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Abstract

In many markets, empirical evidence suggests that positive production cost shocks are trans-
mitted more quickly and fully to final prices than negative ones. This article explains asymmetric
price adjustment caused by firms imperfectly colluding on supra-competitive price levels. While
positive cost shocks are transmitted instantaneously, negative price adjustments only occur once
aggregate market demand turns out unexpectedly low. In equilibrium, this can be supported
whenever demand is sufficiently stable, and negative cost shocks are not too large.
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1 Introduction

A vast body of empirical evidence documents that positive production cost shocks tend to be
transmitted more quickly and fully to final prices than negative ones. For example, in a large
sample of 77 consumer and 165 producer goods, Peltzman (2000) finds that asymmetric price
adjustment (or rockets and feathers) can be observed in more than two thirds of the markets
he examined. Moreover, a multitude of individual empirical studies confirm asymmetric price
adjustment in markets related to retail and wholesale gasoline, certain agricultural products, and
banking.!

Ever since the seminal paper of Borenstein et al. (1997), collusion has been mentioned as
one likely cause of the phenomenon. However, apart from few specific exceptions which will be
discussed below, no rigorous model of collusive asymmetric price adjustment to common (market-
wide) production-cost shocks has been provided. The aim of this paper is to fill this gap in the
literature.

To this end, I provide a simple model of asymmetric price adjustment caused by firms imper-
fectly colluding on supra-competitive price levels. The main mechanism, which is inspired by an
informal discussion in Borenstein et al. (1997), works as follows. In the considered oligopolistic
market, firms would like to coordinate their prices on high levels, but a multiplicity of equilibria
and the prohibition of overt collusion renders coordination on arbitrary price levels impossible.
Instead, the firms use downward cost shocks as coordinating mechanism. Whenever a negative
cost shock hits the markets, they use the previous period’s price as focal point for collusion, which
lets them achieve supra-competitive profits during low-cost periods. Clearly, as this only requires
a passive pricing behavior of firms, the aforementioned coordination problem can be avoided. On
the other hand, the same logic does not prevail for positive cost shocks. Whenever a positive
cost shock occurs, the firms have no interest in sticking to a low price level, and increase their
prices immediately. Asymmetric price transmission results.

However, according to the above mechanism, negative cost shocks would never be transmitted
to final prices if the firms’ collusive scheme worked perfectly. This would be counterfactual to the
rockets-and-feathers pattern, which describes slowly falling prices following negative cost shocks.
I resolve this issue by introducing informational frictions. In particular, I assume that due to

substantial transaction costs (e.g., because of spatial distance or opportunity costs), the firms

1E.g., see Tappata (2009) for further references.



find it impractical to effectively monitor their rivals’ prices.? Instead, with a lag of one period,
they observe their own demand, which provides an imperfect signal about the other firms’ past
pricing. Hence, much in the spirit of Green and Porter (1984) and Tirole (1988), the firms
can only discourage profitable deviations (in the sense of undercutting the collusive price) by
punishing unusually low demand.

Now, in order to explain downward price adjustment, I model each firm’s demand as a con-
founded signal of the other firms’ pricing and a random, unobservable aggregate demand level.
This ensure that collusion must eventually break down on the equilibrium path, as very low
demand levels have to be punished in order to make collusion sustainable. It follows that price
adjustments to negative cost shocks occur with a delay. This is in contrast to positive cost
shocks, which, by the previous argument, are transmitted instantaneously.

My main findings are as follows. First, in order for an equilibrium of this type to be sustain-
able, it is necessary that each firm’s own demand provides a sufficiently precise signal about the
other firms’ pricing. This is always the case if the variance of the aggregate market demand is
sufficiently low. Second, given that the first property is satisfied, a sufficient equilibrium condi-
tion is that the size of the negative cost shock is not too large. Third, for any given probability
distribution of aggregate demand, asymmetric-pricing equilibria must break down as the number
of firms in the market grows large, firms highly discount future profits, or the low-cost state
becomes less and less persistent. And finally, a downward price adjustment similar to the one
described in the empirical rockets-and-feathers literature can be generated when one considers
the case of multiple independently operating submarkets.

The theoretical literature on asymmetric price transmission caused by collusion is scarce.?
To the best of my knowledge, the earliest article was given by Damania and Yang (1998), who
set up a model of asymmetric price adjustment to firm-specific (idiosyncratic) demand shocks.
The intuition is that if a firm is in an implicit collusive agreement and experiences a negative
demand shock that is not faced (and observed) by other firms, it might be reluctant to reduce its
output price, as this may trigger a punishment phase. Because the reverse logic does not hold

for positive demand shocks, asymmetric price adjustment to demand shocks may be implied.

2 All of the model’s main qualitative results prevail if the firms can only sometimes observes their rivals’ prices,
as long as this happens with sufficiently low probability. Further details can be obtained from the author upon
request.

3Many other explanations for asymmetric pricing have been proposed. These include consumer search costs
(Yang and Ye (2008), Tappata (2009), Lewis (2011), Cabral and Fishman (2012)), menu costs (Ball and Mankiw
(1994)), lags in adjustment of production and finite inventories (Borenstein et al. (1997)), habit formation and
consumption inertia (Xia and Li (2010)), and Edgeworth price cycles that merely resemble asymmetric pricing
(Eckert (2002)).



However, their article cannot explain asymmetric price adjustment to market-wide cost shocks,
which is the principal focus of the empirical literature.

In an attempt to model the German electricity spot market, Wolfing (2008) considers the case
of collusive asymmetric price transmission in supply-function equilibrium. The market structure
Wolfing considers is special, as firms have to submit supply-functions rather than set prices
directly. On top of the limited applicability of this setup to traditional markets, the model cannot
endogenously generate negative price adjustment on the equilibrium path. This is because firms
have to coordinate on the fraction of a cost shock that is submitted to final prices in each period,
and there is no reason why they should not collude perfectly (up to some maximal incentive
compatible level). This is in contrast to the present article, which endogenously explains price
transmission as coordination failure that must inevitably happen on the equilibrium path.

