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ABSTRACT. Collusion in auctions affects both revenue and efficiency and

are prevalent. Yet, sellers do not use collusion-proof auctions as often

as they should. Why is that? We find that one reason for this could be

the cost of implementing efficient collusion-proof auctions. We use Cali-

fornia highway procurements data, to estimate the cost of implementing

collusion-proof auction. Our estimates show that cost must increase by at

least 10.8% to ensure efficient outcome. The cost can sometimes be as high

as 48.8% (depending on the size of bidding-ring in the data).

Keywords: Public Procurement, Collusion-Proof Auction; Local Polyno-

mial, Efficiency-Revenue Trade-off

JEL: C1, C4, C7, D4, L4.

1. INTRODUCTION

In recent years, auctions have become synonymous with buying and sell-

ing. Timber sales, financial assets, highway procurement and online adver-

tisements, all use auction. A contract with many agents may be suscepti-

ble to collusion, which is quite prevalent. See Comanor and Schankerman

[1976]; Feinstein, Block, and Nold [1985]; Lang and Rosenthal [1991]; Porter

and Zona [1993]; Bajari [2001]; Porter and Zona [1999]; Pesendorfer [2000];

Asker [2008]; Harrington [2008]; Taibbi [2012, 2013] among others.1 Collu-

sion lowers revenue and leads to inefficient outcome Ausubel and Milgrom

[2006]. Yet most auctions that we see in the data are standard auctions,

auctions that are vulnerable to collusion. Why aren’t auctions that are ef-

ficient and less vulnerable to collusion more common, given that collusion

has first-order effect on auction outcome?

The answer to this question cannot just be that such collusion-proof auc-

tions are more difficult to run. It cannot also be that the seller can stop

1 Since bidding rings are secretive, these instances surely underrepresent the real in-
stances of collusion.
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collusion by barring those who collude because detecting collusion is diffi-

cult, see Bajari and Ye [2003]; Aryal and Gabrielli [2013].2 Cartels often go

to a greater length to keep its existence secret and anonymous, see Asker

[2008] and references therein. Even when we know their identity, it might

be difficult to prove any wrong doing. For instance in the Libor scandal,

the banks implicated in a law suit have asked a federal court in New York

to dismiss the lawsuit, arguing that the plaintiffs have failed to prove collu-

sive behavior, see Hou and Skeie [2013]; Taibbi [2013] for more.3

The thesis of this paper is that implementing auctions that are robust with

respect to collusion is too costly. To reach that conclusion we first estimate

the distribution of bidders’ cost from the California highway procurement

data, then simulate the cost of running an auction proposed by Chen and

Micali [2012] (henceforth, CM) that is resilient to collusion and always guar-

antees efficient allocation. The increase in cost is the price of achieving effi-

cient allocation. We chose CM-auction because it is simple and like Vickery

(see below) is dominant strategy solvable and hence is a “detail-free” auc-

tion. We find that procurement cost could increase by no less than 10.8%,

and sometimes even as high as 48.8%! The cost depends on the size and

number of bidding rings, something that is unknown to the researcher and

hence must be determined from the data.

To understand why efficiency might be so costly when bidders collude it

is important to understand the auction rules. Unlike the standard auction,

in CM-auction bidders report a bid and their affiliation to any bidding ring.4

Once the bidding rings are determined, the auction rule is similar to Vickery

auction: the lowest bidder wins the auction but gets a price that is equal to

the lowest bid from outside the winner’s ring. Since the price received by

a ring is not a function of the bids by ring members, truthful bidding is an

2 Aryal and Gabrielli [2013] implemented their tests and found no evidence of collusion
even though they focused only on bidders who failed Bajari and Ye [2003]’s tests.

3 The size of Libor market is large, estimated to be anywhere from $350 to $800 trillion.
4Truthful reporting of one’s affiliation is achieved by off-the-equilibrium punishment

phase where bidders pay a fine if their affiliation reports are inconsistent, for example when
any two bidders are inconsistent about their ring-identity.
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equilibrium. For more on coalition strategy-proofness see Green and Laf-

font [1979]. Just like Vickery auction, CM-auction is efficient, but it comes

at a price - the incentive for the bidder to report their group affiliation.5

To run CM-auction we need the distribution of bidders cost and the iden-

tity of ring members. We estimate the distribution by following Guerre,

Perrigne, and Vuong [2000]. To identify the ring members, we divide bid-

ders into two types: regular bidders (type 1) and fringe bidders (type 2),

Jofre-Bonet and Pesendorfer [2003]. Regular bidders are the ones who bid

in expensive contracts, valued at $1 million or more and are the only types

who can collude. Then we follow Bajari and Ye [2003] to determine bid that

are not consistent with competitive bidding. Of the twenty-five type 1 bid-

ders, we focus on only fifteen bidders. If all these bidders form one ring, the

worst case for the seller, the CM-auction increases the cost of procurement

by 48.8%.

If some bids are inconsistent with competitive bidding Bajari and Ye [2003],

then it will affect the distribution of the cost. To correct that we follow Aryal

and Gabrielli [2013]. We assume that the coalition is rational, so all bid-

ders maximize the sum of total payoff. Then we only use the lowest bid

from coalition members to estimate the bid distribution. Remaining bids

are “cover bids,” and hence need not be depend on bidders cost. When we

also exploit the frequency of simultaneous bids amongst these fifteen bid-

ders, we find that only four of them fail the test. Then when we consider a

coalition of only four bidders, the price of implementing CM-auction drops

to 10.8%. Since the steps to determine ring members is never full proof, we

remain agnostic and say that the cost of procurement could increase by any-

where from 10.8% to 48.8%, but the steps outlined in this paper can be used

in any other data.

To estimate the bid distribution, instead of the widely used kernel-smoothed

density estimators that are inconsistent at the endpoints of the support, we

use the local polynomial estimation (henceforth, LPE) method, see Fan and

5 See also Laffont and Martimort [1997, 1998, 2000]; Che and Kim [2006] for Bayesian
implementation.
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Gijbels [1996]. Using LPE automatically takes care of this boundary issue

without trimming the data.6

This paper is organized as follows: Section (2) outlines the models, iden-

tification and estimation; Section (3) proposes the collusion-proof mecha-

nism; Section (4) explains the data and the ways to determine the colluding

bidders; Section (5) presents the empirical findings; Section (6) concludes.

Choice of bandwidths, tables and figure are collected in the Appendix.

2. MODEL, IDENTIFICATION AND ESTIMATION

In this section we consider a procurement auction, i.e. a low-price sealed

bid auction with asymmetric bidders: regular and fringe bidders. The sec-

tion is divided into two subsections. The first subsection considers the

model with and without collusion and covers nonparametric identification.

The second subsection deals with estimation.

