
Munich Personal RePEc Archive

Estimation and Inference in Univariate

and Multivariate Log-GARCH-X Models

When the Conditional Density is

Unknown

Sucarrat, Genaro and Grønneberg, Steffen and Escribano,

Alvaro

BI Norwegian Business School, BI Norwegian Business School,

Universidad Carlos III de Madrid

11 August 2013

Online at https://mpra.ub.uni-muenchen.de/57238/

MPRA Paper No. 57238, posted 11 Jul 2014 03:37 UTC



Estimation and Inference in Univariate and Multivariate Log-GARCH-X

Models When the Conditional Density is Unknown ∗

Genaro Sucarrat†, Steffen Grønneberg‡and Álvaro Escribano§
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Abstract

Exponential models of Autoregressive Conditional Heteroscedasticity (ARCH) are of

special interest, since they enable richer dynamics (e.g. contrarian or cyclical), provide

greater robustness to jumps and outliers, and guarantee the positivity of volatility. The

latter is not guaranteed in ordinary ARCH models, in particular when additional exoge-

nous and/or predetermined variables (“X”) are included in the volatility specification.

Here, we propose estimation and inference methods for univariate and multivariate

Generalised log-ARCH-X (i.e. log-GARCH-X) models when the conditional density is

not known. The methods employ (V)ARMA-X representations and relies on a bias-

adjustment in the log-volatility intercept. The bias is induced by (V)ARMA estimators,

but the remaining parameters are consistently estimated by (V)ARMA methods. We

derive a simple formula for the bias-adjustment, and a closed-form expression for its

asymptotic variance. Next, we show that adding exogenous or predetermined vari-

ables and/or increasing the dimension of the model does not change the structure of

the problem. Accordingly, the univariate bias-adjustment result is likely to hold not

only for univariate log-GARCH-X models, but also for multivariate log-GARCH-X

models equation-by-equation. Extensive simulation evidence verify our results, and

an empirical application show that they are particularly useful when the X-vector is

high-dimensional.
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1 Introduction

The Autoregressive Conditional Heteroscedasticity (ARCH) class of models due to
Engle (1982) is useful in a wide range of applications. In finance in particular, it
has been extensively used to model the clustering of large (in absolute value) finan-
cial returns. Engle (1982) himself, however, originally motivated the class as useful
in modelling the time-varying conditional uncertainty (i.e. conditional variance) of
economic variables in general, and of UK inflation in particular. Other areas of ap-
plication include, amongst other, the uncertainty of electricity prices (e.g. Koopman
et al. (2007)), the evolution of temperature data (e.g. Franses et al. (2001)) and –
more generally – positively valued variables, i.e. socalled Multiplicative Error Models
(MEMs), see Brownlees et al. (2012).

Within the ARCH class of models exponential versions are of special interest.
This is because they enable richer autoregressive volatility dynamics (e.g. contrarian
or cyclical) compared with non-exponential ARCH models, and because their fitted
values of volatility are guaranteed to be positive. The latter is not necessarily the
case for ordinary (i.e. non-exponential) ARCH models, in particular when additional
exogenous or predetermined variables (“X”) are included in the volatility equation.
In fact, the greater the dimension of X, the more restrictions are needed in order
to ensure positivity. Another desirable property is that volatility forecasts are more
robust to jumps and outliers. Robustness can be important in order to avoid volatility
forecast failure subsequent to jumps and outliers.

The log-GARCH class of models can be viewed as a dynamic version of Harvey’s
(1976) multiplicative heteroscedasticity model,1 and was first proposed independently
by Pantula (1986), Geweke (1986) and Milhøj (1987). Engle and Bollerslev (1986) ar-
gued against log-ARCH models because of the possibility of applying the log-operator

1In some statistical softwares, e.g. JMP (2013), the multiplicative heteroscedasticity model is
referred to as the log-variance model.
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(in the log-ARCH terms) on zero-values, which occurs whenever the error term in a
regression equals zero. A solution to this problem, however, is provided in Sucarrat
and Escribano (2013) for the case where the zero-probability is zero (e.g. because
zeros are due to discreteness or missing values).2 The solution is only available when
estimation is via the (V)ARMA representation. Another issue that has been cited
in the literature (e.g. Teräsvirta (2009)), is that the first unconditional autocorrela-
tions of the squared errors – a measure of volatility persistence – can be unreasonably
high. But this only occurs in very specific cases: The log-GARCH class allows for a
much larger range of autocorrelation patterns than ordinary GARCH models, since
the autocorrelation pattern depends on the shape of the conditional density (the more
fat-tailed, the lower correlations) in addition to the persistence parameters. Finally,
two competing classes of exponential ARCH models are Nelson’s (1991) EGARCH
and Harvey’s (2013) Beta-t-EGARCH model. The former has proved to be much
more difficult theoretically (more on this below), and the latter is not – by its very
nature – amenable to the assumption of an unknown conditional density (i.e. the
conditional density must be known). Moreover, the model is much more difficult to
estimate for sufficiently general densities due to the complicated nature of the score
expression (see e.g. equation (5) in Sucarrat (2013, p. 139) and the discussion on
computational challenges on p. 142).

The assumption that the conditional density is unknown is particularly convenient
from a practitioner’s point of view, since the user then does not need to worry about
changing the conditional density from application to application, or alternatively to
work with a sufficiently general density that will often make estimation and infer-
ence numerically more challenging. This explains the attraction of Quasi Maximum
Likelihood Estimators (QMLEs). In the univariate case consistency and asymptotic
normality of QMLE for GARCH models under mild conditions were first established
by Berkes et al. (2003) and Francq and Zaköıan (2004). In the exponential case most
of the attention has been directed at Nelson’s (1991) EGARCH, whose asymptotic
properties have turned out to be very difficult to establish, see e.g. Straumann and
Mikosch (2006). Only recently was consistency and asymptotic normality proved un-
der the somewhat complicated condition of continuous invertibility, see Wintenberger
(2013), but for the univariate EGARCH(1,1) only. The log-GARCH model is much
more tractable. Francq et al. (2013) prove consistency and asymptotic normality of
the Gaussian QMLE for an asymmetric log-GARCH(P,Q) model under mild condi-
tions. Their method does not employ ARMA representations, which means it is more
efficient when the conditional error is normal or close to normal, but not when the con-
ditional density is fat-tailed, see the asymptotic efficiency comparison in Francq and
Sucarrat (2013, section 4.1)). Moreover, the estimator of Francq et al. (2013) cannot
handle zero-errors or missing values as suggested in Sucarrat and Escribano (2013).
Finally, Francq and Sucarrat (2013) propose an estimator that achieves efficiency for
conditional densities that are normal or close to the normal, by combining the ARMA-
approach with the Centred Exponential Chi-Squared as instrumental QML-density.
In the multivariate case, QML results have been established for the BEKK model of
Engle and Kroner (1995) by Comte and Lieberman (2003), for an ARMA-GARCH

2The same idea can be extended to the case where the zero-probability is non-zero and time-
varying.
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with constant conditional correlations (CCCs) by Ling and McAleer (2003), for a fac-
tor GARCH model by Hafner and Preminger (2009), for a multivariate GARCH with
CCCs by Francq and Zaköıan (2010) and for a multivariate GARCH with stochastic
correlations by Francq and Zaköıan (2014) under the assumption that the system is
estimable equation-by-equation.3 For exponential ARCH models there are no mul-
tivariate results. Kawakatsu (2006) has proposed a multivariate exponential ARCH
model, the matrix exponential GARCH, which contains a multivariate version of Nel-
son’s 1991 model. But there are no proofs for the estimation and inference methods
that he proposes.

This paper makes four contributions. It is well-known that all the coefficients
apart from the log-volatility intercept in a univariate log-GARCH specification can
be estimated consistently (under suitable assumptions) via an ARMA representation,
see for example Psaradakis and Tzavalis (1999), and Francq and Zaköıan (2006).
However, the estimate of the log-volatility intercept will be asymptotically biased,
and the bias is made up of a log-moment expression that depends on the unknown
density of the conditional error. We propose a simple estimator of the log-moment
expression made up of the empirical residuals of the ARMA regression, and derive
an expression for its asymptotic variance (Theorem 1). The practical consequence of
this is that all the log-GARCH parameters can be estimated consistently, including
the log-volatility intercept.

In the second contribution of our paper (Subsection 2.2), we show that the addition
of exogenous, determinstic and/or predetermined conditioning variables, i.e. the log-
GARCH-X model, does not alter the relation between the ARMA coefficients and the
log-GARCH coefficients. So consistent estimation of the ARMA-X representation will
produce exactly the same bias as earlier, and the bias correction procedure described
above is likely to hold for ARMA-X models as well. We provide simulation-based
evidence in support of this hypothesis.