The most closely related theoretical work is given by Sherman and Weiss (forthcoming). In
order to match their empirical setting of a large outdoor market in Jerusalem, they model a spe-
cific market structure in which a horizontally differentiated “isolated” firm competes with several
homogeneous “rival” firms that compete a la Bertrand, and may engage in implicit collusion. The
crucial difference to the present model is a perfect observability of demand and prices, which
gives rise to contrasting empirical predictions. For example, colluding “rival” firms may instan-
taneously decrease their prices when costs decrease or aggregate market demand increases, as
under some parameter configurations, this implies that the maximally collusive scheme cannot be
supported anymore. In contrast, my model predicts downward price adjustment to negative cost
shocks as the result of punishment phases on the equilibrium path, which only happen following
severe negative demand shocks. Moreover, I impose less structure on the random demand distri-
bution, and do not consider an asymmetric market structure. Due to their different motivation
and partly opposing testable predictions, both models should be viewed as complimentary to
each other.

Out of the ample empirical literature on asymmetric price adjustment, a number of studies
report a link between the estimated market power of firms and the degree of asymmetric price
adjustment in their market. For the retail gasoline market, these studies include Deltas (2008),
Verlinda (2008), and Balmaceda and Soruco (2008). For example, analyzing a wide panel of
state-level average retail prices for 48 US-American states, Deltas (2008) finds a significant
correlation between average retail markups (as a proxy for market power) and the severity of
asymmetric price adjustment. Similar results, based on proximity to rival stations and brand

identity as measures for market power, are reported by Verlinda (2008), who uses a disaggregated



panel of station-level retail gasoline prices in Southern California. A comparable price-response
asymmetry can also be found in the banking sector. Analyzing the response of consumer deposit
interest rates to changes in the market interest rate, Hannan and Berger (1991) and Neumark
and Sharpe (1992) document that markets with a more concentrated banking sector are prone
to a higher degree of asymmetric pricing. In particular, the researchers find that deposit interest
rates rise slower following an increase in the market interest rate if the market concentration is
high. This is the interest-rate analogue to the more traditional setting where prices rise faster
than they fall facing negative cost shocks. As market power typically facilitates collusion, all
of the mentioned articles suggest that collusion may play a non-negligible role in explaining the
rockets-and-feathers pattern.

The remainder of this article is structured as follows. Section 2 introduces the model setup
and solves for the unique symmetric equilibrium of the stage game with arbitrary production
cost. In Section 3, a simple asymmetric-pricing strategy combination for an infinitely repeated,
dynamic version of the stage game (with fluctuating costs and demand) is constructed. Moreover,
necessary and sufficient conditions for equilibrium existence are provided. Section 4 extends the
baseline model of Section 3 to the case of multiple separated submarkets, allowing for a more
realistic pattern of the pricing asymmetry. Section 5 concludes. Technical proofs are relegated

to the appendix.

2 Model Setup and Equilibrium of the Stage Game

Consider a market with N profit-maximizing and risk neutral firms which compete over prices
p; (of some single homogeneous good produced) in a dynamic environment. Importantly, the
firms can never directly observe their rivals’ prices, both in the current and all bygone periods.
Instead, with a lag of one period, firms observe their own demand, which provides an imperfect
signal about their competitors’ past pricing.

Time is discrete, with ¢ = 1,2, .... In each period, all N firms face a common marginal cost ¢;.
For simplicity, I follow the majority of the theoretical literature on asymmetric price adjustment
by assuming that there are two cost states ¢y, cr, with ¢y > cr. These costs follow a two-state
Markov chain, where P(c;41 = cules = cg) = pu € (0,1), P(cyy1 = cpler = cy) = 1 — pu,
P(eiy1 = cepler = ¢p) = pr € (0,1), and P(¢i41 = cgler = ¢p) = 1 — pr. Firms discount future

profits with a common discount factor ¢ € (0, 1).



The demand side is characterized by a continuum of identical consumers with a random
total mass 6, (henceforth called “aggregate demand”) that is drawn from a stationary probability
distribution F(0) := P(f; < 6), where E(6;) = 1, in each period. F is assumed to be twice
continuously differentiable over its support [0, 6], where § > 1 may be infinite.* Moreover, for
every 6 € (0,0), f(#) :== F’() > 0, which implies that there are no gaps in the aggregate-demand
distribution. As with prices, the firms are unable to observe 0, directly. Further conditions on
F will be discussed later in the analysis.

The consumers always prefer buying over not buying and the total market demand is perfectly
inelastic at each point in time. The (random) demand of firm i if it prices at p; and all other

firms price at some vector p_; = (p1, ..., Di—1, Pi+1, -, PN ) 1S given by
D; =0 s;(pi;p—i), (1)

where s;(p;; p—;) is a function that maps a vector of prices to a market share s; € [0, 1] of the
aggregate demand 6. Since I will only consider symmetric equilibria in pure strategies, it is
sufficient to characterize s;(pi;p,...,p) := si(p:;P), where p is a price that is commonly chosen
by all firms other than 4, as well as s;(p; P(p;)), Where p(p,) denotes the price vector in which
the N — 2 firms other than j and 4 price at firm j’s price p, and firm i # j charges p;. In order
to minimize technicalities, I focus on a linear demand specification that can be seen as special
case of the well-known “spokes model” of non-localized spatial competition provided by Chen

and Riordan (2007). In particular, let the firms’ market shares be given by®

1 . N-—1 1

sipisp) = 5 —alpi—p) ifpi € |p——5— P+ | (2)
1 — s;(pi; p)

siPiPey) = —x 1 (3)

4Imposing zero as lower bound of the demand distribution implies that in any given period, the firms’ demand
may be arbitrarily low. Later in the analysis, this will guarantee that all negative cost shocks must be transmitted
eventually, although prices may be very sticky downward.

