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This paper presents results concerning the nonlinear analysis of the mean annual value 

temperature time series corresponding to the Earth’s global climate for the time period 

of 713 – 2004. The nonlinear analysis consists of the application of several filtering 

methods, the estimation of geometrical and dynamical characteristics in the 

reconstructed phase space, techniques of discrimination between nonlinear low 

dimensional and linear high dimensional (stochastic) dynamics and tests for serial 

dependence and nonlinear structure. All study results converge to the conclusion of 

nonlinear stochastic and complex nature of the global earth climate.   
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The climate system of the Earth consists of natural spheres (atmosphere, 

biosphere, hydrosphere and geosphere), the humansphere (economy, society, culture) 

and their complex interactions (Schellnhuber, 1999; Halkos, 2013). Gedalin & 

Balikhin (2008) claim that these interactions as well as the multi;level structure of the 

system atmosphere;ocean;solid surface, ocean currents and winds, the differential 

absorption volume of solar radiation, the effects of chemical composition, etc lead to 

a three dimensional field of the distribution of temperatures presenting much smaller 

spatial and temporal scales compared to Earth radius and planet’s rotation period 

respectively. At the same time, observations show episodes of abrupt change, starting 

with the sudden onset of large global warming (e.g. the end of the last ice age) to the 

active and rapid regional changes in hydroclimatic cycle, rainfall and drought (e.g. 

desert extension) (Rial et al., 2004).  

In addition, there is a wide range of interactions found in the magnitudes of 

changes in temperatures that show multifractality (multiple self;similarity) in the 

Earth's climate on time scales of 1;100 years (Ashkenazy et al., 2003). These large;

scale changes in temperatures mainly depend on external influences such as physical 

effects on air temperature near the Earth's surface, like for instance variations in 

volcanic eruptions, the El Niño Southern Oscillation phenomenon, active water cycle 

(Nordstrom et al., 2005), solar radiation cycles (Ozawa et al., 2003), changes in the 

Earth orbital motion and continents (Lin et al., 1991), while the state change occurs at 

a slow time scale.  

Moreover, all human actions that affect the state of the climate system such as 

changes in the concentration of greenhouse gases and in small gas fractions 

controlling the content of stratospheric ozone, sulfur dioxide etc can be considered as 
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small external shocks (Dymnikov & Gritsoun, 2001). All of the above non;linear and 

disproportionate inputs;outputs, the created chains of feedback and inner circles, 

multiple equilibria, astronomical effects etc create non;linear, stochastic and complex 

nature of global climate on Earth. 

In this study we present tools as well as methodology of the modern 

nonlinear time series analysis used for tracing nonlinear and chaotic dynamics in the 

Earth’s climate complex system. The nonlinear algorithm is applied in the annual 

temperature time series concerning the Global Earth Climate during the time period 

of 713;2004 (D'Arrigo et al. 2006a, b).
1
 In order to extract useful information about 

the complex dynamics of the Earth’s climate we use different filtering methods such 

as the AR(4) residuals
2
 and the SVD analysis. In particular, we estimate geometrical 

and dynamical characteristics in the reconstructed phase space such as correlation 

dimension, mutual information and maximum Lyapunov exponent.  

In addition, BDS test of independence and identical distribution and Brock’s 

Residual test are applied to the AR(4) residuals of the Temperature time series, 

searching for more evidence of nonlinearity in the data. Finally, the method of 

stochastic surrogate data is employed for the exclusion of ‘pseudo;chaos’ caused by 

the nonlinear distortion of a purely stochastic process. Our results indicate the 

nonlinear stochastic profile of the Earth’s complex climate dynamics. 

�

                                                 
1
 The data set is the Northern Hemisphere Tree;Ring;Based STD and RCS Temperature 

Reconstructions and the contributors are Rosanne D'Arrigo and Gordon Jacoby, Lamont;Doherty Earth 

Observatory, and Rob Wilson, University of Edinburgh. 

 
2
 A number of autoregressive schemes to the data set at hand were fitted relying on the statistical 

significance of their components and selecting their complexity by the use of the AIC. 
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This section presents results concerning the nonlinear analysis of the annual 

temperature time series. The nonlinear analysis consists of the estimation of 

geometrical and dynamical characteristics in the reconstructed phase space and the 

techniques of discrimination between nonlinear low dimensional and linear high 

dimensional (stochastic) dynamics.
4
 

 

   2.1 Annual temperature time series 

In Figure 1a the mean annual value temperature time series is presented 

corresponding to the Earth’s global climate for the time period of 713 – 2004. As can 

be seen in this figure the time series is stationary apart from the last part where a 

significant increase takes place. This increase could be due to the so called 

“greenhouse” effect (for more details see Halkos, 2014).   

Figure 1b presents the autocorrelation coefficient of the time series estimated 

for 100 lags. As can be seen the autocorrelation coefficient decays slowly indicating 

the presence of long range correlations of the underlying dynamics. The profile of the 

power spectrum, shown in Figure 1c indicates the presence of two distinct dynamics 

underlying the temperature time series, one corresponding to a power law scaling as 

seen in low frequencies indicating a long range correlation process and another one 

corresponding to a flat spectrum indicating an uncorrelated (white noise) process. 

