Z 0

−

Z +



 (36)

The function  () is concave and symmetric with respect to the imaginary axis.

Given the assumption we made about parameters,  () = 0 has two real roots,

̄  0 and −̄. We now study the existence and uniqueness of a solution with

asymptotic growth rate ̄. Writing

− () = 1 + 
√


Z 

0

− and + () = 1 + 
√


Z 

0

 (37)

we have

− () + () =  () + 
√


∙Z 

0

−+
Z 

0



¸
 (38)

We consider the function ∆ () = (− )  (), where it is assumed that

  ̄. Thus, there are two functions, ∆+ () = (− ) +() and ∆− () =

(− ) −(), the characteristic functions of an ADE and a DDE, which satisfy

∆+ ()∆− () = (− )

∙
∆ + 

√
 (− )

∙Z 

0

−+
Z 

0



¸¸


(39)
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We define a path operator, denoted Γ (), whose characteristic function is

∆Γ() () = ∆ () + (1− ) 
√
 (− )

∙Z 

0

−+
Z 

0



¸
 (40)

implying that ∆Γ(1) () = ∆ () and ∆Γ(0) () = (− )
−1
∆+ ()∆− ().

Note that, unlike ∆Γ(1) (), ∆Γ(0) () has an explicit factorization. As in the

previous examples, the objective is to compute the invariant integer Γ(1) ()

for  = ̄ + , where 0   ¿ 1. This is done in three steps. First, we use

the symmetry of functions + () and − () to compute the invariant integer

associated with ∆Γ(0) () = 0 for  = 0. This yields:

Lemma 7. Γ(0) (0) = 0.

Proof. See Appendix.

Next, we compute the invariant integer associated with ∆Γ(1) () = 0 for

 = 0 This is done by counting the number of roots that cross the line Re as

 goes from 0 to 1.

Lemma 8. Γ(1) (0) = 0.

Proof. See Appendix.

Finally, we compute the invariant integer associated with ∆Γ(1) () = 0 for

 = ̄ +  This is done by counting the roots so that Re ∈ [0 ̄].

Lemma 9. Γ(1) (̄ + ) = 1.

Proof. See Appendix.

Proposition 3 is then deduced from Theorem 3 and Lemma 9.

4.2 A linearization theorem

Let us now consider a non-linear MFDE

0 () =  () +  ()  (41)

where  is as before,  is defined by  () =
R 
−  (+ )  (),  being a

measure on [− ].
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We impose the following conditions on the nonlinearity , which basically

states that  contains all the linear terms when linearizing (41) around the

steady state.

Assumption 5. The function  : R→ R is −smooth with  (0) = 0 (0) = 0.

We denote by b() ⊂ ([− 0]R)×([0 ]R) the set of initial conditions

leading to a solution as defined by Definition 1, that is for the linear equation

0 () =  (). As described in d’Albis et al. [3], it is possible to define a

projection

Π ()
: ([− 0])× ([0 ])→ b() (42)

so that RangeΠ ()
= b(). Finally, we introduce the subset:

bV() =
n
 ∈ b() : ||||  

o
 (43)

Theorem 5. Let Assumptions 1 and 5 prevail for some  ≤ 0. There exist

0  ∗   and a −smooth map

∗ : bV()→ ([− 0]R)×
n
 ∈  ([0∞) R) : kk ∞

o
(44)

with ∗ (0) = 0 and ∗ (0) = 0, such that for any  ∈ bV(), the function

 = ∗() satisfies (41), with

Π ()

¡
|[−0] × |[0]

¢
=  (45)

Moreover, every solution  to (41) with |()|  ∗− for all  ≥ − can be

written in this form.

Proof. See Appendix.

5 Conclusion

In this article, we presented the conditions for the existence, uniqueness, and

stability of a solution to an MFDE or to mixed-type algebraic equations. Fur-

thermore, we proposed an explicit and simple method that verifies whether or
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not these conditions are satisfied in a given model. We hope this method will

encourage the use of functional differential equations in economics and permit

a better understanding of vintage capital and overlapping generation models.