In the third contribution (Section 3) we propose a multivariate log-GARCH-X
model that admits time-varying conditional correlations. Since the positivity of the
volatilites is guaranteed due to the exponential specification, restrictive assumptions
are not needed in order to ensure the positive definiteness of the (possibly) time-
varying covariance matrix of the errors. The multivariate log-GARCH-X model has a
VARMA-X representation with a vector of error-terms. The vector is either IID, which
corresponds to the Constant Conditional Correlation (CCC) case, or independent
but non-identical (ID), which corresponds to the time-varying correlations case. In
both cases, however, each entry in the vector of errors is marginally IID. So the bias-
correction from the univariate case can be used equation-by-equation – under suitable
assumptions – subsequent to the estimation of the VARMA-X representation. Also
here do we provide simulation-based evidence in support of our hypothesis, both in
the CCC and time-varying correlation cases.

In the fourth contribution (Section 4) we illustrate the usefulness of our results
by an application to the modelling of the uncertainty of electricity prices. Electricity
prices are characterised by autoregressive persistence, day-of-the week effects, large

3Jeantheau (1998) established general conditions for strong consistency for QML estimation of
multivariate GARCH models. However, as pointed out by Ling and McAleer (2003, p. 281), his
results are based on the unrealistic assumption that the initial values are known.
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spikes or jumps, ARCH and non-normal conditional errors that are possibly skewed.
For robust (to jumps) forecasts of uncertainty (i.e. volatility) that accommodates all
these characteristics, the log-GARCH-X model is particularly suited. The investiga-
tion shows that electricity price volatility is much more variable than for, say, stock
prices and exchange rates, and that volatility can be substantially underestimated if
sufficient ARCH-lags and day-of-the-week effects are not accommodated.

The rest of the paper is organised as follows. The next section, section 2, presents
the univariate log-GARCHmodel, and the relation between the univariate log-GARCH
model and its ARMA representation. Also, it is shown that the addition of exogenous
and predetermined variables does not alter the relationship between the log-GARCH
and ARMA parameters. Section 3 shows how the ideas extend to the multivari-
ate case. Section 4 contains our empirical application, whereas Section 5 concludes.
Tables and Figures are placed at the end.

2 Univariate log-GARCH

The univariate log-GARCH(p, q) model is given by

ǫt = σtzt, zt ∼ IID(0, 1), P (zt = 0) = 0, σt > 0, (1)

ln σ2
t = α0 +

p∑

i=1

αi ln ǫ
2
t−i +

q∑

j=1

βj ln σ
2
t−j, t ∈ Z, (2)

where p is the ARCH order and q is the GARCH order. In finance, ǫt is often
interpreted as return or mean-corrected return, but more generally it is simply the
error in a regression model. Throughout we will assume ǫt is observable and known.
Of course, this is not a realistic nor a desirable assumption, but simply reflects the
current state of the literature.4 Denoting p∗ = max{p, q}, if the roots of the lag
polynomial 1− (α1+β1)L−· · ·− (αp∗ +βp∗)L

p∗ are all greater than 1 in modulus and
if |E(ln z2t )| < ∞, then ln σ2

t is stable. For common densities like the Student’s t with
degrees of freedom greater than 2, and the Generalised Error Distribution (GED)
with shape parameter greater than 1, then ǫt will generally be stable as well if ln σ2

t

is stable. Practitioners are often interested in the dynamics of other powers than the
2nd., e.g. the 1st. power (i.e. the conditional standard deviation). For that purpose
it should be noted that the dth. power log-GARCH(p, q) can be written as

ln σd
t = α0,d +

p∑

i=1

αi ln |ǫt−i|d +
q∑

j=1

βj ln σ
d
t−j, d > 0, (3)

where α0,d = α0d/2. This means that a complete analysis of the dth. power log-
GARCH model can be undertaken in terms of the d = 2 representation.

The log-GARCH model accommodates a broader range of persistency structures
than the ordinary GARCH model. In particular, in contrast to the ordinary GARCH

4To the best of our knowledge there are only two results in the literature that do not need to
assume that ǫt is known, namely Ling and McAleer (2003) and Francq and Zaköıan (2004). Both
accommodate the joint estimation of the mean and variance equations simultaneously.
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model, the unconditional autocorrelations of log-GARCH models depend on the dis-
tribution of zt: The more fat-tailed, the weaker correlations. Also, the log-GARCH is
capable of generating both weaker and stronger autocorrelations than the GARCH,
and autocorrelation functions that decline either more rapidly or more slowly.

2.1 The ARMA representation

If |E(ln z2t )| < ∞, then the log-GARCH(p, q) model (1)-(2) admits the ARMA(p, q)
representation

ln ǫ2t = φ0 +

p∑

i=1

φi ln ǫ
2
t−i +

q∑

j=1

θjut−j + ut, (4)

where

φ0 = α0 + (1−
q∑

j=1

βj) · E(ln z2t ), (5)

φi = αi + βi, 1 ≤ i ≤ p, θj = −βj, 0 ≤ j ≤ q, (6)

ut = ln z2t − E(ln z2t ). (7)

Consistent and asymptotically normal estimates of all the ARMA parameters – and
hence all the log-GARCH parameters except the log-volatility intercept α0 – is thus
readily obtained via usual ARMA estimation methods subject to appropriate assump-
tions, see e.g. Brockwell and Davis (2006). In order to obtain an estimate of α0 the
most common solutions have been to either impose restrictive assumptions regarding
the distribution of zt (say, normality, see e.g. Psaradakis and Tzavalis (1999)), or to
use an ex post scale-adjustment (see e.g. Bauwens and Sucarrat (2010), and Sucarrat
and Escribano (2012)). What Theorem 1 below states is that a slightly modified
version of an ex post scale-adjustment provides a consistent and asymptotically nor-
mal estimate of E(ln z2t ) for a range of ARMA estimators. Consequentially, the final
log-GARCH parameter, α0, can also be estimated consistently via a range of ARMA
estimators.

To obtain an understanding of the motivation behind the scale-adjustment, con-
sider writing (1) as

ǫt = σ∗
t z

∗
t , z∗t ∼ IID(0, σ2

z∗),

where σ∗
t is a time-varying scale not necessarily equal to the standard deviation,

and where z∗t does not necessarily have unit variance. Of course, by construction
σt = σ∗

t σz∗ and zt = z∗t /σz∗ . Next, suppose a log-scale specification (e.g. an ARMA
specification contained in (4)) is fitted to ln ǫ2t , with ln σ̂∗2

t denoting the fitted value
of the ARMA specification such that σ̂∗

t = exp(ln σ̂∗
t ), and with the ARMA residual

defined as ût = ln ǫ2t − ln σ̂∗2
t . In order to obtain an estimate of the time-varying

conditional standard deviation, which is needed for comparison with other volatility
models, then it is natural to consider adjusting σ̂∗

t by multiplying it with an estimate
of σz∗ , say, the sample standard deviation of the standardised residuals ẑ∗t . Although
this argument is fine heuristically, it may not be apparent what underlying magnitude
the adjustment in fact estimates, nor may it be straightforward to obtain the limiting
properties of the adjustment under suitable conditions. In the log-GARCH model,
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however, the log of the scale-adjustment provides an estimate of −E(ln z2t ). To see
this consider the scale adjustment and its approximation:

σ̂2
z∗ =

1

T − 1

T∑

t=1

(ẑ∗t − ẑ
∗

t )
2 ≈ 1

T

T∑

t=1

(ẑ∗t )
2 =

1

T

T∑

t=1

exp(ût).

The population analogue of the final expression on the right is E[exp(ut)]. Taking
the natural log of E[exp(ut)] gives lnE[exp(ut)] = −E(ln z2t ) under the assumption
that E(z2t ) = 1, i.e. the identifiability assumption from (1). This suggests

− ln

[
1

T

T∑

t=1

exp(ût)

]
−→ E(ln z2t ) (8)

when T → ∞, due to the continuity of the logarithm. The expression involves the
ARMA residuals ût, which means that the standard law of large numbers does not
apply. However, we conjecture that the result by Bai (1993) in combination with an
argument similar to that of Yu (2007) can be used to prove that a slightly modified
version of (8) provides a consistent and asymptotically normal (CAN) estimate of
E(ln z2t ) (work in progress) for a range of ARMA estimators. Meanwhile, we formulate
a set of assumptions and conditions (A1 – A3 and Theorem 1 below) that will be
sufficient for the consistent and asymptotically normal estimation of E(ln z2t ).

Formally, we rely on the following assumptions:

A1: E(z2t ) = 1 and |E(ln z2t )| < ∞.

