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Abstract

The one-sector Solow-Ramsey growth model informs how most modern researchers
characterize macroeconomic trends and cycles, and evidence supporting the model’s
balanced growth predictions is often cited. This paper shows, however, that the inclu-
sion of recent data leads to the balanced growth predictions being rejected. An alter-
native balanced growth hypothesis—that the ratio of nominal consumption to nominal
investment is stationary—is put forward, and new measures of the stochastic trends
and cycles in aggregate US data are derived based on this hypothesis. The contrasting
behavior of real and nominal ratios is consistent with a two-sector model of economic
growth, with separate production technologies for consumption and investment and two
stochastic trends underlying the long-run behavior of all macroeconomic series. Empir-
ical estimates of these stochastic trends are presented based on a structural VAR and
the role played in the business cycle by shocks to these trends is discussed.
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1 Introduction

The one-sector Solow-Ramsey growth model remains the workhorse underlying a vast

amount of macroeconomic research. In particular, its “balanced-growth” prediction that

the ratios of real consumption, investment, and output should all be stationary (and thus

that the logs of the level series share a common stochastic trend) has played a key role

in modern macroeconomics. Sample averages of these “great ratios” are regularly used to

calibrate the long-run properties of a wide range of theoretical macroeconomic models. In

addition, the common trend prediction has played an important role in modern empirical

characterizations of macroeconomic trends and cycles. To cite a few well-known examples,

King, Plosser, Stock, and Watson (1991) have developed empirical methods to identify

a time series for this common trend, while Cochrane (1994) and Rotemberg and Wood-

ford (1996) have relied on the stationarity of the ratio of real consumption to real output

to provide econometric estimates of the transitory cyclical components of consumption,

investment, and output.

This paper presents new evidence on the traditional balanced growth hypothesis and on

the role of stochastic trends in the determination of U.S. macroeconomic fluctuations. The

evidence underlying the one-sector growth model is reconsidered and rejected, an alternative

balanced growth hypothesis consistent with a two-sector framework is suggested, and the

implications of this framework for macroeconomic trends and fluctuations are explored

using a new identification strategy.

The contents of the paper are as follows. First, it is demonstrated that the inclusion of

recent data produces test results that point strongly against the balanced growth hypoth-

esis. For example, King, Plosser, Stock and Watson’s evidence for the hypothesis is still

widely cited. However, the sample in their study ends in 1988; using data through 2005,

the traditional balanced growth hypothesis turns out to be firmly rejected. Underlying

this rejection is the fact that the ratio of real investment to real consumption has moved

substantially upwards over time and now displays no evidence of mean-reversion.

It is important to emphasize that these results have been derived using standard Na-

tional Income and Product Accounts (NIPA) data. This implies a crucial distinction be-

tween these the evidence presented here and the more informal evidence in the well-known

paper by Greenwood, Hercowitz, and Krusell (1997), who argue in favor of a model in which

real equipment investment rises relative to real GDP, but in which the real equipment se-

ries is defined using Robert Gordon’s (1990) alternative price index. That the balanced
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growth property is clearly rejected for NIPA data has important implications that go well

beyond those discussed by Greenwood et al because NIPA data form the basis for the vast

majority of empirical work on US macroeconomics, and much of this work relies explictly

or implicitly on the balanced growth hypothesis.

Second, the paper discusses the implications of the failure of the traditional balanced

growth hypothesis for the measurement of stochastic trends and cycles. It is shown that

the estimated Vector Error Correction Model (VECM) implied by the traditional one-

sector balanced growth hypothesis produces unintuitive trending estimates of the cyclical

components of consumption, investment and output. Because these results contradict much

of the received wisdom on this issue that was outlined in previous papers such as Cochrane

(1994), the paper discusses how the incorporation of new data and revisions to historical

data have contributed to overturning patterns that were previously considered to be stylized

facts.

Third, an alternative “balanced growth” hypothesis is put forward, which is that the

ratio of nominal investment to nominal consumption is stationary and evidence is pre-

sented that this hypothesis is consistent with US macroeconomic data. This nominal-ratio

balanced growth hypothesis implies that the logs of real consumption, real investment, and

the relative price of consumption to investment can together be characterized according to

a VECM with a single cointegrating vector. Using this alternative VECM, new measures of

the transitory components of aggregate consumption, investment, and output are developed

and the implications of these alternative measures for the interpretation of recent business

cycles are explored.

Fourth, a simple structural model is proposed that is compatible with the long-run

properties of the data and a new structural VAR identification method is used to explore

the model’s implications. The differing behavior over time of the real and nominal ratios

of consumption and investment are, by definition, due a decline over time in the price

of investment relative to the price of consumption, a pattern that cannot occur in the

one-sector growth model. However, this pattern is consistent with a two-sector model of

economic growth in which separate technological trends in the consumption and investment

sectors drive the relative price of output in the two sectors. In addition, the existence of a

single cointegrating vector among consumption, investment, and their relative price implies

a common trends representations in which the long-run behavior of these variables depends

on two separate I(1) stochastic trends.
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We use a simple two-sector model to develop a set of long-run restrictions that allow

for the identification these stochastic trends as corresponding to the states of technology in

the consumption- and investment-producing sectors. Unlike a related analysis undertaken

by Fisher (2005), the identification methodology adopted in this paper relies only on the

model’s predictions about the long-run effects of the technology on consumption, invest-

ment, and their relative prices. By fully exploiting these predictions, the identification

strategy does not need to rely on ad hoc assumptions about the covariance structure of

the technology shocks. Once estimated, the dynamic responses to the two types of tech-

nology shocks are discussed, as are the roles played by these shocks in generating business

cycle fluctuations. It is concluded that technology shocks play a limited role in generating

business cycle fluctuations in consumption, investment, and output.

2 Tests of the Traditional Balanced Growth Hypothesis

The starting point for the standard neoclassical growth model is an aggregate resource

constraint of the form Ct + It = Yt = F (Kt, AtLt) where the production function displays

diminishing marginal returns productivity with respect to capital accumulation. It is also

usually assumed that a representative consumer maximizes the present discounted value

of utility from real consumption, subject to a law of motion for capital and a process for

aggregate technology. If the technology process grows at a constant long-run average rate,

then it is well known that the model’s solution features all real variables, C, I,K, and Y ,

growing at the same average rate in the long-run. Thus, ratios of any of the real aggregates

will be stationary stochastic processes.

The intuition for this property of the one-sector growth model is very general and it

holds across a wide range of specifications for preferences and technology. Given diminishing

marginal returns to capital accumulation, a once-off increase in the savings rate can only

allow capital to grow faster than output for a temporary period, and a trend in the savings

rate will not be optimal for any standard specification of preferences.1 Thus, ratios involving

any of the variables capital, investment, consumption and output must be stationary.