In future research, we aim to establish the conditions for the existence and

uniqueness of solutions to MFDE systems. We also want to develop numerical

techniques for computing the invariant integer.
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APPENDIX

Proof of Lemma 1. Consider any continuous path Γ : [0 1] → L (C([− ])R),

such that operators Γ() satisfy Assumption 2 for all 0 ≤  ≤ 1, that∆Γ(0) () =

(− )∆− ()∆+ () and ∆Γ(1) () = ∆ (). We then follow the proof of

Theorem 2.5 in Hupkes and Augeraud-Véron [17]. First, we know, from Mallet-

Paret and Verduyn Lunel [20], that the invariant Γ(0)() can be computed (it

is generated using equation (10)). Second, we may denote roots of ∆Γ() () = 0

as  () since they continuously depend on parameter . Let us analyze how

the roots of ∆Γ() () = 0 cross the real line Re () =  when  varies from

0 to 1. Let ∗ be the smallest value of  within (0 1) such that a root of

∆Γ(∗) () = 0, denoted ̄ (∗), exists and satisfies Re
¡
̄ (∗)

¢
= . Assume

that for   ∗ Re
¡
̄ ()

¢
  while for   ∗ Re

¡
̄ ()

¢
 . Let us

now compute the integer Γ() () for  in the neighborhood of 
∗. The easiest

way to proceed is to compare Γ(∗) ( + ) with Γ(∗) ( − ) for   0 small

enough. Two situations may occur: either ̄ (∗) belongs to the roots of the

delay characteristic equation ∆Γ(∗)− () = 0 and +Γ(∗)( − ) = +Γ(∗)( +

) + 1, or ̄ (∗) belongs to the roots of the advance characteristic equation

∆Γ(∗)+ () = 0 and −Γ(∗)( − ) = −Γ(∗)( + )− 1. According to definition

(11), we have: Γ(∗) ( + ) = Γ(∗) ( − ) + 1 As the roots are isolated, for

  ∗, Γ() () = Γ(∗) ( + ) while for   ∗, Γ() () = Γ(∗) ( − ).

We conclude that Γ(∗+) () = Γ(∗−) () + 1. Replicating this argument

when  varies from ∗ to 1, we obtain Γ(1)() = Γ(0)()− cross(Γ ) where

cross(Γ ) is the number of roots of ∆Γ()() = 0—counted with multiplicity—

that cross the line Re () =  from left to right as  increases from 0 to 1.

¤

Proof of Theorem 1. The existence and uniqueness properties of the solution

are deduced from the computation of the invariant integer (). We use

the result of Mallet-Paret and Verduyn Lunel [20] that the restriction opera-

tor presented in Section 2.2, which we denote as −()
and define as −()

:
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() → C ([− 0]C)   7→ |[−0], plays a major role in the description of

the properties of operator . Most notably, they show that dimKer−()
=

max{()−1 0} and that codimRange−()
= max{1−() 0}. Ker−()

is composed of the trivial solution zero and of nonzero solutions (as in Definition

1) where initial conditions on C ([− 0]) are equal to zero. Multiple solutions

can exist if dimKer−()
 0. Conversely, if Range−()

6= C ([− 0]), which

happens for codimRange−()
 0, initial conditions 0 ∈ C ([− 0]) exist for

which the equation has no solution. Thus, if Γ(1)()  1 any initial condition

within C ([− 0]) cannot be extended to a solution. Mallet-Paret and Verduyn

Lunel [20] show that if Γ(1)() ≥ 2 at least two solutions with the same initial

condition on [− 0] can be considered. The difference between these two solu-

tions is a solution with an initial condition equal to 0 on [− 0]  They define a

prolongation as the restriction of a solution to [0+∞) and they show that the

prolongation of 0, called  (), exists if and only if the Laplace transform of the

difference, defined as ̂ () =
R +∞
0

 () −, is a function of a polynomial of

degree Γ(1)() − 2. This gives a space of 

Γ(1)() − 1 coefficients that can be

freely chosen to define a prolongation. If Γ(1)() ≥ 2 we get a multiplicity of

extensions and, using Definition 1, an indeterminacy of degree Γ(1)() − 1. If

Γ(1)() = 1 the only prolongation of 0 is the function that takes the value of

0 on [0∞). ¤

Proof of Theorem 2. We define b() ⊂ C([− 0]) × C([0 ]) as the space of

initial conditions leading to a solution. Next, we formally define the modified

restriction operator we presented in Section 2.2 as:

b−()
: b()→ C ([− 0])×R ( ) 7→

¡
 (0)

