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Abstract

Con�dence sets based on sparse estimators are shown to be large com-
pared to more standard con�dence sets, demonstrating that sparsity of
an estimator comes at a substantial price in terms of the quality of the
estimator. The results are set in a general parametric or semiparametric
framework.

MSC Subject Classi�cations: Primary 62F25; secondary 62C25,
62J07
Keywords : sparse estimator, consistent model selection,
post-model-selection estimator, penalized maximum likelihood,
con�dence set, coverage probability

1 Introduction

Sparse estimators have received increased attention in the statistics literature
in recent years. An estimator for a parameter vector is called sparse if it es-
timates the zero components of the true parameter vector by zero with prob-
ability approaching one as sample size increases without bound. Examples of
sparse estimator are (i) post-model-selection estimators following a consistent
model selection procedure, (ii) thresholding estimators with a suitable choice of
the thresholds, and (iii) many penalized maximum likelihood estimators (e.g.,
SCAD, LASSO, and variants thereof) when the regularization parameter is cho-
sen in a suitable way. Many (but not all) of these sparse estimators also have
the property that the asymptotic distribution of the estimator coincides with
the asymptotic distribution of the (infeasible) estimator that uses the zero re-
strictions in the true parameter; see, e.g., Pötscher (1991, Lemma 1), Fan and Li
(2001). This property � in the context of SCAD estimation � has been dubbed
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the �oracle� property by Fan and Li (2001) and has received considerable atten-
tion in the literature, witnessed by a series of papers establishing the �oracle�
property for a variety of estimators (e.g., Bunea (2004), Bunea and McKeague
(2005), Fan and Li (2002, 2004), Zou (2006), Li and Liang (2007), Wang and
Leng (2006), Wang, G. Li, and Tsai (2007), Wang, R. Li, and Tsai (2007),
Zhang and Li (2007)).
The sparsity property and the closely related �oracle� property seem to

intimate that an estimator enjoying these properties is superior to classical es-
timator like the maximum likelihood estimator (not possessing the �oracle�
property). We show, however, that the sparsity property of an estimator does
not translate into good properties of con�dence sets based on this estimator.
Rather we show in Section 2 that any con�dence set based on a sparse estima-
tor is necessarily large relative to more standard con�dence sets, e.g., obtained
from the maximum likelihood estimator, that have the same guaranteed cov-
erage probability. Hence, there is a substantial price to be paid for sparsity,
which is not revealed by the pointwise asymptotic analysis underlying the �or-
acle� property. Special cases of the general results provided in Section 2, have
been observed in the literature: Kabaila (1995) notes that the �naive� con�-
dence interval centered at Hodges estimator has in�mal coverage probability
that converges to zero as sample size goes to in�nity; cf. also Beran (1992).
[By the �naive� con�dence interval we mean the interval one would construct in
the usual way from the pointwise asymptotic distribution of Hodges estimator.]
Similar results for �naive� con�dence intervals centered at post-model-selection
estimators that are derived from certain consistent model selection procedures
can be found in Kabaila (1995) and Leeb and Pötscher (2005). [We note that
these �naive� con�dence intervals have coverage probabilities that converge to
the nominal level pointwise in the parameter space, but these con�dence inter-
vals are � in view of the results just mentioned � not �honest� in the sense that
the in�mum over the parameter space of the coverage probabilities converges to
a level that is below the nominal level.] Properties of con�dence sets based on
not necessarily sparsely tuned post-model-selection estimators are discussed in
Kabaila (1995, 1998), Pötscher (1995), Leeb and Pötscher (2005), Kabaila and
Leeb (2006).
The results discussed in the preceding paragraph show, in particular, that the