A2: Let {ût}Tt=1 denote the ARMA-residuals resulting from estimating the ARMA
representation (4). Denoting ûT and uT as the averages of ût and ut, respec-
tively:

a)
1

T

T∑

t=1

exp(ût − ûT )−
1

T

T∑

t=1

exp(ut − uT ) = oP (1)

b)
√
T

[
1

T

T∑

t=1

exp(ût − ûT )−
1

T

T∑

t=1

exp(ut − uT )

]
= oP (1)

A3: E(z4t ) < ∞ and |E[(ln z2t )
2]| < ∞.

In A1 the first condition is simply the identifiability condition from (1), whereas the
second condition is required for the ARMA representation (4) to exist. For the two
most commonly used densities of zt in finance, i.e. N(0, 1) and t, E(ln z2t ) is finite. The
intuition behind the expressions in A2 is that they provide conditions under which
sums of exponentials like T−1

∑
t exp(ût − ûT ) can be treated as if we observe the

actual errors {ut}. The mean-correction term ûT is required, since the conditions may
not be valid if the residuals are not mean corrected. However, in some cases, e.g. when
OLS is used to estimate the AR(p) representation of a log-ARCH(p) specification, then
ûT will by construction be zero. The conditions in A2 are relatively mild, but not
easily proved in the general case. Moreover, different proof-strategies may be required
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according to ARMA estimator and Data Generating Process (DGP). Nevertheless, an
extensive amount of simulation-based evidence (Tables 1 to 6) suggest the formulas
below – which rely on the conditions – hold for several ARMA estimators and DGPs.5

Finally, the conditions inA3 are needed for the asymptotic normality of our estimator
of E(ln z2t ).

Theorem 1. Suppose (1)-(2) and A1 hold:

a) If A2a) also holds, then

τ̂T = − ln

[
1

T

T∑

t=1

exp(ût − ûT )

]
P−→ E(ln z2t ). (9)

b) If A2b) and A3 also hold, then

√
T
[
τ̂T − E(ln z2t )

] D−→ N(0, ζ2), (10)

where

ζ2 = V ar(z2t − ln z2). (11)

Proof. The consistency result in a) follows straightforwardly from the continuity of
the log-transformation. So let us turn to the proof of b). A2b) and the smoothness
of the logarithm function imply that τ̂T and

τ̃T = − ln

[
1

T

T∑

t=1

exp(ut − uT )

]

have the same behaviour up to oP (T
−1/2). Denoting τ = E ln(z21) = − lnEeut , this

means
√
T (τ̂T − τ) =

√
T (τ̃T − τ) + oP (1). Slutsky’s Theorem hence implies that we

only need show that ∆̃T =
√
T (τ̃T − τ) is asymptotically normal. We have that

τ̃T = − ln
1

T

T∑

t=1

eut−ūT = ūT − ln
1

T

T∑

t=1

eut ,

so

∆̃T =
√
T ūT +

√
T

[
f

(
1

T

T∑

t=1

eut

)
− f(Eeu1)

]
,

where f(x) = − ln x, with f ′(x) = −1/|x|. By the smoothness of f , the delta method

5We also checked A2 directly by simulation (not reported but available on request).
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implies that

∆̃T =
√
T ūT + f ′(Eeu1)

√
T

[
1

T

T∑

t=1

eut − Eeu1

]
+ oP (1)

= (f ′(Eeu1), 1)
1√
T

T∑

t=1

(
eut − Eeu1

ut

)
+ oP (1).

By the Multivariate Central Limit Theorem, we have that

1√
T

T∑

t=1

(
eut − Eeu1

ut

)
d−→
(
X
Y

)
∼ N

((
0
0

)
,

(
V areu1 Eu1e

u1

Eu1e
u1 V aru1

))

where we used that Eu1 = 0 and Cov(u1, e
u1) = Eu1e

u1 . Hence, ∆̃T
d−→ f ′(Eeu1)X+

Y , which is mean zero normal with variance equal to

ζ2 = (f ′(Eeu1))
2
V arX + V arY + 2f ′(Eeu1)Cov(X, Y )

=
V ar[exp(u1)]

[E exp(u1)]2
+ V ar(u1)− 2

E[u1 exp(u1)]

E exp(u1)
.

Using the equalities

V ar(u1) = E[(ln z21)
2]− [E ln(z21)]

2

V ar[exp(u1)] =
1

{exp[E ln(z21)]}
2 · (Ez41 − 1)

E exp(u1) =
1

exp[E ln(z21)]

E[u1 exp(u1)] =
1

exp[E ln(z21)]
·
{
E[(ln z21)z

2
1 ]− E ln(z21)

}

we see that

ζ2 = E[(ln z21)
2]− [E(ln z21)]

2 + (E(z41)− 1)− 2E[(ln z21)z
2
1 ] + 2E(ln z21)

= V ar(z21 − ln z21).

From A3 we have that E(z41) < ∞, and the Cauchy-Schwarz inequality implies that
|E[(ln z21)z

2
1 ]|2 ≤ (E[(ln z21)

2])(Ez41), whose right-hand side terms are assumed to be
finite. Hence, ζ2 is finite.

The practical implication of Theorem 1 is that the residuals resulting from esti-
mating the ARMA representation (4) can be plugged into the formula in order to
obtain a consistent and asymptotically normal estimate of E(ln z2t ). Next, the es-
timate of E(ln z2t ) can be combined with the ARMA-estimates via the formulas in
(5) and (6) to obtain a consistent estimate of the log-volatility intercept α0. For an
estimate of the standard error of τ̂T based on the asymptotic expression ζ2, it should
be noted that ln ẑ2t = ût − τ̂T and ẑ2t = exp(ln ẑ2t ). Hence, if s(x) denotes the sample
standard deviation of x, then s (exp(ût − τ̂T )− (ût − τ̂T )) /

√
T can be used to com-
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pute the standard error of τ̂T . A practitioner’s interest in testing values of E(ln z2t )
is mainly to test zt for normality, i.e. whether E(ln z2t ) = −1.27, since normality is a
common assumption in finance.

An extensive set of Monte Carlo simulations have been performed, of which Table
1 only contains a small subset (more simulations are contained in Tables 2 to 6,
and additional simulations are available on request). The last three columns of the
table confirm that the Gaussian QMLE via the ARMA representation (w/mean-
correction) provides consistent estimates and empirical sample standard errors that
coincide with their asymptotic counterparts. Although, as expected, a larger number
of observations is needed as the persistence parameter φ1 = α1 + β1 approaches 1,
and when α1 goes towards zero (i.e. a common root). Additional simulations, which
are available on request, show similar properties for the Gaussian QMLE without
mean-correction, and for the Least Squares Estimator (LSE). All simulations and
computations are in R (R Core Team (2014)) with the lgarch package (Sucarrat
(2014)).

2.2 Log-GARCH-X

Additional exogenous or predetermined variables (“X”) can be added linearly or non-
linearly to the log-volatility specification ln σ2

t without affecting the relationship be-
tween the log-GARCH coefficients and the ARMA coefficients. Specifically, let the
log-GARCH-X model be given by

ln σ2
t = α0 +

p∑

i=1

αi ln ǫ
2
t−i +

q∑

j=1

βj ln σ
2
t−j + g(λ, xt), (12)

where g is a linear or nonlinear function of the exogenous and/or predetermined
variables xt, and a parameter vector λ. The index t in xt does not necessarily mean
that all (or any) of its elements are contemporaneous. If |E(ln z2t )| < ∞, then (12)
admits the ARMA-X representation

ln ǫ2t = φ0 +

p∑

i=1

φi ln ǫ
2
t−i +

q∑

j=1

θjut−j + g(λ, xt) + ut, (13)

where the ARMA coefficients are defined as before, i.e. by (5)-(6), and where ut is
the same as earlier, i.e. ut = ln z2t − E(ln z2t ). Rigorous proofs of consistency and
asymptotic normality, which we do not provide here, would of course require precise
assumptions on the behaviour of xt, see for example Hannan and Deistler (2012,
chapter 4). However, if all the ARMA-X parameters are estimated consistently, then
a reasonable conjecture is that (9) provides a consistent estimate of E(ln z2t ), and
hence that all the log-GARCH parameters can be estimated consistently.

One type of conditioning variable that is of special interest in financial applications
is leverage or volatility asymmetry. Table 2 provides simulation results that suggests
Theorem 1 holds for a simple version of leverage, namely

ln σ2
t = α0 + α1 ln ǫ

2
t−1 + β1 ln σ

2
t−1 + λ1I{zt−1<0}, (14)
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where I{zt−1<0} is an indicator function equal to 1 if zt−1 < 0 and 0 otherwise. Note
that I{zt−1<0} is observable, since I{zt−1<0} = I{ǫt−1<0}. The simulations suggest that
all the parameters are estimated consistently, and the last three columns suggest the
finite sample empirical standard errors of the estimate of E(ln z2t ) correspond to their
asymptotic counterparts for both the normal and the t distributions. Additional
simulations are contained in Table 5, where the univariate log-GARCH-X form is
used equation-by-equation to estimate a multivariate log-GARCH(1,1) model with
diagonal GARCH matrix and time-varying correlations.