Finally, in Figure 1d the slopes of correlation integral estimated for a fixed embedding 

dimension m=8 and for three different time reconstruction delays τ=2, 4, 6, is 

                                                 
3
 Part of the analysis was presented in the 6

th
 International Conference from Scientific Computing to 

Computational Engineering (6
th

 IC;SCCE), Athens, Greece, July 11 2014. 

 
4
 A complete review concerning the methodology of nonlinear time series analysis and its application 

in various geophysical time series can be fount in Athanasiu & Pavlos (2001), Pavlos et al. (2004), 

Pavlos et al. (2007), Iliopoulos et al. (2008), Iliopoulos & Pavlos (2010) and references within.  
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presented. As can be observed there is not any saturation, dlnc/dlnr  = dm ≠ steady  or 

scaling of the slopes for ln(r). This result indicates that the underlying dynamics do 

not correspond to a low dimensional attractor and is high dimensional (practically 

infinite degrees of freedom). 
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Figure 1a: Mean annual value temperature time 

series 
Figure 1c: Power spectrum 
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Figure 1b: Autocorrelation coefficient 

Figure 1d: Slopes of the correlation integrals 

as estimated for embedding dimension m=8 

and time delay τ=2, 4, 6.  

  

In Figure 2 we present results corresponding to the method of surrogate data. 

Usually, this method is used for the rejection of the null hypothesis of the “pseudo;

chaos” existence and the results presented previously exclude the existence of low 

dimensional dynamics underlying the temperature time series. However, we can still 

use the surrogate data method as an indicator of nonlinearity or even high dimensional 

chaos (if the difference between the surrogate data and the original time series is 

significant).  
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Figure 2a:  Slopes of the correlation integrals of 

the original time series and 10 surrogate data as 

estimated for embedding dimension m=6 and 

time delay τ=6. 

Figure 2d: Significance of the difference of the 

statistics between the original time series and 10 

surrogate data concerning the slopes of the 

correlation integrals. 
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Figure 2b: Mutual Information estimated for the 

original time series and 10 surrogate data. 

Figure 2e: Significance of the difference of the 

statistics between the original time series and 10 

surrogate data concerning the mutual 

information. 
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Figure 2c: Maximum Lyapunov exponent for 

the original time series and 10 surrogate data 

estimated for embedding dimension m=6 and 

time delay τ=6. 

Figure 2f: Significance of the difference of the 

statistics between the original time series and 10 

surrogate data concerning the maximum 

Lyapunov exponent.  
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In particular, Figure 2a presents the slopes of the correlation integral estimated 

for the original temperature time series and its 10 surrogate data, for embedding 

dimension m=6 and time delay τ=6. As can be seen there is no significant difference; 

a result depicted also in Figure 2d which presents the significance of the 

discrimination of the statistics of Figure 2a, attaining values below 2 for a wide range 

of ln(r). This result indicates high dimensional dynamics underlying the original time 

series.     

In Figure 2b we present the mutual information estimated for the original 

temperature time series and for its 10 surrogate data, while in Figure 2e we present the 

significance of the statistics. The significance attains values above 2 for the three first 

values, however the mutual information value is lower than the corresponding of the 

surrogate data, a result that indicates linearity. Finally, Figure 2c presents the 

maximum Lyapunov exponent estimated for the original time series and its 10 

surrogate data for parameters m=6 and τ= 6, while in Figure 2f the significance of the 

statistics is presented. Even though the maximum Lyapunov exponent is positive there 

is no difference from the corresponding exponents of the surrogate data.  Overall, the 

results show that the original time series correspond to high dimensional dynamics.  

�

)�����
������	�*�	���������������������������	�*
	��
�	���

The present study presents the results of two tests for nonlinear dependence in 

annual earth temperatures from 713 up to 2004. The first one is the BDS test of 

independence and identical distribution and the second one is Brock’s Residual test. 

Similar studies have been carried out in Willey (1992), Frank and Stengos (1988a, b), 

Frank et al. (1988), Chavas and Holt (1993). These tests substitute the typical 

statistical tests using spectral analysis and autocorrelation function that fail to reveal 
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statistically significant correlations on non;independent data and cannot discriminate 

between a stochastic explanation and a deterministically chaotic explanation of a time 

series. 

The correlation coefficient diagram for the residuals of an AR(4) model fitted 

to temperature data in Figure 3a shows statistically insignificant correlations. This 

means that the AR(4) model succeeded in removing from the temperature series the 

linear structure. The correlation coefficient diagram and the flat profile of the log;log 

plot of the power spectrum (Figure 3b) indicate that AR(4) residuals are white noise 

residuals. 
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Figure 3a: Correlation coefficient of AR(4) 

residual series 

 

Figure 3b: Power spectrum of AR(4) 

residual series 

  
 

3.1  BDS Test of Independence 

Brock, Dechert and Scheinkman (BDS in Brock et al., 1996) created a test for 

time based dependence in a series. It is a test of the null hypothesis that the data are 

independent and identically distributed (i.i.d. data) against a variety of possible 

departures from independence including linear dependence, nonlinear dependence or 

chaos. This test can be applied to a series of residuals of estimated linear models in 

order to test for extra structure. For example, the residuals from an ARMA model can 

be tested to see if there is any nonlinear dependence in the series after the linear 
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ARMA model has been fitted. This way the BDS test of residuals performs a test of a 

new hypothesis of an underlying nonlinear process and thus can be employed as a test 

for nonlinearity. 

