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Preface 

This yield forecasting report is one of seven reports evaluating the feasibility of a hybrid gas-

concentrated solar power (CSP) plant using Linear Fresnel Reflector (LFR) technology to 

replace the coal fired power station at Collinsville, Queensland, Australia.  Table 1 shows the 

seven reports and the affiliation of the lead authors. 

Table 1: Collinsville feasibility study reports and their lead researcher groups and authors 

Report Affiliation of the 
lead author 

Yield forecasting (Bell, Wild & Foster 2014b) EEMG 
*Dispatch forecasting (Bell, Wild & Foster 2014a)  EEMG 
*Energy economics (Bell, Wild & Foster 2014a) EEMG 
Solar mirror cleaning requirements (Guan, Yu & Gurgenci 2014) SMME 
Optimisation of operational regime (Singh & Gurgenci 2014b) SMME 
Fossil fuel boiler integration (Singh & Gurgenci 2014a) SMME 
Power system assessment (Shah, Yan & Saha 2014a) PESG 
Yield analysis of a LFR based CSP by long-term historical data (Shah, 
Yan & Saha 2014b) 

PESG 

*Combined report 

 

These reports are part of a collaborative research agreement between RATCH Australia and 

the University of Queensland (UQ) partially funded by the Australian Renewable Energy 

Agency (ARENA) and administered by the Global Change Institute (GCI) at UQ.  Three 

groups from different schools undertook the research: Energy Economics and Management 

Group (EEMG) from the School of Economics, a group from the School of Mechanical and 

Mining Engineering (SMME) and the Power and Energy Systems Group (PESG) from the 

School of Information Technology and Electrical Engineering (ITEE).   

EEMG are the lead authors for three of the reports.  Table 2 shows the “Collinsville Solar 
Thermal - Research Matrix” that was supplied by GCI to the researchers at EEMG for their 
reports.  We restructured the suggested content for the three reports in the matrix to provide 

a more logical presentation for the reader that required combining the Energy Economics 

and Dispatch Forecasting reports. 
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Table 2: Collinsville Solar Thermal - Research Matrix – EEMG’s components 

Yield Forecasting 
Modelling and analysis of the solar output in order that the financial feasibility of the plant 
may be determined using a long-term yield estimate together with the dispatch model and 
the modelled long-term spot price. 

Dispatch Forecasting 
Analysis of the expected dispatch of the plant at various times of day and various months 
would lead to better prediction of the output of the plant and would improve the ability to 
negotiate a satisfactory PPA for the electricity produced.  Run value dispatch models (using 
pricing forecast to get $ values out).  Output will inform decision about which hours the plant 
should run. 

Energy Economics 
Integration of the proposed system into the University of Queensland’s Energy Economics 
Management Group’s (EEMG) existing National Electricity Market (NEM) models to look at 
the interaction of the plant within the NEM to determine its effects on the power system 
considering the time of day and amount of power produced by the plant.  Emphasis to be on 
future price forecasting. 

 

The results from this yield report are used to inform our ‘Energy economics and dispatch 

forecasting’ report (Bell, Wild & Foster 2014a).   

 

Doctor William Paul Bell 

Research Fellow 

Energy Economics and Management Group 

The School of Economics 

The University of Queensland 
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Executive Summary 

1 Introduction 

This report’s primary aim is to provide yield projections for the proposed Linear Fresnel 
Reflector (LFR) technology plant at Collinsville, Queensland, Australia.  However, the 

techniques developed in this report to overcome inadequate datasets at Collinsville to 

produce the yield projections are of interest to a wider audience because inadequate 

datasets for renewable energy projects are commonplace.  Our subsequent report called 

‘Energy economics and dispatch forecasting’ (Bell, Wild & Foster 2014a) uses the yield 

projections from this report to produce long-term wholesale market price and dispatch 

forecasts for the plant.   

2 Literature review 

The literature review discusses the four drivers for yield for LFR technology: 

 DNI (Direct Normal Irradiance) 

 Temperature 

 Humidity 

 Pressure 

Collinsville lacks complete historical datasets of the four drivers to develop yield projections 

but its three nearby neighbours possess complete datasets, so could act as proxies for 

Collinsville.  However, analysing the four drivers for Collinsville and its three nearby sites 

shows that there is considerable difference in their climates.  This difference makes them 

unsuitable to act as proxies for yield calculations.  Therefore, the review investigates 

modelling the four drivers for Collinsville. 

We introduce the term “effective” DNI to help clarify and ameliorate concerns over the dust 

and dew effects on terrestrial DNI measurement and LFR technology.  

We also introduce a modified Typical Metrological Year (TMY) technique to overcome 

technology specific TMYs.  We discuss the effect of climate change and the El Niño 

Southern Oscillation (ENSO) on yield and their implications for a TMY. 