�oracle� property is problematic as it gives a much too optimistic impression of
the actual properties of an estimator. This problematic nature of the �oracle�
property is also discussed in Leeb and Pötscher (2007) from a risk point of
view; cf. also Yang (2005). The problematic nature of the �oracle� property is
connected to the fact that the �nite-dimensional distributions of these estimators
converge to their limits pointwise in the parameter space but not uniformly.
Hence, the limits often do not reveal the actual properties of the �nite-sample
distributions. An asymptotic analysis using a "moving parameter" asymptotics
is possible and captures much of the actual behavior of the estimators, see Leeb
and Pötscher (2005), Pötscher and Leeb (2007). These results lead to a view
of these estimators that is less favorable then what is suggested by the �oracle�
property.
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The remainder of the paper is organized as follows: In Section 2 we provide
the main results showing that con�dence sets based on sparse estimators are
necessarily large. These results are extended to �partially� sparse estimators
in Section 2.1. In Section 3 we consider a thresholding estimator as a simple
example of a sparse estimator, construct a con�dence set based on this estimator,
and discuss its properties.

2 On the size of con�dence sets based on sparse

estimators

Suppose we are given a sequence of statistical experiments
�
Pn;� : � 2 Rk

	
n = 1; 2; : : : (1)

where the probability measures Pn;� live on suitable measure spaces (Xn;Xn).
[Often Pn;� will arise as the distribution of a random vector (y01; : : : ; y

0
n)
0 where

yi takes values in a Euclidean space. In this case Xn will be an n-fold product
of that Euclidean space and Xn will be the associated Borel �-�eld; also n will
then denote sample size.] We assume further that for every 
 2 Rk the sequence
of probability measures

�
Pn;
=

p
n : n = 1; 2; : : :

	

is contiguous w.r.t. the sequence

fPn;0 : n = 1; 2; : : :g :

This is a quite weak assumption satis�ed by many statistical experiments; for
example, it is certainly satis�ed whenever the experiment is locally asymptot-
ically normal. The above assumption that the parameter space is Rk is made
only for simplicity of presentation and is by no means essential, see Remark 6.
Let �̂n denote a sequence of estimators, i.e., �̂n is a measurable function

on Xn taking values in Rk. We say that the estimator �̂n (more precisely, the
sequence of estimators) is sparse if for every � 2 Rk and i = 1; : : : ; k

lim
n!1

Pn;�

�
�̂n;i = 0

�
= 1 holds whenever �i = 0. (2)

Here �̂n;i and �i denote the i-th component of �̂n and of �, respectively. That
is, the estimator is guaranteed to �nd the zero components of � with probability
approaching one as n!1. [The focus on zero-values in the coordinates of � is
of course arbitrary. Furthermore, note that Condition (2) is of course satis�ed

for nonsensical estimators like �̂n � 0. The sparse estimators mentioned in
Section 1, however, are more sensible as they are typically also consistent for �.]

We are interested in con�dence sets for � based on �̂n. Let Cn be a random
set in Rk in the sense that Cn = Cn(!) is a subset of R

k for every ! 2 Xn with
the property that for every � 2 Rk

f! 2 Xn : � 2 Cn(!)g
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is measurable, i.e., belongs to Xn. We say that the random set Cn is based on
the estimator �̂n if Cn satis�es

Pn;�

�
�̂n 2 Cn

�
= 1 (3)

for every � 2 Rk. For example, if Cn is a k-dimensional interval (box) of the
form h

�̂n � an; �̂n + bn
i

(4)

where an and bn are random vectors in Rk with only nonnegative coordinates,
then condition (3) is trivially satis�ed. Here we use the notation [c; d] = [c1; d1]�
� � � � [ck; dk] for vectors c = (c1; : : : ; ck)0 and d = (d1; : : : ; dk)0. We also use the
following notation: For a subset A of Rk, let

diam(A) = supfkx� yk : x 2 A; y 2 Ag

denote the diameter of A (measured w.r.t. the usual Euclidean norm k�k);
furthermore, if e is an arbitrary element of Rk of length 1, and a 2 A let

ext(A; a; e) = supf� � 0 : �e+ a 2 Ag:

That is, ext(A; a; e) measures how far the set A extends from the point a into
the direction given by e.
The following result shows that con�dence sets based on a sparse estimator

are necessarily large.

