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The value of reliability

Abstract

We derive the value of reliability in the scheduling of an activity of ran-

dom duration, such as travel under congested conditions. We show that the

minimal expected cost is linear in the mean and standard deviation of du-

ration, regardless of the form of the standardized distribution of durations.

This insight provides a unification of the scheduling model and models that

include the standard deviation of duration directly as an argument in the cost

or utility function. The results generalize approximately to the case where

the mean and standard deviation of duration depend on the starting time.

Empirical illustration is provided.

KEYWORDS: Welfare; Random duration; Time; Scheduling; Reliability; Vari-

ability

JEL codes: D01; D81
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1 Introduction

In this paper we consider the value of reliability for an agent who wishes to under-

take an activity of random duration and must decide when to initiate the activity,

knowing only the distribution of its duration. We are concerned with the value

of changes to the distribution of the duration. The value of a change in the mean

duration is just the value of time, which is a concept with a long history in eco-

nomics (Becker, 1965; Beesley, 1965; Johnson, 1966; DeSerpa, 1971) and there

is a large literature on its measurement.1 The concept of the value of reliability of

duration, i.e. the value of a change in the standard deviation of duration, is less

well established but not much less important.

We incorporate reliability by building on the model of Small (1982), who con-

sidered the scheduling of commuter work trips when the commuters have schedul-

ing costs as well as time and monetary costs.2 We formulate the scheduling costs

as an opportunity cost of starting early and a greater cost of finishing late rela-

tive to some fixed deadline. In contrast to earlier contributions (e.g., Noland and

Small, 1995), we are able to derive the optimal expected cost for a general distri-

bution of durations. We obtain the simple result that the optimal head start as well

as the optimal expected cost depend linearly on the mean and standard deviation

of the distribution of durations, provided the standardized distribution of durations

is fixed. Both the optimal head start and the value of reliability depend in a simple

1Some recent references on the measurement of the value of time are Small et al. (2005) and

Fosgerau (2007).
2Some early contributions discussing the cost of stochastic delay are Douglas and Miller (1974)

and Anderson and Kraus (1981).
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way on the standardized distribution of durations and the optimal probability of

being late, which in turn is given by the scheduling costs.

In order to apply the scheduling model without the results in the present paper,

it would be necessary to observe the individual times at which lateness costs are

incurred. An important point about the present results is that now it suffices just

to observe the distribution of durations, which is much easier and can be done at

the aggregate level.

Although originally motivated in transport, the structure of the scheduling

problem occurs in many situations; for example, deciding when to enter a queue

or when to begin a search. For firms, some inventory stock problems are of similar

structure, for instance when holding a deteriorating good in stock is costly, with a

random cut-off quality with high cost and costs for delayed delivery (Liaoa et al.,

2000; Hochman et al., 1990). In health economics, waiting times for patients are

random and associated with a cost (Mataria et al., 2007). The structure of the

scheduling problem also occurs in the decision of how durable to design a prod-

uct, given that it should last for at least some fixed period and lacking knowledge

of the intensity of use.

In transportation, similar problems occur in several different contexts. Airlines

have to decide how much slack to allow in the scheduling of flights. In Brueckner

(2004), the passenger must buy the air ticket before knowing his preferred ar-

rival time, and expected scheduled delay differs between airlines. The scheduling

problem with delays is also relevant in the tourism literature (Batabyal, 2007).

Increasingly congested road networks have caused travel times to become
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highly irregular in many places, which makes road transport an important case

for the scheduling model. In this paper we find that travel time uncertainty ac-

counts for about 15 per cent of time costs on a typical urban road. Considering

the large share of individuals’ time budgets that is spent on transport, it is clear

that uncertainty of durations represents a significant cost to society in general. The

concepts of the value of time and the value of reliability are both of crucial im-

portance for decisions regarding capacity provision, operations, pricing and other

regulation of transport networks. Both concepts are similarly important in urban

economics, travel costs being a main determinant of urban spatial structure (e.g.,

Brueckner, 1987).