2.1 Research questions 

Research questions arising from the literature review include: 

The overarching research question: 

Can modelling the weather with limited datasets produce greater yield predictive 

power than using the historically more complete datasets from nearby sites?  

This overarching question has a number of smaller supporting research questions: 

 Does BoM adequately adjust its DNI satellite dataset for cloud cover at Collinsville? 

 Given the dust and dew effects, is using raw satellite data sufficient to model yield?  

 Does elevation between Collinsville and nearby sites affect yield? 

 How does the ENSO cycle affect yield? 
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 Given the 2007-12 electricity demand data constraint, will the 2007-13 based TMY 

provide a “Typical” year over the ENSO cycle? 

 How does climate change affect yield? 

 Is the method to use raw satellite DNI data to calculate yield and retrospectively 

adjusting the calculated yield with an effective to satellite DNI energy per area ratio 

suitable? 

 How has climate change affected the ENSO cycle? 

A further research question arises in the methodology but is included here for completeness. 

 What is the expected frequency of oversupply from the Linear Fresnel Novatec Solar 

Boiler? 

3 Methodology 

In the methodology section, we discuss the data preparation and the model selection 

process for the four drivers of yield.  We also discuss the development of the technology 

specific TMY and sensitivity analysis to address the research questions on climate change 

and elevation. 

4 Results and analysis 

In the results section we present the selection process for the four driver models.  We also 

present the effective to satellite DNI ratio, the annual variation in gross yield, the selection of 

TMMs for the TMY based on monthly yield, the sensitivity analysis results on climate change 

and elevation, and the frequency of gross yield exceeding 30 MW.  

5 Discussion 

We analyse the results within a wider context, in particular, we make a comparison with the 

yield calculations for Rockhampton to address the overarching research question.  We find 

that the modelling of weather at Collinsville using incomplete weather data has higher 

predictive performance that using the complete weather data at Rockhampton but 

recommend using the BoM’s one-minute solar data to improve the comparative test.  Other 

findings include the requirement to increase the current TMM’s selection period 2007-13 to 

incorporate more of the ENSO cycle.  There is less than 0.3% change in gross yield from the 

plant in the most likely case of climate change but there is a requirement to determine the 

effect of climate change on electricity demand and the ensuing change in wholesale 

electricity prices. 

6 Conclusion 

In this report, we have addressed the key research questions, produced the yield projections 

for our subsequent report ‘Energy economics and dispatch forecasting’ (Bell, Wild & Foster 

2014a) and made recommendations for further research.   
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1 Introduction 

The primary aim of this report is to produce hourly yield projections of electricity power for 

the proposed LFR plant at Collinsville, Queensland, Australia based on the environmental 

condition between 2007 and 2013.  However, the techniques and methods used to 

overcome the inadequacies of the environmental, site-specific datasets provide a wider 

appeal for the report.  The dataset inadequacies make accurate projections of future income 

streams and the subsequent securing of funding difficult (Cebecauer et al. 2011; Lovegrove, 

Franklin & Elliston 2013; Stoffel et al. 2010). 

The hourly power yield projections from this report are used in our subsequent report called 

‘Energy economics and dispatch forecasting’ (Bell, Wild & Foster 2014a), to calculate the 

lifetime revenue of the proposed plant and perform sensitivity analysis on gas prices. 

This report compares the yield from the proposed Collinsville LFR plant using two different 

calculation methods.  One method simply uses complete historical datasets from three 

nearby sites: MacKay, Rockhampton, and Townsville in Queensland.  The other method 

uses datasets derived from a meteorological model developed from three sources:  

 BoM’s hourly solar satellite data 

 BoM’s Collinsville Post Office weather station  

 Allen’s (2013) datasets 

The overarching research question for the report is: 

Can modelling the weather with limited datasets produce greater yield predictive 

power than using the historically more complete datasets from nearby sites?  

The executive summary provides an outline of the report. 
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2 Literature review 

2.1 Introduction 

This literature review helped us to develop the research question and inform the 

methodology to address the research question.  

Linear Fresnel Reflector (LFR) technology provides at least three benefits: 

 helping address climate change;  

 providing a replacement for unsustainable fossil fuel dependency; and  

 increasing diversity and resilience within the electricity systems.  

Other renewable energy technologies such as solar PV and wind generation have 

successfully transitioned beyond the infant industry stage with numerous large-scale 

commercialisations of the technologies emerging in Australia.  In contrast, LFR in Australia is 

very much in the infant industry stage with a few small booster projects.  Furthermore, unlike 

solar PV and wind generation, LFR lacks the gradually increasing scale pathway from 

household units to large-scale units because LFR plants involve a minimum economy of 

scale consideration.  This consideration makes the transition from infant industry more 

problematic.  Therefore, there is a requirement for a larger subsidy per venture and, 

consequently, less scope for experimentation and a risk of failure.  The large-scale 

investment requirements make a failure unacceptable, which means that research is 

essential to inform investment decisions.  This research has a public good aspect with 

benefits that go beyond those accruing to the individual firm willing to fund such research.  