 

�������% BDS Test for residuals generated by AR(4) process (e is a multiple of the 

standard deviation of the series) 
e=0.5 

Dimension BDS Statistic Std. Error z�Statistic Prob. 

2 0.003262 0.000790 4.127598 0.0000 

3 0.002793 0.000524 5.326703 0.0000 

4 0.001895 0.000261 7.258768 0.0000 

5 0.001038 0.000114 9.121463 0.0000 

6 0.000503 4.59E�05 10.94192 0.0000 

7 0.000197 1.76E�05 11.15649 0.0000 

8 6.81E�05 6.52E�06 10.44085 0.0000 

e=1 

Dimension BDS Statistic Std. Error z�Statistic Prob. 

2 0.009244 0.001920 4.814101 0.0000 

3 0.014139 0.002353 6.009269 0.0000 

4 0.016815 0.002161 7.779901 0.0000 

5 0.016582 0.001738 9.540243 0.0000 

6 0.014341 0.001294 11.08694 0.0000 

7 0.011323 0.000915 12.37596 0.0000 

8 0.008427 0.000624 13.50136 0.0000 

e=1.5 

Dimension BDS Statistic Std. Error z�Statistic Prob. 

2 0.010220 0.002044 4.998774 0.0000 

3 0.020484 0.003348 6.117933 0.0000 

4 0.031566 0.004108 7.684830 0.0000 

5 0.041031 0.004410 9.303869 0.0000 

6 0.046963 0.004381 10.72055 0.0000 

7 0.048953 0.004135 11.84003 0.0000 

8 0.047877 0.003763 12.72204 0.0000 

e=2 

Dimension BDS Statistic Std. Error z�Statistic Prob. 

2 0.007245 0.001440 5.029779 0.0000 

3 0.016613 0.002746 6.050690 0.0000 

4 0.029420 0.003918 7.508800 0.0000 

5 0.044021 0.004892 8.997795 0.0000 

6 0.057941 0.005651 10.25289 0.0000 

7 0.069139 0.006202 11.14861 0.0000 

8 0.075744 0.006563 11.54132 0.0000 
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To perform the test, a distance e is chosen. If a pair of points is considered, the 

probability of the distance between these points being less or equal to e will be 

constant in case the observations of the series are truly i.i.d. In Table 1, probabilities 

converge to 0 in all considered embedding dimensions and distances e. 

In order to enhance the evidence of nonlinearity, the BDS test is applied to a 

series of shuffled residuals (Scheinkman and LeBaron 1989) and to a series of 

surrogate residuals (Schreiber and Schmitz 1996). The shuffled residuals is a new 

series of the same length as the original AR(4) residual series, created by random 

sampling from it with replacement. The surrogate residual series has the same length, 

the same autocorrelation function and probability density with the series of AR(4) 

residuals. Here, the surrogate residuals are constructed using the improved algorithm 

of Schreiber and Schmitz.  

 

3.1.1  BDS Test for shuffled AR(4) residuals 

The shuffled AR(4) residuals are used to check the reliability of the BDS test. 

According to Scheinkman and LeBaron (1989) we get the original time series and 

sampling randomly with replacement from it. The shuffled series will have the same 

length as the original. As shuffling destroys the alleged non;linear structure of the 

data, the statistical BDS (z;statistic) should detect the difference between the shuffled 

and initial time series of AR(4) residuals. 

3.1.2  BDS Test for surrogate AR(4) residuals 

The surrogate data are random numbers with the same probability density 

function and the same autocorrelation function as the original time series. They are 

generated using the improved algorithm Schreiber;Schmitz (Schreiber and Schmitz 

1996). The BDS statistic should detect in the case of surrogate data as well, the 

difference between the surrogate and original AR(4) residual time series. 
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������#% BDS Test for the shuffled series of AR(4) residuals (e is a multiple of the 

standard deviation of the series) 

 
 
 
e=0.5 

Dimension BDS Statistic Std. Error z�Statistic Prob. 

 2 �2.01E�05  0.000703 �0.028636  0.9772 

 3 �0.000409  0.000459 �0.891495  0.3727 

 4 �0.000162  0.000225 �0.720191  0.4714 

 5 �7.70E�05  9.63E�05 �0.800314  0.4235 

 6 �4.33E�05  3.82E�05 �1.133358  0.2571 

 7 �1.47E�05  1.44E�05 �1.022919  0.3063 

 8 �9.45E�06  5.24E�06 �1.803039  0.0714 

e=1 

Dimension BDS Statistic Std. Error z�Statistic Prob. 

 2 �0.000268  0.001790 �0.149962  0.8808 

 3 �0.000940  0.002174 �0.432576  0.6653 

 4 �0.000463  0.001979 �0.233736  0.8152 

 5 �0.000303  0.001577 �0.192206  0.8476 

 6  6.40E�05  0.001163  0.054976  0.9562 

 7  0.000222  0.000815  0.272031  0.7856 

 8  0.000274  0.000551  0.497182  0.6191 

e=1.5 

Dimension BDS Statistic Std. Error z�Statistic Prob. 