1See, for instance the discussion of capital-output ratio dynamics in the Solow Model in Chapter 4 of

DeLong (2002)
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2.1 Evidence Based on NIPA Data

Beyond theory, the hypothesis of stationary “great ratios” has been held as a crucial stylized

fact in macroeconomics at least as far back as the well-known contributions of Kaldor

(1957) and Kosobud and Klein (1961). More recently, King, Plosser, Stock, and Watson

(1991, henceforth KPSW), using NIPA data through 1988, presented formal econometric

evidence for the balanced growth hypothesis using modern time-series methods. KPSW’s

results are still widely cited as important evidence for the one-sector model’s long-run

restrictions. However, Figure 1(a) shows that the traditional balanced growth predictions

appear empirically invalid once we use updated NIPA data. The figure shows the ratio

of real private fixed investment to real consumption expenditures (the same measures of

investment and consumption used in KPSW’s study). That this ratio should be stable is

the essence of the balanced growth hypothesis: The model’s other long-run restrictions—

such as the stationarity of the ratio of real consumption to aggregate real output or of real

investment to aggregate real output—will follow directly from stationarity of the ratio of

consumption to investment.2

Figure 1(a) shows that the ratio of real investment to real consumption has moved

upwards substantially over time and shows little apparent tendency for mean-reversion.

Importantly, most of the increase in this ratio occurred after 1988, the last year in KPSW’s

sample. Also notable is the fact that, despite the substantial slump in investment during

the recession beginning in 2001, the cyclical low point for this ratio still exceeded the high

point for all expansions prior to the 1990s, and the ratio has reversed most of this decline by

the final period shown, 2005:Q4. Table 1 shows that formal statistical evidence confirms the

absence of mean reversion suggested by the chart. Panel A reports results from three tests

of the null hypothesis that the ratio series contains a unit root. The first is the standard

Augmented Dickey-Fuller t-test; the second is the DF GLS test of Elliot, Rothenberg and

Stock (1996) which has superior power to the ADF test; the third is the M̄ZGLS
α test of

Ng and Perron (2001) which has been shown to have excellent size and power properties.

For each test, the lag lengths for the test regressions was chosen using Ng and Perron’s

2This statement implicitly follows the model in defining real output as an aggregate of consumption and

fixed investment. In contrast, KPSW tested for stationarity of the ratio of real consumption to real private

GDP (real GDP excluding government purchases). This differs from an aggregate of consumption and fixed

investment when net exports and inventory investment are non-zero. The preference here for the simpler

output measure is due to its consistency with the pure one-sector growth model, but the results in this

section are not overturned by instead looking at ratios involving private GDP. See Section 3.4 below.
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Modified AIC procedure. In all three cases, the tests do not come close to rejecting the

unit root hypothesis at conventional levels of significance.

The table also reports some more direct tests of the balanced growth hypothesis. In

general, the null hypothesis of no cointegration between the log of real investment and

the log of real consumption can be rejected. However, normalizing the coefficient on real

investment to be one, one can reject the hypothesis that the coefficients on consumption

in the estimated long-run relationship is minus one, as implied by the one-sector model’s

balanced growth hypothesis. Panel B’s point estimate of -0.857 is derived from the Stock-

Watson dynamic least-squares estimation methodology and the balanced growth hypothesis

that this coefficient is minus one is tested using an asymptotically valid t-test.3 Panel

C’s point estimate of -0.838 is derived from the maximum likelihood systems estimation

methodology of Søren Johansen (1995), while its test of the balanced growth hypothesis

is based on a Wald test statistic derived from comparison of the log-likelihoods for the

constrained and unconstrained systems (this has an asymptotic χ2
1 distribution.) In both

cases, the traditional balanced growth hypothesis is rejected at significantly greater than

the one percent level.

The fact that the null hypothesis of cointegration between the logs of consumption and

investment still cannot be rejected implies that, technically, one cannot reject the idea that

there still exists a single-common-trend representation for these two series. However, it

is hard to imagine what the economic basis for such a single trend representation would

be. For example, in an economy with a single technology process, why would a unit shock

to that process result in a one-percent increase in investment but only a 0.86 percent

increase in consumption. And why would this long-run relationship always have to take

the form (1,−0.86)? The one-sector growth model provides a powerful intuition about the

convergent forces that make it unsustainable for the levels of consumption and investment to

have different long-run trends. This provides a theoretical case for (1,−1) as a cointegrating

vector that is completely absent for the vector (1,−0.86) or any other vector (1,−b) where

b does not equal one.4

Figure 1(b) provides an alternative way to think about balanced growth and long-run

3The exact procedure followed here is discussed on pages 608-612 of Hamilton (1994).
4This is not to say that one cannot find empirical models based on this alternative notion of balanced

growth. For example, Kim and Piger (2002) use the one-sector growth model to motivate a single common

trend for consumption, investment, and output, and then implement this idea by equating log-consumption

with the trend and allowing for non-unit weights on the trend for log-investment and log-output.
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relationships. The figure shows the ratio of nominal private fixed investment to nominal

consumption. Unlike the ratio of the real series, this ratio exhibits no apparent trend over

time. Table 2 confirms that this alternative notion of balanced growth—that the ratio of

nominal expenditures on the two categories is stable over time—receives strong empirical

support from the same statistical tests that rejected the traditional formulation of balanced

growth. Panel A reports that the hypothesis that the nominal ratio contains a unit root

is firmly rejected by each of our tests, while Panels B and C show that point estimates of

the cointegrating vectors for the logs of the nominal series are very close to (1,−1), and

statistical tests cannot come close to rejecting this null hypothesis.

A first observation about this alternative formulation of balanced growth is that the

difference between the series in Figures 1(a) and 1(b) is in itself evidence against the one-

sector growth model. The model’s assumption that consumption and investment goods

are produced using the same technology implies that any decentralized market equilibrium

must feature them having the same price, and so real ratios and nominal ratios should be

the same thing. The differences between the two charts reflect different price developments

for the types of goods: Specifically, it reflects a substantial decline over time in the ratio

of investment prices to consumption prices. This relative price movement likely reflects the

existence of different production technologies for consumption and investment.