¢


Following Hupkes and Augeraud-Véron [17], we have to prove that codimRange

b−()
= max{−() 0} and dimKer b−()

= max{() 0}We proceed by

using the results presented in the proof of Theorem 1. By definition, we have:

Ker b−()
=
n
 = (1 2) ∈ b() such that b−()

(1 2) = 0
o
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Suppose that two solutions, denoted  and ̄, in Ker b−()
exist. This

implies that 1 () − ̄1 () = 0 for all  ∈ [− 0] and 2 (0
+) − ̄2 (0

+) = 0.

Compared to the case with a predetermined variable, there is one additional

constraint that implies that dim
³
Ker b−()

´
= dim

³
Ker−()

´
+ 1 where

−() is the restriction operator defined in the proof of Theorem 1. Similarly,

by definition:

Range b−()
=
n¡

1 ()  2
¡
0+
¢¢
= b−()

(1 2)  with (1 2) ∈ b()
o


Thus, there is one additional degree of freedom compared to the predetermined

case, and we obtain dim
³
Range b−()

´
= dim

³
Range−()

´
− 1 The com-

putations made in the proof of Theorem 1 are then sufficient to conclude. ¤

Proof of Lemma 2. Splitting the real and imaginary parts of ∆ () = 0, we

notice that, if they exist, pure imaginary roots solve: 2 cos () = 0 and  = 0.

As this is impossible, there are no pure imaginary roots. ¤

Proof of Lemma 3. Proceed by contradiction and assume that such roots ex-

ist. In this case they should solve Im
¡
∆Γ() ()

¢
= 0 which is written as:

(1− )
³R 1

0
− sin () 

´
−  = 0 First, consider the roots such that  6= 0.

They satisfy (1− )
³R 1

0
− sin() 

´
− 1 = 0 As sin ()    we have

(1− )
³R 1

0
− sin() 

´
− 1  0 To conclude, we have to show that the real

root  = 0 is not a solution of ∆Γ() () = 0, which is obtained by showing that

∆Γ() (0) = 4− 2−1. ¤

Proof of Lemma 4. We are going to show that Γ(0) (0) = 0. Using the result

proposed in Lemma 3, we can use Lemma 1 to state that Γ(0) (0) = Γ(1) (0) and

conclude by computing Γ(0) (0). To compute 

Γ(0) (0), we successively compute

the number of “misplaced roots", −+ (0) and +− (0) of ∆+ () = 0 and

∆− () = 0. The equation ∆+ () = 0 admits no real roots, as ∆
(2)
+
()  0

with lim→±∞∆+ () = −∞ and ∆+ (0) = −2  0 Furthermore, ∆+ () =

0 has no complex root with a negative real part. If such roots, denoted  + 

with   0 and   0 were to exist, they would satisfy Im (∆+ (+ )) = 0
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which can be rewritten as −−sin ()  = 0 This is impossible as sin ()   1

for   0 and −  1 for   0 Thus −+ (0) = 0 Regarding ∆− () = 0

it can be easily shown that  = 1 is the only positive real root. Furthermore,

analyzing Im (∆− (+ )) = 0 allows us to conclude that there are no complex

roots denoted  + , with   0 and   0. Thus +− (0) = 1. Finally, as we

consider solutions where  = 0 and 0 = 1  0, we have 0 (0) = 1We conclude

by using formula (11). ¤

Proof of Lemma 5. The roots of ∆+ () = 0 are equivalent to the roots of

+ () = 0, where + () = 1 − 
R 1
0
(−), plus an additional root . As

+ () is a decreasing function from 1 to −∞, the sign of the only real root

of + () = 0, denoted +, is given by the sign of + (0). It remains to be

proved that each complex root has a real part greater than +. Let us proceed

by contradiction and suppose that  =  + , with   +, exists such that

+ () = 0. Then, the following inequality holds:

1 =

¯̄
¯̄
Z 1

0

(−)

¯̄
¯̄  

Z 1

0

(−) (46)

which contradicts the fact that + ()  0 if   + ¤

Proof of Lemma 6. As ∆(2)− ()  0 and lim→±∞∆− () = 0 there are no

positive real roots if 
R 0
−1 

−   and 
R 0
−1 

−  −1. A unique

positive real root exists if 
R 0
−1 

−   and 
R 0
−1 

−  −1. We will

now prove that ∆− () = 0 has no complex roots  =  +  such that   0

and   0 Let us proceed by contradiction and suppose that such a root exists.