 2 �0.000902  0.001961 �0.459705  0.6457 

 3 �0.001740  0.003199 �0.543934  0.5865 

 4 �0.001142  0.003909 �0.292209  0.7701 

 5  3.50E�05  0.004180  0.008361  0.9933 

 6  0.001631  0.004136  0.394342  0.6933 

 7  0.002416  0.003888  0.621390  0.5343 

 8  0.003353  0.003525  0.951351  0.3414 

e=2 

Dimension BDS Statistic Std. Error z�Statistic Prob. 

 2 �0.001187  0.001392 �0.852656  0.3939 

 3 �0.001676  0.002655 �0.631513  0.5277 

 4 �0.001730  0.003790 �0.456534  0.6480 

 5 �0.000597  0.004733 �0.126043  0.8997 

 6  0.001837  0.005469  0.335914  0.7369 

 7  0.003755  0.006004  0.625474  0.5317 

 8  0.006207  0.006356  0.976601  0.3288 
 

 
 

 

�

�

�

�
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������)% BDS Test for a randomly selected series of surrogate AR(4) residuals (e is a 

multiple of the standard deviation of the series) 

 
e=0.5 

Dimension BDS Statistic Std. Error z�Statistic Prob. 

 2  0.001355  0.000790  1.713933  0.0865 

 3  0.000931  0.000524  1.775276  0.0759 

 4  0.000390  0.000261  1.493032  0.1354 

 5  0.000166  0.000114  1.461026  0.1440 

 6  6.20E�05  4.59E�05  1.349033  0.1773 

 7  2.40E�05  1.76E�05  1.363166  0.1728 

 8  9.89E�06  6.52E�06  1.516046  0.1295 

 9  3.52E�06  2.35E�06  1.495197  0.1349 

 10  5.71E�07  8.31E�07  0.687196  0.4920 

e=1 

Dimension BDS Statistic Std. Error z�Statistic Prob. 

 2  0.003955  0.001920  2.059653  0.0394 

 3  0.004974  0.002353  2.114055  0.0345 

 4  0.004333  0.002161  2.004720  0.0450 

 5  0.003042  0.001738  1.750358  0.0801 

 6  0.001844  0.001294  1.425599  0.1540 

 7  0.001094  0.000915  1.195582  0.2319 

 8  0.000486  0.000624  0.779270  0.4358 

 9  0.000162  0.000415  0.391184  0.6957 

 10  6.36E�05  0.000270  0.235989  0.8134 

e=1.5 

Dimension BDS Statistic Std. Error z�Statistic Prob. 

 2  0.005025  0.002044  2.457751  0.0140 

 3  0.008404  0.003348  2.510072  0.0121 

 4  0.009652  0.004108  2.349746  0.0188 

 5  0.008760  0.004410  1.986365  0.0470 

 6  0.007402  0.004381  1.689747  0.0911 

 7  0.006157  0.004135  1.489052  0.1365 

 8  0.004442  0.003763  1.180364  0.2379 

 9  0.003034  0.003334  0.909864  0.3629 

 10  0.002102  0.002893  0.726560  0.4675 

e=2 

Dimension BDS Statistic Std. Error z�Statistic Prob. 

 2  0.003870  0.001440  2.686398  0.0072 

 3  0.007293  0.002746  2.656265  0.0079 

 4  0.009613  0.003918  2.453417  0.0142 

 5  0.009802  0.004892  2.003532  0.0451 

 6  0.009653  0.005651  1.708092  0.0876 

 7  0.009292  0.006202  1.498362  0.1340 

 8  0.007954  0.006563  1.211922  0.2255 

 9  0.006512  0.006759  0.963461  0.3353 

 10  0.005344  0.006817  0.783967  0.4331 
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The results clearly show that in both series of shuffled and surrogate AR(4) 

residuals the null hypothesis for i.i.d data cannot be rejected since z statistic takes 

statistically insignificant values in the vast majority of embedding dimensions and e.    

The BDS statistic (z;statistic in Table 4) is expected to diagnose the difference 

between the original AR(4) residuals and the shuffled and surrogate residuals, given 

that their generating process destroys the (possible) nonlinear structure of the original 

residuals. If the residuals are i.i.d. data then the BDS test statistic is normally 

distributed [z;statistic∼N(0,1)].  

The values of z;statistic for AR(4) residuals exceed the critical value for every 

significant level, in all embedding dimensions and distances e. The conclusion is to 

reject the null hypothesis of independence of AR(4) residuals (Halkos, 2006). This is 

an indication that the series is generated by a nonlinear process, given that all the 

linear structure has been removed. The results also show that in both series of shuffled 

and surrogate residuals the i.i.d. null hypothesis is retained, since z;statistic values are 

less than critical values in the vast majority of embedding dimensions and distances e.  

Aiming to check the reliability of BDS statistic in our data, we apply the 

following methodology: 

 

*
����:     We generate 30 surrogate residual series using the Schreiber and Schmitz  

                 algorithm,  

*
���#:     We perform BDS test in each one of them and  

*
���):     We compute mean value surro�  and standard deviation surroσ  of the   

                 distribution of the z;statistics of step 2.  