Once one allows for the idea that consumption and investment can be produced using

different technologies, and thus that their prices do not always move together, then the sta-

bility of the nominal ratio of investment to consumption also provides an intuitive version of

the same “sustainability” idea that underlies the one-sector model’s balanced growth pre-

diction. In the one-sector context, the ratio of real investment to real consumption cannot

trend upwards over time because households will not wish to allocate ever higher-fractions

of their incomes towards saving. However, in a two-sector model with faster technologi-

cal progress in the production of investment goods, then real investment can grow faster

than real consumption without requiring ever-increasing sacrifices on the part of house-

holds. Moreover, the original intuition behind the one-sector balanced growth hypothesis

still holds as an explanation for why the nominal ratio of investment to consumption should

be stationary: Increases in the household savings rate (the fraction of nominal income that

is saved) will only provide a temporary boost to the growth rates of capital and output.
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2.2 Comparison with Greenwood, Hercowitz, Krusell (1997) Evidence

Before moving on to describe the implications of these results, it is worth discussing why

the focus of this paper has been restricted to official NIPA series. In previous work aimed

at replacing the one-sector approach with a model containing multiple technology shocks,

Greenwood, Hercowitz, and Krusell (1997) cited Robert Gordon’s (1990) evidence that price

inflation for durable goods is overstated in the NIPAs because valuable quality improve-

ments are often ignored. Their analysis replaced the official price deflator for equipment

investment with the alternative index developed by Gordon, but used the NIPA price de-

flators for all other categories.

This approach does not fit well with recent work on price mis-measurement. For in-

stance, much of the recent evidence on price mis-measurement, including some of the work

of the Boskin Commission, has focused on prices for non-manufacturing output.5 While

durable goods are one of the areas where some of the adjustments for quality suggested by

Gordon have actually been adopted by the NIPAs (most notably for computers), there are

serious questions about the adequacy of the output deflators for sectors such as financial ser-

vices and construction. Measured productivity growth in these sectors has been extremely

weak and seems likely to have been underestimated. Given that the nominal output series

are generally considered to be relatively accurate, these considerations suggest that price

inflation in these non-manufacturing industries may be overstated.6 In the absence of con-

vincing evidence pointing one way or the other for adjusting the relative price of durable

goods, we have chosen not to apply any such adjustment.

3 Implications for Measurement of Trends and Cycles

The empirical properties just documented suggest that the appropriate theoretical frame-

work for thinking about long-run restrictions on US macro data is one with two types of

production technology (thus allowing investment and consumption prices to be different)

and with balanced growth formulated in terms of stability of the nominal ratio. We will

outline such a model, and how to identify the two technology shocks and their dynamic

effects, in Sections 4 and 5.

First, however, we will present some implications of the competing balanced growth

5See Boskin et al (1998).
6See Corrado and Slifman (1999) and Gullickson and Harper (1999).
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hypotheses that hold independent of any specific theoretical framework used to derive them.

Specifically, the long-run cointegrating restrictions implied by these hypotheses provide a

natural way to decompose macroeconomic time series into a stochastic trend component

on the one hand, and a transitory cyclical component on the other. We show here that

the traditional one-sector balanced growth hypothesis produces unsatisfactory estimates of

the cyclical components in consumption, investment, and output, and these estimates are

compared with those based on the alternative nominal ratio hypothesis.

3.1 Traditional Balanced Growth Method

According to the Granger representation theorem, the traditional formulation of the bal-

anced growth hypothesis—that log real investment it and log real consumption, ct are

cointegrated with a (1,-1) cointegrating vector—implies the existence of a VECM represen-

tation of the following type:




∆ct

∆it



 =





αc

αi



+B(L)





∆ct−1

∆it−1



+





γi

γc



 (it−1 − ct−1) + ǫt. (1)

The results from the estimation of a two-lag version of this VECM are reported in Table 3.7

The coefficients on the error-correction term (the investment-consumption ratio) are both

negative, with the coefficient in the investment regression being larger. This implies that

a high value of the real investment to real consumption ratio is a negative signal for future

growth in both consumption and investment, and that the ratio should tend to decline by

a process of investment falling by more than consumption. However, while these coefficient

estimates technically imply a stable VAR, it should be kept in mind that both cointegration

tests and unit root tests on the investment-consumption ratio reject the hypothesis that

this is a satisfactory model of investment and consumption dynamics.

This VECM can be used to derive a Beveridge-Nelson-style decomposition of consump-

tion and investment into their stochastic trend and transitory cycle components. Letting ω

and ψ represent the unconditional expectations for ∆ct and it − ct, the terms in the VECM

can be re-arranged to arrive at a VAR representation in ∆ct − ω and it − ct − ψ:

(I − C(L))





∆ct − ω

it − ct − ψ



 = ǫt. (2)

7This two-lag version is consistent with results from lag-length selection tests which favor three lags in

the levels specification.
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This can be written in companion matrix form as

Zt = AZt−1 + ǫt. (3)

Our definition of the transitory cyclical component of consumption is

c
cyc
t = lim

k→∞

Et (ct − ct+k + kω) . (4)

In other words, the transitory component is the expected cumulative shortfall in future

consumption growth relative to its trend growth rate, so that when this component is

positive, one should expect the average future growth rate of consumption to be below its

trend rate. This can be estimated from the VAR as

c
cyc
t = −e′1

(

A+A2 +A3 + ....
)

Zt = −e′1A (I −A)−1 Zt (5)

where e1 is a (1, 0) vector. The transitory cyclical component of investment can also be

estimated from this VAR as

i
cyc
t = lim

k→∞

Et (it − it+k + kω)

= lim
k→∞

Et (it − ct + ct − ct+k + ct+k − it+k + kω)

= c
cyc
t + (it − ct − ψ) (6)

Figure 2(a) shows the transitory components of investment and consumption generated by

the VECM reported in Table 3. Both series display the unsatisfactory property of appearing

to trend upwards over time, with the values early in the sample tending to be negative and

the values later in the sample tending to be positive.8 This feature is more evident for

investment than for consumption: The non-stationarity is due to both series placing some

weight on the real investment-consumption ratio, and the VECM coefficients suggest that

this is a more important signal for future investment growth than for future consumption

growth.

3.2 Nominal Ratio Method

The same technique can be used to derive the transitory components implied by the

nominal-ratio balanced growth hypothesis. In this case, the VECM is formulated as








∆ct

∆it

∆pt









=









αc

αi

αp









+B(L)









∆ct−1

∆it−1

∆pt−1









+









γi

γc

γp









(it−1 − pt−1 − ct−1) + ǫt. (7)

8It should be noted that the general pattern reported here turns out to be robust to the addition of a

wide range of other cyclical variables to the forecasting VAR.
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where pt is the log of the price of consumption relative to the price of investment. The results

from the estimation of a two-lag version of this VECM are reported in Table 4. As with

the real-ratio system, the coefficients on the error-correction term (in this case the nominal

investment-consumption ratio) are both negative, with the coefficient in the investment

regression being larger. However, the sizes of the adjustment coefficients are larger and

more statistically significant. In addition, the unit root and cointegration tests suggest

that this system provides an acceptable model of the joint dynamics of real investment,

real consumption and their relative price.