Splitting real and complex parts gives:
⎧
⎪⎨
⎪⎩

− + 
R 0
−1 

(−) cos ()  = 0

 + 
R 0
−1 

(−) sin ()  = 0
(47)

The second equation can be rewritten as

1 + 

Z 0

−1
(−)

sin ()


 = 0 (48)

However,
R 0
−1 

(−) sin()
  =

R 0
−1 

(−) sin()
  

R 0
−1 

(−) and

according to the conditions on parameters ∆0− (0) = 1 + 
R 0
−1 

−  0
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According to the convexity property of ∆− ()  ∆
0
− ()  0 for all   0

Thus:

1 + 

Z 0

−1
(−)

sin ()


  0 (49)

contradicting the supposition that a complex root, with   0 and   0, exists.

¤

Proof of Theorem 3. We want to determine the existence and uniqueness of

solutions with maximal growth rate  of equation (27), whose characteristic

equation is  () = 0. To begin with, note that the roots of ∆ () = 0 are

identical to those of  () = 0 with an extra root  =  with multiplicity .

By Theorem 1, the existence and uniqueness of solutions with maximal growth

rate 0 of the equation defined by operator  can be determined by computing

 (
0). The proof considers the role played by the  extra roots and the 

constraints (29).

In the first step, we show that the spectral projection of the solution to char-

acteristic equation∆ () = 0 onto the eigenspaceM spanned by {  

−1} gives  expressions that are equal to zero since they correspond exactly

to equation (29). In a second step, we link the initial conditions of equation

(27), which produce a solution with maximal growth rate , to the initial con-

ditions of the MFDE with operator  . Applying constraints (29), this yields a

solution with maximal growth rate .

Step 1. To facilitate legibility, we assume  = 1. We rewrite equation (27) as:

 () =

Z 

−
 (+ )  ()  (50)

Taking the derivative gives:

0 () =  (+ ) ()−  (− ) (−)−
Z 

−
 (+ ) 0 ()  (51)

We can construct operator  by modifying equation (51) to get:

0 ()−  () =  (+ ) ()−  (− ) (−)

−
Z 

−
 (+ ) [0 () +  ()]  (52)
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This equation can be written as:

0 () =

Z 

−
 (+ ) 

∗ ()  (53)

The characteristic equation of this MFDE is ∆ () = 0 where:

∆ () = −
Z 

−


∗ ()  (54)

However, it will be easier to work with another operator 0 defined directly

using (51). The relationship between the characteristic function ∆0 and ∆

is given by (− )∆0 () = ∆ (), where ∆0 is obtained through ∆ by

swapping roots  and 0. According to Lemma 5.4 in Mallet-Paret and Verduyn

Lunel [20], a measure ∗ exists that can be explicitly computed using 

∗  such

that:

∆0 () = −
Z 

−
∗ ()  (55)

As (− )  () = ∆ (), we obtain  () = ∆0 (). Thus:

∆0 = −  () + − (−) +
Z 

−
0 ()  (56)

which implies that ∗ =  () ()−  (−) (−)−
R 
− 

0 ().

We consider the spectral projection associated with the root  = 0 of the

characteristic equation ∆0 () = 0 for any  ∈ C ([− ])  We define Π ()

as the spectral projection when evaluated at  ∈ [− ]. As shown by Hupkes

and Verduyn Lunel [18], it satisfies:

(Π) () = Re s=0
∆0 ()

−1
"
 (0) +

Z 

−


Z 0



− () ∗ ()

#


(57)

Using the definition of ∗, we have:

Z 

−


Z 0



− () ∗ () = −
Z 

−
 ()  ()  (58)

Thus, (Π) () = 0 For   1, the reasoning is similar.