5Tn the relevant variant of the spokes model, N firms are located at the endpoints of different line segments
that have a common origin. The consumers are uniformly distributed along these segments, with the disutility of
purchasing at any given firm being proportional to the distance to the firm (consumers have to travel along the
line segments). Moreover, each consumer may only choose between purchasing at their “preferred” firm (which
is closest) and one random firm out of the N — 1 (equally distant) other firms. The considered market-share
function follows if N — 1 firms charge a common price p, and a single firm ¢ charges some arbitrary price p; (as
long as p; is not too low — in the original spokes model, s;(p;; p) can never exceed %)



where o = a(N) > 0 may depend on N.5

This specification summarizes the following ideas. First, if all firms price at some common
price level p, they split the aggregate market demand evenly. Second, if a firm unilaterally
deviates from a common price level, it receives a higher (lower) market share than its rivals if,
and only if, it prices lower (higher) than them. In the linear setup, the strength of the marginal
market-share response is given by a > 0 everywhere (where o may depend on N). And third,
given a unilateral deviation of firm i, all other firms share the residual demand evenly.”

Using this setup, it is straightforward to derive firm ¢’s (unique) best response to any price
vector p that is commonly chosen by all other firms. In a symmetric equilibrium, this best
response must be equal to p. Doing so, I find that the unique symmetric stage-game equilibrium

price is given by

1
* _ - 4
p*(c) =c+ N (4)
with associated equilibrium profits of
() =n" = — 5)
(o) =1 = —.

Note that the equilibrium price and profits decrease with the “degree of competition” a and
the number of firms N. In the limit as either & or N goes to infinity, each firm prices at marginal
cost and makes a profit of zero. Moreover, the equilibrium price shifts one to one with the cost
level ¢, while the equilibrium profits are independent of it.® A direct implication is that a cost
shock of size Ac is fully transmitted if and only if the firms’ prices also shift by Ac.

Finally, suppose that all firms price at some supra-competitive price level p = p*(c) + A,

where A > 0. Then, firm i’s incentive to marginally deviate is given by

8% (i — si(pip))| = —ah <0,

pi=P

6Tf p; < p— %, firm ¢’s price is so low relative to the other firms’ price p that it captures the whole market:

s; = 1. On the other hand, if p; > p+ ﬁ, firm ’s price is so high that it does not attract any consumers: s; = 0.

7All of the models’ main results carry over to the case of non-linear demand as long as these properties are
preserved, under the additional assumptions that %}’;?;p)‘ = —a(N) < 0 Vi,p, and that a stage-game
B Pi=p
equilibrium exists for ¢ € {cr, cr}. The first additional assumption means that each firm’s market share response
following a marginal deviation from a common price vector p is constant in the price level p. This is consistent
with markets in which consumers only care about absolute price savings.
8The latter two features are preserved in the non-linear-demand case as long as %Z?;p)
N Pi=PpP

—a(N) <0 Vi,p (see also the previous footnote).



Thus, each firm has an incentive to (marginally) undercut, and this incentive increases in the

competition intensity « and the premium over the competitive price level A.

3 Equilibrium of the Dynamic Game

In the stage game, each firm has an incentive to lower its price, starting from a collusive price
level p > p*(c). The goal of this section is to provide a necessary and sufficient condition for
collusion on supra-competitive price levels to be feasible, given the stochastic nature of aggregate
market demand and costs, as well as the firms’ inability to directly observe their rivals’ prices.

Unfortunately, due to the various “folk theorems” that have been proven in the literature
(see, e.g., Fudenberg and Maskin (1986)), it is well-known that any repeated game gives rise to
an infinite number of subgame-perfect equilibria, provided that the players’ (common) discount
factor is sufficiently close to one. In order to proceed with the analysis, I ignore equilibria in
which the firms coordinate on “arbitrary” price levels that have never been played in previous
periods, and which do not correspond to any stage-game equilibrium. While this assumption
is restrictive, it seems plausible that — in the absence of any communication — firms would find
it difficult to select an arbitrary equilibrium out of the infinitely many equilibria that can be
played. On the other hand, continuing to charge the same price after a negative cost shock has
happened is a simple and intuitive way of increasing any firm’s profit, provided that its rivals do
not adapt their prices either. In some sense, past price levels provide a natural focal point for
collusion.”

Hence, in what follows, I will focus on equilibria where the firms employ a simple mechanism
in order to enforce collusion on supra-competitive past price levels. Once a negative cost shock
hits the market such that the marginal production cost drops from cy to cp, the firms keep
pricing on the supra-competitive price level p*(cy) as long as their demand exceeds some critical
threshold k in each period. If the firms’ demand falls short of k, they enter a punishment phase
in which they charge the Nash-equilibrium price p*(cr) of the low-cost stage game until the next
opportunity for coordination arises.

More precisely, I consider symmetric equilibria in which each firm plays the following strategy.

1. Price at p*(cy) whenever ¢ = cp. (High-Cost Phase H)

9See Schelling (1960) for a seminal treatment of focal points.



2. If ¢ = ¢y, and demand has exceeded k in every period since ¢ last switched from cy to cp,

price at p*(cp). (Collusive Phase C)

3. If ¢ = ¢;, and demand has fallen short of £ in some period since c last switched from cy to

cr,, price at p*(cr.). (Punishment Phase P)

If an equilibrium of such a structure can be found, it must exhibit asymmetric price transmis-
sion. A downward cost shock from cy to ¢y, is not transmitted instantaneously to final prices,
as the firms keep pricing on p*(cpy) until demand turns out unexpectedly low. Only in that
case (which takes at least one period, as demand is observed with a lag), a punishment phase is
entered in which the firms reduce their prices to the equilibrium level p*(cr) of the stage game
with low costs. On the other hand, upward cost shocks from ¢y to cy are either transmitted
immediately (if the firms are currently in the punishment phase and price competitively), or not
at all (if the firms are currently in the collusive phase, i.e., a downward cost shock has never been
transmitted). In particular, if the low cost state is sufficiently persistent such that an upward
cost shock typically happens when the collusive phase has already ended, the well-documented
rockets-and-feathers pattern emerges.*°

I will now start to analyze equilibria of the described type. First, note that each firm’s
behavior is clearly optimal in both the high-cost phase and punishment phase. Given that all
other firms price at p*(cp) in the high-cost state (p*(cr) in the low-cost state) no matter what
happens (and given that an individual firm cannot influence when the high-cost or punishment
phase ends), a firm can do no better than by playing the stage-game best response p*(cg) (p*(cr.))
itself.