2.1. Model and Identification. For every auction ℓ = 1, 2, . . . , L, a single

and indivisible project is procured to Nℓ ≥ 2 risk neutral bidders using first

price sealed bids mechanism. The essential characteristic of the project for

each auction is summarized by a random variable Xℓ ∈ R++, which for us

will be the engineer’s estimate of the project. We assume that there are two

types (k = 0, 1) of bidders with nkℓ type k bidders, for auction ℓ, such that

Nℓ = n0ℓ + n1ℓ.
7 In every auction ℓ a type k bidder draws his cost, i.i.d.

across all other bidders, from Fk(·|Xℓ, Nℓ). Further, we assume that the costs

are independent across auctions. Now, we consider two cases: competition

and collusion.

2.1.1. Competition. The set of observables W is

W :=
{

Xℓ, n0ℓ, n1ℓ, {b0i}n0ℓ
i=1, {b1i}n1ℓ

i=1,
}

, ℓ = 1, 2, . . . L.

where bki is the bid by type k ∈ {0, 1} bidder i ∈ nkℓ. Then we make the

following assumptions:

Assumption 1. (A1)

6As far as we know, the only other paper to use LPE in empirical auction is Gabrielli and
Vuong [2010], who use it to propose a

√
n− consistent semiparametric estimation method.

7We abuse the notation to use nk as both the number and set of type k bidders.
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(1) Exogenous Participation: Fk(·|X, N) = Fk(·|X) for k = 0, 1.

(2) For each ℓ and each k ∈ {0, 1} the variables Ckiℓ, i ∈ nkℓ ∼ iid Fk(·|·) with

density fk(·|·) conditional on Xℓ.

(3) An auction ℓ has Nℓ ∈ {n, n} risk-neutral bidders with n ≥ 2.

(4) The three- dimensional vector (Xℓ, n0ℓ, n1ℓ) ∼ iid Qm(·, ·, ·) with density

qm(·, ·, ·) for all ℓ = 1, 2, . . . L.8

(5) The observed type k ∈ {0, 1} bids Bk ∼ iid Gk(·|Xℓ, Nℓ) with density

gk(·|Xℓ, Nℓ).

A strategy for bidder i of type k is a strictly increasing, type symmetric

bidding strategy sk : [c, c] → [c, c]. Type k bidder i solves

max
b

Πk(bi; ci, Xℓ, Nℓ) = max
bi

(bi − ci)
∏

j∈nk\{i}
(1 − Fk(s

−1
k (bi)|Xℓ))

j
∏

j∈nk′

(1 − Fk′(s
−1
k′ (b)|Xℓ))

j

= max
bi

(bi − ci)
∏

j∈nk\{i}
(1 − Gk(bi|Xℓ, Nℓ))

j
∏

j∈nk′

(1 − Gk′(bi|Xℓ, Nℓ))
j,

where k 6= k′ ∈ {0, 1} and Gk(b|Xℓ, Nℓ) = Fk(s
−1
k (b)|Xℓ) is the probability

that bidder j ∈ nkℓ\{i} will bid less than b, and likewise for k′.9 The first

order condition for i ∈ nkℓ is

(bki − cki) =
1

(nkℓ − 1) gk(bki|Xℓ,Nℓ)
1−Gk(bki|Xℓ,Nℓ)

+ nk′
gk′ (bki|Xℓ,Nℓ)

1−Gk′ (bki|Xℓ,Nℓ)

. (1)

This first order condition with the boundary conditions sk(c) = c, k = 0, 1

uniquely characterizes optimal bidding strategy for all bidders. The model

structure is the type specific conditional distribution of cost {Fk(·|Xℓ)} for

k = 0, 1 given X. But since the data provide information on the character-

istics of the project that is being procured, Xℓ in the ℓth project, we can con-

sider only the type specific conditional cost distribution Fk(·|Xℓ), k = 0, 1 as

the structural parameter. The question of identification is to ask if there are

two pairs of cost distributions {F0(·|Xℓ), F1(·|Xℓ)} and {F
′
0(·|Xℓ), F

′
1(·|Xℓ)}

8We abuse the notation to use nkℓ to represent both the random variable and its realiza-
tion and Q(·) is a product of absolutely continuous measure and a counting measure.

9 The second equality follows from Assumption (A1.1)- exogenous participation. This
mapping between bids and valuation distribution under equilibrium condition is due to
Guerre, Perrigne, and Vuong [2000].
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that are observationally equivalent. Evaluating (1) at the estimated bid dis-

tribution and densities, we see that for each auction ℓ, bid bki uniquely de-

termines the cost

cki = bℓki −
1

(nkℓ − 1)
gk(b

ℓ
ki|Xℓ,Nℓ)

1−Gk(b
ℓ
ki|Xℓ,Nℓ)

+ nk′ℓ
gk′ (b

ℓ
ki|Xℓ,Nℓ)

1−Gk′ (b
ℓ
ki|Xℓ,Nℓ)

, (2)

thereby identifying {F0(·|Xℓ), F1(·|Xℓ)} that is consistent with the data.

2.1.2. Collusion. Now, we also consider a model where some of the type 1

bidders collude. We maintain all the afore mentioned assumptions. For ev-

ery auction ℓ, let Mℓ ⊂ n1ℓ be the set of bidders who collude. We focus on

efficient collusion where the colluders have access to a centralized mecha-

nism that can control the bids placed by the members in the real auction. So

there will be only one serious bid in each auction from the bidders in Mℓ

and the rest will be just cover-bids. We also assume that the bidders outside

the ring are unaware about the ring. This means that when we map the ob-

served bids to the underlying cost we consider only the minimum bid b∗1ℓ
among the bidders in Mℓ and the bids by everyone outside Mℓ to estimate

the type 1 bid distribution and density G∗
1 (·|·, ·) and g∗1(·|·, ·). Then, we can

use these estimates instead of G1 and g1 in (2) to recover the pseudo cost for

each non-members. But for the the minimum bid we use

ĉ1ℓ = b∗1ℓ −
1

(n1ℓ − (|Mℓ| − 1))
g∗1(b

∗
1ℓ|Xℓ,Nℓ)

1−G∗
1 (b

∗
1ℓ|Xℓ,Nℓ)

+ n0
g0(b

∗
1ℓ|Xℓ,Nℓ)

1−G0(b
∗
1ℓ|Xℓ,Nℓ)

, (3)

where the main difference from the non-colluders is that while the non-

colluders think they are competing with n1ℓ type-1 bidders and n0ℓ type

0 bidders, the ring knows that it is competing with only n1ℓ − (|Mℓ| − 1)

bidders. For type 0 bidders, just like with the type 1 non-colluders, the only

difference is that the appropriate type 1 bid distribution and density are,

respectively, G∗
1 (·|·, ·) and g∗1(·|·, ·).