Transport is also a clear case of time dependent demand with sharp peaks in the

morning and the afternoon. In our empirical illustration in Section 3 we test and

accept that the dependency of the distribution of durations on the time of day is

described completely through the mean and standard deviation of the distribution

of durations. In the theoretical analysis we also deal with the case where the mean

and standard deviation of the distribution of durations depend on the head start.

In transport, this pertains to of the case where a traveler decides to leave earlier or

later along the slopes of the peak in order to avoid the worst. This kind of analysis

is important for understanding the effects of pricing policies aimed at regulating

traffic during the peak (peak spreading).

As a final application of the model we consider the case of a scheduled service,

where the head start cannot be chosen freely but must adhere to a fixed schedule.

We are able to make some progress with this case, but find that the simple prop-
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erties of the unconstrained case no longer hold. In particular, the expected cost is

no longer linear in the standard deviation of duration.

The timing of activities is also the focus in the literature on the real option

model (Dixit and Pindyck, 1994). However, while the option value model focuses

on the timing of decision under increasing information, we address a situation

where waiting does not allow more information to be gathered. Hence, our prob-

lem is not an optimal stopping problem in the sense of the real option model.

It should be noted that we take the individual perspective, where the distribu-

tion of durations is seen as exogenous. This is in contrast with the literature that

investigates, in the context of road transport, the properties of equilibrium where

the travel time distribution is dependent on the individual departure time choices,

and where individuals apply scheduling considerations. Notably, there is the bot-

tleneck model of Vickrey (1969), which has been developed, e.g., in Arnott et al.

(1993). A few contributions include stochastic capacity such that travel times be-

come random, e.g., Daniel (1995) and Arnott et al. (1999). Furthermore, there

is also a literature on learning the equilibrium in congestion games (Sandholm,

2002, 2005) that goes some way in handling stochastic delays. However, none of

the papers mentioned in this paragraph address the value of reliability.

The layout of the paper is as follows. Section 2 does the first bit of theoretical

work presenting the simplest model where the duration distribution is independent

of the head start. Then Section 3 measures some characteristics of observed travel

times by car on a typical congested urban road. As this example illustrates, the

standardized travel time distribution may be independent of the time of day but the
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mean and standard deviation are not. Therefore the model is extended in Section

4 to the cases where the mean and the standard deviation but not the standardized

duration distribution depend on head start as could be the case through a peak

period. Section 5 considers briefly the case of a scheduled service, where the

head start cannot be chosen freely. Section 6 concludes the paper. The more

complicated derivations are placed in the appendix.

2 A simple model

Consider an agent about to undertake an activity of uncertain duration. Express

the duration in the following convenient form.

T = µ + σX, (1)

where X is a standardized random variable with mean 0, variance 1, density φ,

and cumulative distribution Φ.3 The problem of the agent is to choose when to

initiate the activity given a preferred time of completing the activity. Say that his

preferred completion time is 0 and that he begins at time −D, such that D is the

head start.

3We have assumed that the mean of X exists. We also assume that X has convex support such

that the inverse distribution exists. The assumption that X has a variance is not strictly necessary.

At the cost of some complication, it is possible to replace σ by another measure of scale such as

the interquartile range.
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We assume a cost function consisting of three terms.

C(D, T ) = αD + ωT + β(T − D)+, (2)

where the + notation denotes the function x+ = x if x > 0 and zero otherwise.

The first term is the cost of starting early. We may think of this as the opportu-

nity cost of interrupting a prior activity. The second term captures the cost of time

spent in the activity. The third term is the cost of being late.4 We assume that the

agent chooses D so as to minimise expected cost, i.e.

EC∗ = min
D

EC(D, T ) = min
D

[

αD + ωµ + β

∫

∞

D−µ
σ

(µ + σx − D)φ(x)dx

]

.

(3)

Appendix A.1 shows that the first order condition for the agent’s cost minimisation

problem is

Φ

(

D − µ

σ

)

= 1 −
α

β
. (4)

We note from (4) that α
β

is the optimal probability of being late (Bates et al., 2001).