Theorem 1 Suppose the statistical experiment given in (1) satis�es the above

contiguity assumption. Let �̂n be a sparse estimator sequence and let Cn be a
sequence of random sets based on the estimator �̂n in the sense of (3). Assume
that Cn is a con�dence set for � with asymptotic in�mal coverage probability �,
i.e.,

� = lim inf
n!1

inf
�2Rk

Pn;� (� 2 Cn) :

Then for every t � 0 and every e 2 Rk of length 1 we have

lim inf
n!1

sup
�2Rk

Pn;�

�p
n ext(Cn; �̂n; e) � t

�
� �: (5)

In particular, we have for every t � 0

lim inf
n!1

sup
�2Rk

Pn;�
�p
n diam(Cn) � t

�
� �: (6)

[If the set inside of the probability in (5) or (6) is not measurable, the probability
is to be replaced by inner probability.]
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Proof. Since obviously diam(Cn) � ext(Cn; �̂n; e) holds, it su¢ces to prove (5).
Now, for every sequence �n 2 Rk we have in view of (3)

� = lim inf
n!1

inf
�2Rk

Pn;� (� 2 Cn) � lim inf
n!1

Pn;�n (�n 2 Cn) (7)

= lim inf
n!1

n
Pn;�n

�
�n 2 Cn; �̂n 2 Cn; �̂n = 0

�

+Pn;�n

�
�n 2 Cn; �̂n 6= 0

�o
:

Sparsity implies

lim
n!1

Pn;0

�
�̂n 6= 0

�
= 0;

and hence for �n = 
=
p
n the contiguity assumption implies

lim sup
n!1

Pn;�n

�
�n 2 Cn; �̂n 6= 0

�
� lim

n!1
Pn;�n

�
�̂n 6= 0

�
= 0:

Consequently, we obtain from (7) for �n = 
=
p
n with 
 6= 0

� � lim inf
n!1

Pn;�n

�
�n 2 Cn; �̂n 2 Cn; �̂n = 0

�

� lim inf
n!1

Pn;�n

�p
n ext(Cn; �̂n; 
= k
k) � k
k

�
(8)

because of the obvious inclusion
n
�n 2 Cn; �̂n 2 Cn; �̂n = 0

o
�
n
ext(Cn; �̂n; �n= k�nk) � k�nk

o
:

Since 
 was arbitrary, the result (5) follows from (8) upon identifying t and k
k.

Corollary 2 Suppose the assumptions of Theorem 1 are satis�ed and Cn is a
con�dence �interval� of the form (4). Then for every i = 1; : : : ; k and every
t � 0

lim inf
n!1

sup
�2Rk

Pn;�
�p
nan;i � t

�
� �

and
lim inf
n!1

sup
�2Rk

Pn;�
�p
nbn;i � t

�
� �

hold, where an;i and bn;i denote the i-th coordinate of an and bn, respectively.
In particular, if an and bn are nonrandom,

lim inf
n!1

p
nan;i = lim inf

n!1

p
nbn;i =1

holds for every i = 1; : : : ; k, provided that � > 0.

Proof. Follows immediately from the previous theorem upon observing that
(4) implies ext(Cn; �̂n;�ei) = an;i and ext(Cn; �̂n; ei) = bn;i where ei denotes
the i-th standard basis vector.
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It is instructive to compare with standard con�dence sets. For example, in a
normal linear regression model

p
n times the diameter of the standard con�dence

ellipsoid is stochastically bounded uniformly in �. In contrast, Theorem 1 tells
us that any con�dence set Cn based on sparse estimators with

p
n diam(Cn)

being stochastically bounded uniformly in � necessarily has in�mal coverage
probability equal to zero.

Remark 3 (Nuisance parameters) Suppose that the sequence of statistical ex-
periments is of the form

�
Pn;�;� : � 2 Rk; � 2 T

	
where � is the parameter of

interest and � is now a (possibly in�nite dimensional) nuisance parameter, and
assume that the contiguity condition and sparsity condition are satis�ed for any
� 2 T . Suppose further that we are again interested in con�dence sets for �
based on �̂n (in the sense that Pn;�;�

�
�̂n 2 Cn

�
= 1 for all � 2 Rk; � 2 T ) that

have in�mal (over � and �) coverage probability �. Applying Theorem 1 for any
given � 2 T , gives result analogous to (5) and (6) with the supremum extending
now over Rk � T .