2.2. Estimation. In the first step we estimate the conditional bid distribu-

tions Gk(·|X, N) and the bid densities gk(·|X, N) given the engineer’s esti-

mate X and the set of bidders N, using Local Polynomial Estimation (LPE)

method, see Fan and Gijbels [1996]; Gabrielli and Vuong [2010].
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Consider a bivariate i.i.d. data {Xi, Yi}n
i=1. Our interest is the regres-

sion function m(x0) and its derivatives m′(x0), m′′(x0) and so on till mp(x0).

Hence, we regard the model E[Y|X] = m(X). Under the assumption that

(p + 1)th derivative of m(·) at x = x0 exists, LPE can approximate m(·) by a

polynomial of order p. Taylor expansion gives

m(x) ≈
p

∑

j=0

mj(x0)
(x − x0)

j

j!
,

and this polynomial is fitted locally by a weighted least squares regression

that minimizes

n
∑

i=1

{Yi −
p

∑

j=0

β j(x − x0)
j}2Kh(Xi − x0),

where h is the bandwidth, Kh(·) = K
( ·

h

)

/h with K a kernel function. If

β̂ j, j = 0, . . . , p is the solution to the weighted least squares then it is clear

that j!β j(x0) is the estimator for mj(x0), j = 0, . . . , p. For us, Y will be the in-

dicator function and hence β0(·) will be the LPE estimator of the conditional

bids distribution and its first derivative β1(·) will be the corresponding den-

sity. The exact form used for our estimation is given in Appendix (A-1). We

make the following assumptions for estimation.

Assumption A3:

(i) The kernels KG(·), K0g(·) and K1g(·) are symmetric with bounded hyper-

cube supports and twice continuous bounded derivatives with respect to

their arguments,

(ii)
∫

KG(x)dx = 1,
∫

K0g(x)dx = 1,
∫

K1g(b)db = 1

(iii) KG(·), K0g(·) and K1g(·) are of order R− 1. Thus moments of order strictly

smaller than R − 1 vanish.

Assumption A4: The bandwidths hG, h1g and h2g satisfy

(i) hG → 0 and
Lhd

G

log L
→ ∞, as L → ∞,

(ii) h0g → 0, h1g → 0 and
Lhd

0gh1g

log L
→ ∞, as L → ∞.
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From this assumption it is clear that it is possible to choose the optimal

bandwidths, i.e. the bandwidths proposed in Stone [1982]. Unlike GPV we

do not need to specify a “boundary bandwidth” since the local polynomial

method does not require knowledge of the location of the endpoints of the

support. Therefore, it is not necessary to estimate the boundary of the sup-

port of the bid distribution. This is necessary when one needs to trim out

observations, which we do not given that our estimator is not subject to the

so–called boundary effect. We have 3 conditioning variables, one that is

continuous and two that are discrete. Thus, we have to adapt the definition

of the LPE to the present case. However, the discrete variables do not affect

the asymptotic properties of the estimator, so in order to choose the optimal

bandwidth the relevant number of covariates to consider is the number of

continuous variables. 10

We will denote by p the number of continuous variables and by d the to-

tal number of conditioning variables. For our application, d = 3 and p = 1.

Let ψ̂ = ĝ(·|·, ·)/1 − Ĝ(·|·, ·) be the estimator of ψ(·|·, ·, ·) = gk(·|·, ·, ·)/1 −
Gk(·|·, ·, ·). From Proposition 1 in Guerre, Perrigne, and Vuong [2000] we

know that Gk(·|·) is R + 1 times continuously differentiable on its entire

support and therefore gk(·|·) is R times continuously differentiable on its

entire support as well.11 Given the smoothness of each function we propose

to use a LPE (R), i.e. a LPE of degree R, for Gk(·|·, ·, ·) and a LPE (R − 1) for

gk(·|·, ·, ·). Following Fan, Gasser, Gijbels, Brockmann, and Engel [1993] we

can show that the bid distribution is consistent and following Guerre, Per-

rigne, and Vuong [2000] it is easy to see that the estimated costs are strongly

consistent. The exact econometrics model and the selection of optimal band-

width are explained in Appendix A-1.

3. COLLUSION PROOF MECHANISM

We begin with an example, adopted from Chen and Micali [2012] and for

more formal and through treatment we direct the readers to that paper.

10 Similar observation is made by Abadie and Imbens [2006].
11From Proposition 1 by Guerre, Perrigne, and Vuong [2000], we also know that the

conditional density g0(·|·, ·) is R + 1 times continuously differentiable on a closed subset of
the interior of the support and thus the degree of smoothness closed to the boundaries and
at the boundaries of the support is not R + 1.
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Example 1. Consider 4 risk neutral bidders with cost (1, 1, 100, 100) and the first

and second bidders collude together. Furthermore, suppose that they have a wrong

belief about the types of the other two bidders. In particular they believe that their

respective costs are (0.1, 2). Under competitive second price auction one of the two

bidders will sell the object at 100. Under collusion they could adopt the following

strategy: 1 bids 1 and 2 bids 100. The real bids will then be (1, 100, 100, 100) and

hence the coalition gets a surplus of 99 which can be shared easily between the two.

Now, suppose bidders report their bids (the price at which they are willing to sup-

ply the public good) and their coalition membership, if any. The winner is the bidder

who announces the lowest price and the price is equal to the second highest price

outside of the winner’s coalition, i.e. the price paid by a coalition is not controlled

by them. To see this, consider the following announcement (1, {1, 2}), (1, {1, 2}),
(100, {3}) and (100, {4}). This ensures strategy proof-ness and the object is sold

to coalition for 100.

The example shows that the mechanism is a slight variation of classic sec-

ond price auction, now with respect to coalitions rather than a singleton.

Let there be N < ∞ risk-neutral bidders in an independent private value,

low bid auction. Each bidder draws i.i.d cost C ∼ F(·).12 Let C represent

the partition of players such that each element of the partition represents

a coalition such that every singleton {i} ∈ C is an independent bidder,

and M is a generic element. The set was {{1, 2}, {3}} in the example. Let

M = {N, F(·), C} be the context of the game and is commonly known by all

the bidders. Moreover, we assume that for every coalition M ∈ C, the |M|−
tuple cost profile CM = {Ci : i ∈ M} is common knowledge only amongst

the bidders in that coalition. The seller, however, only knows {N, F(·)}.

Let {Ai, Pi}N
i=1 be an allocation and pricing rule, where Ai ∈ {0, 1} such

that
∑

i∈N Ai = 1 and Pi is the price paid by the bidder i. We assume that

all coalitions are efficient and hence when the ex-post utility of a bidder i is

(Pi − Ci)Ai, the utility of the coalition M is the sum across the members, i.e.

uM =
∑

i∈M(Pi − Ci)Ai. Each member i ∈ M acts to maximize uM(·).