3 Multivariate log-GARCH

The M -dimensional log-GARCH model is given by

ǫt ∼ ID(0, Ht), t ∈ Z, (15)

D2
t = diag

{
σ2
m,t

}
, m = 1, . . . ,M, (16)

zt = D−1
t ǫt, ∀m : zm,t ∼ IID(0, 1), P (zt = 0) = 0, (17)

ln σ2
t = α0 +

p∑

i=1

αi ln ǫ
2
t−i +

q∑

j=1

βj ln σ
2
t−j, p ≥ q, (18)

where ǫt, σ
2
t and zt are M × 1 vectors, and where Ht and Dt are M ×M matrices. In

(18) we have that α0 = (α1.0, . . . , αM.0)
′,

αi =




α11.i · · · α1M.i
...

. . .
...

αM1.i · · · αMM.i


 and βj =




β11.j · · · β1M.j
...

. . .
...

βM1.j · · · βMM.j


 , (19)

where ′ is the transpose operator. Equation (15) means ǫt is independent with mean
zero and a time-varying conditional covariance matrix Ht. The IID assumption in
equation (17) states that each marginal series {zm,t} is IID(0, 1). Marginal identical-
ity is a key characteristic of the ARCH class of models, and is needed for the formula
in Theorem 1 to be applicable after estimation via the VARMA representation. An
implication of (17) is that zt ∼ ID(0, Rt), where Rt is both the conditional covariance
and correlation matrix – possibly time-varying – of zt. In other words, the vector zt
is ID but not necessarily IID, even though each marginal series {zmt} is IID. In the
special case where the vector zt is IID, then Rt is a Constant Conditional Correlation
(CCC) model. Estimation of the volatilities D2

t does not require that the off-diagonals
of Ht (i.e. the covariances) are specified explicitly. Nor need we assume that ǫt is
distributed according to a certain density, say, the normal.

11



3.1 The VARMA representation

If |E(ln z2t )| < ∞, then the M -dimensional log-GARCH(p, q) model (18) admits the
VARMA(p, q) representation

ln ǫ2t = φ0 +

p∑

i=1

φi ln ǫ
2
t−i +

q∑

j=1

θjut−j + ut, (20)

where

φ0 = α0 + (IM −
q∑

j=1

βj) · E(ln z2t ), φi = αi + βi, θj = −βj and (21)

ut = ln z2t − E(ln z2t ). (22)

In the special case where the vector zt is IID, which implies a CCC model for the
correlations (assuming they exist), then the vector ut is IID as well. In this case it is
well known that the multivariate Gaussian QMLE provides consistent and asymptot-
ically normal estimates of the VARMA coefficients under suitable assumptions, see
e.g. Lütkepohl (2005). Accordingly, consistent estimation and asymptotically normal
inference regarding all the log-GARCH coefficients – apart from the log-volatility in-
tercept α0 – is available as well. In order to obtain a consistent estimate of α0, an
estimate of the vector E(ln z2t ) is needed. Since the process {um,t} is marginally IID
for each m, an equation-by-equation application of the formula in Theorem 1 after
estimation of the VARMA representation is likely to provide consistent estimates of
each element in E(ln z2t ). Tables 3 and 4 contain simulation results that support
this hypothesis. The estimates of α0 and E(ln z2t ) are consistent, and the last two
columns suggest the empirical sample standard errors coincide with their asymptotic
counterparts as implied by (11).

In the case where the vector zt is only ID, which is implied by time-varying correla-
tions, then the vector ut is only ID as well. This corresponds to a VARMA model with
heteroscedastic error ut. Fewer QML results are available in this case, e.g. Bardet and
Wintenberger (2009). However, in the special case where the βj matrices are diagonal,
then the M -dimensional VARMA model can be estimated equation-by-equation by
univariate ARMA-X methods, since – equation-by-equation – each error term um,t is
IID (along the lines of Francq and Zaköıan (2014)). Next, equation-by-equation ap-
plication of (9) in Theorem 1 is likely to provide consistent estimates of each element
in E(ln z2t ), and hence of the log-volatility intercept α0. Table 5 contains simulation
results that supports this hypothesis when the time-varying correlations are governed
by Engle’s (2002) Dynamic Conditional Correlations (DCC) model. The estimates of
α0 and E(ln z2t ) are consistent, and the last two columns suggest the empirical sample
standard errors coincide with their asymptotic counterparts as implied by (11).

3.2 Multivariate log-GARCH-X

Just as in the univariate case, the multivariate log-GARCH model permits exogenous
and/or predetermined conditioning variables in each of the M equations. Specifically,
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write the multivariate log-GARCH-X specification as

ln σ2
t = α0 +

p∑

i=1

αi ln ǫ
2
t−i +

q∑

j=1

βj ln σ
2
t−j + λxt, (23)

where xt is an L × 1 vector of predetermined or exogenous variables, and where λ
is an M × L matrix. Here, for notational economy, we let the predetermined or
exogenous variables xt enter linearly, but in principle they can enter non-linearly as
in the univariate case, see (13). Similarly, the index t in xt does not necessarily mean
that all (or any) of its elements are contemporaneous. The VARMA-X representation
of (23) is then given by

ln ǫ2t = φ0 +

p∑

i=1

φi ln ǫ
2
t−i +

q∑

j=1

θjut−j + λxt + ut,

with the VARMA coefficients and ut defined as before, i.e. by (21). In other words,
the relation between the VARMA coefficients and the log-GARCH coefficients are not
affected by adding λxt to (23). So VARMA-X methods can be used to estimate all the
log-GARCH parameters (under suitable assumptions on xt) except the log-volatility
intercept α0 in a first step, and then in a second step equation-by-equation application
of (9) in Theorem 1 can be used to estimate each element in E(ln z2t ) and hence the
log-volatility intercept α0. Also here it is useful to distinguish between between the
CCC and time-varying correlations cases. If ut is IID, i.e. the CCC case, then –
under suitable assumptions – the multivariate Gaussian QMLE provides consistent
estimates of the VARMA-X representation, see e.g. Hannan and Deistler (2012). If
correlations are time-varying, and if the matrices βj are diagonal, then each equation
can be estimated separately in terms of its ARMA-X representation. The empirical
application illustrates this.

4 Application: Modelling the uncertainty of elec-

tricity prices

Short-term electricity price modelling and forecasting is of great importance for en-
ergy market participants. On the supply side, producers need forecasts of prices and
the time-varying uncertainty associated with those forecasts in order to appropri-
ately determine price and production levels. On the demand side, consumers and
speculators need the same type of information in order to decide when and where to
produce, whether to speculate and/or hedge against adverse price changes, and for
risk management purposes. Daily electricity prices are characterised by autoregres-
sive persistence, day-of-the week effects, large spikes or jumps, ARCH and non-normal
conditional errors that are possibly skewed. Koopman et al. (2007), Escribano et al.
(2011), and Bauwens et al. (2013) have proposed univariate and multivariate models
that contain some or several of these features. However, in none of these models is
the volatility specification – a non-exponential GARCH – robust to the large spikes
that is a common characteristic of electricity prices (robustness is important to avoid
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large and persistent volatility forecast failure following spikes or “jumps”). Nor are
they flexible enough to accommodate a complex and rich heteroscedasticity dynamics
similar to that of the mean specification without imposing very strong parameter
restrictions (e.g. non-negativity). Finally, automated model selection with a large
number of variables is infeasible in practice due to computational complexity and
positivity constraints. The log-GARCH-X class of models, by contrast, remedies
these deficiencies.

The data consist of the daily peak and off-peak spot electricity prices (in Euros
per kw/h) from 1 January 2010 to 20 May 2014 (i.e. 1601 observations before lag-
adjustments) for the Oslo region in Norway.6 Electricity forwards for this region is
traded at the Nord Pool Spot energy exchange, which is the leading European market
for electrical energy. Factories, companies and other institutions with electricity con-
sumption may want to shift part of their activity to and from peak hours for efficient
cost management, since the difference between peak and off-peak prices can be very
large at times, see Figure 1. As an aid in the decision-making process, forecasts of
future prices and of price uncertainty (volatility) can therefore be of great usefulness.
The daily peak spot price S1,t is computed as the average of the spot prices during
peak hours, that is, S1,t = (St(8am)+ · · ·+St(9pm))/14, whereas the daily off-peak spot
price S2,t is computed as the average of the spot prices during off-peak hours, that
is, S2,t = (St(0am) + · · · + St(7am) + St(10pm) + St(11pm))/10. Note that St(8am) should
be interpreted as the electricity price from 8am to 9am, St(9am) should be interpreted
as the electricity price from 9am to 10am, and so on. Graphs of S1,t, S2,t and their
log-returns (rt = ∆ lnSt) are contained in Figure 1. The price and returns figures
exhibit the usual characteristics of electricity prices, namely that the price variability
is substantially larger than those of financial prices (say, stocks, stock indices and
exchange rates), and that big jumps occur relatively frequently.