The yield projections in this report are the first step in the process to help better inform 

investment decisions at Collinsville.  However, the research is clearly useful to others 

considering such ventures. 

Section 2 presents the four environmental drivers of yield, discusses driver data availability, 

and contrasts the drivers in Collinsville with the three comparison sites.  Section 3 introduces 

the concept of “effective” direct normal irradiance to address the dew effect and dust effect.  
Sections 4 and 5 discuss the effect of El Niño Southern Oscillation (ENSO) and climate 

change on the four drivers and yield to scope sensitivity analysis.  Section 6 discusses the 

format and technique “Typical Meteorological Year” (TMY) and its implications for inter-year 

variation and sensitivity analysis and introduces modifications to the TMY technique to 

overcome shortfalls.  Section 7 concludes the literature review and presents the research 

questions that arise. 

2.2 Four main drivers of yield 

The US National Renewable Energy Laboratory’s (NREL 2012) Systems Advisor Model 

(SAM 2014) provides standard yield models for a range of renewable energy technologies, 

including a model specifically for the proposed LFR technology at Collinsville (Wagner 2012; 

Wagner & Zhu 2012).  SAM (2014) calculates the kilowatts (kW) generated each hour using 

four environment variables. 

 Direct normal irradiance (DNI) 

 Temperature (Dry bulb) 

 Humidity 
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 Pressure 

Section 3.2 discusses the SAM (2014) methodology in more detail.  Other environment 

variables also affect the amount of electricity produced but the main drivers for yield are 

these four variables.  Thus, they form the nucleus of the “complete meteorological dataset” 
in the following discussion where there is a choice between using complete historical 

meteorological datasets from nearby sites and using incomplete data from Collinsville to 

model the four environmental variables. 

Shah, Yan and Saha (2014b) provide a detailed account of the yield calculated using SAM 

(2014) and the complete historical meteorological data from three nearby sites at MacKay, 

Rockhampton and Townsville.  Table 3 aids in the inter-site comparison of the four drivers by 

grouping the annual daily-meteorological means for the period 1981-2010.  The four 

meteorological drivers for yield for the four sites group these means. 

Table 3: Meteorological daily annual means 1981-2010 for Collinsville and neighbours 

 Collinsville 
PO 

MacKay 
Aero 

Rockhampton 
Aero 

Townsville 
Aero 

DNI proxy 
daily sunshine (hours) - - - 8.6 
daily exposure (MJ/m2) 20.4 20.8 20.2 21.1 
number clear days 121.3 - 120.6 116.3 
number of cloudy days 78.2 - 93.0 100.9 
9am cloud cover 2.9 - 3.7 4.2 
3pm cloud cover 4.0 - 3.8 3.7 

Temperature (Dry Bulb) (°C) 
max 30.4 27.4 28.6 29.2 
min 16.8 17.9 17.2 20.2 
9am 23.3 24.0 22.7 25.3 
3pm 29.3 25.9 27.4 27.7 

Relative Humidity (%) 
9am 66 72 67 65 
3pm 43 64 46 57 

Pressure proxy 
elevation (m) 196 5 10 4 

Wind speed (km/h) 
9am 3.1 17.9 12.8 13.1 
3pm 5.2 25.1 15.7 22.4 

Dew point 
9am 16.3 18.2 15.8 17.8 
3pm 14.2 18.3 13.6 17.9 

(Source: BoM 2014a) 

The interrelationship amongst the four drivers and other weather variables provides context 

to the following discussion and informs the methodology chosen.  Radiant energy causes 

temperature changes, temperature changes cause pressure changes, and pressure 

gradients cause winds.  These direct relationships are interwoven and moderated within the 

hydrological cycle whose indicators available at the Collinsville BoM weather station include 

relative humidity, cloud cover, evaporation, dew point, and wet bulb temperatures.  So, Table 

3 also includes, wind speed, for discussion and the dew point.  Table 3 presents annual 
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means, so masks any seasonal variation in the annual cycle that is present in each of the 

four drivers.  Additionally, Table 3 only hints at the variation in the daily cycle. 

This section discusses the four meteorological drivers for SAM (2014) while considering two 

aspects for each driver.  First, do the alternative sites provide suitable weather proxies for 

Collinsville?  Second, we inform the methodology in section 3 about the limited weather 

datasets available at Collinsville to model the four drivers. 

2.2.1 Direct normal irradiance 

DNI is the first of the four drivers for yield in SAM (2014) and is the primary component in 

driving yield from CSP (Stoffel et al. 2010, p. 101), such as LFR technology.  DNI is the 

instantaneous intensity of solar direct beam energy falling on a surface normal to the beam 

(BoM 2013).  BoM estimates DNI from hourly geostationary satellite images, starting in 1990.  