Rewriting the first order condition we find that

D = µ + σΦ−1

(

1 −
α

β

)

. (5)

This shows that the distribution of X only enters the head start though its 1 − α
β

quantile. So even though the scheduling cost function has a kink, the optimally

4This model is equivalent to the Small (1982) formulation except that we omit his discrete

lateness penalty. See also footnote 12.
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chosen head start is linear in µ and σ. By inserting the optimal head start (5) into

the expected cost it is possible to obtain the optimal minimum expected cost (see

appendix A.1).

EC∗ = (α + ω)µ + βσ

∫ 1

1−α
β

Φ−1(s)ds

Define the functional H(φ, α
β
) =

∫ 1

1−α
β

Φ−1(s)ds. This is the average time late

in the standardized distribution of durations. Then the expected cost of an agent

who faces a given distribution of durations and who optimally chooses his head

start is given by

EC∗ = (α + ω)µ + βH(Φ,
α

β
)σ. (6)

We observe that the optimal expected cost is linear in the mean and standard devi-

ation of duration provided the standardized distribution of durations Φ is constant.

It should be emphasized that this holds for any fixed standardized duration distri-

bution.5

The first term, (α + ω) is the cost of the duration of the activity, the value of

time. It includes the effect of the activity itself as well as the loss from interrupting

a previous activity. The value of reliability, βH(φ, α
β
), is not a constant preference

parameter but depends on the standardized duration distribution φ as well as on

the scheduling parameters α and β. This is an important realization as it shows

that the value of reliability depends on the setting in which it is applied. This fact

has been overlooked in the past, where the value of reliability has been estimated

5This result has been hinted at in the literature, but until now it has only been established in

some special cases (Noland and Small, 1995).
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under one φ and then applied in another setting with a different φ. Given estimates

of the scheduling parameters, we may calculate the value of reliability for any

standardized duration distribution using (6).

3 Empirical illustration

In this section we use a travel time dataset to first estimate the mean and stan-

dard deviation of travel time as a function of the time of day. Results show that

these functions are not constant as was the maintained assumption in the previous

section. The standardized travel time distribution φ does however appear to be

constant over the day. We will use this information to take a look at H .

We use data recorded over the period January 16 to May 8, 2007 at a congested

radial road in Greater Copenhagen. Based on cameras and numberplate recogni-

tion, the data provide minute by minute observations of the average travel time in

minutes for an 11.260 km section. We consider weekdays between 6 AM and 10

PM and discard observations where no traffic was recorded. We use data for the

direction towards the city center, where there is a distinct peak in the morning.

This dataset has 24 527 observations. Label these by (Ti, ti), where Ti is travel

time in minutes for the i’th observation and ti is the time of day in minutes since

midnight.

Figure 1 shows first a nonparametric kernel regression of travel time against

time of day.6 The resulting curve is an estimate of µ(t). The figure also shows the

6This regression has been performed using a normal second-order kernel and a bandwidth of

2.6146 minutes chosen by least squares cross-validation (Li and Racine, 2007). It seems that this
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95 per cent pointwise confidence band. It is fairly tight indicating that µ is quite

precisely estimated. There is a sharp morning peak at 8 AM and a smaller peak in

the afternoon between 4 and 5 PM.

The lower curve estimates the standard deviation of travel time as a function

of the time of day, σ(t) =
√

E[(T − µ(t))2]. This is achieved by performing a

nonparametric regression of squared residuals (Ti − µ(ti))
2 against time of day

and then taking the square root of the result.7

The relationship between µ and σ has some strong features as is evident from

the scatter plot of σ(t) against µ(t) in Figure 2. Most of the day there is a strong

correlation between µ and σ. The characteristic bubble on the scatter plot corre-

sponds to the end of the morning peak where the standard deviation remains at a

high level while the mean travel time decreases.8 There are clear variations in µ

and σ over the day.