The non-trivial part of the suggested strategy-combination is the collusive phase. As collusion
on the supra-competitive price level p*(cg) in the low-cost state ¢y, should be sustainable, each
firm has to be deterred from profitably undercutting its rivals (and obtaining a larger market
share). As the firms are unable to observe their rivals’ price choices directly, the simplest way
to do so is by adequately punishing unexpectedly low demand. Doing so, the demand threshold
k must necessarily be chosen in such a way that each firm’s expected increase in profits by
marginally undercutting p*(cy) is exactly offset by an expected loss of profits due to a higher

probability of collusion to end.

10Moreover, from an outside perspective, the high-cost state is always associated with high prices, whereas the
low-cost state is only sometimes associated with low prices.



Let r(p;; p; k) denote the probability that any firm j’s demand exceeds k, given that all firms

j # i price at p and firm i prices at p;. It is then easy to see that'!

r(pi;pi k) =1-F (Uv_l)k)

1 — s;(pi; P)

whereas

r(p;p; k) =1 — F(Nk). (7)

As s;(p;; p) decreases in p; and is equal to % for p; = p, it can be seen that r(p;; p; k) < r(p; p; k)
for p; < p (as long as k > 0, that is, any positive punishment threshold is used). Hence, a firm
that deviates downward from the collusive price level p*(cgr) does in fact decrease the probability
of collusion to be continued in each period. It is crucial to characterize how &£ must be chosen in
order to ensure that a marginal deviation form the collusive price does not pay.

Next, denote by 17, HzC (pi), and 117 firm #’s expected discounted profit stream (given the pro-
posed strategy for all other firms) in the high-cost phase, collusive phase, and punishment phase,
respectively. Note that firm i’s expected discounted profit stream of the collusive phase Hic(p,-)
has firm 4’s collusive-phase price p; as argument.'? Only if firm i’s total expected discounted
profit is maximized for p; = p*(cy), the proposed strategy-combination forms an equilibrium.

The following recursive equations then define firm i’ expected discounted profit stream in
each of the three regimes (where m;(p;) is a short notation for (p; — cr.)s;(pi; p*(ca)) and r(p;)

is a short notation for r(p;; p*(cm); k)).

M7 = 7+ ppoll? + (1 — py)dlIS (pi) (8)
I¢(p;) = mlp:)+pr [T(pi)énic(pi) + (1 - T(Pi))(stP] + (1 - p)ory 9)
nr = 7 4 prolIf + (1 — pp)oie. (10)

The first and third of these equations have a similar structure. The expected discounted
profit stream of the high-cost phase (punishment phase) is given by the sum of the phase’s
expected stage-game profit and the one-time discounted expected continuation profit. With
probability pg (pr), costs stay the same in the high-cost state (low-cost state), which gives rise

to an expected continuation profit that is equal to the initial expected discounted profit stream.

1 The first equation follows because r(p;; p; k) := P <9~ * 85 (D P(pg)) > k) =P <§ * 71_%(7;;{;;7) > k) =
1-F (%) This directly implies 7(p; p; k) = 1 — F(Nk), as s;(p; p) = &

12Since the collusive phase is stationary, it suffices to consider one single price p; that firm i chooses in every
period of that phase.



With probability 1 — pg (1 — pr), costs switch to the other state, which leads to an expected
continuation profit that is equal to the expected discounted profit stream of the collusive phase
(high-cost phase).

The second equation has the following interpretation. The expected discounted profit stream
of the collusive phase, given that firm 7 prices at p; in each stage of that phase, can be written
as the sum of the expected stage-game profit of pricing at p; (while all other firms stick to
the plan of pricing at p*(cy)) and the one-time discounted expected continuation profit. This
continuation profit has two parts. With probability py, costs stay low. Then, depending on
whether the previous period’s demand has exceeded k or not (which happens with probability
r(p;) and 1 — r(p;), respectively), the expected continuation profit is either given by the initial
expected discounted profit stream, or the expected discounted profit stream of the punishment
phase. With probability 1 — py,, costs switch to the high state. Then, the expected continuation
profit is equal to the expected discounted profit stream of the high-cost phase.'?

Figure 1 provides a graphical representation of the underlying dynamical system if firm 4
prices at p; in every period of the collusive phase.

It was already discussed above that the firms only face a non-trivial pricing decision when
the game is in the collusive phase. Clearly, continuing to price at p*(cgy) in the collusive phase
is a best response to all other firms’ strategies if, and only if, p*(cy) is a global maximizer of

¢ (p;). Solving the above system of equations, the following lemma can be stated.

Lemma 1. Firm i’s expected discounted profit stream in the collusive phase, given that all other

firms price according to the proposed strategy, can be written as

1€ (py) = m (A —dpm)A—bpr)  milp) -

T=6 T T +0—0(pm+p0)] 1 dpur(p)’ a

The interpretation to Lemma 1 is straightforward: the expected discounted profit stream of

pricing at p; in every period of the collusive phase is given by the expected discounted profit

*
us

stream {5 of receiving the (competitive) stage-game equilibrium profit in every period, plus

the expected excess profit over the competitive profit in collusive periods, m;(p;) — 7*, properly

discounted.
1BA  different way of writing down equation (9) is as follows: ¢ (ps) =
(N—1k 3 o _ } o
Jo' TP [miei) + pronl + (1= pr)TE | F@)d0 + [ s [mipi)d + prTE (pi) + (1 = pr)oTI | £(0)d,

T—s;(p;i)
(N—1)k
1—s;(pi)

piand k. Asr(p;)) =1—F (%), it is easy to see that both formulations are equivalent.

where the bound

is the necessary aggregate demand level that is needed for sustained collusion, given

10



pr

prr(pi)

1-pL

Figure 1: Depiction of the dynamical system that is implied if firm ¢ charges p; in the collusive
phase, given the proposed strategy-combination of all other firms. Transition probabilities are
found next to the arrows indicating a state change.