This contrasts with DNI data from Allen (2013) who produces minute ground-based 

observations starting in December 2012.  

2.2.1.1 Inter-site comparisons of DNI 

The proxies for discussion of DNI in Table 3 include annual mean daily exposure, number of 

clear days and cloud cover.  The daily exposure is derived from satellite data (BoM 2007).  

Allen (2013) sums BoM’s hourly satellite data for the Collinsville Power Station site and finds 

the sum closely follows the BoM daily exposure at the Collinsville Post Office weather station, 

so a comparison using the daily exposure as a proxy for DNI is warranted. 

In Table 3, the annual mean daily exposure for the four sites is similar, which implies that the 

yield at MacKay, Rockhampton, and Townsville can provide a good approximation to the 

yield at Collinsville.  However, there are two reservations.  First, the number of cloudy days 

at Rockhampton and Townsville are about 20% higher than at Collinsville, which calls into 

question the validity of the annual mean daily exposure derived from satellite data.  Second, 

in Table 3, the 9 am and 3 pm cloud cover indicates a differing daily cycle of cloud cover 

between the inland high altitude Collinsville site and the three coastal low altitude sites, 

which implies the profile of the daily yield cycle would differ. 

MacKay, Rockhampton, and Townsville are less than ideal sites for LFR because their low 

altitude and close proximity to the coast present higher concentrations of aerosols than 

would be found otherwise.  Aerosols reduce DNI, which is a primary component in driving 

yield from CSP (Stoffel et al. 2010, p. 101).  The higher aerosol concentration in the three 

coastal towns cause a larger yield deviation between satellite and ground station determined 

DNI than would be found at more ideal CSP sites.  However, the BoM (2013) has adjusted 

the satellite data for atmospheric transmittance, which should ameliorate this concern.  A 

clearness index can measure atmospheric transmittance. 

In a further twist to the aerosol effect, sites destined for CSP could be subject to preliminary 

earthworks or demolishing of exiting power plant, such as in Collinsville.  These activities 

increase the aerosol levels above those expected when the CSP plant is completed, so yield 

projections based on site based solar measurement underreport yield.  Section 2.3.2 

discusses the dust effect further. 
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2.2.1.2  Collinsville DNI data 

Table 3 shows the satellite derived solar daily exposure but SAM (2014) requires hourly DNI.  

BoM (2013) provides hourly satellite DNI data but the previous section questioned the 

accuracy of the satellite data for terrestrial use when considering the cloud coverage.  A 

solution to this issue is to adjust the satellite data for cloud coverage and other environment 

variables by calibrating against Allen’s (2013) terrestrial DNI dataset for Collinsville.  Section 

3 discusses the methodology in more detail. 

The solar altitude angle provides a way to approximate DNI without cloud cover.  The solar 

altitude angle is the angle subtended between the sun and horizontal plane of the observer.  

We calculate the altitude from the zenith or, more fully, the solar zenith angle, that is, the 

angle subtended between the sun and the normal to the horizontal plane of the observer.  

Reda and Andreas (2008) provide an algorithm to calculate the zenith angle and Roy (2004) 

implements the algorithm in computer code to calculate the zenith angle from the time and 

position by longitude, latitude and altitude. 

As discussed, DNI is the primary driver for CSP.  However two other measures of irradiance 

in common use are Global Horizontal Irradiance (GHI) and Diffused Horizontal Irradiance 

(DHI).  GHI is the instantaneous intensity of solar energy falling on a horizontal surface (BoM 

2013).  BoM (2013) provides gridded satellite solar intensity dataset in W/m2 for both DNI 

and GHI but not DHI.  Equation 1 shows how to calculate DHI from the GHI, DNI, and zenith 

angle. 

Equation 1: Three irradiances and zenith angle  

DHI = GHI - DNI cos (zenith) 

The BoM (2013) produces hourly grids based on satellite images starting in 1990; the grids 

consist of 839 columns by 679 rows where the grids’ x and y corner corresponds to the 
longitude and latitude 112.025 and -43.975, respectively, and each cell size is 0.05 degrees 

or approximately 5km. 

For the period of interest in this report, 2007 to 2013, this report uses grids from images from 

two satellites: the Japanese Advanced Meteorological Imager (JAMI) and the Multi-

Functional Transport Satellite (MTSAT) series operated by the Japan Meteorological Agency.  

Section 5.2.1 discusses how the frequency of missing hourly grids increases in years prior to 

2007 when different satellites took the images. 