Remark 4 (Con�dence sets for linear functions of �) Suppose that a statistical

experiment as before and a sparse estimator �̂n is given but that we are interested
in setting a con�dence set for # = A� that is based on #̂n = A�̂n, where A is
a given q � k matrix. Without loss of generality assume that A has full row
rank. [In particular, this covers the case where we have a sparse estimator for
�, but are interested in con�dence sets for a subvector only.] Suppose Cn is a

con�dence set for # that is based on #̂n (in the sense that Pn;�

�
#̂n 2 Cn

�
= 1

for all � 2 Rk) and that has asymptotic in�mal coverage probability �. Then
essentially the same proof as for Theorem 1 shows that for every t � 0 and
every e 2 Rq of length 1 we have

lim inf
n!1

sup
�2Rk

Pn;�

�p
n ext(Cn; #̂n; e) � t

�
� � (9)

and consequently also the analogue of (6) holds.

Remark 5 The contiguity assumption together with the sparsity of the estima-

tor was used in the proof of Theorem 1 to imply limn!1 Pn;�n

�
�̂n 6= 0

�
= 0 for

all sequences of the form �n = 
=
p
n. For some classes of sparse estimators this

relation can even be established for all sequences of the form �n = 
=vn where
vn is a sequence that satis�es vn !1 and vn=

p
n! 0 (cf. Leeb and Pötscher

(2005)). Inspection of the proof of Theorem 1 shows that then a stronger result
follows, namely that (5) and (6) hold even with

p
n replaced by vn. This shows

that in such a case con�dence sets based on sparse estimators are even larger
than what is predicted by Theorem 1. This simple extension immediately ap-
plies mutatis mutandis also to the other results in the paper (with the exception
of Theorem 8, an extension of which would require a separate analysis). The
example discussed in Section 3 nicely illustrates the phenomenon just described.
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Remark 6 The assumption that the parameter space indexing the statistical
experiment, � say, is an entire Euclidean space is not essential as can be seen
from the proofs. The results equally well hold if, e.g., � is a subset of Euclidean
space that contains a ball with center at zero (simply put �n(
) = 
=

p
n if this

belongs to �, and set �n(
) = 0 otherwise). In fact, � could even be allowed to
depend on n and to �shrink� to zero at a rate slower than n�1=2. [In that sense
the results are of a �local� rather than of a �global� nature.]

2.1 Con�dence sets based on partially sparse estimators

Suppose that in the framework of (1) the parameter vector � is partitioned as
� = (�0; �0)0 where � is (k� k�)� 1 and � is k� � 1 (0 < k� < k). Furthermore,
suppose that the estimator �̂n = (�̂

0
n; �̂

0
n)
0 is �partially� sparse in the sense that

it �nds the zeros in � with probability approaching 1 (but not necessarily the
zeros in �). That is, for every � 2 Rk and i = 1; : : : ; k�

lim
n!1

Pn;�

�
�̂n;i = 0

�
= 1 holds whenever �i = 0. (10)

E.g., �̂n could be a post-model-selection estimator based on a consistent model
selection procedure that only subjects the elements in � to selection, the ele-
ments in � being �protected�.
If we are now interested in a con�dence set for � that is based on �̂n, we

can immediately apply the results obtained sofar: By viewing � as a �nuisance�
parameter, we can use Remark 3 to conclude that Theorem 1 applies mutatis
mutandis to this situation. Combining Remarks 3 and 4, we can then immedi-
ately obtain a result of the form (9) for con�dence sets for A� that are based

on A�̂n, A being an arbitrary matrix of full row rank.
The above results, however, do not cover the case where one is interested in

a con�dence set for � based on a partially sparse estimator �̂n, or more generally
the case of con�dence sets for A� based on A�̂n, where the linear function A�
is also allowed to depend on �. For this case we have the following result.