Using these estimated functions we have computed standardized travel times

by Xi = (Ti − µ(ti))/σ(ti) such that these have zero mean and unit variance

conditional on the time of day. Figure 3 shows a nonparametric estimate of the

density of standardized travel time conditional on the time of day. Note that we

have deliberately undersmoothed in the time of day dimension so as to exaggerate

the impression of any dependency on the time of day.9 It is possible to use the

leads to some undersmoothing outside the peak. All programming is in Ox (Doornik, 2001). The

code is available on request.
7The cross-validated bandwidth is here 2.6873 minutes. The confidence band around the mean

is computed using the bandwidth from the mean regression.
8This pattern has been noticed before. See, e.g., Taylor (2007).
9The bandwidth here is 28.8 minutes or 3 per cent of the period 6 AM to 10 PM.
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cross-validation procedure to test for independence of the standardized travel time

of the time of day (Li and Racine, 2007). The idea is that if the standardized travel

time distribution depends on the time of day, then the cross-validation procedure

will select a bandwidth in the time of day dimension that becomes small in large

samples. If, on the other hand, the standardized travel time distribution does not

depend on the time of day then the cross-validation procedure will select a large

bandwidth in the time of day dimension.10 Using maximum likelihood cross-

validation on the density of the standardized travel times conditional on the time

of day, we have accepted independence of the standardized travel time and time

of day, since the bandwidth corresponding to the time of day increases without

bound. This is a potentially important result. If it generalizes to other roads, then

it means that the standardized travel time distribution Φ may be treated as fixed

even as µ and σ vary.

We have then estimated the density of the standardized travel times.11 The

resulting estimate is shown in Figure 4, where the dashed curve indicates the lower

bound of the 95 per cent pointwise confidence interval. The estimated density has

a heavy right tail and resembles a lognormal or a gamma density but it is clear

from the figure that it is neither.

We have computed H(φ, α
β
) for various values of α

β
. We have done this both

for the empirical distribution of standardized travel times and for the standard

10The bandwidth exceeds any bound with a probability that approaches 1 as sample size in-

creases.
11Using again a normal second-order kernel and a bandwidth of 0.21025 chosen by least squares

cross-validation.

12



normal distribution. The results are shown in Table 1. In this example there are

large differences in H between the normal and the empirical travel time distribu-

tion, showing the importance of accounting for the actual distribution of durations.

The differences are largest for small values of α
β

when the optimal probability of

being late is low. This is due to the fat right tail of the empirical travel time dis-

tribution relative to the normal distribution. However, the difference is also quite

large when the optimal probability of lateness is about one half.

4 Time varying mean and standard deviation of du-

ration

So far we have considered the distribution of durations to be independent of the

head start. This is not true in general, as the previous section showed. Indeed,

in that example, the mean and standard deviation of durations did depend on the

head start, while the distribution of standardized durations could still be assumed

to be independent of the head start. Moreover µ and σ in the example seemed to

vary (more or less) linearly with the time of day for long periods of time.

We are therefore motivated to consider the situation where the mean and stan-

dard deviation of durations depend linearly on the head start. We use the following

parametrization where linear functions are pivoted around the optimal head start
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corresponding to constant values of µ and σ.

D0 = µ0 + σ0Φ
−1

(

1 −
α

β

)

µ = µ0 + µ′(D − D0)

σ = σ0 + σ′(D − D0)

The mathematical derivations for this case are somewhat involved and are given

in Appendix A.2. It turns out that the optimal expected cost is still linear in mean

duration. That is,

dEC∗

dµ0

= (α + ω),

which is the same result as in the case where the distribution of durations is inde-

pendent of the head start. Thus in computing the marginal expected cost of mean

duration we may ignore that the mean and standard deviation functions depend on

the endogenous head start D.

The corresponding result for the standard deviation is more complicated. Write

the value of reliability, i.e. the derivative of the optimal expected cost with respect

to σ0, as a function of the slopes µ′ and σ′:

V oR(µ′, σ′) =
dE∗

dσ0

.

Like the value of time, the value of reliability does not depend on the levels of the

mean and standard deviation of duration in µ0 and σ0. Define for convenience the

standardized head starts Y = D−µ

σ
and Y0 = Φ−1(1 − α

β
), where the latter is the
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optimal head start in the case of constant µ = µ0 and σ = σ0. Then we find that

the value of reliability is given by

V oR(µ′, σ′) = αY0 − βY0(1 − Φ(Y )) + β

∫

∞

Y

xφ(x)dx.