Table 3 shows the coverage dates of the two satellites.  A satellite produces a grid for each 

hour it is in range but the satellite take time to traverse Australia hence latitude relates to the 

minutes past the hour that the satellite made the image.  The latitudes for the proposed 

Collinsville LFR plant and Collinsville Post Office and Allen’s (2013) weather stations are -
20.5344, -20.5533, and -20.5418, respectively.  These latitudes are between 48 to 49 

minutes past the hour for satellite MTSAT-1R and between 46.8 and 47.7 minutes past the 

hour for the satellite MTSAT-2. 
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Table 4: Satellite's minutes past the hour by latitude 

Start date 2005-11-01 2010-07-01 
End date 2010-06-30 Ongoing 
Latitude MTSAT-1R MTSAT-2 

-10.0 46.2 44.7 

-15.0 47.2 45.7 

-20.0 48.3 46.8 

-25.0 49.2 47.7 

-30.0 50.1 48.6 

-35.0 51.0 49.5 

-40.0 51.7 50.2 

-44.0 52.3 50.8 

(Source: BoM 2013) 

Section 3 discusses further calculating the altitude and zenith and adjusting the satellite 

derived DNI, GHI, and DHI for the minutes past the hour.  Table 4 presents the minutes past 

the hour.  These derivations provide a means to produce a modified satellite DNI that better 

matches terrestrial conditions at Collinsville. 

2.2.2 Temperature (Dry bulb)  

Dry bulb temperature is the second of four drivers for yield in SAM (2014).  In this report, 

‘temperature’ means, ‘dry bulb temperature’.  In contrast, we refer to wet bulb and dew point 

temperatures explicitly.  

2.2.2.1 Inter-site comparisons of dry bulb temperature 

Table 3 shows a wider range of temperatures that is the difference between maximum and 

minimum temperatures in Collinsville than in the three coastal towns.  The higher maximum 

temperatures that usually occur during mid-afternoon, and the lower minimum temperatures 

that usually occur during early morning, are a consequence of the higher altitude compared 

to coastal locations.  The sea breeze cools the coastal sites during the day and land breeze 

moderates the loss of heat during the night.  Consistent with these differences in climate, 

Collinsville has fewer cloudy nights and heavier dew.  Section 2.3.1 discusses the dew effect 

further. 

There is a relationship between elevation and temperature but this relationship is complex.  

Table 3 contrasts the elevations of Collinsville at 197 m with three nearby comparison sites 

whose elevations range from 4 m to 10 m.  Complexity stems, in part, from three different 

lapse rates that are changes in temperature per change in elevation.  These lapse rates help 

explain cloud dynamics.  The National Oceanic and Atmospheric Administration (NOAA 

2014) provides a dry adiabatic temperature lapse rate (DALR) near 9.6 °C /km and a 

saturated adiabatic lapse rate (SALR) near 6 °C /km.   The adiabatic condition provides the 

rate of loss of temperature of a parcel of air that does not swap energy with its surroundings, 

such as an idealised cloud.  The environmental lapse rate (ELR), that is, for the air outside 

the parcel, is about 6.5 °C /km (Fovell 2010).  These lapse rates vary from place to place 

and over time but they provide some guidance for a temperature sensitivity analysis on yield 

between the Collinsville site and the three comparison sites.  
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The climatic differences between Collinsville and its comparison sites, has implications for 

temperature and thus yield.  Comparatively, Collinsville has a cold wet start in the morning 

but Collinsville’s temperatures are close to the other sites by 9 am and surpass them by 3 
pm.  So, even if the daily yield from the comparison sites were the same, this shift in yield 

from early morning to late afternoon has implications, as the wholesale prices for electricity 

in Queensland is usually higher in the late afternoon than in the early morning.   

The implications for temperature and, thus, yield for the different climates, calls into question 

the suitability of using the complete historical meteorological data from the three coastal 

towns in yield calculations for Collinsville.  The relatively higher electricity prices in the late 

afternoon compound this climate issue.  Moderating this concern is the proposal to use a 

gas generator to top-up any short falls by the LFR yield to 30 MW from 8 am to 10 pm.  

2.2.2.2 Collinsville temperature data 

There are currently three daily temperature measurements taken at 6 am, 9 am, and 3 pm at 

the BoM’s Collinsville Post Office weather station operational since 1939.  This BoM 

coverage is far short of the hourly input required for SAM (2014) but at least BoM takes the 

three measurements during the daylight hours when the LFR produces yield.  The BoM also 

provides daily maximum and minimum dry bulb temperatures measured daily at 9 am for the 

previous 24 hours.  In contrast, Allen (2013) provides temperature readings each minute but 

coverage only starts in December 2012.  This is far short of the 2007-2013 yield projection 

requirements in our subsequent report called ‘Energy economics and dispatch forecasting’ 
(Bell, Wild & Foster 2014a).  

As discussed, radiant energy causes temperature changes; temperature changes cause 

pressure changes and pressure gradients cause winds.  Therefore, this relationship provides 

additional variables to model temperature.  Radiant energy indicators are the BoM’s hourly 
DNI, GHI and DHI and daily total solar exposure derived from satellite images discussed in 

the previous section.  Wind direction and speed are taken thrice daily at 6 am, 9 am and 3 

pm at the BoM’s Collinsville Post Office weather station.  There lacks atmospheric pressure 

measurements at the BoM’s Collinsville weather station.  The following sections discuss 

alternative indicators for atmospheric pressure such as wind speed and direction. 