 

�
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������+%  BDS statistics for annual earth temperature data, AR(4) residuals, shuffled 

and surrogate AR(4) residuals (e is a multiple of the standard deviation of the series) 
���������

���������������������������������������������������������,-�	������������,- (.+/�����,-����������������,-���		���
���

����������������������������������������������������������
����	�
�	����	��������������� (.+/���������������� (.+/��

�����������������������������������������������������������������
��������������������������������	�������������������	���������

2 0.5  45.24913  4.127598 �0.028636 �2.217687 

3 0.5  57.37534  5.326703 �0.891495 �1.074243 

4 0.5  72.22246  7.258768 �0.720191 �0.547121 

5 0.5  93.62769  9.121463 �0.800314 0.314762 

6 0.5  126.4490  10.94192 �1.133358 0.692186 

7 0.5  177.9179  11.15649 �1.022919 0.841111 

8 0.5  261.0943  10.44085 �1.803039 0.177648 

 

2 1  39.84653  4.814101 �0.149962 �2.346665 

3 1  45.91428  6.009269 �0.432576 �1.248528 

4 1  50.96965  7.779901 �0.233736 �0.298179 

5 1  57.74778  9.540243 �0.192206 0.094204 

6 1  66.57659  11.08694  0.054976 0.138372 

7 1  78.26005  12.37596  0.272031 0.209266 

8 1  94.22354  13.50136  0.497182 0.233027 

 

2 1.5  36.70460  4.998774 �0.459705 �2.372047 

3 1.5  39.50391  6.117933 �0.543934 �1.424346 

4 1.5  40.56742  7.684830 �0.292209 �0.455554 

5 1.5  41.99484  9.303869  0.008361 �0.047905 

6 1.5  43.73042  10.72055  0.394342 0.007883 

7 1.5  45.99300  11.84003  0.621390 0.188030 

8 1.5  48.80326  12.72204  0.951351 0.271578 

 

2 2  34.58071  5.029779 �0.852656 �2.236987 

3 2  35.68591  6.050690 �0.631513 �1.233640 

4 2  35.05630  7.508800 �0.456534 �0.279808 

5 2  34.70645  8.997795 �0.126043 0.098948 

6 2  34.47040  10.25289  0.335914 0.267017 

7 2  34.41821  11.14861  0.625474 0.544960 

8 2  34.52596  11.54132  0.976601 0.659747 
�
�
 

In Table 5 the difference between the BDS statistic of 30 surrogate residual 

series and the original residual series is evaluated, computing significance 

surro

surrooriginal
S

σ

�� −
= , a quantity without units of measure (Papaioannou, 2000). 

original�  is the z;statistic of the original AR(4) residuals. When the value of 

significance S is higher than 2;3, then, the probability that the original AR(4) 
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residuals does not belong in the same family of the surrogate data is higher than 0.95;

0.99. 

������0%�Evaluation of the Significance S 

 
�����������������������������������������������1����,-��		��������,- (.+/������
��,-��		����������������*�

2 0.5 0.046493 4.1276 1.20897689 3.3756704 

3 0.5 �0.00535 5.3267 1.04810525 5.0873204 

4 0.5 �0.01428 7.2588 1.04883585 6.93442741 

5 0.5 0.024699 9.1215 1.06811817 8.51666211 

6 0.5 0.123513 10.9419 1.13927845 9.49582332 

7 0.5 0.231672 11.1565 1.3338781 8.19027475 

8 0.5 0.283587 10.4409 1.65918973 6.12185161 

�

2 1 0.079205 4.8141 1.12199284 4.22007595 

3 1 0.075377 6.0093 0.96038479 6.17869293 

4 1 0.066815 7.7799 0.98676735 7.81651824 

5 1 0.068257 9.5402 0.96808426 9.78421362 

6 1 0.142875 11.0869 0.98222931 11.1420262 

7 1 0.164796 12.376 1.0405768 11.7350334 

8 1 0.126813 13.5014 1.08324927 12.3467311 

�

2 1.5 0.110494 4.9988 1.16931166 4.18049912 

3 1.5 0.105937 6.1179 0.99625702 6.03455028 

4 1.5 0.096003 7.6848 0.99167558 7.65250008 

5 1.5 0.071912 9.3039 0.98810418 9.34313228 

6 1.5 0.126033 10.7206 0.98864506 10.7162498 

7 1.5 0.164304 11.84 1.03462214 11.2849856 

8 1.5 0.171682 12.722 1.0558221 11.886773 

�

2 2 0.122381 5.0298 1.21619584 4.0350567 

3 2 0.115367 6.0507 1.02923922 5.76671855 

4 2 0.101784 7.5088 0.98702881 7.50435657 

5 2 0.056389 8.9978 0.99608486 8.97655523 

6 2 0.088089 10.2529 0.98540762 10.3153365 

7 2 0.105492 11.1486 1.04405218 10.577161 

8 2 0.127608 11.5413 1.06849091 10.6820679  
 

S values presented in Table 5 are considerably high, meaning that the BDS statistic 

results differently for surrogate and original data. This is another evidence to reject 

the hypothesis that AR(4) residuals are linearly dependent noisy data. 