The conditional mean is specified as a two-dimensional Vector Error Correction
Model (VECM) augmented with day-of-the-week dummies in both equations.7 The
residuals or mean-corrected returns from the estimated model are then used for the
estimation of the log-volatility specifications. The univariate models that we fit to

6The source of the data is http://www.nordpoolspot.com/, and the sample was determined by
availability: Observations prior to the sample period are not available, and the data were downloaded
just after 20 May 2014.

7The R-squared of the two equations are 0.26 and 0.17, respectively. More details are available
on request.
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each of the two mean-corrected returns are

log-GARCH(1,1) : ln σ2
t =α0 + α1 ln ǫ

2
t−1 + β1 ln σ

2
t−1, (24)

log-GARCH(7,1) : ln σ2
t =α0 +

7∑

i=1

αi ln ǫ
2
t−i + β1 ln σ

2
t−1, (25)

log-GARCH(7,1)−X : ln σ2
t =α0 +

7∑

i=1

αi ln ǫ
2
t−i + β1 ln σ

2
t−1 +

6∑

l=1

λlxlt, (26)

log-GARCH(7,1)−X∗ : ln σ2
1t =α0 +

7∑

i=1

α1.i ln ǫ
2
1,t−i + β1 ln σ

2
1,t−1 +

6∑

l=1

λlxlt

+
7∑

i=1

α2.i ln ǫ
2
2,t−i, (27)

log-GARCH(7,0)−X∗ : ln σ2
1t =α0 +

7∑

i=1

α1.i ln ǫ
2
1,t−i +

6∑

l=1

λlxlt

+
7∑

i=1

α2.i ln ǫ
2
2,t−i, (28)

where ǫt is the mean-corrected return in question, and where x1t, . . . , x6t are six day-
of-the-week dummies for Tuesday to Sunday. In the last two specifications, where
we add an asterisk ∗ to the X, ǫ2,t is the mean-corrected off-peak return when ǫ1,t is
the mean-corrected on-peak return, and vice-versa ǫ2,t is the mean-corrected on-peak
return when ǫ2,t is the mean-corrected off-peak return. Of course, this means the last
two equations could be considered as an Equation-by-Equation-Estimation (EbEE)
scheme similar to that of Francq and Zaköıan (2014) (except that we do not estimate
the time-varying correlations). The last specification, i.e. log-GARCH(7,0)–X∗ (no
GARCH term), actually refers to a more parsimonious version than the one displayed.
The parsimonious specification is obtained by automated General-to-Specific (GETS)
model selection starting from (28), see Sucarrat and Escribano (2012).

Table 7 contains the estimation results of the univariate models (only a selection of
the estimated parameters are reported for parsimony). The first striking characteris-
tic of the results is the large ARCH(1) estimate of about 0.2 or just below for almost
all the models. By contrast, daily financial returns typically exhibit an ARCH(1)
estimate of about 0.05 (or lower). This means the uncertainty (i.e. volatility) of elec-
tricity returns is much more volatile in comparison. Moreover, the estimate of about
0.2 does not change much if additional variables (e.g. lags of ln ǫ2t and day-of-the-week
dummies) are added. By contrast, the GARCH(1) term is affected when additional
terms are added. In the plain log-GARCH(1,1) models, for example, it is estimated to
0.64 (peak) and 0.80 (off-peak), respectively. By contrast, when additional terms are
added it falls – most of the time – to about 0 or close to 0. An interesting exception to
this is the log-GARCH(7,1)-X∗ specification of the mean-corrected peak returns, and
the log-GARCH(7,1)-X specification of the mean-corrected off-peak returns. Finally,
Figure 2 shows that the different specifications can produce fundamentally different
volatility forecasts. In particular, the bottom graphs show that the log-GARCH(1,1)
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underestimates volatility on average, and that the log-GARCH(7,1)-X∗ models can
produce fitted standard deviations that are more than twice as big. In other words,
one may seriously underestimate volatility if one does not properly take the day-of-
the-week periodicity of volatility into account.

The multivariate models that we fit to the vector of mean-corrected return ǫt are

m-log-GARCH(1,1) : ln σ2
t =α0 + α1 ln ǫ

2
t−1 + β1 ln σ

2
t−1, (29)

m-log-GARCH(7,1) : ln σ2
t =α0 +

7∑

i=1

αi ln ǫ
2
t−i + β1 ln σ

2
t−1, (30)

m-log-GARCH(7,1)−X∗ : ln σ2
t =α0 +

7∑

i=1

αi ln ǫ
2
t−i + β1 ln σ

2
t−1 + λxt, (31)

where both αi and β1 are 2 × 2 matrices, xt is a 6 × 1 vector containing the six day-of-
the-week dummies and λ is a 2 × 6 matrix. Table 8 contains the estimation results of
the three multivariate models (again only a selection of the estimated parameters are
reported for parsimony). Just as in the univariate case the ARCH(1) estimates are
considerably higher than for daily financial returns – often close to 0.2, and they do not
fall when additional terms are added. The m-log-GARCH(1,1)-X∗ estimates might
suggest that the model is not stable, since α̂22.1 + β̂22.1 is very close to 1. However,
the roots of the lag-polynomial are in fact both outside the unit circle. Finally,
also in the multivariate case is there sometimes a large difference between the fitted
standard deviations. Specifically, just as in the univariate case, the plain multivariate
log-GARCH(1,1) model may seriously underestimate the uncertainty (i.e. volatility)
when compared with the multivariate model that also include lags and day-of-the-
week periodicity in the volatility specification (i.e. m-log-GARCH(7,1)-X∗). This is
clearly apparent from Figure 3.

5 Conclusions

We have proposed estimation and inference methods for univariate and multivariate
log-GARCH-X models via (V)ARMA-X representations. Estimation of log-GARCH-
X models via the (V)ARMA-X representation induces a bias in the log-volatility
intercept made up of a log-moment expression that depends on the conditional density.
We proposed an estimator of the log-moment expression, and derived its asymptotic
variance under mild assumptions. Due to the structure of the problem the bias-
correction procedure is likely to also hold for univariate log-GARCH-X models and –
equation-by-equation – for multivariate log-GARCH-X models. An extensive number
of simulations support our conjecture. Finally, our empirical application to electricity
prices shows that the methods are particularly useful when the volatility dynamics
are complex and affected by many factors.

The results in this paper suggests a vast range of new possible research ques-
tions, both empirical and theoretical. Empirically, since the methods enable a much
richer and flexible approach to volatility modelling in general – both univariate and
multivariate, many problems that earlier could not be handled in practice due to
computational complexity are now readily implemented. Theoretically, since estima-
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tion is via the (V)ARMA representation, the vast literature on ARMA models and
variants thereof serves as an almost unlimited source of ideas for possible extensions.

This paper is part of a larger research agenda. Sucarrat and Escribano (2012)
rely explicitly on the results of this paper, whereas Bauwens and Sucarrat (2010) is a
precursor to that paper. These papers led to the development of AutoSEARCH, an R (R
Core Team (2014)) package for automated General-to-Specific (Gets) model selection
of log-ARCH-X models (see Sucarrat (2012)). An early critique of the log-ARCH
class of models was that the log-ARCH terms in the log-volatility specification may
not exist, since the errors of a regression in empirical practice can be zero. A solution
to this problem, however, is proposed in Sucarrat and Escribano (2013). Finally,
Francq and Sucarrat (2013) propose another ARMA-based QMLE for log-GARCH
models (with the centred exponential chi-squared as instrumental density) that is
asymptotically more efficient when the conditional error is normal or close to normal.
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Francq, C. and J.-M. Zaköıan (2006). Linear-representation Based Estimation of
Stochastic Volatility Models. Scandinavian Journal of Statistics 33, 785–806.
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Table 1: Finite sample properties of the Gaussian QMLE via the ARMA representation (w/mean-correction)

DGP
(α0,α1,β1,τ)

T m(α̂0) se(α̂0) m(α̂1) se(α̂1) ase(α̂1) m(β̂1) se(β̂1) ase(β̂1) m(τ̂) se(τ̂) ase(τ̂)

zt ∼ N(0, 1):