12For notational ease, we treat all bidders to be symmetric, extending it to asymmetric
bidders is straightforward.
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Definition 1. An auction, for a context M, is directly collusive if the set of pure

strategies for i, si(·) consist of the set of all mapping from C 7→ (C, M).

So, a bidder with cost C reports his cost and the coalition M. Let uM(s)

denote the total utility of coalition M when everyone uses symmetric bid-

ding strategy s(·). Now, we are in a position to define dominant-strategy

truthfulness and coalitional rationality.

Definition 2. An auction is collusively dominant-strategy truthful if, for all coali-

tion M ∈ C and all strategy profiles sM := {si(·) : i ∈ M} and s−M := {sj(·) :

j 6∈ C\{M}},

∀i ∈ M : uM((Ci, M), s−M) ≥ uM((C′
i , M′), s−M).

and is coalitionally rational if uM((Ci, M), s−M) ≥ 0.

Let s(·) = {(C1, M1), . . . , (CN, MN)} be an action profile. Then a disagree-

ment (in s(·)) is an ordered pair (i, j) such that Mi ∋ j but Mj 6∋ i. In other

words, we say that (i, j) is disagreement if i claims to be a part of collusion

ring Mi that contains j but j does not reciprocate. Given a profile s(·) the

outcome (A, P) is computed as follows: First, there is the punishing phase

if there is any disagreement, in which case Ai = 0 for all i. Then to deter-

mine the price we start with Pi = 0 and for each disagreement (i, j) charge

Pi = Pi + 2t and Pj = Pj − t, while keeping t with the seller.13 Second, when

there is no disagreement we initiate the standard phase where from the re-

ported coalitions the coalition partition C is constructed. Then, the lowest

bidder wins the auction and we determine the winning coalition M∗ and

charge

Pi =

{

0 if AM∗ =
∑

j∈M∗ Aj = 0

C1:(N\M∗) o/w

to every bidder i, where C1:(N\M∗) is the lowest bid from the bidder j 6∈ M.

Theorem 2. Chen and Micali [2012] The mechanism outlined above is (a) Collu-

sive dominant-strategy truthful; (b) Coalitional rational and ; (c) Efficient.

13 This punishment phase is off the equilibrium path and does not affect the estimation
results.



12 GAURAB ARYAL∗ AND MARIA F. GABRIELLI∗∗

Now, in the next section we analyze the data and determine the sets of

coalitions that are used for the counterfactual exercise later.

4. DATA

The aim of this section is to explain the main features of the data and to

explain how we determine the colluding rings. The data consist of the High-

way procurements in the state of California between January 2002 and Janu-

ary 2008, where the rights to maintain and construct highways and roads are

granted through sealed low-bid auctions (procurements) by the California

Department of Transportation (Caltrans).14 The data include information

about the characteristics of the projects that were let, the name of bidders

and their bid in each auction. The timing is as follows. First, during the

advertising period that lasts between three to ten weeks depending on the

size of the project, the Caltrans Headquarters Office Engineer announces a

project and solicits bids.15 Potential bidders express their interest by buying

the project catalogue. Second, sealed bids are received only from among

the potential bidders. Third, on the letting day, the received bids are ranked

and the project is awarded to the lowest bidder, provided that the bidder

fulfills certain responsibility criteria determined by federal and state law.

After each letting, the information about all bids and their ranking is made

public.

We divide bidders into two broad types of asymmetric bidders: the fringe

bidders (type 0) who bid in small projects and are infrequent and the main

bidders (type 1) who participate frequently and in bigger projects. The pri-

vate cost is interpreted as a reduced form of the real cost of production and

depends on many unobservable characteristics of the bidder. The data con-

sist of 2,152 projects awarded by Caltrans for a total of $7,645 millions but

we focus only on 1,907 projects that had at least two bidders. Of all bidders,

only 823 bidders bid at least once. In the remaining subsection we deter-

mine the set of bidders who fail the tests proposed by [Bajari and Ye, 2003]:

14 The data is publicly available at http://www.dot.ca.gov/hq/esc/oe/awards/

bidsum/.
15 Some examples of projects include asphalt repaving, road paving, bridge reconstruc-

tion, striping the highway, constructing, replacing and widening brides, storm damage
repair, etcetera.
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the colluders. We find that the fifteen type 1 bidders, who bid simultane-

ously more often on a pairwise basis, fail at least one of the conditions by

[Bajari and Ye, 2003] for competitive bidding. Since we do not know the

true collusive ring, we further explore some other features in the data in a

hope to narrow the set of members in the ring. Looking at the frequency

of their bids and their winning patterns we narrow the coalition to only

four bidders. The exact process is explained in the reaming of this section.

The main difficulty with this exercise is to determine the set of colluders,

so the way we determine these two sets should be taken as suggestive and

exploratory.16

4.1. Bidding Ring. To identify the ring members, we focus only on the

projects that are worth between $1 million and $20 million as smaller projects

are unlikely to be worth the risk. There are 724 such projects that worth

$2,408 millions (31% of the total) with 413 bidders out of which 202 win at

least once. Furthermore, following the literature we define regular bidders

as bidders who have a nontrivial revenue share (at least 1% ) in the mar-

ket. Twenty-five bidders satisfy this criteria and will henceforth be called

the type 1 bidders and the remaining bidders are the fringe (type 0) bidders

– see Table A-1. The first column is the index of the bidders while the sec-

ond column gives the number of bids of each of them. To assess the market

power of each bidder we define “expected win” (see below) and compare

it with the actual number of wins: bidders with consistently higher actual

win than the expected win will be termed as those who have higher market

power. Expected number of wins is defined as follows: consider A, who

bids on a total of 50 projects against a varying number of bidders, nℓ for

ℓ = 1, . . . , 50. Then his expected win is defined to be
∑50

ℓ=1 1/nℓ. By compar-

ing third and fourth column, we see that with the exception of five bidders,

all bidders win more contracts than expected. The fifth column reports the

average bid of each bidder and the sixth column reports the revenue share –

the total value of the bidder’s winning bid as a fraction of the total value of

16 The main point is, we can either use the tests from the literature and be agnostic about
the nature of the collusive ring or try and explore some other features besides the test to
determine the ring, in a hope that the exploration helps us find the “true” collusive rings.
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winning bids for all contracts. The last column is the participation rate (i.e.

the bid frequency rate), and bidder D is the one that stands out at 44%.

Table A-2 contains the summary statistics from which we can conclude:

(i) on an average there are slightly more than four bidders; (ii) average win-

ning bid is $3.33 million, which is less than the average engineers’ estimate

of $3.77 million while the average bid is $3.79 million; (iii) money on the

table – the difference between the highest and the second highest bid – is on

average $300,000 suggesting informational asymmetry among bidders. We

also find that distance between the bidder’s office and the site of project has

no bearing on the bids. In general higher valued projects (between $1 mil-

lion and $20 millions) attract relatively fewer bidders, suggesting that it is

the main bidders who can gain the most by colluding and moreover, larger

projects are more profitable, all else equal.