3.2  Brock’s Residual Test 

Brock (1986) has proposed a test based on the invariance to linear 

transformations (like an AR process) that holds for chaotic data: if one transforms 
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chaotic data linearly, both the original and the transformed data may have the same 

correlation dimension and Lyapunov exponents. 

The process followed here (proposed by Brock and Sayers, 1988) permits a 

nonlinear test for the existence of a deterministic system and the refusal of a linear 

generating process if accepted. The dimension and the maximum Lyapunov exponent 

of the residuals is estimated and compared with the dimension and the maximum 

Lyapunov exponent of the original data. If any nonlinear structure exists, these values 

will be untouched. 

Figure 4a depicts the estimated correlation dimension for the original and the 

AR(4) residuals series, for embedding dimensions ranging from 2 to 7. Figure 4b 

depicts the maximum Lyapunov exponent of the original temperature series and the 

AR(4) residuals series.       
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Figure 4a: Estimation of the correlation dimension 

for the annual earth temperatures and the AR(4) 

residuals for embedding dimensions ranging from 

2 to 7. 

Figure 4b: Maximum Lyapunov exponent of the 

original temperature series and the AR(4) 

residuals series. 
 

         

There is no apparent difference between the correlation dimensions of the 

original series and the AR(4) residuals. However convergence of the dimension 

estimates does not occur, which indicates high dimensional dynamics. These results 

imply that the two series are stochastic, not chaotic.  
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Caution is required in the interpretation of this diagnostic. A bias has been 

shown in the case of relatively small data sets (100 to 2000 observations) as the series 

studied here of 1292 observations. This bias corresponds to estimation errors in the 

dimension estimates leading to rejection of deterministic chaos even if it exists (Brock 

1988; Hsieh 1989; Ramsey at al. 1990).  

�

+��� ��������	� ���
������� (.+/�(���������

In Figure 5 we present results concerning the method of surrogate data. In 

particular, in Figure 5a the slopes of correlation integral estimated for the AR(4) 

residuals time series and 30 surrogate data are shown. For the estimation we used 

embedding dimension m=7 and time delay τ =3. As it can be observed there is no 

difference, a result clearly depicted in Figure 5d which shows the significance of 

discrimination statistics between the AR(4) time series and its surrogates.  

The value of significance is S < 2 for all Ln(r). This result reveals the high 

dimensional character of the underlying dynamics corresponding to the residuals. In 

addition, in Figure 5b we present the comparison of the mutual information of the 

AR(4) time series and its surrogates, while in Figure 5e the significance of the 

discriminating statistics is shown. The significance attains large values above 2 for 

some τ, indicating long range nonlinear interactions.  

Finally in Figures 5(c, f) the difference between the AR(4) time series and its 

surrogate data is obvious and significant, a result indicating that the AR(4) time series 

is more deterministic and less stochastic, since the Lmax of the AR(4) is much 

smaller from the corresponding of surrogates. Thus, the filtering used in order to 

generate the AR(4) residuals, revealed a hidden nonlinear dynamics of lesser 

complexity, in contrast to the analysis of the original annual temperature. 
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Figure 5a: Slopes of the correlation integrals of 

the AR(4) residuals and 30 surrogate data as 

estimated for embedding dimension m=7 and 

time delay τ=3. 

Figure 5d: Significance of the difference of the 

statistics between the AR(4) residuals and 30 

surrogate data concerning the slopes of the 

correlation integrals. 
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Figure 5b: Mutual Information estimated for the 

AR(4) residuals and 30 surrogate data. 

Figure 5e: Significance of the difference of the 

statistics between the AR(4) residuals and 30 

surrogate data concerning the mutual 

information. 

0 200 400 600

Ln(r)

0

0.4

0.8

1.2

1.6

2

M
a

x
im

u
m

 L
y

a
p

u
n

o
v

 E
x

p
o

n
e

n
t

Residuals_AR(4)

Surrogates

m=7, τ=3
(f)

 
0 200 400 600

0

2

4

6

8

S
ig

n
if

ic
a

n
c

e

Maximum Lyapunov Exponent

 

Figure 5c: Maximum Lyapunov exponent for the 

AR(4) residuals and 30 surrogate data estimated 

for embedding dimension m=7 and time delay 

τ=3. 

Figure 5f: Significance of the difference of the 

statistics between the AR(4) residuals and 30 

surrogate data concerning the maximum 

Lyapunov exponent. 
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In Figure 6a we present the first SVD component, V1, of the temperature time 

series, which captures the general trend of the original time series. The profile of the 

log;log power spectrum shown in Figure 6b reveals a power law scaling indicating 

scale invariance and long range correlations of the underlying dynamics. However, as 

we can see in Figure 6c the slopes of the correlations integrals, estimated for m=7 and 

τ=2, did not reveal the needed saturation or scaling, indicating the high dimensional 

nature of the underlying dynamics.  
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Figure 6a: SVD component time series, V1. 
Figure 6c: Slopes of the correlation integrals for 

embedding dimension m=7 and delay time τ=2. 
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Figure 6b: Power spectrum of SVD V1.  