0, 0.1, 0.8,−1.27 1000 -0.020 0.056 0.101 0.023 0.022 0.783 0.065 0.053 -1.269 0.055 0.054
2000 -0.009 0.034 0.100 0.015 0.016 0.794 0.040 0.038 -1.270 0.038 0.038
5000 -0.003 0.020 0.100 0.010 0.010 0.797 0.024 0.024 -1.270 0.025 0.024
10000 -0.003 0.015 0.100 0.007 0.007 0.797 0.017 0.017 -1.268 0.016 0.017

0, 0.05, 0.9,−1.27 1000 -0.041 0.149 0.052 0.018 0.016 0.865 0.116 0.040 -1.272 0.054 0.054
2000 -0.011 0.032 0.050 0.012 0.012 0.891 0.036 0.028 -1.271 0.039 0.038
5000 -0.004 0.015 0.050 0.008 0.007 0.896 0.020 0.018 -1.270 0.024 0.024
10000 -0.004 0.011 0.050 0.005 0.005 0.897 0.012 0.013 -1.270 0.019 0.017

zt ∼ t(10):

0, 0.1, 0.8,−1.39 1000 -0.022 0.070 0.100 0.022 0.022 0.785 0.067 0.053 -1.390 0.059 0.061
2000 -0.008 0.038 0.101 0.015 0.016 0.792 0.041 0.038 -1.392 0.044 0.043
5000 -0.004 0.024 0.100 0.010 0.010 0.797 0.025 0.024 -1.388 0.028 0.027
10000 0.001 0.015 0.099 0.007 0.007 0.802 0.017 0.017 -1.389 0.018 0.019

0, 0.05, 0.9,−1.39 1000 -0.025 0.076 0.051 0.018 0.016 0.879 0.068 0.040 -1.384 0.061 0.061
2000 -0.011 0.032 0.050 0.012 0.012 0.891 0.033 0.028 -1.389 0.043 0.043
5000 -0.004 0.017 0.050 0.007 0.007 0.896 0.019 0.018 -1.389 0.027 0.027
10000 -0.002 0.012 0.050 0.005 0.005 0.899 0.012 0.013 -1.391 0.021 0.019

The estimated model is lnσ2
t = α0+α1 ln ǫ

2
t−1+β1 lnσ

2
t−1, and estimation proceeds in three steps. First, µ = E(ln ǫ2t ) is estimated

with the sample mean µ̂ = T−1
∑T

t=1 ln ǫ
2
t . Second, an ARMA-model with φ0 set to zero is fitted to the mean-corrected series

{ln ǫ2t − µ̂}. Third, formula (9) is used to estimate τ = E(ln z2t ). The ARMA estimates are then used via the relationships (5)

and (6) to obtain the log-GARCH estimates. m(x), sample mean of the estimate x. se(x), sample standard deviation (division

by R instead of R − 1, where R = 1000 is the number of replications). ase(x), asymptotic standard error of x (computed as√
av(x)/

√
n, where av(x) is the asymptotic variance of x). The expressions of av(α̂1) and av(β̂1) are based on the ARMA(1,1)

formulas in Brockwell and Davis (2006, pp. 259-260), whereas av(τ̂) = ζ2 (see (11)). Computations in R (R Core Team (2014))

with a developer-version of the lgarch package, see Sucarrat (2014).
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Table 2: Finite sample properties of the Least Squares Estimator (LSE) via the ARMA representation (without
mean-correction) for a log-GARCH(1,1) with leverage

DGP
(α0,α1,β1,λ1,τ)

: T m(α̂0) se(α̂0) m(α̂1) se(α̂1) m(β̂1) se(β̂1) m(λ̂1) se(λ̂1) m(τ̂) se(τ̂) ase(τ̂)

zt ∼ N(0, 1):

0, 0.1, 0.8,−0.01,−1.27 1000 -0.021 0.079 0.099 0.023 0.785 0.065 -0.011 0.088 -1.271 0.054 0.054
2000 -0.011 0.048 0.099 0.016 0.795 0.041 -0.008 0.063 -1.270 0.039 0.038
5000 -0.004 0.028 0.100 0.010 0.797 0.024 -0.009 0.038 -1.269 0.024 0.024

10000 -0.002 0.019 0.100 0.007 0.799 0.017 -0.010 0.026 -1.270 0.017 0.017

0, 0.05, 0.9,−0.02,−1.27 1000 -0.035 0.101 0.050 0.019 0.877 0.073 -0.016 0.079 -1.273 0.054 0.054
2000 -0.013 0.045 0.050 0.012 0.891 0.039 -0.021 0.044 -1.270 0.038 0.038
5000 -0.005 0.022 0.050 0.007 0.897 0.019 -0.020 0.028 -1.270 0.025 0.024

10000 -0.002 0.015 0.050 0.005 0.899 0.013 -0.020 0.020 -1.270 0.017 0.017

zt ∼ t(10):

0, 0.1, 0.8,−0.01,−1.39 1000 -0.023 0.079 0.100 0.023 0.784 0.064 -0.010 0.094 -1.392 0.060 0.061
2000 -0.009 0.050 0.100 0.016 0.793 0.039 -0.010 0.065 -1.391 0.043 0.043
5000 -0.001 0.029 0.100 0.010 0.799 0.024 -0.012 0.038 -1.390 0.027 0.027

10000 -0.003 0.022 0.100 0.007 0.798 0.017 -0.010 0.027 -1.391 0.019 0.019

0, 0.05, 0.9,−0.02,−1.39 1000 -0.038 0.119 0.050 0.018 0.874 0.090 -0.027 0.078 -1.392 0.061 0.061
2000 -0.016 0.051 0.050 0.013 0.889 0.040 -0.022 0.049 -1.390 0.045 0.043
5000 -0.004 0.024 0.050 0.008 0.897 0.019 -0.021 0.030 -1.390 0.027 0.027

10000 -0.002 0.016 0.050 0.005 0.899 0.013 -0.021 0.021 -1.391 0.019 0.019

The estimated model is lnσ2
t = α0 + α1 ln ǫ

2
t−1 + β1 lnσ

2
t−1 + λ1I{zt−1<0}, and estimation proceeds in two steps. First, the ARMA-

representation ln ǫ2t = φ0 + φ1 ln ǫ
2
t−1 + θ1ut−1 + λI{zt−1<0} + ut is fitted by the LSE. Second, formula (9) is used to estimate

τ = E(ln z2t ). Next, the ARMA estimates are used via the relationships (5) and (6) to obtain the log-GARCH estimates. m(x),

sample mean of the estimate x. se(x), sample standard deviation (division by R instead of R − 1, where R = 1000 is the number

of replications). ase(τ̂), asymptotic standard error of τ̂ , see Table 1. Computations in R (R Core Team (2014)) with the lgarch

package version 0.2, see Sucarrat (2014).
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Table 3: Finite sample properties of multivariate Gaussian QML via the VARMA representation of a 2-dimensional CCC-log-
GARCH(1,1): DGP no. 1

DGP1 T m(α̂1.0) se(α̂1.0) m(α̂11.1) se(α̂11.1) m(α̂12.1) se(α̂12.1) m(β̂11.1) se(β̂11.1) m(β̂12.1) se(β̂12.1) m(τ̂1) se(τ̂1) ase(τ̂1)
Eq. 1: 1000 -0.018 0.088 0.098 0.024 0.001 0.024 0.784 0.076 0.003 0.074 -1.272 0.057 0.054

2000 -0.011 0.052 0.098 0.016 0.000 0.017 0.794 0.045 0.000 0.044 -1.272 0.038 0.038
5000 -0.003 0.028 0.100 0.010 0.000 0.010 0.797 0.025 0.001 0.025 -1.271 0.025 0.024
10000 -0.003 0.020 0.100 0.007 0.000 0.007 0.799 0.017 0.000 0.018 -1.271 0.017 0.017

T m(α̂2.0) se(α̂2.0) m(α̂21.1) se(α̂21.1) m(α̂22.1) se(α̂22.1) m(β̂21.1) se(β̂21.1) m(β̂22.1) se(β̂22.1) m(τ̂2) se(τ̂2) ase(τ̂2)
Eq. 2: 1000 -0.020 0.085 0.001 0.024 0.097 0.025 -0.003 0.073 0.791 0.068 -1.268 0.055 0.054

2000 -0.010 0.049 0.000 0.016 0.099 0.016 -0.001 0.042 0.793 0.043 -1.270 0.036 0.038
5000 -0.006 0.028 0.000 0.010 0.100 0.010 -0.001 0.025 0.797 0.025 -1.272 0.024 0.024
10000 -0.002 0.020 0.000 0.007 0.100 0.007 0.000 0.017 0.799 0.017 -1.270 0.017 0.017