Examining equation (11), it is apparent that II'(p;) reaches its global maximum at the value

mi(pi)—m”

of p; that maximizes II;(p;) := T=6prr(pi)°

In order for the proposed strategy-combination to form
an equilibrium, this maximum must be reached at p*(cy). A necessary condition for this is that
the derivative of II; (pi), evaluated at p*(cp), is equal to zero. Carrying out the corresponding

calculation, one arrives at the following proposition.

Proposition 1. (Necessary condition) In order for the proposed strategy-combination to form

an equilibrium, the demand threshold k must be chosen such that ¢ := Nk satisfies

h(¢) := (N —1)[1 = d0pL + 6pLF ()] — dpLpf(d) = 0. (12)

The intuition to equation (12) is a simple marginal-cost marginal-benefit tradeoff. If a firm
marginally deviates downward from the collusive price level p*(cpr), it makes a higher-stage game
profit in expectation (as the best response to all other firms pricing at p*(cp) is to price lower
than p*(cg)), but this comes at the cost of a higher probability of collusion to end after each
period, which decreases the expected length of collusive-phases with supra-competitive profits.

In particular, as the marginal cost of undercutting the collusive price level is proportional to

@ f (@), one can see that the above first order condition can only be satisfied for adequately chosen

11



demand thresholds ¢* = NE* if the probability density of aggregate market demand is sufficiently
large somewhere in its distribution. Only if that is the case, the probability of sustained collusion
following a marginal price decrease can be reduced by so much (when choosing k appropriately)
that the firms are successfully discouraged from deviating.

In fact, examining h'(¢) = dpr [(N — 2)f(¢) — ¢f'(¢)] and noting that h(0) > 0, it is appar-
ent that the necessary condition can never be fulfilled if f is non-increasing (F is weakly concave).
This rules out some common cumulative distribution functions, including the uniform, exponen-
tial, and Pareto distribution. The interpretation is that these distribution functions provide too
weak signals about the firms’ pricing in order to discourage marginal deviations. No matter how
the demand threshold k is chosen, firms can never be deterred from profitably undercutting the
collusive price level, as doing so reduces the probability of sustained collusion by too little.

Note moreover that for any given aggregate-demand distribution F', it directly follows from
equation (12) that as N increases without bound or dp; decreases towards zero, the first order
condition must eventually be violated. Hence, an asymmetric-pricing equilibrium of the analyzed
structure can only be supported if there are not too many firms in the market, firms do not highly
discount future profits, and the low-cost state is sufficiently persistent.

So far, only a necessary condition in order to allow the collusive price level p*(cy) to be a
local extremum of the expected discounted profit stream of the collusive phase has been provided.
However, in order to make pricing at p*(cy) a best response to the other firms’ strategies, it has
to hold that this price is a global maximizer of firm ’s expected discounted profit stream in the

collusive phase. The following proposition provides a sufficient condition for that.

Proposition 2. (Sufficient Condition) The proposed strategy combination forms an equilibrium
(p*(cxr) is a global mazimizer of 11;(p;)) if a solution to the necessary condition in equation (12)
exists, and Ac := cg — cr, is sufficiently small.'* In particular, the former is true whenever the

variance of aggregate market demand is sufficiently low, that is, Var(0) < (—2x=)>

Thus, asymmetric pricing equilibria exist whenever the variance of aggregate market demand
is low relative to the market parameters N, § and pp, given that the size of the negative cost
shock is not too large. In particular, the sufficient bound for the variance becomes less stringent
(larger) for a lower number of firms, a higher discount factor, and a higher persistence of the
low-cost state. Moreover, it can be seen that a wide range of plausible distribution functions for

modeling stochastic aggregate market demand, e.g. the Log-normal, Gamma, Beta, Log-logistic,

14 Explicit sufficient conditions on Ac can be found at the end of the proof of the proposition.
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and Weibull distribution, give rise to the existence of asymmetric-pricing equilibria, provided
that their variance is sufficiently low. This is because all of these distribution functions can be
normalized in such a way that their expectation is set to one, with a free parameter governing
their variance.

The intuition to the above proposition is twofold. First, a sufficiently low variance of aggre-
gate market demand guarantees that marginal deviations from the collusive price level are not
profitable when the demand threshold k is set properly, as the probability of sustained collusion
decreases by too much. And second, also larger deviations from the collusive price level do not
pay if the size of the cost shock is sufficiently small. This is because, for a small negative cost
shock, the collusive price level lies close to the (new) competitive price level, implying that large
deviations from the collusive level cannot pay.

Having established the existence of an asymmetric-pricing equilibrium under suitable model
parameters, it is now possible to quantify the degree of asymmetry in price adjustment. For this,
note that for any solution ¢* = Nk* of equation (12) that does in fact constitute an equilibrium,
the probability of the collusive phase to end, conditional that costs remain low, is given by F(¢*)
in each period. Thus, following a persistent negative cost shock, the expected number of periods

until prices adjust from p*(cy) to the lower competitive level of p*(cy) is given by

1
F(¢¥)

L(g*) = > 1.15 (13)
On the other hand, by construction, positive cost shocks are transmitted instantaneously,
given that the firms were pricing at the competitive level p*(cy,) before.
Finally, the implicit equation (12) also allows for comparative statics with respect to the
firms’ discount factor § and the persistence of the low-cost state pr. The following proposition

is a direct consequence of the implicit function theorem.

Proposition 3. A marginal increase in é or py, leads to a more pronounced asymmetry in price

transmission if, and only if, h'(¢*) is negative.