 

Figures 7(a;c) show the slopes of the correlation integrals, the mutual 

information and the maximum Lyapunov exponent in comparison with the 

corresponding 30 surrogates, while Figures 7(d;f) show the related significances of 

the discrimination of statistics. The results show the first SVD component V1, reveals 

a hidden nonlinearity and nonlinear long range correlations, while there is a 
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significant difference of low dimensionality for radius ln(r) = ;3 till ;2. These results 

are in agreement and further strengthen the results of the nonlinear analysis 

concerning AR(4) residuals.  
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Figure 7a: Slopes of the correlation integrals 

of the SVD V1 component and 20 surrogate 

data as estimated for embedding dimension 

m=7 and time delay τ=2. 

Figure 7d: Significance of the difference of the 

statistics between the SVD V1 component and 20 

surrogate data concerning the slopes of the 

correlation integrals. 
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Figure 7b: Mutual Information estimated for 

the SVD V1 component and 20 surrogate 

data. 

Figure 7e: Significance of the difference of the 

statistics between the SVD V1 component and 20 

surrogate data concerning the mutual information. 
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Figure 7c: Maximum Lyapunov exponent for 

the SVD V1 component and 20 surrogate data 

estimated for embedding dimension m=8 and 

time delay τ=1. 

Figure 7f: Significance of the difference of the 

statistics between the SVD V1 component and 20 

surrogate data concerning the maximum Lyapunov 

exponent  
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The next SVD components (Figures. 8(a;d)) capture the noise component that 

affects the original data. As it can be seen in these Figures the V2 SVD component 

corresponds to a high dimensional and linear dynamic process. In particular, the 

power spectrum has a flat profile (Figure 8b), the mutual information of the V2 SVD 

component cannot be discriminated from its surrogates (Figure 8d) and the slopes of 

the correlation integral do not reveal a saturation or a scaling profile (Figure 8c).     
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Figure 8a:  SVD component time series, V2. 
Figure 8c: Slopes of the correlation integrals 

for embedding dimension m=8 and delay time 

τ=1. 
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Figure 8b: Power spectrum of SVD V2. 
Figure 8d: Mutual Information estimated for 

the SVD V2 component and 20 surrogate data.  
 

 

The analysis of the next SVD component, V2, which corresponds to the rapid 

fluctuations of the original signal, revealed the high dimensionality and the linearity 

of the component, properties reminiscent of white noise.   
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In the analysis performed, an AR(4) model was fitted to temperature data to 

remove the linear structure and the AR(4) residual series was tested using tools and 

methodology of the modern nonlinear time series. After applying the BDS test of 

independence and identical distribution in AR(4) residuals, the null hypothesis of 

independent and identically distributed data was rejected and the underlying nonlinear 

data structure was revealed. In addition, Brock’s Residual test results for both the 

original and the AR(4) residual series led to the rejection of a linear generating 

process for temperatures.   

Next, geometrical and dynamical characteristics in the reconstructed phase 

space such as correlation dimension, mutual information and maximum Lyapunov 

exponent were estimated for the temperature data and the AR(4) residuals. In order to 

prove the difference between the (potential) nonlinear process and a nonlinear 

distortion of a purely stochastic process, we generated 30 series of surrogate data, 

with discriminating statistics the BDS statistic, the maximum Lyapunov exponent and 

the mutual information. The nonlinear algorithm for computing geometrical and 

dynamical characteristics of the climate system was used once again, after filtering 

original temperature data with SVD Analysis. The comparison with stochastic 

surrogate data analysis provided more evidence for nonlinearity.  

The results indicated the nonlinear stochastic profile of the Earth’s complex 

climate dynamics, finding no evidence of deterministic chaos.�Analysis of the (original) 

temperature time series revealed a linear stochastic component (white noise), being 

dominant in climate dynamics. Applying nonlinear techniques in whitened series gave 

strong evidence of nonlinearity and resulted in an underlying dynamics with many 

degrees of freedom. This conclusion is in accordance with the widely accepted opinion 

that earth’s climate is highly nonlinear and stochastic. 



 23 

(���	������

�

Ashkenazy Y., Baker D.R., Gildor H. and Havlin S. (2003). Nonlinearity and 

Multifractality of climate change in the past 420,000 years, Geophysical 

Research Letters )4�(22), 2146. 

 

Athanasiu M.A. and Pavlos G.P. (2001). SVD analysis of the Magnetospheric AE 

index time series and comparison with low dimensional chaotic dynamics, 

Nonlinear Processes in Geophysics 5, 95;125. 

 

Brock W.A. (1986). Distinguishing Random and Deterministic Systems: abridged 

version, Journal of Economic Theory, +4, 168;195.   

  

Brock W.A. (1988). Nonlinearity and Complex Dynamics in Economics and Finance. 

In: P. Anderson, K. Arrow and D. Pines (Eds), The Economy as an Evolving 

Complex System. New York: Addison Wesley, p. 77;97. 

   

Brock W. and Sayers C. (1988). Is the Business Cycle Characterized by Deterministic 

Chaos? Journal of Monetary Economics, ##, 71;90. 

 

Brock W.A., Scheinkman J.A., Dechert W.D. and LeBaron B. (1996). A Test for 

Independence Based On the Correlation Dimension, Econometric Reviews �0 

(3), 197;235. 

 

Chavas J.P. and Holt M. (1993). On Nonlinear Dynamics: The Case of the Pork 

Cycle, American Journal of Agricultural Economics 6), 819;828.  