Letting ωc, ωi, and µ represent the unconditional expectations of consumption growth,

investment growth and the nominal ratio of investment to consumption, the nominal-ratio

system implies a VAR representation of the form:

(I − C(L))









∆ct − ωc

∆it − ωi

it − pt − ct − µ









= ǫt. (8)

Again, writing this system in the same companion matrix format as equation (3), the

cyclical components of consumption and investment can be measured as

c
cyc
t = −e′1A (I −A)−1 Zt (9)

i
cyc
t = −e′2A (I −A)−1 Zt (10)

where ei is a vector with one as its ith component and zeros elsewhere. Figure 2(b) shows

these new measures of the transitory components of consumption and investment. As with

the measures based on the real-ratio VECM, the nominal-ratio approach implies that the

transitory component of investment is generally larger and more volatile than the transitory

component of consumption. However, unlike the real ratio approach, these measures do not

trend over upwards over time.

3.3 Measures of the Aggregate Cycle

Figure 3 presents measures of the transitory component of aggregate output generated by

the two alternative VECMs. These measures have been defined as

ycyc = θccyc + (1 − θ)icyc (11)

where θ is the sample average of the ratio of nominal consumption to the sum of nomi-

nal consumption and nominal investment. This measure is consistent with the concept of
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aggregate real output as a Divisia index of consumption and investment, which is essen-

tially identical to the Fisher chain-index methodology that has been used to construct real

aggregates in the US NIPAs since 1996.9

Beyond the fact that the transitory series implied by the real ratio method trends

upwards, while the nominal-ratio-based measure does not, the most striking aspect of Figure

3 is the substantially different stories these series tell about the behavior of output relative

to trend since the early 1990s. The real ratio model sees the long expansion of the 1990s as

having brought the economy way above its stochastic trend, with output almost 13 percent

above trend at its peak in 2000:Q2. And this model views the recession beginning in 2001

as only having partially reversed this pattern, with output still being 5 percent above its

trend level at the cyclical lowpoint of 2003:Q1.

In contrast, the nominal ratio model sees the recession of the early 1990s as having

being particularly severe in the sense of bringing output farthest below its stochastic trend.

This model thus sees the long, largely investment-led, expansion of the 1990s as mainly an

unwinding of this development. The series generated by the nominal ratio model is also in

keeping with the common perception of the post-2000 period as one of cyclical weakness,

with the economy seen as almost 6 percent below its stochastic trend in 2002:Q3. By the

end of the sample, at 2005:Q4, the nominal ratio model views output as 1 percent above its

stochastic trend, compared with 11 percent above trend according to the real ratio model.

Of course, it is also clear that the transitory component of output generated by the

nominal ratio method does not always look like the standard interpretation of the business

cycle. For instance, it sees the long decline in output 1980-82 period as merely restoring

output back to its trend after having been well above it in the late 1970s. However, such

results point to an advantage of this method, inasmuch as it can illustrate how the declines

in output associated with standard recessions can be due to either cyclical weakness and/or

declines in the stochastic trend underlying output. And, as we will discuss in the next

section, the stochastic trend generated by this method can be seen as a combination of two

technology shocks, so this method allows for the illustration of the role played in business

9In light of the evidence of a declining relative price of investment, this measure is clearly superior to the

Laspeyeres or fixed-weight approach, which amounts to using the “real shares” implied by a particular base

year to weight the growth rates. The level of such a real investment share will be higher the farther back

in time is the base year, and for any fixed base year, this share will trend upwards over time, implying that

real output growth would tend to asymptote over time to simply equal the growth rate of real investment.

See Whelan (2002) for a discussion of these issues.
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cycles by technology shocks.

3.4 Comparison with Cochrane (1994)

The results just presented may be somewhat surprising because they seem to contradict

the conclusions of a number of previous researchers that the restriction of stationary real

ratios can be used to generate apparently satisfactory measures of the cyclical component

of output. For example, they appear to contradict the results in a well-known paper by

John Cochrane (1994). This paper examined the ratio of real consumption of nondurables

and services to real GDP and presented evidence in favor of its stationarity. Cochrane

concluded that one could construct a useful measure of the transitory component of output

from the VECM implied by this cointegrating relationship. How can Cochrane’s conclusions

be reconciled with our earlier results, which showed the ratio of real consumption to real

fixed investment declining over time? The explanation has two parts.

The first relates to Cochrane’s use of a ratio involving total real GDP. Figure 4(a)

shows that the ratio studied by Cochrane has been relatively stable over time, and has

fluctuated within a narrow band. However, when one uses real private GDP—consistent

with our approach of only looking at private consumption and investment—a downward

trend becomes evident, as implied by our earlier results. This interpretation is backed up

by formal hypothesis tests which indicate stationarity of the ratio featuring total GDP and

non-stationarity of the ratio featuring private GDP, both for the full sample and for the

sample ending in 1989:Q3, as in Cochrane’s paper.

Figure 4(b) shows the differences between the Beveridge-Nelson measures of the transi-

tory component of output that emerge from these two alternative potential “cointegrating”

VARs, i.e. one featuring the ratio involving total real GDP and the other featuring pri-

vate real GDP. Consistent with our earlier results, the cyclical measure based on the private

GDP ratio is unsatisfactory because it trends upwards over time. In contrast, the transitory

measure based on total real GDP does appear to be stationary.

How does one interpret the stationarity of the ratio involving total real GDP? Clearly,

in light of the evidence already presented, one cannot draw on the logic of the one-sector

model. Instead, the stationarity of this series appears to rest on a somewhat fortuitous

offset: Real government expenditures have declined relative to real GDP in a fashion that

has helped to mask the decline in real consumption relative to the rest of private GDP.

The second part of the explanation is that there have been important revisions to
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historical data. Cochrane’s paper acknowledged that it may be preferable on theoretical

grounds to employ a VAR that uses the private GDP ratio, and he reports that for his data,

this ratio appears stationary. Because our results for this same sample period point towards

this ratio being nonstationary, it is clear that revisions to historical data have contributed

to the different conclusions reached here. Such revisions have included the introduction of

hedonic price indexes for various categories of investment goods, as well as other steps aimed

at addressing some of the issues raised about capital goods price indexes by researchers such

as Robert Gordon (1990). These revisions have had the effect of boosting the historical

growth rates of real investment relative to real consumption.

4 A Simple Two-Sector Model

We have described the econometric implications of our alternative nominal ratio formulation

of balanced growth. Here, we provide a simple two-sector model that provides a theoretical

foundation for this approach, and document some additional implications of the model for

the long-run behavior of consumption, investment, and their relative price.

4.1 The Nominal Ratio Balanced Growth Hypothesis

The production functions for consumption and investment in the model take the form

C = ACK
βc

C L
1−βc

C , (12)

I = AIK
βi

I L
1−βi

I , (13)

where KI ,KC , LI , LC are the capital and labor inputs of the consumption and investment-

producing sectors. Models similar to this one, featuring two production technologies, have

been discussed by Greenwood, Hercowitz and Krusell (1997) and Whelan (2003).