The estimated model is lnσ2
t = α0+α1 ln ǫ

2
t−1+β1 lnσ

2
t−1, where α0 = (0, 0)′, α1 =

(
0.1 0
0 0.1

)
, β1 =

(
0.8 0
0 0.8

)
and Corr(z1t, z2t) = 0.3. Estimation

proceeds in three steps. (Note: The correlation Corr(z1t, z2t) is not estimated.) First, the VARMA representation is estimated with the multivariate

Gaussian QMLE. Second, the VARMA residuals are used equation-by-equation to estimate τ1 = E(ln z21t) and τ2 = E(ln z22t), respectively, with formula

(9). Finally, the VARMA estimates and τ̂1 and τ̂2 are combined using the relationships in (21) to obtain the log-GARCH estimates. m(x), sample mean

of the estimate x. se(x), sample standard deviation (division by R instead of R − 1, where R = 1000 is the number of replications). ase(x), asymptotic

standard error of x (computed as
√

av(x)/
√
T , where av(τ̂1) = av(τ̂2) = ζ2, see (11)). Computations in R (R Core Team (2014)) with the lgarch package

version 0.3, see Sucarrat (2014).
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Table 4: Finite sample properties of multivariate Gaussian QML via the VARMA representation of a 2-dimensional CCC-log-
GARCH(1,1): DGP no. 2 and 3

DGP2 T m(α̂1.0) se(α̂1.0) m(α̂11.1) se(α̂11.1) m(α̂12.1) se(α̂12.1) m(β̂11.1) se(β̂11.1) m(β̂12.1) se(β̂12.1) m(τ̂1) se(τ̂1) ase(τ̂1)
Eq. 1: 1000 -0.020 0.135 0.095 0.029 0.049 0.029 0.683 0.170 0.125 0.269 -1.277 0.056 0.054

2000 -0.006 0.071 0.100 0.019 0.050 0.021 0.678 0.107 0.131 0.168 -1.270 0.038 0.038
5000 -0.005 0.043 0.100 0.012 0.050 0.012 0.695 0.058 0.106 0.083 -1.270 0.024 0.024
10000 -0.002 0.027 0.100 0.008 0.050 0.009 0.698 0.038 0.102 0.056 -1.271 0.016 0.017

T m(α̂2.0) se(α̂2.0) m(α̂21.1) se(α̂21.1) m(α̂22.1) se(α̂22.1) m(β̂21.1) se(β̂21.1) m(β̂22.1) se(β̂22.1) m(τ̂2) se(τ̂2) ase(τ̂2)
Eq. 2: 1000 -0.021 0.164 -0.001 0.030 0.097 0.031 0.127 0.190 0.539 0.270 -1.269 0.056 0.054

2000 -0.007 0.092 0.000 0.020 0.099 0.021 0.112 0.119 0.576 0.170 -1.269 0.038 0.038
5000 -0.001 0.053 -0.001 0.013 0.099 0.013 0.106 0.067 0.592 0.096 -1.270 0.024 0.024
10000 0.000 0.035 0.000 0.009 0.100 0.009 0.104 0.044 0.594 0.063 -1.270 0.017 0.017

DGP3 T m(α̂1.0) se(α̂1.0) m(α̂11.1) se(α̂11.1) m(α̂12.1) se(α̂12.1) m(β̂11.1) se(β̂11.1) m(β̂12.1) se(β̂12.1) m(τ̂1) se(τ̂1) ase(τ̂1)
Eq. 1: 1000 -0.010 0.220 0.096 0.029 0.049 0.030 0.653 0.253 0.151 0.263 -1.274 0.054 0.054

2000 -0.012 0.136 0.099 0.020 0.050 0.020 0.648 0.213 0.151 0.216 -1.271 0.041 0.038
5000 -0.004 0.066 0.100 0.012 0.050 0.012 0.683 0.118 0.117 0.119 -1.271 0.025 0.024
10000 -0.002 0.041 0.100 0.008 0.050 0.008 0.696 0.072 0.104 0.073 -1.271 0.018 0.017

T m(α̂2.0) se(α̂2.0) m(α̂21.1) se(α̂21.1) m(α̂22.1) se(α̂22.1) m(β̂21.1) se(β̂21.1) m(β̂22.1) se(β̂22.1) m(τ̂2) se(τ̂2) ase(τ̂2)
Eq. 2: 1000 -0.031 0.246 0.049 0.027 0.097 0.030 0.168 0.264 0.629 0.269 -1.269 0.054 0.054

2000 -0.011 0.133 0.050 0.020 0.099 0.020 0.145 0.214 0.653 0.209 -1.273 0.037 0.038
5000 -0.007 0.068 0.050 0.012 0.100 0.012 0.113 0.122 0.685 0.123 -1.269 0.025 0.024
10000 -0.003 0.039 0.050 0.008 0.100 0.008 0.106 0.069 0.694 0.070 -1.271 0.017 0.017

Notes: See Table 3. DPG2: α1 = c(0, 0)′, α1 =

(
0.10 0
0.05 0.10

)
, β1 =

(
0.7 0.1
0.1 0.6

)
and Corr(z1t, z2t) = 0.2. DPG3: α1 = c(0, 0)′, α1 =

(
0.10 0.05
0.05 0.10

)
,

β1 =

(
0.7 0.1
0.1 0.7

)
and Corr(z1t, z2t) = 0.1. Computations in R (R Core Team (2014)) with the lgarch package version 0.3, see Sucarrat (2014).
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Table 5: Finite sample properties of equation-by-equation Gaussian QML (without mean-correction) of a 2-dimensional
log-GARCH(1,1) w/diagonal matrix β1 when the correlations follow the DCC of Engle (2002)

T m(α̂10) m(α̂20) m(α̂11) m(α̂21) m(α̂12) m(α̂22) m(β̂11) m(β̂22) m(τ̂1) se(τ̂1) m(τ̂2) se(τ̂2) ase(τ̂)
DGP1: 1000 -0.065 -0.229 0.046 0.101 0.101 0.048 0.902 0.680 -1.270 0.056 -1.270 0.054 0.054

2000 -0.032 -0.109 0.048 0.101 0.101 0.049 0.901 0.690 -1.271 0.038 -1.270 0.039 0.038
5000 -0.013 -0.042 0.049 0.100 0.100 0.049 0.900 0.697 -1.271 0.024 -1.270 0.023 0.024
10000 -0.005 -0.023 0.049 0.100 0.100 0.050 0.900 0.698 -1.271 0.017 -1.270 0.017 0.017

DGP2: 1000 -0.029 -0.026 0.098 0.053 0.053 0.097 0.791 0.792 -1.270 0.055 -1.268 0.053 0.054
2000 -0.019 -0.013 0.099 0.051 0.051 0.099 0.794 0.797 -1.271 0.038 -1.272 0.039 0.038
5000 -0.005 -0.004 0.100 0.051 0.050 0.099 0.799 0.799 -1.270 0.024 -1.270 0.024 0.024
10000 -0.003 -0.002 0.100 0.050 0.050 0.100 0.799 0.799 -1.269 0.017 -1.271 0.017 0.017

The estimated model is lnσ2
t = α0 + α1 ln ǫ

2
t−1 + β1 lnσ

2
t−1, where α0 = (α10, α20)

′, α1 =

(
α11 α12

α21 α22

)
and β1 = diag(β11, β22). The

standardised errors (z1t, z2t)
′ are governed by an Engle (2002) DCC given by (z1t, z2t)

′ ∼ N(0,Σt), Σt =

(
1 ρt
ρt 1

)
, ρt = q12,t/

√
q1,tq2,t,

q12,t = ρ+a(z1,t−1z2,t−1−ρ)+ b(q12,t−ρ), q1,t = 1+a(z21,t−1−1)+ b(q1,t−1), q2,t = 1+a(z22,t−1−1)+ b(q2,t−1) with a = 0.05 and b = 0.9.

Estimation proceeds in three steps. (Note: The Engle (2002) DCC is not estimated.) First, a univariate ARMA-X specification is fitted to

each of the two equations with the Gaussian QMLE. Second, the ARMA-X residuals û1t and û2t, respectively, are used equation-by-equation

to estimate τ1 and τ2, respectively, with formula (9). Finally, the ARMA-X estimates and τ̂1 and τ̂2 are combined using the relationships

in (21) to obtain the log-GARCH estimates. m(x), sample mean of the estimate x. se(x), sample standard deviation (division by R

instead of R − 1, where R = 1000 is the number of replications). ase(x), asymptotic standard error of x (computed as
√
av(x)/

√
T , where

av(τ̂1) = av(τ̂2) = ζ2, see (11)). In DGP no. 1: α1 = c(0, 0)′, α1 =

(
0.05 0.10
0.10 0.05

)
, β1 = diag(0.90, 0.70) and ρ = −0.2. In DGP no. 2:

α1 = c(0, 0)′, α1 =

(
0.10 0.05
0.05 0.10

)
, β1 = diag(0.80, 0.80) and ρ = 0.4. Computations in R (R Core Team (2014)) with the lgarch package

version 0.2, see Sucarrat (2014).