 

D'Arrigo R., Jacoby G., et al. (2006a). Northern Hemisphere Tree;Ring;Based STD 

and RCS Temperature Reconstructions. IGBP PAGES/World Data Center for 

Paleoclimatology  Data Contribution Series #2006;092. NOAA/NCDC 

Paleoclimatology Program, Boulder CO, USA. 

 

D'Arrigo R., Wilson R. and Jacoby G. (2006b). On the long;term context for late 

twentieth century warming.  Journal of Geophysical Research, ���, D03103, 

doi:10.1029/2005JD006352  

 

Dymnikov V.P. and Gritsoun A.S. (2001). Climate model attractors: chaos, quasi;

regularity and sensitivity to small perturbations of external forcing, Nonlinear 

Processes in Geophysics �0, 201;209. 

 

Frank M., Gencay R. and Stengos T. (1988). International Chaos? European 

Economic Review, )#, 1569;1584. 

 

Frank M. and Stengos T. (1988a). Some Evidence Concerning Macroeconomic 

Chaos, Journal of Monetary Economics, ##, 423;438. 

 

Frank M. and Stengos T. (1988b). Chaotic Dynamics in Economic Time series, 

Journal of Economic Surveys, # (2), 103;133. 

 



 24 

Gedalin M. and Balikhin M. (2008). Climate of Utopia, Nonlinear Processes in 

Geophysics �0, 541;549. 

 

Halkos G.E. (2006). Econometrics. Theory and Practice, Giourdas Publications, 

Athens (in Greek). 

 

Halkos G.E. (2013). Economy and the Environment: Valuation methods and 

Management. Liberal Books Publications, Athens (in Greek). 

 

Halkos G.E. (2014). The Economics of Climate Change Policy: Critical review and 

future policy directions," MPRA Paper 56841, University Library of Munich, 

Germany. 

 

Hsieh D. (1989). Testing for Nonlinear Dependence in Daily Foreign Exchange Rates, 

Journal of Business, 3#, 339;368. 

 

Iliopoulos A.C., Pavlos G.P. and Athanasiu M.A.  (2008). Spatiotemporal Chaos into 

the Hellenic Seismogenesis: Evidence for a Global Strange Attractor, 

Nonlinear Phenomena in Complex Systems, �� (2), 274;279. 

 

Iliopoulos A.C. and Pavlos G.P. (2010). Global Low Dimensional Chaos in the 

Hellenic Region, International Journal of Bifurcation and Chaos, #4 (7), 2071;

2095. 

 

Lin R.Q., Kreiss H., Kuang W.J. and Leung L.Y. (1991). A study of long;term 

climate change in a simple seasonal nonlinear climate model, Climate 

Dynamics, 3, S. 35;41. 

 

Nordstrom K.M., Gupta V.K. and Chase T.N. (2005). Role of the hydrological cycle 

in regulating the planetary climate system of a simple nonlinear dynamical 

model, Nonlinear Processes in Geophysics, �#, 741–753. 

 

Ozawa H., Ohmura A., Lorenz R.D. and Pujol T. (2003). The Second Law of 

Thermodynamics and the Global Climate System: A review of the maximum 

entropy production principle, Reviews of Geophysics +� (4), 1018. 

 

Papaioannou G. (2000). Chaotic Time Series Analysis: Theory and Practice, Leader 

Books, Athens (in Greek). 

 

Pavlos G.P., Athanasiu M.A., Anagnostopoulos G.C., Rigas A.G. and Sarris E.T. 

(2004). Evidence for chaotic dynamics in the Jovian magnetosphere, Planetary 

and Space Science, 0# (5;6), 513;541. 

 

Pavlos G.P., Iliopoulos A.C. and Athanasiu M.A. (2007). Self Organized Criticality 

or / and Low Dimensional Chaos in Earthquake Processes. Theory and Practice 

in Hellenic Region, in Nonlinear Dynamics in Geosciences, eds. Tsonis A. & 

Elsner J., Springer, 235;259. 

 



 25 

Ramsey J., Sayers C. and Rothman P. (1990). The Statistical Properties of Dimension 

Calculations Using Small Data Sets: Some economic Applications, International 

Economic Review, )� (4), 991;1020. 

 

Rial J.A., Pielke Sr. R.A., Beniston M., Claussen M., Canadell J., Cox P., Held H., de 

Noblet;Ducoudré N., Prinn R., Reynolds J.F. and Salas J.D. (2004). 

Nonlinearities, feedbacks and critical thresholds within the Earth’s climate 

system. Climatic Change, 30, 11;38. 

 

Scheinkman J. and B. LeBaron (1989). Nonlinear Dynamics and Stock Returns, 

Journal of Business, 3#, 311;337. 

 

Schellnhuber H. J. (1999). Earth System Analysis and the Second Copernican 

Revolution, Nature +4#, C19;C26. 

 

Schreiber T. and Schmitz A. (1996). Improved surrogate data for nonlinearity test, 

Physical Review Letters, 66, 635;638. 

 

Willey T. (1992). Testing for Nonlinear Dependence in Daily Stock Indices, Journal 

of Economic Business, ++, 63;76.  

 