We assume that firms in both sectors are price-takers and maximize the profit functions:

πC = PCACK
βc

C L
1−βc

C − wLC − PI

(

i+ δ −
ṖI

PI

)

KC , (14)

πI = PIAIK
βi

I L
1−βi

I −wLI − PI

(

i+ δ −
ṖI

PI

)

KI . (15)

Here we have assumed that the rental rate for capital is determined by the Jorgensonian

user cost of capital formula, where i is the nominal required rate of return on investments
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in capital and δ is the depreciation rate for capital. Solving the first-order conditions for

profit-maximization, we get the following factor demand equations:

KC =
PC

PI

βcC

i+ δ − ṖI

PI

(16)

KI =
βiI

i+ δ − ṖI

PI

(17)

LC =
(1 − βc)PCC

w
(18)

LI =
(1 − βi)PII

w
(19)

An implication of these conditions is that for both factors, the ratios of the quantities of

the factor used in the two sectors are strictly proportional to the ratio of nominal outputs:

KI

KC

=
βi

βc

PII

PCC
, (20)

LI

LC

=
1 − βi

1 − βc

PII

PCC
. (21)

Now consider the properties of this economy along a steady-state growth path, that is

a growth path in which all real variables in the economy grow at constant rates. Note first

that if capital in the j sector is growing at a constant rate Gj , then investment in that type

of capital must be given by

Ij = (Gj + δ)Kj (22)

Thus, the composition of output in the investment sector along a steady-state growth path

can be written as

I =
PC

PI

βc (GC + δ)C

i+ δ − ṖI

PI

+
βi (GI + δ) I

i+ δ − ṖI

PI

(23)

This re-arranges to give
PII

PCC
=

βc (GC + δ)

i+ δ − ṖI

PI
− βi (GI + δ)

(24)

Because the quantity on the right can be assumed to be constant along a steady-state

growth path, the ratio of nominal outputs is also constant.

If we move away from deterministic steady-states, and instead assume that the tech-

nology shocks for consumption and technology sectors evolve in a stochastic fashion with

trend growth rates µI and µC , i.e. that

∆aC,t = µC + ηC,t (25)
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∆aI,t = µI + ηI,t (26)

where ηC,t and ηI,t are I(0) series, then for a wide range of standard specifications for prefer-

ences, the economy’s dynamic stochastic general equilibrium will feature the growth rates of

consumption, investment, and relative prices all equalling their nonstochastic steady-state

values plus a set of stationary deviations. Thus, these results provide a simple theoretical

basis for our alternative formulation of long-run balanced growth.

Before moving on, it can be noted that the assumption of Cobb-Douglas technology—

and most specifically its implication of unit-elastic factor demands—is essential to the

derivation of the result of a stable long-run nominal ratio of consumption to investment.

While some may feel uncomfortable with this restrictive specification of the production

technology, the model has been designed to fit the evidence on the stability of this nom-

inal ratio and unit-elastic factor demands (and hence Cobb-Douglas technology) appear

necessary to fit this pattern. In addition, the recent work of Jones (2005) demonstrates

that Cobb-Douglas-shaped aggregate production functions can be derived from ideas-based

models under very general assumptions.

4.2 Other Long-Run Restrictions

In addition to providing an economic basis for the nominal ratio balanced growth hypoth-

esis, the two-sector model implies a clear set of restrictions on the joint long-run behavior

of consumption, investment, and their relative price. To see this, note that equations (20)

and (22) together imply that, along the steady-state growth path, IC and II—and thus KC

and KI—must expand at the same growth rate as aggregate real investment.

Normalizing the steady-state growth rate of aggregate labor input to zero (implying

constant labor input in both sectors) and denoting the steady-state growth rates of the

consumption- and investment-sector technologies by µC and µI , these considerations imply

that the steady-state growth rates of consumption and investment are determined by:

gC = µC + βcgI (27)

gI = µI + βigI (28)

These equations solve to give

gC = µC +
βcµI

1 − βi

(29)

gI =
µI

1 − βi

(30)
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The real growth rates of consumption and investment will generally differ along the steady-

state growth path, with investment growing faster as long as µI > µC . So, the fact that

the ratio of nominal outputs of the two sectors is constant along the steady-state growth

path implies that

gP = gI − gC =

(

1 − βc

1 − βi

)

µI − µC (31)

In other words, the growth rate of the price of consumption relative to the price of invest-

ment will be the negative of the relative growth rates of the quantities.

5 Identifying Two Technology Shocks

We will now discuss how the long-run restrictions implied by the two-sector model allow us

to identify the stochastic processes for consumption- and investment-sector technology as

well as the dynamic effects of shocks to these technologies.

5.1 The VMA Representation

We have described how our preferred nominal-ratio balanced growth hypothesis implied

two different representations, the VECM system of equation (7), and the VAR system

of equation (8). In addition, however, it is well known that any cointegrated VAR with

n variables and r cointegrating relations can also be represented using a Vector Moving

Average (VMA) representation of the form

∆Xt = θ +D (L) ǫt, (32)

where D(1) has a reduced rank of n − r reflecting the restrictions on long-run behavior

imposed by the cointegrating relations. In the case of the nominal ratio model, this means

the existence of a representation of the form

∆Xt =









∆ct

∆it

∆pt









= θ +D (L) ǫt. (33)

where D(1) has a rank of two.

A reduced-form VMA representation can be derived directly from inverting the VECM

representation and this can be used to derive impulse responses to the shock terms ǫt. How-

ever, the shock terms and impulse responses obtained from this reduced-form representation
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are not unique. For any nonsingular matrix G, there exists an observably equivalent repre-

sentation of the form

∆Xt = θ +
(

D (L)G−1
)

Gǫt, (34)

with shock terms Gǫt and impulse responses given by D (L)G−1. So, to obtain shocks

and impulse responses that have a useful economic interpretation, it is necessary to impose

theory-based restrictions on the G matrix.

In the rest of this section, we show how the long-run restrictions implied by our two-

sector model can be combined with the method of King, Plosser, Stock and Watson (1991)

to identify structural shocks and impulse responses that are consistent with this model. In

other words, we identify a structural representation

∆Xt = θ + Γ (L) ηt (35)

in which the shocks ηt have an economic interpretation consistent with our model.

5.2 Identification Methodology

The identification of the structural representations proceeds in a number of steps. The first

step is to note that any system of n different I(1) variables with r cointegrating relationships

can be expressed in terms of the Stock and Watson (1988) common trends representation

with n − r common trends. This means that the non-stationary I(1) components of our

three variables can be expressed as functions of two I(1) stochastic trends. Algebraically,

these so-called “permanent” components can be written as

X
p
t = X0 +Aτt (36)

τt = µt+
t
∑

s=1

ηp
s (37)

where A is a 3 × 2 matrix, ηp
t is a vector containing the two shocks to the permanent

component, and Aµ = θ.