In addition to the direct relationships just discussed there is the hydrological cycle, which 

acts to ameliorate temperature differences and whose available indicators include relative 

humidity, cloud cover, precipitation, evaporation, dew point and wet bulb temperatures.  

Therefore, these indicators provide additional variables to model temperature and are 

measured thrice daily at BoM’s Collinsville weather station, excepting evaporation and 

precipitation which are measured once daily. 

Section 3 discusses further the use of these indicators in modelling temperature. 

2.2.3 Relative humidity 

Relative humidity (RH) is the third of the four drivers for yield in SAM (2014).  This paragraph 

provides a brief description of the relationship amongst RH and the three temperatures: dry 

bulb, wet bulb, and dew point to inform the discussion in this section.  RH is the ratio 

between vapour supply and vapour capacity.  The dew point temperature indicates vapour 

supply because it is the lowest air temperature before reaching saturation, that is, where the 

current vapour supply remains unchanged.  The vapour capacity is a function of dry bulb 
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temperature.  Wet bulb temperature indicates the coolest air temperature achievable by 

evaporation (Fovell 2010, p. 21). 

2.2.3.1 Inter-site comparisons of relative humidity  

Table 3 shows the RH at MacKay is the least comparable to Collinsville.  The 9 am RH at 

Collinsville, Townsville and Rockhampton is comparable.  However, the 3 pm relative 

humidity at Collinsville is much lower than the RH at the comparison sites.  The decrease in 

Collinsville’s RH from 66% at 9 am to 43% at 3 pm is explained by both the water vapour 
supply decreasing, indicated by the dew point temperature decreasing from 16.3°C to 

14.2°C, and the water vapour capacity increasing, indicated by the dry bulb temperature 

increasing from 23.2°C to 29.3°C.  Exacerbating this effect is the feebleness or absence of a 

cooling sea breeze at Collinsville to both moderate the afternoon rising temperatures and 

provide further moisture.  This situation contrasts to the coastal comparison sites. 

2.2.3.2 Collinsville relative humidity data 

BoM’s Collinsville weather station provides thrice-daily RH data.  As for the related variables, 

the weather station also provides thrice-daily measurements for three temperatures: dry bulb, 

wet bulb, and dew point and single-daily measurements for evaporation, precipitation, and 

solar exposure.  Another consideration is wind direction because a sea breeze could 

moderate temperature and increase the supply of water vapour.  In contrast, a land breeze 

could exacerbate the rising afternoon temperatures and reduce the supply of water vapour.  

The weather station provides thrice-daily wind direction data. 

2.2.4 Atmospheric pressure 

Atmospheric pressure is the last of the four drivers for yield in SAM (2014).  As there is an 

absence of BoM atmospheric data for Collinsville, the use of the ideal gas law becomes 

invaluable to the following discussion.  The ideal gas law in Equation 2 stipulates that 

pressure, temperature, and density are dependent on one another, meaning that a change 

in one causes a change in one or more of the others. 

Equation 2: Ideal gas law 

p = ρrt 

Where   p = pressure (Pascals) 

  ρ = density  
  r = proportionality constant 

  t = temperature (Kelvin scale) 

2.2.4.1 Inter-site comparisons of pressure  

Table 3 contrasts the elevations of Collinsville at 197 m with three nearby comparison sites 

whose elevations range from 4 m to 10 m.  As elevation increases, the proportion of 

atmosphere bearing down decreases, so reducing air density.  The ideal gas law indicates 

that there is a corresponding decrease in temperature and/or pressure with an increase in 

elevation.  This is indeed the case within the troposphere where the ELR for temperature is 

6.5 °C/km and pressure is 1.2 kPa/100 m (Fovell 2010).  The sensitivity of yield to elevation 

via the associated changes in temperature and pressure is an issue when using the nearby 

sites as proxies for yield at Collinsville.  Section 3.6 in the methodology discusses 

operationalising the sensitivity analysis and Section 4.4.5 presents the results. 
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2.2.4.2 Collinsville pressure data 

The absence of BoM atmospheric data requires consideration of other variables to model 

pressure.  Candidates include those variables in the direct relationships of irradiance 

causing temperature change, temperature change causing pressure change and pressure 

gradient causing wind.  Furthermore, the hydrological cycle moderates temperature change, 

so these hydrological variables also require consideration.  Previous sections discuss the 

availability of these variables. 

Atmospheric tides are regular cyclic changes in the atmospheric pressure over periods of 12 

or 24 hours.  Mostly solar irradiance and to a lesser extent the lunar cycle drive these 

atmospheric tides.  Therefore, both a daily and annual cycle in the pressure is expected.  