Now, we follow the tests proposed by [Bajari and Ye, 2003] on this sub-

sample of bids for twenty five type 1 bidders. The basic idea behind the

tests is to detect those bidders whose bidding pattern systemically violate

competitive and independent bidding. To increase the likelihood of pick-

ing a coalition we give more emphasis to bidders who participate in the

same auction because as the theoretical literature suggests ring members

tend to participate in the same auctions to enforce the bidding agreement.

To this end, we consider all combinations of pairs and select those bidders

that have at least fifteen simultaneous bids, see Table A-3. There are fifteen

bidders who bid frequently together.17

First, to test independence we consider the fifteen pairs of bidders bid-

ding frequently described above and estimate the following models for fif-

teen type 1 bidders and the remaining bidders, respectively

BIDiℓ/EEℓ = γ0 + γ1LDISTiℓ + γ2CAPiℓ + γ3UTILiℓ + γ4LMDISTiℓ + uiℓ (4)

BIDiℓ/EEℓ = α0 + α1LDISTiℓ + α2CAPiℓ + α3UTILiℓ + α4LMDISTiℓ + ςiℓ. (5)

Here LDISTiℓ is the logarithm of distance, LMDISTiℓ is the logarithm of the

minimum of distances of all bidders (except i) to the project ℓ and UTILiℓ is

the utilization rate of the capacity. We define the utilization rate as Utilit =

17This cutoff is based on the data and is big enough to capture the simultaneous bidding
but not too big so that we have enough observations left for the test.
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Backlogit/Capacityi, where backlog is defined as the past projects that were

won but yet to be completed and the capacity is the total capacity of bidder.

We find that approximately 60% of bids are explained by capacity, although

the effect varies across bidders; for more on the effect of capacity utilization

on bidding behavior see [Jofre-Bonet and Pesendorfer, 2003]. For the bid-

ders listed in Table A-3 (those who participate frequently) we estimate (4)

with bidder–varying coefficients and for the rest we use (5).

For every pair i, j, from the fifteen type 1 bidders, let ρij = corr(ûiℓ, ûjℓ),

be the correlation between estimated residuals. We use the Pearson’s corre-

lation test for independence and find that for all but one pair, bidder D and

W, we reject the null hypothesis of independence at 5% level; see Table A-4.

Second, we test exchangeability

H0 : (∀i, j, i 6= j), (∀s ∈ {1, 2, 3, 4}) βis = β js,

HA : (∃i, j, i 6= j), (∃s ∈ {1, 2, 3, 4}) βis 6= β js,

at both market level by pooling the fifteen bidders in one group and on a

pairwise basis. Let T = 3, 347 be the number of observations, m the number

of regressors and k the number of constraints implied by H0. Then under the

null the test statistic F = (SSRC−SSRU)/r
SSRU/(T−m)

⇒d F(r, T − m). At the market level,

exchangeability hypothesis imposes that the effect of the four explanatory

variables is the same for both potential ring members and the remaining

bidders. Since there are fourteen dummies (indexing the bidders) and for

each case there are four restrictions (under null), the total number of restric-

tions imposed under the null is k = 56. Here m = 748 and n−m = 2599 and

the estimated F− statistic is 5.934 with the upper tail area equal to 0.0000.

Therefore we reject the null of exchangeability when comparing the fifteen

bidders (potential cartel members) against the remaining bidders. The as-

sumption thus far is that all fifteen bidders form one single coalition and in

our counterfactual exercise of case 1, when we say potential colluders we

mean these fifteen bidders.

However, sustaining such a large coalition might be difficult. To see if we

can reduce the size of the coalition, we conduct pairwise tests by pooling

bidders accordingly and find that the hypothesis of exchangeability is re-

jected at conventional levels for 13 out of 15 pairs including the pair (D,P),



16 GAURAB ARYAL∗ AND MARIA F. GABRIELLI∗∗

(A,D) and (D,E). See Table A-5 for details. Comparing the “expected win”

with the actual win for these pairs, we do see that at least one member of

the pair wins often. Comparing Table A-1 and Table A-3 we can conclude

that : (i) firm A exclusively bids against firm D; (ii) firm E bids remarkably

frequently with both firm A and firm D; (iii) the pairs (D,P) and (A,D) have

the highest simultaneous bids. All of these suggest that bidders (A,D,E, P)

could be considered as potential collusive ring. Based on the previous anal-

ysis all pairs of bidders considered do not pass at least one of the tests for

competitive bidding. However, as mentioned above, taking into account the

number of simultaneous bids, bidders D and P bid simultaneously more of-

ten than others. And since the triplet (A,D,E) also fit the collusive behavior,

we consider colluding bidders to be (A, D, E, P).18

5. ESTIMATION RESULTS

In this section we present the main findings from estimation of the pseudo-

cost and from the counterfactual exercise of implementing CM-auction. As

we mentioned in the sections (2) and (4.1), we have two sets of type specific

costs and also two sets of colluders. The first case uses all the bids data to

recover cost and finds that fifteen out of twenty-five regular bidders could

be colluding according to Bajari and Ye [2003]. The second case takes into

account the fact that some bidders might already be colluding. To determine

the set of colluders we use the same tests as above and some other data fea-

tures, which allows us to identify a set of four bidders. In every auction

we discard all but the minimum bid by these four colluders to estimate the

cost.19

Let Mℓ be the set of colluders who are present in auction ℓ and let iℓ ∈ Nℓ

be the winner and b̃ℓ the corresponding bid. Let oℓ be the smallest cost

amongst all bidders participating in auction ℓ who do belong to the coalition

Mℓ. That is if the winner belongs to the coalition, i.e. iℓ ∈ Mℓ, then oℓ =

18 Ideally we would have liked to conduct the tests for every subsets of these fifteen
bidders not just the pairs, but the amount of data for each case is insufficient making the
tests unreliable.

19As mentioned earlier we assume that the coalition is rational and maximizes the total
payoff. This means only the bid corresponding to the lowest cost will be serious, the rest
will only be “cover-bids.”
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minj∈nℓ\Mℓ
Ĉj and if the winner is not a member of the coalition then we

can set oℓ = b̃ℓ, the real winning bid. Then the difference between CM-

auction and the data is rℓ = oℓ − b̃ℓ if the winner is a cartel member and

rℓ = 0 otherwise. Once we compute the change in cost rℓ for all auctions

the total change in cost of procuring is just
∑

ℓ rℓ. For the first case the total

set of colluders is the fifteen bidders (see section 4.1) and Mℓ = M ∩ n1ℓ.

Likewise for the second case we find that only M = {A, B, D, E} bidders

are consistent with collusion and hence Mℓ = n1ℓ ∩ {A, B, D, E}. Figure 1

shows the empirical CDF of rℓ for these two cases.