The second step notes that our two-sector model provides the restrictions to allow us

to identify the two common trends as corresponding to the states of technology in the

consumption- and investment-producing sectors. This allows one to write the matrix of

long-run effects in the structural VMA represention as

Γ (1) =
(

A 0
)

(38)
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with the vector of shocks being written as

ηt =





η
p
t

ηt
t



 (39)

where ηt
t represents the model’s sole transitory shock.

Third, the model pins down the A matrix. Together, equations (29), (30), and (31)

imply that the long-run multipliers can be written as

Γ (1) =









1 βc

1−βi
0

0 1

1−βi
0

−1 1−βc

1−βi
0









(40)

where the first two columns describe the long-run effects of the consumption technology

shock and the investment technology shock respectively.

This information is sufficient to identify the two technology shocks from the reduced-

form VMA. This is done as follows. Starting from the definition of the structural shocks,

we have

Γ (1) ηt = D (1) ǫt. (41)

Multiplying both sides by Γ′ (1), this becomes

Γ′ (1) Γ (1) ηt = Γ′ (1)D (1) ǫt. (42)

This can be re-written as




A′A 0

0 0









η
p
t

ηt
t



 =





A′D (1)

0



 ǫt. (43)

So, the technology shocks are identified as

η
p
t =

(

A′A
)−1

A′D (1) ǫt. (44)

The transitory shock can be identified from the assumption that it is uncorrelated with

either of the technology shocks. This is because there is a unique (up to a scalar multiple)

1×3 vector of coefficients that describes the linear combination of the reduced-form shocks

that is orthogonal to both of the structural shocks. Specifically, letting Ω be the covariance

matrix of the reduced-form errors, ǫt, and defining
[

(A′A)−1
A′D (1)

]

⊥
to be a 3× 1 vector

such that
(

A′A
)−1

A′D (1)
[

(

A′A
)−1

A′D (1)
]

⊥
= 0 (45)
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then the transitory shock is defined as

ηt
t =

[

(

A′A
)−1

A′D (1)
]′

⊥
Ω−1ǫt. (46)

In terms of the notation used in equation (34), the long-run restriction methodology achieves

identification by setting

G =





(A′A)−1
A′D (1)

[

(A′A)−1
A′D (1)

]′

⊥
Ω−1



 (47)

Finally, note that this identification of the structural shocks allows for a direct economic

interpretation of the Beveridge-Nelson decompositions presented earlier. This is because,

by definition, the expected values of deviations in the distant future from the variables’

permanent components—defined in equations (36) and (37)—are all zero, so these are

identical to the permanent components identified by our Beveridge-Nelson decompositions

in Section 3. And the economic interpretation of the transitory components produced by

these decompositions is that they represent the components of consumption, investment,

and output that are unrelated to the states of technology in either the consumption- or

investment-producing sectors.

5.3 Discussion of Identification Methodology

The generality of this identification methodology is worth emphasizing: It relies only on the

long-run restrictions implied by the two-sector growth model and on the assumption that

the technology shocks are uncorrelated with the transitory shock. An important contrast

with most structural VAR studies is that no assumption whatsoever has been made about

the covariance structure of the technology shocks themselves. For instance, we are not

assuming that consumption- and investment-sector shocks are uncorrelated, which would

not be a realistic assumption. This absence of assumptions about the covariance structure

of the shocks contrasts with the analysis of technology shocks presented by Fisher (2005).

Fisher presents a model with two technology shocks and adopts a methodology that uses

the fact that labor productivity depends only on technology in the long-run. However, his

approach does not make use of the model’s predictions for precisely how much influence

each of the technology shocks should have, and so relies on additional assumptions about

the covariance structure of the shocks to achieve identification. As we discuss in Section

7, our unrestricted identification of the shocks allows us to assess the validity of these

assumptions about the covariance structure of technology shocks across sectors.
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6 Results

6.1 Implementation Details

In the analysis that follows, the standard value of the capital elasticity of one-third was

applied to both sectors, i.e βi = βc = 1

3
is used. This is based on evidence relating to

the composition of value-added by industry which suggest that sectors oriented towards

the production of capital goods appear to have similar capital shares to the rest of the

sectors.10 With these assumptions, our long-run identifying restrictions can be written as

Γ (1) =









1 0.5 0

0 1.5 0

−1 1 0









. (48)

It should be noted, however, that the pattern of the results reported here remain quite

similar when a range of different plausible values are used for βc and βi.

The empirical implementation of the two-sector identification was carried out using a

three-variable cointegrated VAR featuring the log of per capita real consumption, the log

of per capita real fixed investment, and the log of the relative price of consumption to

investment.11 As before, the sample was 1949:1 to 2005:4 and the system was estimated

with three lags.12

6.2 Technology Shocks and Their Effects

We first consider the technology shocks that emerge from the imposition of the model’s

long-run restrictions. Figure 5(a) displays the estimates of the two technology series, aC,t

and aI,t. Not surprisingly, in light of the facts documented earlier, the series for investment

technology has grown faster over the whole sample than the series for consumption technol-

ogy. However, what may be somewhat more surprising is that this pattern only becomes

evident after 1980. The reasons for this can be seen in Figure 5(b). The gap between the

two technology series can be equated with the long-run component of the price of consump-

tion relative to investment. The figure shows that the transitory component for the relative

price series is quite small, and that the series appeared to be relatively stationary up until

about 1980, after which it increased steadily.

10Greenwood, Hercowitz and Krusell (1997) also argue that this is a reasonable assumption.
11The population measure used is the civilian population aged sixteen and over.
12This is the lag length consistent with the optimal value for the Akaike Information Criterion; however,

the substance of the results discussed here were not found to be sensitive to the lag length chosen.
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Our empirical estimates of the average growth rates of the stochastic trends (µC and

µI) allow us to calculate—via equation (29)—the average contributions of the two types of

technological progress to the steady-state growth in consumption per capita. The average

growth rate of consumption technology, µC , is estimated to be 0.32 percent per quarter,

while µI is estimated at 0.44 percent per quarter. These parameters are estimated fairly

tightly: Standard errors based on 5000 bootstrap replications of the reduced-form VAR

process are 0.03 percent for µC and 0.06 percent for µI . Using these figures along with

our assumption of βc = βi = 1

3
, equation (29) implies that 42 percent of long-run growth

in consumption per capita is due to technological improvements in the investment sector,

with the rest being due to technological progress in the consumption sector. And using a

long-run ratio of nominal consumption to nominal investment of 4:1, these figures imply

that technological progress in the investment sector accounts for 52 percent of long-run

growth in a Divisia index of output per capita.