Theorem 7 Suppose the statistical experiment given in (1) is such that for
some � 2 R

k�k� the sequence Pn;(�;
=
p
n)0 is contiguous w.r.t. Pn;(�;0)0 for

every 
 2 Rk� . Let �̂n be an estimator sequence that is partially sparse in the
sense of (10). Let A be a q � k matrix of full row rank, which is partitioned
conformably with � as A = (A1; A2), and that satis�es rankA1 < q. Let Cn be a

sequence of random sets based on A�̂n (in the sense that Pn;�

�
A�̂n 2 Cn

�
= 1

for all � 2 Rk). Assume that Cn is a con�dence set for A� with asymptotic
in�mal coverage probability �, i.e.,

� = lim inf
n!1

inf
�2Rk

Pn;� (A� 2 Cn) :

Then for every t � 0 we have

lim inf
n!1

sup
�2Rk

Pn;�
�p
n diam(Cn) � t

�
� �: (11)
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[If the set inside of the probability in (11) is not measurable, the probability is
to be replaced by inner probability.]

Proof. Consider sequences �n = (�; 
=
p
n)0 2 Rk where � is as in the theo-

rem. Then similar as in the proof of Theorem 1 exploiting partial sparsity and
contiguity we arrive at

� � lim inf
n!1

Pn;�n (A�n 2 Cn)

� lim inf
n!1

Pn;�n

�
A�n 2 Cn; A�̂n 2 Cn; �̂n = 0

�

� lim inf
n!1

Pn;�n
�
diam(Cn) �



A((�� �̂n)0; 
0=
p
n)0


� : (12)

By the assumption on A there exists a vector 
0 such that A2
0 is non-zero
and is linearly independent of the range space of A1. Consequently, �A2
0 6= 0,
where � denotes the orthogonal projection on the orthogonal complement of
the range space of A1. Set 
 = c
0 for arbitrary c. Then



A((�� �̂n)0; 
0=
p
n)0


2 =



A1(�� �̂n) +A2
=
p
n


2

� n�1c2 k�A2
0k2 :

Combined with (12), this gives

� � lim inf
n!1

Pn;�n
�p
n diam(Cn) � jcj k�A2
0k

�
:

Since k�A2
0k > 0 by construction and since c was arbitrary, the result (11)
follows upon identifying t and jcj k�A2
0k.
The condition on A in the above theorem is, for example, satis�ed when

considering con�dence sets for the entire vector � as this corresponds to the case
A = Ik (and q = k). [The condition is also satis�ed in case A = (0k�k� ; Ik� )
which corresponds to setting con�dence sets for �. However, in this case already
Theorem 1 applies as discussed prior to Theorem 7.]
Theorem 7 does not cover the case where a con�dence set is desired for �

only (i.e., A = (Ik�k� ; 0(k�k�)�k� )). In fact, without further assumptions on

the estimator �̂n no result of the above sort is in general possible in this case
(to see this consider the case where �̂n and �̂n are independent and �̂n is a
well-behaved estimator). However, under additional assumptions, results that
show that con�dence sets for � are also necessarily large will be obtained next.
We �rst present the result and subsequently discuss the assumptions.

Theorem 8 Suppose the statistical experiment given in (1) is such that for
some � 2 R

k�k� the sequence Pn;(�;
=
p
n)0 is contiguous w.r.t. Pn;(�;0)0 for

every 
 2 Rk� . Let �̂n be an estimator sequence that is partially sparse in the
sense of (10). Suppose that there exists a (k � k�)� k�-matrix D such that for
every 
 the random vector n1=2(�̂n � �) converges in Pn;(�0;
0=pn)0-distribution
to a N(D
;�)-distributed random vector. Let A be a q � k matrix of full row
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rank, which is partitioned conformably with � as A = (A1; A2), and assume that

A1D�A2 6= 0. Let Cn be a sequence of random sets based on A�̂n (in the sense

that Pn;�

�
A�̂n 2 Cn

�
= 1 for all � 2 Rk). Assume that Cn is a con�dence set

for A� with asymptotic in�mal coverage probability �, i.e.,

� = lim inf
n!1

inf
�2Rk

Pn;� (A� 2 Cn) :

Then for every t � 0 we have

lim inf
n!1

sup
�2Rk

Pn;�
�p
n diam(Cn) � t

�
� �: (13)

[If the set inside of the probability in (13) is not measurable, the probability is
to be replaced by inner probability.]