Proposition 3 shows that the effect of a marginal increase in § or py, is directly related to
the sign of h'/(¢*). This sign is ambiguous, as in the case of multiple equilibria, it may depend
on the chosen equilibrium demand threshold. In particular, it can be the case that as firms

become more patient or negative cost shocks become more persistent, negative cost shocks are

15 This expectation follows from a well-known property of geometrically distributed random variables.
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transmitted more quickly to final prices.'® Also, it should be noted that comparative statics with
respect to N cannot be provided for general demand distributions F', as the implicit function

theorem does not work for discrete parameters.

4 Multiple Submarkets

In the baseline model developed in Sections 2 and 3, I considered the case of a single oligopolistic
market in which a small number of firms engages in imperfect collusion on supra-competitive
price levels. Under suitable model parameters, the proposed trigger-sales strategy combination
forms an equilibrium in which asymmetric price transmission to cost shocks is the outcome.
However, the baseline model is counterfactual to the rockets-and-feathers pattern in the sense
that once collusion breaks down, all prices adapt fully and abruptly to the lower competitive
level. In contrast, empirical evidence documents slowly declining prices after the occurrence of
negative cost shocks.

The purpose of this section is to reconcile the theoretical model with the patterns that
are found in the data. The main argument is that the price series that are typically studied
in the literature are not station-specific, but reflect average retail prices in a large market,
which may be comprised of several independently operating local submarkets. Hence, due to the
stochastic nature of demand, collusion on supra-competitive price levels may persist longer in
some submarkets than others. This implies that time series of market-wide average retail prices
should be slowly declining following negative cost shocks.

Let M > 1 denote the total number of locally separated submarkets, with N, and «,
(m € {1,..., M}) referring to the total number of firms NN,, and competition intensity a,, in
submarket m, respectively. The discount factor J is assumed to be constant across submarkets.

Moreover, for simplicity, let the random aggregate-demand variable 6,, be distributed inde-
pendently across submarkets, with Pr (51 <O A ANOy < 0M> = Hn]\le F,.(0,,) in each period
(the probability distribution of the stochastic demand variable is allowed to differ across sub-
markets).

The stochastic cost process for the whole market follows the same rules as in the baseline
model. That is, the market-wide production costs stick to the high-cost level cy (low-cost level

cr) with probability pg (pr) after each period.

161t has to be noted though that in all numerical simulations I undertook, equilibria with positive h/(¢*) were
accompanied by equilibria with negative h’(¢**), for some ¢** < ¢*. Hence, as equilibria with a lower ¢ give rise
to higher expected firm profits, equilibria with positive h’(¢) were always Pareto-dominated.
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Now, given this setup, submarket m will face a first order condition of

(Nm - 1) [1 - 5pL + 6pLFm(¢)] - 6pL¢fm(¢) =0.

Submarkets in which at least one solution ¢}, to the above equation exists will find it optimal

1
am Ny,

to stick to the collusive price level pf, (cy) :=cy + following a negative cost shock, given
that ¢y — cr, is not too large relative to the respective submarket’s parameters.

Suppose L < M of the submarkets are in a collusive equilibrium (using some specific demand
threshold N,k = ¢* ), and without loss of generality, label them with 1,..., L. Then, following
a persistent negative cost shock, the probability that any subset S C {1, ..., L} of these firms will
still charge the high price pZ, (cy), t periods after a negative cost shock has happened, is given by
[Lnes (11— Fo(6%,))". In particular, this shows that the probability that any given subset S of
the colluding firms will still price high ¢ periods after a persistent negative cost shock is strictly
decreasing in ¢.

Unfortunately, in the case of heterogeneous submarkets, it is not practical to explicitly derive
the corresponding probability H(I,t) that some number of firms [ < L continue to price collu-
sively ¢ periods after a persistent negative cost shock has happened. For analytical purposes,
I will subsequently consider the case in which all of the M > 1 submarkets are identical and
characterized by a common probability v := 1 — F(¢*) that collusion is continued after each
period of the collusive phase. In turn, this implies that the probability that any given submarket
will still be in the collusive phase ¢ periods after a persistent negative cost shock has happened
is equal to ~*.

Then, given that each submarket is independent from all others, the probability J(m,t) that
exactly m < M of all submarkets will still be in the collusive phase ¢ periods after a negative

cost shock has occurred follows a binomial distribution, where

M
m

Hom, )= () ("1 = 41 (14)

By a well-known property of binomially distributed random variables, the expected number
of firms who continue to price collusively ¢ periods after a persistent negative cost is given by
M~*, which decreases exponentially in ¢. Hence, the expected average retail price of the whole
market, ¢ periods after a persistent negative cost shock has happened, can easily be calculated.

The following proposition highlights this finding.
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Figure 2: Density function of a log-normal distribution with mean-parameter —0.08 and
standard-deviation parameter 0.4, implying a mean of 1. Given the selected parameters, the
aggregate demand threshold ¢* is located at the dashed line.

Proposition 4. Suppose the whole market is comprised of M > 1 independently operating
submarkets, each characterized by a probability v > 0 that collusion is continued after each period
of the collusive phase. Then, the expected average retail price of the whole market, t periods after

a persistent negative cost shock has occurred, is given by

P (ea)y" +p*(cL)(1 —7"). (15)

For large M, a smooth transition from the collusive price level p*(cy) to the new competitive

price level p*(cr,) can be observed.

In the following, I will present a numerical simulation of the extended model. For this, let
the parameters of the whole market be given by M = 50, cg = 20, ¢ = 16, § = 0.9999,
pr = pr, = 0.98. Moreover, for each submarket, let N = 4, o = 0.05, and F(6) log-normal
with mean-parameter —0.08 and standard-deviation parameter 0.4. The latter implies a mean of
the aggregate market demand random variable of 1 (as required by the model) and a standard
deviation of roughly 0.417. See Figure 2 for a depiction of the corresponding probability density
function f(6).