As would be expected, this expression reduces to V oR(0, 0) = β
∫

∞

Y0

xφ(x)dx,

which is the same result as in Section 2. The appendix shows that V oR(µ′, σ′) ≤

V oR(0, 0), such that the value of reliability is overestimated if dependency of the

distribution of durations on the head start is ignored. This is true regardless of

the signs of µ′ and σ′, so it does not matter whether the upward or the downward

slope of a peak is considered.

Using the independence assumption as an approximation may, however, not

lead to a large error as can be seen from the following approximation, derived in

Appendix A.2.

V oR(µ′, σ′) − V oR(0, 0)

V oR(0, 0)
≈ −

1

2φ(Y0)H

(

α + ω

β
µ′ + Hσ′

)2

This formula may be used to correct an estimate of V oR based on constant

µ and σ. If the discrepancy is small we may alternatively just use V oR(0, 0)

and ignore the error. For the example in Section 3 we find the following figures.

Observe from Figure 1 that µ′ ≈ 10/120 ≈ 0.08 and that σ′ ≈ 4/120 ≈ 0.03.

Use the values (α, ω, β) = (1, 1, 5) based roughly on Small (1982).12 From Table

12Note that our model is parameterized differently than that of Small. Small defines the cost

function by −ηT − γ(D − T )+ − δ(T − D)+, where (D − T )+ is schedule delay early and

(T −D)+ is schedule delay late. Note that (D − T )+ = (T −D)+ − T + D. Insert this to write
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1 we find H ≈ 0.31. Furthermore, φ(Y0) ≈ 0.22. With these numbers it turns out

that the relative approximation error is about -0.012, which must be considered

small given the precision with which the preference parameters can be estimated.

Given that the approximation error from applying the independence assump-

tion is small, we may use (6) to compute the share of the time costs due to reliabil-

ity for a traveler in the empirical example in the previous section. Figure 5 shows

this share over the day. It varies around 15 per cent which must be considered

significant. Even so, it is quite conceivable that this share is higher in places with

more serious congestion.

5 The case of a scheduled service

Consider now the situation where the agent is not able to choose his head start

freely but has to choose from a fixed set of head starts with a fixed interval (head-

way) of 2h. This case arises for example when the issue is reliability of rail or bus

services (Bates et al., 2001). We assume that the timing of head starts is unrelated

to his preferred completion time and retain the assumption that duration is random

given by µ + σX , where µ and σ are now again fixed. In this situation it seems

not possible to solve the cost minimization problem explicitly for general duration

distributions. Still, it is possible to say something.

the cost function as C = −(η−γ)T −γD−(γ+δ)(T −D)+. From Small we take the parameters

as roughly (γ, η, δ) = (1, 2, 4). Then in our formulation we have ω = η − γ = 1, α = γ = 1 and

β = γ + δ = 5.
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Consider the expected cost function as a function of head start:

EC(D) = αD + ωµ + β

∫

∞

D−µ
σ

(µ + σx − D)φ(x)dx.

This is globally convex since
d2EC(D)

dD2 = β

σ
φ(D−µ

σ
) > 0. The expected cost mini-

mizing head start will therefore always be the head start in the interval defined by

the equation

EC(Dh − h) = EC(Dh + h),

since this equation identifies the interval of length 2h of minimal expected cost.

We have fixed the preferred completion time at time 0 and taken the scheduling

of head starts to be independent of everything else. We may therefore view the

scheduling of head start as a uniformly distributed random variable over the inter-

val [Dh − h,Dh + h]. The expected cost under such a schedule is therefore given

by the following expression.13

E(EC(D)) =
1

2h

∫ Dh+h

Dh−h

EC(D)dD

It seems not possible to find a general explicit solution for this for a general dura-

tion distribution. It is however possible in some cases to derive E(EC(D)) under

specific assumptions about the duration distribution. It turns out that the resulting

expression for E(EC(D)) is rather complex, and in particular it is not in general

linear in the mean and standard deviation of duration. Appendix A.3 presents an

13Expectation is formed both with respect to the location of the schedule of head start and with

respect to the duration distribution.
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example of this for the case of an exponentially distributed duration.