These tides have small oscillations at low elevations becoming larger at higher elevations.  

There is an extensive literature on atmospheric tides.  Nevertheless, the National Oceanic 

and Atmospheric Administration (NOAA 2012) consider the most basic change in pressure 

occurs twice daily with maximums at 10 am and 10 pm and minimums at 4 pm and 4 am.  

Section 3 discusses implementing this basic cycle to represent solar tides and modelling 

pressure. 

2.2.5 Why not use wind speed as a fifth driver?  

SAM (2014) fails to include wind in its calculation of yield to allow for a chill factor.  However, 

building a linear Fresnel technology plant in a site with high winds is unlikely because the 

plant would be subject to more damage than at low wind speeds.  Therefore, the chill factor 

is ignorable.  Consistently, Table 3 shows that there is considerably lower wind speed in 

Collinsville than in the three comparison sites because the three comparison sites are 

subject to the sea breeze cycle and Collinsville is sheltered inland at higher elevation and 

within a valley.   

The higher wind speed at Collinsville’s three coastal neighbours makes both SAM (2014) 

unsuitable to model the yield from these sites and the sites unsuitable to build linear Fresnel 

technology plants.  However, the exclusion of wind speed from SAM’s (2014) calculation of 

yield does make the yield calculated from these comparison sites more comparable with the 

yield from the Collinsville site. 

We disregard wind speed observed as a driver in the calculation of yield but wind speed is 

present in the direct relationships flowing from solar irradiance, temperature, pressure to 

wind.  Therefore, we consider wind’s suitability as a variable to model the four drivers.  Like 

temperature and humidity, wind speed is measured thrice daily by BoM, but unlike 

temperature and humidity, whose change is slow, wind speed can vary greatly.  This makes 

wind speed less amenable to interpolation using thrice-daily measurements.  However, wind 

direction is more consistent so more amendable to interpolation.  Section 3 discusses these 

issues further.  

2.3 Effective Direct Normal Irradiance 

The previous section discussed DNI as the first of the four drivers of yield in SAM (2014) but 

there is a requirement to introduce the concept of “effective DNI”, that is, the component of 

DNI that a CSP plant can use.  We frame the concept within two effects: the dew and dust 

effects.  The discussion of the effects both simultaneously help crystallise the concept of 
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effective DNI compared to satellite DNI and ameliorates concerns about the discrepancy 

between terrestrial measurement of DNI and effective DNI. 

2.3.1 Dew effect and effective DNI 

The dew effect involves dew collecting on LFR or DNI measuring instruments where both 

require warming and evaporation by the sun before the suns energy can produce electricity, 

whether by the LFR or the instrument measuring DNI.  The dew effect is considerable in 

places with clear nights and low wind speed, which describes the weather at Collinsville in 

Table 3.  The clear cloudless nights allow cooling of the earth surface via reradiating heat 

into outer space and low wind speed allows the cooling of the air close to the ground, so the 

air precipitates its moisture.  Collinsville has the lowest average minimum annual dry bulb 

temperature of the four sites.  However, we can ignore the dew-effect because the dew–
effect affects both the terrestrial DNI measuring instrument and the LFR plant.  We assume 

the dew-effect is the same for both.  Therefore, measured DNI is the “effective” DNI.  

The automatic adjustment for the dew effect on terrestrial measuring instruments to read 

effective DNI is absent in satellite data.  Therefore, the dew effect makes the unmodified use 

of satellite DNI data questionable, particularly at Collinsville. 

2.3.2 Dust effect and effective DNI 

This section discusses the dust effect with the following hierarchy  

 Dust-in the atmosphere 

 Dust-on  

o the LFR 

o the measuring instrument 

The “dust-in” the atmosphere that attenuates DNI can be modelled along with other aerosols 
in the atmosphere.  This modelling assumes that the surrounding natural or manmade dust 

producing activities remain consistent between model calibration and projection periods.  

However, factors affecting this assumption about constant dust levels include a change in 

wind patterns or coal-mining intensity or coal-mining methodology.  The El Niño Southern 

Oscillation (ENSO) or climate change can affect both wind speed and direction.  However, 

the implication of ENSO and climate change for the dust-effect is too complex to analyse 

and probably slight.  Therefore, we ignore ENSO and climate change implications for the 

dust-effect.  Nevertheless, Section 2.4 discusses ENSO and Section 2.5 discusses climate 

change in relation to the four drivers. 

“Dust-on” the LFR reduces the effectiveness of DNI to heat water.  The School of 

Mechanical and Mining Engineering (SMME) at UQ (Guan, Yu & Gurgenci 2014) reports on 

the cleaning requirements to address dust-on the LFR.  

Similarly, “dust-on” Allen’s (2013) terrestrial measuring instruments reduces the amount of 

DNI measured, so only effective DNI is measured.  Allen (2013) discusses the dust and 

cleaning of the measuring instruments. 