It is now easy to see that p*(cy) = 25 and p*(cy) = 21. Also, one can verify numerically

that ¢* = Nk* = 0.406724 is a solution to the first order condition stated in Proposition 1. As

16



p*(cx) is also a global maximizer of II{ (p;) for ¢ = ¢*,17 this implies that asymmetric pricing
can be observed in equilibrium. In fact, if all firms stick to the punishment threshold ¢*, there
is a probability of 1 — F'(0.406724) ~ 0.979771 that collusion is continued after each period of
the collusive phase.

Figure 3 depicts a simulation of the outlined market for a length of 500 periods (“days”).*®

The well-documented rockets-and-feathers pattern can clearly be discerned.

5 Conclusion

In a wide range of markets, positive production cost shocks are transmitted more quickly and
fully to final prices then negative ones. This article provides a simple model of asymmetric price
transmission caused by firms imperfectly engaging in tacit collusion. In the model, negative cost
shocks are only transmitted to final prices once collusion breaks down. This happens when an
unobservable aggregate-demand variable turns out unexpectedly low, which typically occurs with
a delay. On the other hand, positive cost shocks are transmitted instantaneously, as the firms
have no interest in sticking to lower than competitive prices.

By considering a simple trigger-sales strategy according to which firms punish unusually
low demand, I prove that asymmetric-pricing equilibria exist whenever the variance of aggregate
market demand is sufficiently low and the size of negative cost shocks is not too large. Conversely,
I show that the considered equilibrium can only exist if there are not too many firms in the
market, low-cost states are relatively persistent, and the firms discount the future by not too
much. Moreover, in order to discourage marginal deviations, it should not always be the case
that low aggregate demand levels are more probable than high levels. Since all of these features
can be examined empirically, a rich array of testable predictions is generated.

Future research might extend the simple model to a more general class of random cost pro-
cesses, allow the firms to endogenously monitor their rivals’ prices, or consider the case of asym-
metric market shares. However, already the current model can generate pricing patterns that are
close to the ones observed in the data, given that multiple separated submarkets are considered.

The most important agenda is hence to analyze the various predictions of the model empiri-
cally and contrast them with those of other theoretical models of asymmetric price adjustment.

In particular, if the portrayed collusive mechanism causes the phenomenon, it should be observed

17 A flexible Mathematica-code to perform numerical simulations like this can be obtained from the author upon
request.
18The underlying R-code (alternatively, pseudo-code) can be obtained from the author upon request.
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Figure 3: Market simulation for T' = 500, M = 50, cyg = 20, ¢, = 16, § = 0.9999, py = pr =
0.98, and for each submarket, N = 4, o = 0.05, F'(f) log-normal with mean-parameter —0.08 and

standard-deviation parameter 0.4. The black solid (gray solid) [dashed] line represents the whole
market’s actual average retail price (expected average retail price) [marginal cost], respectively.
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that prices tend to adjust downward in low-demand periods, and that markets with more sta-
ble aggregate demand, more persistent negative cost shocks, and fewer firms, are more likely to

exhibit the rockets-and-feathers pattern.
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6 Appendix: Technical Proofs

Proof of Lemma 1. First, use equations (8) and (10) in order to solve for T and TI¥ as functions

of TI% (p;). This yields
qf ™ (L= p)OTIY (pi)
¢ 1-— 5/)H

and
P — T [1+6—d(pu +pr)] | (1= pr)(1 - pn)d*
' (1=0pL)(A=épu)  (1=0pL)(1 —dpm)

Next, insert the above expressions into equation (9), isolate II¢ (p;) and multiply both sides with

11§ (ps)-

(1 —=0pr)(1 —d0ppg) in order to get

1Y (pi) [(1 —prr(pi)) (1 = dpr)(1 = dpm) = 8°pr(1 = pr)(1 — pr)(1 = r(pi)) —
§2(1 = pr)(1 = pa)(1 - 5pL)] -

mi(pi)(1 = pr)(1 = pmr) + 7*0pr (L —r(pi)) [1 + 6 — d(pm + pr)] +

m6(1 = pr)(1 = dpL).

Simplify the squared brackets to the right of II{'(p;) and add and subtract
7*(1 —dpr)(1 — dpm) to the RHS to obtain

¢ (pi) {(1 = 8) [1+ 6 — 8(pr, + pr)] (1 — Sprr(py))} =
(1= 6p1) (1 Spm)lmilp) — 7] + 7611 r(pe)) [1 +6 — 8(par + pr)] +

70(1 = pr)(1 = pr) + 7*(1 = dpr) (1 — dpa).
Collecting terms with 7* in the RHS and simplifying, this further reduces to

I (pi) {(1 = 8) [L+ 6 = 8(pr + pu)] (1 = dprr(pi))} =

(1 —36pL)(1 —bpp)[mi(pi) —7*)+ 7" [1+6 — 8(pr + pu)] (1 — dprr(pi)),

which directly implies the equation in the lemma. O

Proof of Proposition 1. Differentiating IT;(p;) = % with respect to p; and eliminating

the positive denominator leads to the first order condition

or(pi; p*(cm); k)
5]%

omi(ps; p*(ca))
op;

[1=dprr(ps;; p*(cu); k)] + dpr [mi(pi; ™ (cu)) — 7] =0,
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which has to be satisfied for p; = p*(cx).
Inserting the definition of m;(pi; p*(ca)) = (pi — c1)si(pi; p*(ca)), this can be reformulated

to
sipip* (ean)) + (o c0) PPN (1 g earyin)] + (16)
So. i (pip (ear)) — 7] B LI

One can now calculate that

Or(pi;p™(cu)ik) a [1 - F (%)]

Op; op;
’ R ( (Nli Dk ) (N -1k 38i(Pi;P*(CH)),
L=sipip*(en)) ) [1 = sipisp*(em))]”  Opi

where the first equality follows from equation (6). Evaluated at p*(cg), this expression simplifies

to
alN

N -1

NEf(NE).

Moreover, r(p*(cg); p*(crr); k) is given by 1 — F(Nk), as was already stated in equation (7).

Evaluating equation (16) at p; = p*(cy) thus gives

cg —cr, aN
N N-1

NEf(Nk) = 0.