We find that, in the first case with large coalition, implementing CM-

auction increases the total cost by 48.8%, while for the second case the cost

increases by 10.8%. This difference in cost is not surprising given the differ-

ence in size of the two rings.

6. CONCLUSION

In this paper we ask why do not sellers choose auction formats that are re-

silient to collusion? We find that one important reason could be that it could

be too expensive to choose such an auction. In particular, we use estimates

from California highway procurement data on CM-auction. CM-auction

have many advantages: it is not based on any equilibrium notion and uses

dominant strategy truthfulness; it is easy to implement and requires mini-

mal common knowledge assumption; and it is also robust with respect to

the transfer among ring members.

We find that the procurement cost could increase by anywhere between

10.8%, to 48.8%. The cost could be this high because the auction is always

efficient, so one way to reduce the cost could be relax this demand. But

to know the exact cost, one needs to estimate the entire revenue-efficiency

frontier.

Finally, we acknowledge that the exogenous entry assumption could be a

strong assumption. Even though we know much more about how to esti-

mate auctions with costly and selective entry, Gentry and Li [2014], as far as

we know, nothing is known about auctions that are both collusive dominant

strategy truthful and that allow bidders to collude prior to their participa-

tion decisions, which is an important area of research.
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APPENDIX

A-1. ESTIMATION

In this section we outline the estimation problem and discuss the choice

of bandwidths and kernels. To account for the skewness in the bid distri-

bution, a widely observed problem encountered with auction data, we use

logarithmic transformation. For notational simplicity we suppress the de-

pendance of the distributions on (X, N), unless otherwise noted. Log trans-

formation of (2) gives

ckM = ξk(dk, n) = edk − edk

(nk − 1) gkd(dk|·,·)
1−Gkd(dk|·,·) + n1

g1d(dk|·,·)
1−G1d(dk|·,·)

(6)

where dk = ln(bk) and Gkd(·|·, ·), gkd(·|·, ·) are the distribution and density

of log(bk) for type k. Define KH(u) = |H|−1K(H−1u), where H is a non-

singular d × d matrix, the bandwidth matrix that usually takes the form

H = hId and |B| denotes its determinant. The observations are given by

{(ZT
i , Yi) : i = 1, . . . , n} with Zi = (Xi, N0i, N1i)

T. Let (x, n0, n1) be a point in

R3. The estimators involved are, as mentioned above Local Polynomial Esti-

mators. For our application, R = 2 and therefore we implement a LPE(2) for

each cdf involved and a LPE (1) for each pdf involved. Let YG
pℓ = 1I(Bpl ≤ b).

Using a local quadratic approximation to estimate each cdf implies obtain-

ing the solution to the following least squares minimization problem

L
∑

{ℓ:Iℓ=i}

i
∑

p=1

{

YG
pℓ −

[

β0 + β1(Xpℓ − x) + β2(N1ℓ − n1) + β3(N0ℓ − n0)

+β11(Xpℓ − x)2 + β12(Xpℓ − x)(N1ℓ − n1) + β13(Xpℓ − x)(N0ℓ − n0)

+β23(N0ℓ − n0)(N1ℓ − n1) + β22(N1ℓ − n1)
2 + β33(N0ℓ − n0)

2
]}2

KH (Z − z)

with respect to βG = (β0, β1, β2, β3, β11, β12, β13, β23, β22, β33). In particular

we are interested in β0 = G(b|x, n0, n1); see Fan and Gijbels [1996]. Then, we

know from the least squares theory that β̂G = (ZT
GWGZG)

−1ZT
GTGY, where

the design matrix ZG for the local quadratic case (what we use) is
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ZG =









1 (X1,1 − x) (N0,1 − n0) (N1,1 − n1) (X1,1 − x)2 (X1,1 − x)(N0,1 − n0)
...

...
...

...
...

...

1 (X1,ni
− x) (N0,ni

− n0) (N1,ni
− n1) (X1,ni

− x)2 (X1,ni
− x)(N0,ni

− n0)

(X1,1 − x)(N1,1 − n1) (N0,1 − n0)(N1,1 − n1) (N0,1 − n0)
2 (N1,1 − n1)

2

...
...

...
...

(X1,ni
− x)(N1,ni

− n1) (N0,ni
− n0)(N1,ni

− n1) (N0,ni
− n0)

2 (N1,ni
− n1)

2









For the densities involved define Y
g
pℓ = 1

h2g
K2g

(

Bpℓ−b

h2g

)

. We use a local

linear estimator, i.e. LPE(1) which, as before, is obtained as the solution to

the following least squares problem

L
∑

{ℓ:Iℓ=i}

i
∑

p=1

{

Y
g
pℓ − β0 + β1(Xpℓ − x) + β2(N1ℓ − n1) + β3(N0ℓ − n0)

}2
KH (Z − z)

It is well known that β̂g = (ZTTgZ)−1ZTTgY. The design matrix Z for the

local linear case is

Z =









1 (X1,1 − x) (N0,1 − n0) (N1,1 − n1)
...

...
...

...

1 (X1,ni
− x) (N0,ni

− n0) (N1,ni
− x)









.

The corresponding weighting matrix for each estimation procedure are TG =

diag{KH(Zi − z)} and Tg = diag{KH(Zi − z)}, respectively. The band-

widths and kernels involved for distributions and densities are different.

A-1.1. Choices of Kernels and Bandwidths. Since the exact choice of the

Kernels is not crucial for inference, we use product of univariate kernels to

represent the multivariate kernel, i.e.

Km

(

a − Ak

hg
,

b − Bk

hg
,

n − Nk

hgn

)

= Ka

(

a − Ak

hg

)

Kb

(

b − Bk

hg

)

Kn

(

n − Nk

hgn

)

.

Here, Km(·, ·, ·) is the multivariate Kernel, Ka(·) and Kb(·) denote the uni-

variate Kernels corresponding to the continuous variables A and B, respec-

tively, and Kn(·) is the kernel for the discrete variables such that Kn(·) :=
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Kn0(·) · Kn1
(·) · Kn2(·). The kernels for continuous variables should be sym-

metric with bounded supports, so we decided to use the Epanechnikov Ker-

nel function K(u) = 3/4(1 − u2)1I(|u| ≤ 1), as it is an optimal Kernel in the

sense that it minimizes the asymptotic mean squared error over all non-

negative functions Fan, Gasser, Gijbels, Brockmann, and Engel [1993]. For

the discrete variables, we use Gaussian Kernel because, as there is less vari-

ation in the number of bidders it is desirable to give less weight to obser-

vations farther from the point at which estimation takes place and is best

achieved with a kernel with unbounded support.20 We assume the smooth-

ness parameter R = 2 for the cost distribution. To ensure uniform consis-

tency at the optimal rates, the bandwidths for the continuous variables are

chosen to be hg = 1.06 × 2.214 × σ̂ × (T)−1/(2R+1), hG = 1.06 × 2.214 × σ̂ ×
(T)−1/(2R+3). The constant term comes from the so–called rule of thumb

and the factor 2.978 is the one corresponding to the use of Epanechnikov

Kernels instead of Gaussian Kernels; see [Hardle, 1991].