25



Table 6: Finite sample properties of multivariate Gaussian QML via the VARMA-X representation of a multi-
variate CCC-log-GARCH-X

DGP1 T m(α̂1.0) se(α̂1.0) m(α̂11.1) m(α̂12.1) m(β̂11.1) m(β̂12.1) m(λ̂11) se(λ̂11) m(τ̂1) se(τ̂1) ase(τ̂1)
Eq. 1: 1000 -0.033 0.140 0.093 0.048 0.647 0.157 0.094 0.046 -1.272 0.054 0.054

2000 -0.020 0.097 0.098 0.050 0.668 0.130 0.097 0.033 -1.272 0.040 0.038
5000 -0.008 0.044 0.099 0.050 0.688 0.112 0.099 0.018 -1.270 0.023 0.024
10000 -0.003 0.029 0.099 0.050 0.695 0.105 0.099 0.013 -1.271 0.017 0.017

T m(α̂2.0) se(α̂2.0) m(α̂21.1) m(α̂22.1) m(β̂21.1) m(β̂22.1) m(λ̂21) se(λ̂21) m(τ̂2) se(τ̂2) ase(τ̂2)
Eq. 2: 1000 -0.006 0.128 0.049 0.095 0.138 0.668 0.204 0.045 -1.274 0.056 0.054

2000 -0.003 0.086 0.050 0.097 0.125 0.679 0.203 0.032 -1.271 0.039 0.038
5000 0.001 0.044 0.050 0.099 0.110 0.692 0.201 0.018 -1.269 0.024 0.024
10000 0.000 0.028 0.050 0.099 0.105 0.695 0.201 0.012 -1.271 0.018 0.017

The estimated model is lnσ2
t = α0 + α1 ln ǫ

2
t−1 + β1 lnσ

2
t−1 + λ1xt, where α0 = (0, 0)′, α1 =

(
0.1 0.05
0.05 0.1

)
, β1 =

(
0.7 0.1
0.1 0.7

)
,

λ1 = (0.1, 0.2)′ and Corr(z1t, z2t) = 0.4. The variable xt is governed by an the exogenous AR(1) process xt = 0.5xt−1 + uxt with

uxt
IID∼ N(0, 1). Estimation proceeds in three steps. (Note: The correlation Corr(z1t, z2t) is not estimated.) First, the VARMA-X

representation is estimated with the multivariate Gaussian QMLE. Second, the VARMA residuals are used equation-by-equation

to estimate τ1 and τ2, respectively, with formula (9) in Theorem 1. Finally, the VARMA estimates and τ̂1 and τ̂2 are combined

using (21) to obtain the log-GARCH estimates. m(x), sample mean of the estimate x. se(x), sample standard deviation (division

by R instead of R − 1, where R = 1000 is the number of replications). ase(x), asymptotic standard error of x (computed as√
av(x)/

√
T , where av(τ̂1) = av(τ̂2) = ζ2, see (11)). Computations in R (R Core Team (2014)) with the lgarch package, see

Sucarrat (2014).
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Table 7: Estimation results of the univariate models (24)-(28) (only selected parameters
are reported)

Model α̂0
(s.e.)

α̂1
(s.e.)

β̂1
(s.e.)

τ̂
(s.e.)

LogL k AIC BIC

Peak: log-GARCH(1,1) −0.434 0.202
(0.03)

0.639
(0.06)

−1.95
(0.14)

1890.3 3 −2.380 −2.370

log-GARCH(7,1) −0.976 0.232
(0.03)

−0.039
(0.20)

−2.01
(0.18)

1841.9 9 −2.311 −2.281

log-GARCH(7,1)-X −0.127 0.228
(0.03)

0.014
(0.29)

−1.94
(0.15)

1896.4 15 −2.372 −2.322

log-GARCH(7,1)-X∗ 0.850 0.200
(0.03)

0.798
(0.03)

−1.83
(0.12)

1989.0 22 −2.480 −2.406

log-GARCH(7,0)-X∗ −0.071 0.209
(0.03)

– −1.87
(0.12)

1955.5 13 −2.450 −2.406

Off-peak: log-GARCH(1,1) −0.070 0.137
(0.02)

0.792
(0.03)

−2.03
(0.10)

1676.0 3 −2.110 −2.100

log-GARCH(7,1) −0.548 0.202
(0.03)

−0.103
(0.14)

−2.05
(0.10)

1665.9 9 −2.089 −2.059

log-GARCH(7,1)-X −0.656 0.199
(0.03)

0.801
(0.03)

−1.87
(0.08)

1807.4 15 −2.260 −2.209

log-GARCH(7,1)-X∗ 0.129 0.163
(0.03)

−0.041
(0.33)

−1.81
(0.07)

1850.0 22 −2.305 −2.231

log-GARCH(7,0)-X∗ −0.047 0.179
(0.03)

– −1.86
(0.08)

1812.6 13 −2.269 −2.225

τ̂ , estimate of E(ln z2t ). s.e., standard error of estimate. LogL, Gaussian log-likelihood computed as∑T

t=1 ln fǫ(ǫt; σ̂t), where fǫ(ǫt; σ̂t) is the univariate normal density, ǫt is the mean-corrected return and

σ̂t is the fitted standard deviation (T = 1586 is the number of observations). k, the total number

of log-GARCH parameters (τ not included). AIC and BIC, the Akaike (1974) and Schwarz (1978)

information criterion, respectively, computed in terms of LogL, T and k. Estimation of the ARMA

representation is with the LSE without mean-correction. Computations in R (R Core Team (2014))

with the lgarch and AutoSEARCH packages, see Sucarrat (2014, 2012).
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Table 8: Estimation results of the multivariate models (29)-(31) (only selected parameters
are reported)

Equation α̂m0
(s.e.)

α̂mm.1
(s.e.)

β̂mm.1
(s.e.)

τ̂m
(s.e.)

LogL k AIC BIC

m-log-GARCH(1,1): Peak: −0.344 0.165
(0.03)

0.642
(0.07)

−1.85
(0.10)

4095.7 10 −5.152 −5.118

Off-peak: −0.220 0.113
(0.02)

0.887
(0.02)

−1.96
(0.10)

m-log-GARCH(7,1): Peak: −0.053 0.193
(0.03)

0.807
(0.03)

−1.874
(0.13)

4017.1 34 −5.023 −4.908

Off-peak: 0.128 0.170
(0.03)

0.010
(0.165)

−2.02
(0.11)

m-log-GARCH(7,1)-X∗ Peak: 0.143 0.206
(0.02)

0.163
(0.02)

−1.85
(0.12)

4316.4 46 −5.385 −5.229

Off-peak: −0.296 0.160
(0.02)

0.840
(0.02)

−1.76
(0.07)

τ̂m, estimate of E(ln z2m,t). s.e., standard error of estimate. LogL, Gaussian log-likelihood computed as∑T

t=1 ln fǫ(ǫt; σ̂t, R̂), where fǫ(ǫt; σ̂t, R̂) is the multivariate normal density, ǫt is the vector of mean-corrected

returns, σ̂t is the vector of fitted standard deviations and R̂ is the sample correlation matrix of ẑt (T = 1586

is the number of observations). k, the total number of log-GARCH parameters from the multivariate model

(τ1 and τ2 are not included). AIC and BIC, the Akaike (1974) and Schwarz (1978) information criterion,

respectively, computed in terms of LogL, T and k. Estimation of the VARMA representation is with the

multivariate Gaussian QMLE without mean-correction. Computations in R (R Core Team (2014)) with the

lgarch package, see Sucarrat (2014).
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Figure 1: Daily peak and off-peak spot electricity prices (and their nominal and
relative differences) in Euros per Mw/h, and log-returns for the Oslo area in Norway,
1 January 2010 - 20 May 2014 (1601 observations before lag-adjustments)
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Figure 2: Fitted standard deviations (SDs) of the univariate log-GARCH(1,1) and
log-GARCH(7,1)-X∗ models, and the nominal and relative differences between the
SDs (computed as log-GARCH(1,1) minus log-GARCH(7,1)-X∗ and log-GARCH(1,1)
over log-GARCH(7,1)-X∗, respectively)
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Figure 3: Fitted standard deviations (SDs) of the multivariate log-GARCH(1,1) and
log-GARCH(7,1)-X∗ models, and the nominal and relative differences between the
SDs (computed as log-GARCH(1,1) minus log-GARCH(7,1)-X∗ and log-GARCH(1,1)
over log-GARCH(7,1)-X∗, respectively)
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