6 Conclusion

We have established a simple relationship between the fundamental quantities

from which cost or disutility is derived in Small’s scheduling model and the mean

and standard deviation of a distribution of durations under the optimally chosen

head start. Given the marginal costs in the scheduling model, it is then possible

to compute the value of reliability for any given duration distribution. Moreover,

it is possible to translate the value of reliability from one duration distribution to

another. The result remains a good approximation when the mean and standard

deviation of duration depend on the head start while the standardized distribution

must be constant.
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A Mathematical appendix

A.1 A simple model

This appendix refers to section 2. The first point is to find the first order condition

for the minimization of the expected cost in (3). Recall the following general

formula:

d

dx

∫ b(x)

a(x)

f(x, t)dt = b′(x)f(x, b) − a′(x)f(x, a) +

∫ b(x)

a(x)

df(x, t)

dx
dt.

Use this to differentiate (3) with respect to the head start D and set to zero to find

the first order condition. Note here that the derivative with respect to the lower

integral limit is zero, since the integrand is zero at the lower bound. The derivative

with respect to the upper integral limit is also zero, since the upper integral limit

is constant. The first order condition then becomes

α = β

(

1 − Φ

(

D − µ

σ

))

.

Insert the optimal head start (5) into the expected cost to obtain the optimal
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expected cost.

EC∗ = α

[

µ + σΦ−1

(

1 −
α

β

)]

+ ωµ + β

∫

∞

Φ−1(1−α
β )

(

σx − σΦ−1

(

1 −
α

β

))

φ(x)dx

= (α + ω)µ + ασΦ−1

(

1 −
α

β

)

−βσΦ−1

(

1 −
α

β

)
∫

∞

Φ−1(1−α
β )

φ(x)dx + βσ

∫

∞

Φ−1(1−α
β )

xφ(x)dx

= (α + ω)µ + ασΦ−1

(

1 −
α

β

)

−βσΦ−1

(

1 −
α

β

) (

1 − Φ

(

Φ−1

(

1 −
α

β

)))

+ βσ

∫

∞

Φ−1(1−α
β )

xφ(x)dx

= (α + ω)µ + βσ

∫ 1

1−α
β

Φ−1(s)ds

A.2 Approximation to the value of reliability

This appendix refers to Section 4 where the mean and standard deviation of du-

ration are linear in the head start. We defined standardized head starts Y = D−µ

σ

and Y0 = Φ−1(1− α
β
) The first-order condition for the choice of head start can be

expressed in compact form.

0 = α + ωµ′ + β

∫

∞

Y

(µ′ + σ′x − 1)φ(x)dx

It is only Y in this expression that depends on µ0 and σ0. So we can conclude that

the derivatives of Y with respect to µ0 and σ0 are zero. This insight allows us to

derive the marginal expected costs of µ0 and σ0. Multiply the first-order condition
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by D − D0 and subtract from the expected cost (3) to obtain

EC∗ = αD0 + ωµ0 + β

∫

∞

Y

(µ0 + σ0x − D0)φ(x)dx

= (α + ω)µ0 + ασ0Y0 − βσ0Y0(1 − Φ(Y )) + βσ0

∫

∞

Y

xφ(x)dx

We find that dEC∗

dµ0

= (α + ω) for any value of µ′, σ′. This is the same result as in

the case when µ and σ are constant.