20There are no theoretical restrictions to the kernels applied to discrete variables.



Is Collusion Proof Auction Expensive? Estimates from Highway Procurements 21

A-2. TABLES AND FIGURES

TABLE A-1. Revenue Shares and Participation of Main Firms

Firm Number of Number of Exp. Number Average bid Revenue Participation
ID Bids wins of wins (Mill. $) Share rate

A 50 9 10.34 4.83 0.020 0.07
B 34 13 10.51 3.21 0.012 0.05
C 43 9 10.46 5.32 0.013 0.06
D 319 97 87.32 3.61 0.145 0.44
E 46 11 10.15 4.49 0.015 0.06
F 42 15 10.70 3.63 0.016 0.06
G 25 12 5.84 4.09 0.027 0.03
H 26 6 5.16 5.03 0.011 0.04
I 21 7 4.27 4.54 0.012 0.03
J 20 9 4.69 3.84 0.015 0.03
K 34 4 6.90 8.44 0.019 0.05
L 35 16 7.95 4.32 0.020 0.05
M 29 13 6.94 3.69 0.016 0.04
N 9 3 1.55 6.33 0.012 0.01
O 31 5 6.82 6.37 0.011 0.04
P 50 16 12.95 4.03 0.027 0.07
Q 33 9 6.31 3.35 0.017 0.05
R 28 10 8.10 3.48 0.012 0.04
S 47 12 8.82 4.37 0.021 0.06
T 25 13 5.99 3.75 0.021 0.03
U 68 16 15.22 4.77 0.026 0.09
V 26 7 4.78 5.75 0.025 0.04
W 41 11 7.18 2.92 0.019 0.06
X 41 7 10.27 4.50 0.021 0.06
Y 11 4 1.89 6.04 0.012 0.02

Total 1148 351 282 0.57

Only bidders with revenue shares ≥ 1% are reported.

TABLE A-2. Summary Statistics

No. observations Mean SD

No. Bidders 724 4.62 2.37
Winning bid 724 3.33 3.11
Money on the table 724 0.30 0.46
Engineers’ Estimate 724 3.77 3.49
All Bids 3347 3.79 3.51
Backlog 3347 4.30 9.76
Distance (miles) 3347 123.98 162.93
Capacity (across bidders) 413 2.30 5.69
Utilization rate 3347 0.20 0.32

All dollar figures are expressed in millions. Utilization rate is the ratio of backlog to

capacity.
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TABLE A-3. Summary of Simultaneous Bids

Bidder # of Simultaneous # of Expected First bidder of the Pair Second bidder of the Pair
Pair Bids Wins Wins Wins

(A,D) 44 9.03 9 5
(A,E) 20 4.05 3 6
(B,D) 29 9.51 12 10
(C,D) 17 5.65 5 9
(D,E) 41 8.67 8 9
(D,F) 26 7.46 5 9
(D,H) 19 3.92 7 3
(D,I) 18 3.68 1 7
(D,O) 25 5.16 7 5
(D,P) 44 11.08 13 14
(D,R) 27 7.96 10 10
(D,V) 22 4.20 5 6
(D,W) 19 2.97 2 3
(M,X) 22 4.91 11 2
(W,X) 15 2.81 5 2

TABLE A-4. Conditional Independence Test

Bidder Pair Test Statistic p-value n deg. freedom
(A,D) 0.7660 0.0000 44 42
(A,E) 0.7427 0.0002 20 18
(B,D) 0.7331 0.0000 29 27
(C,D) 0.9239 0.0000 17 15
(D,E) 0.6530 0.0000 41 39
(D,F) 0.7570 0.0000 26 24
(D,H) 0.4734 0.0406 19 17
(D,I) 0.7121 0.0009 18 16
(D,O) 0.7643 0.0000 25 23
(D,P) 0.8538 0.0000 44 42
(D,R) 0.8555 0.0000 27 25
(D,V) 0.6877 0.0004 22 20
(D,W) 0.4305 0.0658 19 17
(M,X) 0.6529 0.0010 22 20
(W,X) 0.6271 0.0123 15 13

TABLE A-5. Exchangeability Test on Pairwise Basis

PAIR F UTA k m n-m
(A,D) 5,2001 0,0000 8 796 2551
(A,E) 2.3540 0.0161 8 796 2551
(B,D) 5.9354 0.0000 8 796 2551
(C,D) 8.4271 0.0000 8 796 2551
(D,E) 7.9549 0.0000 8 796 2551
(D,F) 6.8441 0.0000 8 796 2551
(D,H) 5.2001 0.0000 8 796 2551
(D,I) 4.1670 0.0001 8 796 2551
(D,O) 5.5088 0.0000 8 796 2551
(D,P) 7.1682 0.0000 8 796 2551
(D,R) 6.1147 0.0000 8 796 2551
(D,V) 3.7384 0.0002 8 796 2551
(D,W) 4.6217 0.0000 8 796 2551
(M,X) 0.7984 0.6040 8 796 2551
(W,X) 0.3509 0.9458 8 796 2551
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FIGURE 1. ECDFs of extra cost under competition and collusion, respectively.
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Supplementary Appendix: Not for Publication

STEPS FOR ESTIMATION

To make the estimation procedure transparent we outline the steps re-

quired to estimate the (pseudo) costs:

(1) Case 1: Competition case where collusion comes only for counterfac-

tual.

(a) Choose appropriate Kernels and determine the optimal band-

widths, see Section (A-1.1).

(b) Use {{b0i}n0ℓ
i=1, Xℓ}L

ℓ=1 to estimate ĝ0(b|Xℓn0ℓ) and Ĝ0(b|Xℓ, n0ℓ)}
on [min b0, max b0] such that ĝ0(b|·, ·) = 0 if b 6∈ [min b0, max b0].

(c) Suppressing the conditioning variables, define ĝ0(b) = max(0, ĝ0(b))

and Ĝ0(b) = min(1, Ĝ0(b)).

(d) Repeat Steps (3) and (4) for {{b1i}n0ℓ
i=1, Xℓ}L

ℓ=1 to estimate ĝ1(b|Xℓ, n1ℓ)

and Ĝ1(b|Xℓ, n1ℓ)}.

(e) Use the estimates {Ĝ0, ĝ0} evaluated at b0 and {Ĝ1, ĝ1} evalu-

ated at b1 to interpolate:

(i) For every b0i from the type 0 bids, find the highest lower

bound of bid b1i(b0i) and the lowest upper bound b1i(b0i)from

type 1 bids data such that bi1(b0i) ≤ b0i ≤ bi1(b0i).