Turning from long-run trends to the behavior of the observed series relative to their

estimated permanent components, an important pattern that emerges from Figures 2(b)

and 5(b) is that consumption and relative prices tend to stay much closer to their permanent

components than does investment. This result, of course, echoes the conclusions of Fama

(1992), Cochrane (1994), and others that transitory shocks play a much smaller role in

determining consumption than they do in determining investment. However, whereas these

and subsequent researchers have viewed this result as implying that consumption is a useful

proxy for a unique single common trend that also underlies investment and output, in our

case, this pattern simply means that consumption stays close to a weighted average of two

different stochastic trends, one due to consumption technology and one due to investment

technology.

Figure 6 illustrates the impulse responses of consumption, investment, and their relative

price to shocks to the consumption and investment technologies as well as to the model’s

single transitory shock. It should be noted that, as expected, our two technology shock

series have a positive correlation of 0.36. However, the series in Figure 6 are the structural

impulse responses given by D (L)G−1 and have not been calculated based on any Choleski-

type re-ordering of the shocks. In other words, these series provide a direct answer to the

question “what happens when there is a positive unit shock to the technology of sector i

without any shock to sector j’s technology?” rather than “what tends to be observed on

average when there is a positive shock to technology in sector i?”
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The impulse responses help to flesh out why it is that investment deviates more sub-

stantially than the other variables from its permanent component (see Figure 2(b)). First,

they show that investment is substantially more responsive to the transitory shock than the

other variables, both in the magnitude of its maximum response and the time it takes for

the shock to wear off. Second, in the short-run, investment displays large reactions to tech-

nology shocks that differ significantly from its long-run responses. For instance, although

consumption technology has no effect on investment in the long run, the short-run response

of investment to a consumption technology shock is almost as positive as the response of

consumption. More intriguingly, the initial response of investment to shocks to investment-

sector technology is negative, with the response only moving towards its long-run positive

value with a substantial lag.

6.3 Sources of Business Cycle Fluctuations

Having identified the technology shocks for the two sectors and their dynamic effects, we can

also be more precise about the role that these shocks play in generating the business cycle.

Here, we report some estimates of the role played by technology shocks in business cycle

fluctuations in consumption, investment, and output using a method previously employed

in a one-sector context by Christiano, Eichenbaum, and Vigfusson (2003).

This method is implemented as follows. First, the estimated structural VAR model

is re-simulated over history with all of the historical estimated non-technology shocks set

to zero. Second, the simulated technology-driven series for consumption, investment and

output are cyclically adjusted using a Hodrick-Prescott filter. Then, the cyclically-adjusted

simulated technology-driven series are compared with the cyclically-adjusted version of the

historical series. Figure 7 charts the actual and technology-driven cyclically-adjusted series

for output, consumption, and investment.

The chart shows that there is a relationship between actual business cycles and the

cycles generated from a technology-shocks-only simulation of history. There is a positive

correlation of 0.38 between cyclically-adjusted output and the technology-driven simulated

series (again defining output as a Divisia-index aggregate of consumption and investment).

The correlations for consumption and investment are 0.61 and 0.23 respectively. However, as

reported in Table 5, the technology-driven series systematically fail to explain the magnitude

of economic fluctuations, most notably for investment. Technology shocks account for only

20 percent of the variance of business-cycle fluctuations in output, with the corresponding
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figures for consumption and investment being 44 percent and 8 percent.

This methodology also allows one to isolate the separate roles played in the business cycle

by consumption-sector and investment-sector technology shocks. Simulating the model with

only consumption-sector technology shocks, one can explain 16 percent of the business-cycle

variance in output. Simulating the model with only investment-sector technology shocks,

a mere 2.7 percent of the variance can be explained. This low number is due in part to

the very low fraction (5.1 percent) of the variance in investment fluctations that can be

explained by investment-sector technology shocks. This, in turn, can be related back to the

substantial responses of investment to transitory shocks documented in Figure 6.

Overall, these results confirm and extend the conclusions of King, Plosser, Stock, and

Watson (1991) that technology shocks appear to play a limited role in determining business

cycle fluctuations, with the effects of these shocks being most notable for investment.

7 On “Investment-Specific” Technology Shocks

Following Greenwood, Hercowitz, and Krusell (1997), some researchers have described the

technology terms in two-sector models such as ours using a slightly different formulation.

This formulation would see our model re-written as

C = zK
βc

C L
1−βc

C , (49)

I = zqK
βi

I L
1−βi

I , (50)

with z termed “neutral” technology and q termed “investment-specific” technology As a

theoretical matter, this formulation provides an isomorphic description of the economy to

ours. In terms of identifying the technology series, the z series is identical to our consump-

tion technology series and the q series is the ratio of investment technology to consumption

technology.13 Similarly, our analysis of the effects of technology shocks can be re-phrased

in terms of this alternative formulation: The impulse response to a neutral shock that pro-

duces a unit increase in the technology series for both sectors can be calculated simply by

adding together the impulse responses for the two technology shocks in our analysis. And

13For this reason, the “neutral” terminology is not very satisfactory. For instance, we could re-write the

model with z multiplying the investment sector production function and zq multiplying the consumption sec-

tor production function. In this case, “neutral” technology would actually be investment sector technology,

and q would be “consumption-specific” technology.
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the effects of a so-called investment-specific shock—a shock that improves investment tech-

nology but not consumption technology—are identical to the effects of the investment-sector

shock that we have described.

However, beyond its usage as an alternative way of describing the model, this formu-

lation does have empirical content if it is assumed that the shocks to the z and q series

are uncorrelated, as is done for instance in Greenwood, Hercowitz, and Krusell (2000) and

Fisher (2005). This assumption implies that, ceteris paribus, one should expect that any

positive shock to consumption technology should also show up one-for-one in the technol-

ogy of the investment sector. Our analysis allowed for identification of consumption- and

investment-sector technology shocks without any assumptions about their covariance, and

the results based upon this more general identification call into doubt the idea of uncorre-

lated neutral and investment-specific shocks.

Specifically, in our analysis, the log of investment-specific technology shocks can be

calculated as the difference between the logs of investment-sector and consumption-sector

technology. Thus calculated, there is a statistically significant negative correlation between

investment-specific shocks and consumption (i.e. neutral) shocks of -0.30. One way of

explaining this result is to note that the correlation between technology shocks in the two

sectors, while positive, is weak enough that a positive shock to consumption technology

tends to imply that consumption technology increases relative to investment technology,

(implying a decline in measured investment-specific technology). These calculations place

in doubt the accuracy of identifications that rely on the assumption of uncorrelated z and

q shocks.

8 Conclusions

This paper has had a number of goals.