H + (alN + e — CL) (a)] (1 —6pr + dpLF(Nk)| +6p1

Simplifying the squared bracket, canceling out the positive factor a(cy — cr), multiplying by

—(N —1) and setting Nk = ¢ finally yields the expression in the proposition. O

In order to prove Proposition 2, it is convenient to state the subsequent lemma, first. In all
of what follows, let u(p;) := m;i(p;) — 7 and v(p;) := 1 — dpr + dpLF (%), where
v(p;) > 0.

Lemma 2. For any set of parameters cy, cr, o, 8, pr, N, some price level p; > 0 can only be

a global mazimizer of T1;(p;) if u(p;) > 0 and u'(p;) < 0.

Proof. As 1L (p*(cy)) = Zgggl’jgg = N’U(pA*(()CH)) is strictly positive for any Ac, it is clear that
only positive values of u(p;) = m;(p;) — ©* are candidates for a global maximizer of ﬁi(pi)-
Moreover, note that IT}(p;) has the same sign has u’(p;)v(p;) — u(ps)v' (p;). Hence, since v(p;) is

unambiguously positive, v’(p;) is unambiguously negative, and u(p;) is unambiguously positive
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over the relevant range for global maximizers (by the previous observation), it has to hold that
u/(p;) is strictly negative in order for u'(p;)v(p;) — u(p;)v’(p;) to be non-positive, which must be

the case for a global maximizer of IT;(p;). O

Proof of Proposition 2. 1 will proceed in two steps. First, I will show that whenever Var(é) <

2
(6+163N—1> , at least one solution ¢* = Nk* to equation (12) exists. Second, I will prove that
SpL

whenever a solution ¢* exists and the demand threshold % is set accordingly, p*(cy) must be a

global maximizer of 11 (p;), conditional that Ac := cy — ¢z, is sufficiently small.
For the first part, note first that by continuity of F' and f, a solution ¢* to the equation
h(¢) = (N —1)[1 —dpr + dprF(d)] — dprdf(¢) = 0 must exist whenever there exists some )

such that h(¢) < 0, as h(0) = (N — 1)(1 — dpr) > 0. Next, observe that the left part of h(¢),
(N—=1)[1—6pr + prF(9)], is bounded above by N — 1. Hence, it suffices to show that

3¢ h(¢) == N — 1= dprsf(¢) <O0.

Now, from Chebyshev’s inequality, it is known that for z > 1, at least 1— Z% of the probability
mass of any random variable must not be more than z standard deviations away from the mean.
Hence, if the aggregate-market-demand random variable 6 has a standard deviation of o, at least
1 — 2 of its probability mass must fall in the range [1 — 20,1 + z0].

As this interval has a length of 2z0, the average probability density in this interval must at

1—-L

least be given by 22;7. At worst, the mazimum density in this interval is then equal to the

average probability density (if all values in the interval have the same density), and therefore it

must hold that

max  6f(6) > (1-20) o 2.

dE[1—z0,1420] 2z0
Inserting this minimal maximum of ¢ f(¢) into the condition from above, a solution to equa-

tion (12) is guaranteed whenever

1

1—
N —1-46pr(1 —z0) 22’022

The bound on the variance in the proposition then simply follows by inserting the simple
(but generally not tight) value of z = 2 and rearranging for o, which is the square root of the
variance. This proves the first part of the statement.

For the second part, note that if ¢* = NEk* solves equation (12) (p*(cg) is a local extremum

of IL;(p;) = ZEZ; ), a sufficient condition for p*(cz) to be a global maximizer of II;(p;) is that this
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function is strictly concave over the (connected) range of all of its potential maximizers. Due to
Lemma 2, this range is characterized by values of p; such that u(p;) > 0 and /(p;) < 0.1
Next, it is easy to calculate that
[w" (pi)v(pi) — ulpi)v” (pi)] v(pi)? — 2 [w (pi)v(ps) — u(pi)v'(p:)] v(P:)v' (pi)

I (pi) = U(pi)‘l )

which has the same sign as

[ (pi)v(pi) — w(ps)v” (pi)] v(ps) — 2 [’ (pi)v(ps) — u(pi)v' (ps)] V' (pi) =

—200(p;)? — u(p:)v” (pi)v(ps) — 2’ (p:)v(pi)V' (p3) + 2u(p;) (V' (p))° .

For any set of parameters, over the range of potential maximizers of ﬁi(pi); this expression is

smaller than

~200(pi)? — u(pi) [0 (p)o(pi) = 2 (' ()’

which should be negative in order to guarantee strict concavity of IL; (pi) in the relevant region.
Hence, rearranging the last equation from above, a sufficient condition for p*(cy) to be a

global optimizer of II;(p;) is that

ey ve)]
“@”Kv(pi)) 2v<p¢>]< ()

over the range of potential maximizers p;, given the model parameters.

Now, fix any 5; € (4, 1) and note that whenever ¢/, is sufficiently close to ¢y (Ac < Ac(s;) =

55—

20

), no firm will ever want to price so low that it obtains a market share larger than ;.

As F(9) is twice continuously differentiable, it is easy to see that for any 5; < 1,

)= max l(u’(pﬁ)Q ) v”(pl)]

pi€ls; ! (50),57 " (0)]

19The fact that this range is connected trivially follows from strict concavity of u(p;).
20The inequality in brackets is obtained by solving s;(p?;p*(cx)) < 3;, where pP := ﬁ + % is the
solution to the strictly concave program maxy, (p; — cr)s:(pi; p*(cH)).
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must be finite and independent of c. Moreover, u(p;) is bounded above by max,, u(p;) =

2
% + o‘(ic) , which can be made arbitrarily small as c;, approaches cy. Hence, given a fixed 5;,

equation (17) must be satisfied for all relevant p; if the following two conditions are met:

Ac < Ac(3;) and

ﬁvc + a(icq 7(5) < a.

In particular, this can always be achieved if ¢, is sufficiently close to cy. O
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