Proof. Consider sequences �n = (�; 
=
p
n)0 2 Rk where � is as in the theorem.

Then for every t � 0 we have

� � lim inf
n!1

Pn;�n (A�n 2 Cn) = lim inf
n!1

Pn;�n

�
A�n 2 Cn; A�̂n 2 Cn

�

� lim inf
n!1

Pn;�n

�
A�n 2 Cn; A�̂n 2 Cn; n1=2




A(�̂n � �n)



 � t

�

+ lim sup
n!1

Pn;�n

�
n1=2




A(�̂n � �n)



 < t

�

� lim inf
n!1

Pn;�n

�
n1=2 diam(Cn) � t

�

+ lim sup
n!1

Pn;�n

�
n1=2




A(�̂n � �n)



 < t

�
: (14)

Exploiting partial sparsity and contiguity we get

lim sup
n!1

Pn;�n

�
n1=2




A(�̂n � �n)



 < t

�

� lim sup
n!1

Pn;�n

�
�̂n = 0; n

1=2



A(�̂n � �n)




 < t
�

+ lim sup
n!1

Pn;�n

�
�̂n 6= 0

�

= lim sup
n!1

Pn;�n

�
�̂n = 0; n

1=2



A(�̂n � �n)




 < t
�

� lim sup
n!1

Pn;�n

�
n1=2



A1(�̂n � �)�A2
=
p
n


 < t

�

= lim sup
n!1

Pn;�n (kXn + (A1D �A2)
k < t)

� lim sup
n!1

Pn;�n (kXnk > k(A1D �A2)
k � t) (15)

where Xn converges to N(0;�) in Pn;�n -distribution. Since A1D � A2 6= 0 by
assumption, we can �nd a 
 such that k(A1D �A2)
k � t is arbitrarily large,
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making the far right-hand side of (15) arbitrarily small. This, together with
(14), establishes the result.
Note that the case where a con�dence set for � is sought, that is, A =

(Ik�k� ; 0(k�k�)�k� ), which was not covered by Theorem 7, is covered by Theo-
rem 8 except in the special case where D = 0.
The weak convergence assumption in the above theorem merits some discus-

sion: Suppose �̂n is a post-model-selection estimator based on a model selection
procedure that consistently �nds the zeroes in � and then computes �̂n as the
restricted maximum likelihood estimator �̂n(R) under the zero-restrictions in
�. Under the usual regularity conditions, the restricted maximum likelihood
estimator �̂n(R) for � will then satisfy that n

1=2(�̂n(R) � �) converges to a
N(D
;�)-distribution under the sequence of local alternatives �n = (�

0; 
0=
p
n)0.

Since limn!1 Pn;�n

�
�̂n = 0

�
= 1 by partial sparsity and contiguity, the esti-

mators �̂n and �̂n(R) coincide with Pn;�n-probability approaching one. This
shows that the assumption on �̂n will typically be satis�ed for such post-model-
selection estimators. [For a precise statement of such a result in a simple ex-
ample see Leeb and Pötscher (2005, Proposition A.2).] While we expect that
this assumption on the asymptotic behavior of �̂n is also shared by many other
partially sparse estimators, this remains to be veri�ed on a case by case basis.