First, it has been shown that the inclusion of recent data from the US national accounts

overturns earlier widely-cited results that supported the one-sector model’s balanced growth

predictions. This is important because the idea of stable “great ratios” of real consumption

to real investment or of real investment to real GDP, has generally been considered a central

stylized fact in macroeconomics. The fact that real investment appears to have a different

long-run trend growth rate from real consumption in US data should have important im-

plications for macroeconomic analysis, given that many empirical and theoretical studies
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take the one-sector growth model as a baseline for characterizing the long-run behavior

of the economy. On this point, we are echoing the conclusions of Greenwood, Hercowitz,

and Krussell (1997). However, the evidence in this paper is very different in that it relies

only on the official NIPA data used in the vast majority of macroeconomic applications,

and does not depend on adjusting for mis-measurement in investment prices while ignoring

mis-measurement in non-investment prices.

Second, an alternative formulation of the idea of balanced growth—that the ratio of

nominal consumption to nominal investment should be stationary—was suggested and

found to provide a good description of the US data. It was shown that this formulation

produces estimates of the transitory or cyclical components of consumption and invest-

ment that have more satisfactory features than those based on the traditional “real ratio”

formulation of balanced growth.

Third, a simple two-sector framework was proposed that is consistent with the long-run

properties of the data. The model acknowledges that capital goods appear to be produced

with a different technology than consumption goods, with the pace of technological change

in the production of capital goods being faster on average. A structural VAR analysis was

implemented to explore the implications of this approach for the macroeconomic effects

of technology shocks. An important aspect of the identification methodology employed is

that it uses all of the model’s predictions about the long-run behavior of consumption,

investment, and their relative price, and does not rely on ad hoc assumptions about the

covariance structure of the technology shocks. The results suggest that technology shocks

are not a dominant force driving the business cycle. In light of these results, an obvious

next direction for research is the development of theoretical models that are consistent with

the long-run facts presented here and are also consistent with the evidence concerning the

role played in business cycles by technology shocks.
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Table 1: Tests of the Traditional Balanced Growth Hypothesis

A. Unit Root Tests for i
c

Test Statistic 5%/10% Values
ADF t-statistic -1.59 -2.88/-2.57
Elliot-Rothenberg-Stock DFGLS -1.03 -1.95/-1.62
Ng-Perron M̄ZGLS

α -0.86 -8.10/-5.70

B. Estimated Cointegrating Vector: Stock-Watson DOLS

Variable Null Hypothesis Estimates
log (i) 1 1
log (c) -1 -0.857

t-test of Balanced Growth Restriction: t = −5.16 (p=0.0000007)

C. Estimated Cointegrating Vector: Maximum Likelihood

Variable Null Hypothesis Estimates
log (i) 1 1
log (c) -1 -0.838

Wald Test of Balanced Growth Restriction: χ2
1 = 17.54 (p=0.00003)

Notes : i ≡ Real private fixed investment at 2000 dollars, c ≡ Real consumption expenditures at

2000 dollars. Sample is 1949:1 to 2005:4. DOLS estimation was based on four first-difference leads

and four lags; t-test calculated as in Hamilton (1994) pages 608-612. Lag length for ML VAR was

three (chosen by AIC). See text for additional details.



Table 2: Tests of the Nominal-Ratio Balanced Growth Hypothesis

A. Unit Root Tests for i∗

c∗

Test Statistic 5%/10% Values
ADF t-statistic -3.21 -2.88/-2.57
Elliot-Rothenberg-Stock DFGLS -2.94 -1.95/-1.62
Ng-Perron M̄ZGLS

α -9.35 -8.10/-5.70

B. Estimated Cointegrating Vector: Stock-Watson DOLS

Variable Null Hypothesis Estimates
log (i∗) 1 1
log (c∗) -1 -1.003

t-test of Balanced Growth Restriction: t = 0.106 (p=0.99)

C. Estimated Cointegrating Vector: Maximum Likelihood

Variable Null Hypothesis Estimates
log (i∗) 1 1
log (c∗) -1 -1.007

Wald Test of Balanced Growth Restriction: χ2
1 = 0.24 (p=0.62)

Notes : i∗ ≡ Nominal private fixed investment, c∗ ≡ Nominal consumption expenditures. Sample

is 1949:1 to 2005:4. DOLS estimation was based on four first-difference leads and four lags; t-test

calculated as in Hamilton (1994) pages 608-612. Lag length for ML VAR was five (chosen by AIC).

See text for additional details.



Table 3: VECM Implied by Traditional Balanced Growth Hypothesis

∆ct ∆it

Constant -0.008 -0.045

(-0.097) (-1.989)

∆ct−1 -0.103 0.277

(-1.275) (1.245)

∆ct−2 0.258 0.367

(3.222) (1.659)

∆it−1 0.065 0.424

(2.197) (5.194)

∆it−2 -0.014 -0.017

(-0.484) (-0.226)

it−1 − ct−1 -0.007 -0.031

(-1.484) (2.014)

Notes : i ≡ Real private fixed investment, c ≡ Real consumption expenditures. Sample is 1949:1 to

2005:4. t−statistics are given in parentheses below coefficient estimates



Table 4: VECM Implied by Nominal Ratio Balanced Growth Hypothesis

∆ct ∆it ∆pt

Constant -0.018 -0.085 -0.003

(-1.839) (-3.258) (-0.438)

∆ct−1 -0.104 0.303 0.101

(-1.295) (1.378) (1.932)

∆ct−2 0.277 0.402 0.085

(3.471) (1.849) (1.655)

∆it−1 0.065 0.399 -0.031

(2.195) (4.959) (-1.622)

∆it−2 -0.020 -0.020 -0.024

(-0.072) (-0.266) (-1.311)

∆pt−1 -0.211 -0.138 0.271

(-2.079) (-0.497) (4.133)

∆pt−2 0.202 0.602 0.244

( 2.001) (2.183) (3.728)

it−1 − pt−1 − ct−1 -0.015 -0.059 -0.002

(-2.263) (3.233) (0.433)

Notes : i ≡ Real private fixed investment, c ≡ Real consumption expenditures, p ≡ Price of con-

sumption relative to the price of investment. Sample is 1949:1 to 2005:4. t−statistics are given in

parentheses below coefficient estimates



Table 5: Contribution of Technology Shocks to Cyclical Variance

Consumption Investment Output

Both Technology Shocks 0.444 0.077 0.199

Consumption Shocks Only 0.363 0.033 0.162

Investment Shocks Only 0.022 0.051 0.027



Figure 1
Ratios of Investment to Consumption (with Sample Averages)
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Figure 2
Transitory Components from Real- and Nominal-Ratio-Based VECMs
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Figure 3
Transitory Components of Output from Real- and Nominal-Ratio-Based VECMs
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Figure 4
Comparison with Cochrane Results
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Figure 5

Consumption Technology Investment Technology

Technology Series from Two-Sector SVAR
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Figure 6
Impulse Responses from the Two-Sector Structural VAR
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Figure 7
Business-Cycle Fluctuations and their Technology-Driven Components
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