Step 2. Consider  such that    and assume that there are no roots of

 () = 0 such that Re () ∈ [ ). For any initial condition of the algebraic

equation (and its associated constraint) leading to a solution  () with maximal
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growth rate , it is sufficient to prove that the solutions associated with the

differential equation related to  with maximal growth rate  are the same

as those associated with  with growth rate . The solutions imply that the

projection of initial conditions on the eigenspace M is null. As the previous

computation showed that the equivalence between requiring the initial condition

to solve the constraint and proving that the spectral projection is null, the proof

is immediate. This allows us to conclude that the existence and uniqueness of

the solution of the algebraic equation depends only on 

(). ¤

Proof of Theorem 4. As in Theorem 3, when considering the characteristic equa-

tion of a differential equation rather than that of an algebraic equation, we in-

troduce the extra root  with its multiplicity . The same proof may be used to

show that the additional constraints induced by the algebraic equation at  = 0

make projections on the spaceM null. This proof also implies that the space

of initial conditions of the algebraic equation with growth rate  is b (). We

conclude using Theorem 2 which gives properties of  (). ¤

Proof of Lemma 7. By definition,

Γ(0) (0) = −+ (0)− +− (0) + 0 (0)  (59)

where ⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

+− () = # { ∈ C : det∆− () = 0 and Re   } 

−+ () = # { ∈ C : det∆+ () = 0 and Re   } 

0 () = # { ∈ C :  −  = 0 and Re   } 

(60)

We use the fact that:

−+ (0)− +− (0) = # { ∈ C : det + () = 0 and Re   0}

−# { ∈ C : det − () = 0 and Re   0}

− 1 (61)

and conclude, using the symmetry of + and −, that 
−
+ (0)− +− (0) = −1.

Furthermore, 0 (0) = 1. ¤
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Proof of Lemma 8. We study the roots of ∆Γ() () = 0 when  moves from 0

to 1 and count how many roots cross the axis Re = 0. Let

∆Γ() () = (− ) (;)  (62)

where

 (;) = 1− 

Z 0

−

Z +



+ (1− ) 
√


∙Z 

0

−+
Z 

0



¸


(63)

We first notice that as

 (;) = 1−
Z 0

−

Z +



+2 (1− ) 
√


∙Z 

0

cos () 

¸
 (64)

Re (;) does not depend on . We now show that Re (;) 6= 0 for all

 ∈ R Let us proceed by contradiction and suppose that Re (;) = 0. This

implies:

1 = 

µZ 0

−

Z +



cos () 

¶
 2 (65)

which contradicts the fact that 1  2. ¤

Proof of Lemma 9. We have to add the real root  = ̄ and simply have to

prove that  () = 0 has no other root that satisfies { ∈ CRe ∈ [0 ]}. Let

us suppose a complex root exists, denoted  = +  which satisfies   ̄. It

solves:

1 = 

µZ 0

−

Z +



(+)

¶


Z 0

−

Z +



 (66)

which contradicts the fact that  ()  0. ¤

Proof of Theorem 5. For convenience, take  = 0. The key here is to notice

that for any  ∈ ([− 0]R) × { ∈  ([0∞) R) : kk∞ ∞}, the function

 7→  () lies in ∞([0∞)R). As in Hupkes and Verduyn Lunel [19], one

can easily construct a linear operator:

K : ∞([0∞)R)→ { ∈  ([−∞) R) : kk∞ ∞} (67)

in such a way that  = K solves:

0() = () + () (68)
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for almost all  ≥ 0. For any function  ∈ b(0), we can write  = |[−0] ×

|[0]. We then define ∗() to be the solution of the fixed point problem:

 =  +K() (69)

This construction is based on the classical Lyapunov-Perron method and the sta-

ble manifold can now be written as the graph of the function ∗. The smoothness

of ∗ follows in a standard fashion from the implicit function theorem. ¤
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(a) Existence and uniqueness (n# = 1) (b) Existence and indeterminacy (n# > 1) (c) non existence (n# < 1)

Figure 1: Predetermined variables
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Figure 2: Non-predetermined variables
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