The next point is to find the value of reliability. Differentiate the expected cost

above with respect to σ0 to obtain

dEC∗

dσ0

= αY0 − βY0(1 − Φ(Y )) + β

∫

∞

Y

xφ(x)dx

Recall that the value of reliability is β
∫

∞

Y0

xφ(x)dx in the case when µ′ = σ′ = 0

and note that the expression above reduces to this when µ′ = σ′ = 0. As an

approximation to dEC∗

dσ0

it is natural to consider using β
∫

∞

Y0

xφ(x)dx since this

does not require computation of Y . It is therefore of interest to consider the size

of the error in using such an approximation

Denote the value of reliability by V oR(µ′, σ′) = dEC∗

dσ0

. We are then concerned

with the relative difference
V oR(µ′,σ′)−V oR(0,0)

V oR(0,0)
and we would like to show that this

is small when µ′, σ′ are small.

We may obtain from the FOC that

dY

dµ′
(µ′ = σ′ = 0) = −

α + ω

βφ(Y0)
< 0
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and

dY

dσ′
(µ′ = σ′ = 0) = −

∫ 1

1−α
β

Φ−1(s)ds

φ(Y0)
< 0.

Let z1 be one of µ′, σ′. Then

dV oR

dz1

= −β(Y − Y0)φ(Y )
dY

dz1

.

This is zero at µ′ = σ′ = 0 since then Y = Y0. Hence the change in the marginal

cost of standard deviation is small when µ′, σ′ are small. Differentiate again again

to find

d2V oR

dz1dz2

= −βφ(Y )
dY

dz1

dY

dz2

−β(Y −Y0)φ
′(Y )

dY

dz1

dY

dz2

−β(Y −Y0)φ(Y )
d2Y

dz1dz2

.

At Y = Y0 this equals −βφ(Y0)
dY
dz1

dY
dz2

< 0, so the value of reliability is locally

concave in z with a local maximum at z = 0. This means that the value of

reliability at z 6= 0 is overestimated by using the value at z = 0, regardless of the

signs of z.

Given that we will be making a systematic error by using the formula derived

under constant µ and σ, it is useful the assess the size of the error if we use the

value of reliability at Y0 at small values of z. Using a quadratic approximation we
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find that

V oR(µ′, σ′) − V oR(0, 0)

V oR(0, 0)
≈

1

2V oR(0, 0)

(

d2V oR

dµ′2
µ′2 + 2

d2V oR

dµ′dσ′
µ′σ′ +

d2V oR

dσ′2
σ′2

)

= −
βφ(Y0)

2βH

(

dY

dµ′
µ′ +

dY

dσ′
σ′

)2

= −
1

2φ(Y0)H

(

α + ω

β
µ′ + Hσ′

)2

.

A.3 Example with a scheduled service

This appendix presents an example of a scheduled service with an exponentially

distributed duration, where T = µ + X and X ∼ φ(x) = λe−λx. We note that

Φ(x) = 1 − e−λx and that Ψ(x) :=
∫ x

0
xφ(x)dx = 1−e−λx

λ
− xe−λx. Then it may

be verified that (ω = 0 and α = 1 are omitted)

EC(D) = D +
β

λ
e−λ(D−µ).

Moreover the midpoint of the interval from which head start is chosen is

µ +
1

λ
log(

β

2λh
(eλh − e−λh)),

such that the expected expected cost becomes

E(EC(D)) = (µ +
1

λ
) +

1

λ
log(

β

2λh
(eλh − e−λh)).
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We may interpret the first term as relating to the mean duration while the second

term relates to the standard deviation of duration 1
λ

. But we note that the parameter

λ that characterizes the exponential distribution also appears inside a complicated

expression that multiplies the standard deviation. So in contrast to the case when

head start can be chosen freely, we do not obtain that expected cost is linear in the

standard deviation of duration in the case of a scheduled service.
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Figure 1: Mean and standard deviation of travel time (in minutes) over a weekday
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Figure 2: Scatter plot of mean and standard deviation of travel time
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Figure 3: Density of standardized travel time conditional on time of day
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Figure 4: Density of standardized travel time
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Figure 5: The share of the value of reliability in the total time cost
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Table 1: H at various values of α
β

α
β

Normal Empirical

0.50 0.39545 0.32838

0.25 0.31561 0.32999

0.20 0.27809 0.30831

0.15 0.23154 0.27517

0.10 0.17419 0.22593

0.05 0.10264 0.15009
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