3 An Example: A con�dence set based on a

hard-thresholding estimator

Suppose the data y1; : : : ; yn are independent identically distributed as N(�; 1),

� 2 R. Let the hard-thresholding estimator �̂n be given by

�̂n = �y1(j�yj > �n)

where the threshold �n is a positive number and �y denotes the maximum likeli-

hood estimator, i.e., the arithmetic mean of the data. Of course, �̂n is nothing
else than a post-model-selection estimator following a t-type test of the hypoth-
esis � = 0 versus the alternative � 6= 0. It is well-known and easy to see that
�̂n satis�es the sparsity condition if �n ! 0 and n1=2�n ! 1 (i.e., the under-

lying model selection procedure is consistent); in this case then n1=2(�̂n � �)
converges to a standard normal distribution if � 6= 0, whereas it converges to
pointmass at zero if � = 0. Note that �̂n � with such a choice of the threshold
�n � is an instance of Hodges� estimator. In contrast, if �n ! 0 and n1=2�n ! e,

0 � e <1, the estimator �̂n is a post-model-selection estimator based on a con-
servative model selection procedure. See Pötscher and Leeb (2007) for further
discussion and references.
In the consistent model selection case the estimator possesses the �ora-

cle� property suggesting as a con�dence interval the �naive� interval given by
Cnaiven = f0g if �̂n = 0 and by Cnaiven = [�̂n � z(1��)=2; �̂n + z(1��)=2] otherwise,
where � is the nominal coverage level and z(1��)=2 is the 1�(1��)=2-quantile of
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the standard normal distribution. This interval satis�es Pn;�(� 2 Cnaiven ) ! �
for every �, but � as discussed in the introduction and as follows from the re-
sults in Section 2 � it is not honest and, in fact, has in�mal coverage probability
converging to zero. A related, but infeasible, construction is to consider the
intervals C�n = [�̂n� cn(�); �̂n+ cn(�)] where cn(�) is chosen as small as possible
subject to Pn;�(� 2 C�n) = � for every �. [Note that Cnaiven can be viewed as be-
ing obtained from C�n by replacing cn(�) by the limits c1(�) for n!1, where
c1(�) = 0 if � = 0 and c1(�) = z(1��)=2 if � 6= 0, and then by replacing � by �̂n
in c1(�).] An obvious idea to obtain a feasible and honest interval is now to use

cn = max�2R cn(�) as the half-length of the interval, i.e. Cn = [�̂n�cn; �̂n+cn].
From Theorem 1 we know that

p
ncn ! 1 in the case where �n ! 0 and

n1=2�n !1 (and if � > 0), but it is instructive to study the behavior of Cn in
more detail.
We therefore consider now con�dence intervals Cn for � of the form Cn =

[�̂n � an; �̂n + bn] with nonnegative constants an and bn (thus removing the
symmetry restriction on the interval). Note that the subsequent result is a
�nite-sample result and hence does not involve any assumptions on the behavior
of �n.

Proposition 9 For every n � 1, the interval Cn = [�̂n � an; �̂n + bn] has a
in�mal coverage probability satisfying

inf
�2R

Pn;� (� 2 Cn)

=

8
<

:

�(n1=2(an � �n))� �(�n1=2bn) if �n � an + bn and an � bn
�(n1=2an)� �(n1=2(�bn + �n)) if �n � an + bn and an � bn
0 if �n > an + bn

;

where � denotes the standard normal cumulative distribution function.

Proof. Elementary calculations and the fact that n1=2(�y � �) is standard nor-
mally distributed give for the coverage probability pn(�) = Pn;� (� 2 Cn)

pn(�) = Pn;�

�
�n1=2bn � n1=2(�̂n � �) � n1=2an

�

= Pr
�
�n1=2bn � Z � n1=2an;

���Z + n1=2�
��� > n1=2�n

�

+Pr
�
�bn � �� � an;

���Z + n1=2�
��� � n1=2�n

�

= A+B;

where Z is a standard normally distributed random variable and Pr denotes
a generic probability. Simple, albeit tedious computations give the coverage
probability as follows. If �n > an + bn

pn(�) =

8
>>>><

>>>>:

�(n1=2an)� �(�n1=2bn) if � < �an � �n or � > bn + �n
�(n1=2(�� � �n))� �(�n1=2bn) if � an � �n � � < bn � �n
0 if bn � �n � � < �an or bn < � � �an + �n
�(n1=2(�� + �n))� �(n1=2(�� � �n)) if � an � � � bn
�(n1=2an)� �(n1=2(�� + �n)) if � an + �n < � � bn + �n

:

11



Hence, the in�mal coverage probability in this case is obviously zero. Next, if
(an + bn)=2 � �n � an + bn then

pn(�) =

8
>>>>>><

>>>>>>:

�(n1=2an)� �(�n1=2bn) if � < �an � �n or � > bn + �n
�(n1=2(�� � �n))� �(�n1=2bn) if � an � �n � � < �an
�(n1=2(�� + �n))� �(�n1=2bn) if � an � � < bn � �n
�(n1=2(�� + �n))� �(n1=2(�� � �n)) if bn � �n � � � �an + �n
�(n1=2an)� �(n1=2(�� � �n)) if � an + �n < � � bn
�(n1=2an)� �(n1=2(�� + �n)) if bn < � � bn + �n

;

and if �n < (an + bn)=2

pn(�) =

8
>>>>>><

>>>>>>:

�(n1=2an)� �(�n1=2bn)
if � < �an � �n or � > bn + �n
or � an + �n � � � bn � �n

�(n1=2(�� � �n))� �(�n1=2bn) if � an � �n � � < �an
�(n1=2(�� + �n))� �(�n1=2bn) if � an � � < �an + �n
�(n1=2an)� �(n1=2(�� � �n)) if bn � �n < � � bn
�(n1=2an)� �(n1=2(�� + �n)) if bn < � � bn + �n

:

Inspection shows that in both cases the function does not have a minimum, but
the in�mum equals the smaller of the left-hand side limit pn(�an�) and the
right-hand side limit pn(bn+), which shows that the in�mum of pn(�) equals
min[�(n1=2(an � �n))� �(�n1=2bn);�(n1=2an)� �(n1=2(�bn + �n))].
As a point of interest we note that the coverage probability pn(�) has exactly

two discontinuity points (jumps), one at � = �an and one at � = bn.
An immediate consequence of the above proposition is that n1=2 diam(Cn) =

n1=2(an + bn) is not less than n
1=2�n, provided the in�mal coverage probability

is positive. Hence, in case that �n ! 0 and n1=2�n ! 1, i.e., in case that
�̂n is sparse, we see that n

1=2 diam(Cn) ! 1, which of course just con�rms
the general result obtained in Theorem 1 above. [In fact, this result is a bit
stronger as only the in�mal coverage probabilities need to be positive, and not
their limes inferior.]
If the interval is symmetric, i.e., an = bn holds, and an � �n=2 is satis�ed,

the in�mal coverage probability becomes �(n1=2an)��(n1=2(�an+�n)). Since
this expression is zero if an = �n=2, and is strictly increasing to one as an goes to
in�nity, any prescribed in�mal coverage probability less than one is attainable.
Suppose 0 < � < 1 is given. Then the (shortest) con�dence interval Cn of the

form [�̂n�an; �̂n+an] with in�mal coverage probability equal to � has to satisfy
an � �n=2 and

�(n1=2an)� �(n1=2(�an + �n)) = �:
If now �n ! 0 and n1=2�n !1, i.e., if �̂n is sparse, it follows that n1=2an !1
and

n1=2(�an + �n)! ��1(1� �)
or in other words that an � �n=2 has to satisfy

an = �n � n�1=2��1(1� �) + o(n�1=2): (16)

12



Conversely, any an � �n=2 satisfying (16) generates a con�dence interval with
asymptotic in�mal coverage probability equal to �. We observe that (16) shows
that �n diam(Cn) = 2�nan ! 1 for any sequence that satis�es �n�n ! 1,
which includes sequences that are o(n1=2) by the assumptions on �n. Hence,
this result is stronger than what is obtained from applying Theorem 1 (or its
Corollary) to this example, and illustrates the discussion in Remark 5.
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