(ii) Determine the weight w0i =
b0i−b1i(b0i)

b1i(b0i)−b1i(b0i)
.

(iii) Then define ĝ1(b0i) = w0i ĝ1(b1i(b0i))+ (1−w0i)ĝ1(b1i(b0i)).

(iv) Similarly, determine Ĝ1(b0i) = w0iĜ1(b1i(b0i))+ (1−w0i)Ĝ1(b1i(b0i)).

(v) Repeat (a) - (d) for all bids b0i in the domain of observed

range of bids b1i. For bids b0i not in the domain put the

interpolation density to zero.

(vi) Repeat (a) - (e) for bids b1i.
21

(f) The corresponding estimates of the (pseudo) costs are

21We have now 4 sets, the cdf/pdf for both types evaluated at their corresponding data
and then the remaining 2 sets that are determined from interpolation of the estimated
cdf/pdf.
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(i) The cost c0i of bidder i ∈ n0ℓ who bids bℓ0i is

cℓ0i =















b0i − 1

(n0−1)
ĝ0(b0i |Xℓ ,n0ℓ ,n1ℓ)

1−Ĝ0(b0i |Xℓ ,n0ℓ ,n1ℓ)
+n1

ĝ1(b0i |Xℓ ,n0ℓ ,n1ℓ)

1−Ĝ1(b0i |Xℓ ,n0ℓ ,n1ℓ)

, if b0i ∈ [mini b1i, maxi b1i],

b0i − 1

(n0−1)
ĝ0(b0i |Xℓ ,n0ℓ ,n1ℓ)

1−Ĝ0(b0i |Xℓ ,n0ℓ ,n1ℓ)

, o/w,

(ii) Similarly, cost c1i of bidder i ∈ n1ℓ is

cℓ1i =















b1i − 1

(n1ℓ−1)
ĝ1(b1i |Xℓ ,n0ℓ ,n1ℓ)

1−Ĝ1(b1i |Xℓ ,n0ℓ ,n1ℓ)
+n0

ĝ0(b1i |Xℓ ,n0ℓ ,n1ℓ)

1−Ĝ0(b1i |Xℓ ,n0ℓ ,n1ℓ)

, if b1i ∈ [mini b0i, maxi b0i],

b1i − 1

(n1ℓ−1)
ĝ1(b1i |Xℓ ,n0ℓ ,n1ℓ)

1−Ĝ1(b1i |Xℓ ,n0ℓ ,n1ℓ)

, o/w,

(g) Then we have {{c0i}n0ℓ
i=1, {c1i}n1ℓ

i=1, ℓ = 1, 2, . . . , L} pseudo-cost

vectors.

(h) To implement the counterfactual, we do the Bajari and Ye [2003]

tests on the type 1 bidders. We determine 15 bidders whose bid-

ding is at-odds with independent bidding and competition.

(2) Case 2: Estimating with Collusion:

(a) We begin with n0ℓ type-0 and n1ℓ type-1 bidders.

(b) We follow Aryal and Gabrielli [2013] and identify four bidders

M = {A, B, D, E} who are treated as colluders and take this into

account while estimating pseudo-costs.

(c) Determine Mℓ = M ∩ n1ℓ, the set of bidders in auction ℓ, for

every auction.

(d) Since type-0 case is unaltered, repeat 1(a)-1(d) to determine {Ĝ0, ĝ0}
(e) Determine the collusive bids for every auction, i.e. the set {b1i :

i ∈ Mℓ}, ℓ = 1, . . . , L, and for every auction determine {b∗1ℓ}L
ℓ=1.

Then, the effective type-1 bidder from the point of view of col-

luding bidders is n∗
1ℓ = n1ℓ − (|Mℓ| − 1) as the coalition Mℓ is

effectively treated as a single bidder, while the number of type-

1 bidders for those outside Mℓ is still n1ℓ. So we consider two

sub-cases: 22

(f) Colluders:

22It is possible that in an auction, Mℓ = 1, in which case the minimum is just the bid and
everything is the same. This means, we have two sets of {G1, g1} one for Mℓ and the other
for the rest.
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(i) In every auction we discard all but the minimum bid of the

ring. Let {{b∗1i}
n∗

1ℓ
i=1 : ℓ = 1, . . . , L} be the type 1 bids.

(ii) Using this set repeat 1(e) to estimate the pair {Ĝ∗
1 , ĝ∗1}.

(iii) Using the estimates from 2(d) and 2(f-ii), repeat the steps

1(f) and 1(g) to determine the pseudo-cost of the cartel:

c∗1ℓ =



















b∗1ℓ − 1

(n∗
1ℓ−1)

ĝ∗
1
(b∗

1ℓ
|Xℓ ,n0ℓ ,n∗

1ℓ
)

1−Ĝ∗
1
(b∗

1ℓ
|Xℓ ,n0ℓ ,n∗

1ℓ
)
+n0

ĝ0(b
∗
1ℓ
|Xℓ ,n0ℓ ,n1ℓ)

1−Ĝ0(b
∗
1ℓ

|Xℓ ,n0ℓ ,n1ℓ)

, if b∗1ℓ ∈ [mini b0i, maxi b0i],

b∗1ℓ − 1

(n∗
1ℓ−1)

ĝ∗
1
(b∗

1ℓ
|Xℓ ,n0ℓ ,n∗

1ℓ
)

1−Ĝ∗
1
(b∗

1ℓ
|Xℓ ,n0ℓ ,n∗

1ℓ
)

, o/w,

(g) Non-colluders: Since they still think they compete with n1ℓ bid-

ders, so like Case 1 we get

cℓ1i =



















b1i − 1

(n1ℓ−1)
ĝ∗

1
(b1i |Xℓ ,n0ℓ ,n∗

1ℓ
)

1−Ĝ∗
1
(b1i |Xℓ ,n0ℓ ,n∗

1ℓ
)
+n0

ĝ0(b1i |Xℓ ,n0ℓ ,n1ℓ)

1−Ĝ0(b1i |Xℓ ,n0ℓ ,n1ℓ)

, if b1i ∈ [mini b0i, maxi b0i],

b1i − 1

(n1ℓ−1)
ĝ∗

1
(b1i |Xℓ ,n0ℓ ,n∗

1ℓ
)

1−Ĝ∗
1
(b1i |Xℓ ,n0ℓ ,n∗

1ℓ
)

, o/w,

(h) Then we have {{c0i}n0ℓ
i=1, {c1i}n1ℓ\{Mℓ}

i=1 , {c∗1ℓ}; ℓ = 1, 2, . . . , L} pseudo-

cost vectors.23

(i) Then we can implement the collusion-proof mechanism.

23 To estimate the type 0 cost, we use {Ĝ∗
1 , ĝ∗1} and {Ĝ0, ĝ}.
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