The same self-compensating reasoning between measuring instrument and the LFR for the 

dew-effect applies to the dust-effect because both the measuring instrument for DNI and the 

LFR are subject to dust-effects.  However, we acknowledge the potential for unequal 
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cleaning regimes between the terrestrial measuring instruments and the LRF could 

invalidate this assumption.  Section 7.6 in further research recommends collaboration 

between Allen (2013) and Guan, Yu and Gurgenci (2014) to ensure equivalent cleaning 

regimes.  

The question arises about whether it is possible to use raw satellite DNI data to calculate 

yield and then retrospectively adjust the yield by an effective to satellite DNI ratio. 

In summary, we assume that the terrestrially measured DNI is the “effective” DNI for the LFR 
and both the dust-effect and dew-effect make the unmodified use of satellite DNI data 

questionable.  We also seek to test the arising research question: “Is the method to use raw 

satellite DNI data to calculate yield and retrospectively adjusting the calculated yield with an 

effective to satellite DNI energy per area ratio suitable?” 

2.4 The effect of El Niño Southern Oscillation on yield 

This section discusses the effect of El Niño Southern Oscillation (ENSO) on the four drivers 

for yield.  The previous sections discuss the four drivers within the context of regular daily or 

annual cycles.  In contrast, the ENSO cycle is irregular and can span more than a year.  

Therefore, there is an expectation of many ENSO cycles during the lifetime of the proposed 

plant at Collinsville. 

This paragraph presents a brief description of the ENSO to inform the remainder of the 

report.  BoM (2005) discusses ENSO within a worldwide context.  In contrast, this section 

discusses ENSO cycle implications for Collinsville, Queensland.  The ENSO spans the 

Pacific and consists of two main phases: the La Niña and El Niño phases.  We consider La 

Niña the normal weather phase and El Niño the abnormal weather phase within the ENSO 

cycle.   

In La Niña, the warmer waters off Queensland and cooler waters of Central America create 

an atmospheric convection current between Central America and Queensland causing the 

trade winds to blow from South America toward Queensland called the Walker Circulation.  

The trade winds crossing the Pacific are high in moisture when they reach Queensland and 

the Walker circulation causes the trade wind to ascend over Queensland encouraging 

precipitation from the moisture-laden air.  Another consequence of the Walker circulation is 

the relatively low pressure over Queensland compared to the mid Pacific.  The Southern 

Oscillation Index (SOI) in Figure 1 shows La Niña and El Niño phases indicated by this 

pressure difference.  However, the SOI uses the difference in pressure between Tahiti and 

Darwin. 
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Figure 1: Southern Oscillation Index 1994-2007 

 

(Source: BoM 2005) 

In the El Niño phase, the water surface temperature in the Eastern and mid Pacific warms 

disturbing the Walker Circulation.  For Queensland, the atmospheric convection current now 

runs counter to the trade wind and high-pressure forms over Queensland relative to the mid 

and Eastern Pacific.  The air arriving in Queensland is now dry. 

In summary, relative to the La Niña phase, the El Niño phase brings higher pressures, 

weaker winds and less water vapour, which results in lower humidity, fewer clouds, and rain.  

Fewer clouds and rain improve DNI.  The El Niño phase also brings higher daytime 

temperatures and lower night-time temperatures because the reduction in moisture 

ameliorates its moderating effects. 

Consequently, the El Niño phase produces higher yield.  Additionally, the higher 

temperatures drive higher prices for electricity in Queensland.  So, El Niño events could 

prove a more profitable time for CSP plants.  This comes with the caveat that the El Niño 

induced increase in bush fires fail to attenuate DNI. 

The ENSO cycle has implications for finding a “Typical” representative year for a TMY.  
Section 2.6.3 discusses ENSO implications for selecting a TMY. 

2.5 The effect of climate change on yield 

This section discusses the effect of climate change on the four drivers for yield.  The 

previous sections discuss the effect of weather cycles on the four drivers.  In contrast, 
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climate change produces a gradual change in the long-term means of the four drivers to 

affect the plant’s yield permanently over its expected lifetime. 

Climate change is a global phenomenon whose focus is on the average rise in global 

temperatures but the main driver for CSP is DNI.  Nevertheless, studying the temperature 

change and the associate changes in other variables provides a useful background to the 

issue.  Additionally, climate change focuses on global temperature change but the local 

effects can run counter to the global effect, as seen with the ENSO, a rise in temperature in 

one area can cause disruptions to normal weather patterns whose effects can be uneven. 

Consequently, there requires some discretion in selecting Global Climate Models (GCM) that 

report the most likely, hottest or coolest cases for the geographic area of interest and 

provide the range of variables required for analysis.  For this report, there is a tension over 

the selection of the geographic area because selecting the National Electricity Market (NEM) 

as the geographic area will best reflect the demand and price for the electricity produced but 

selecting GCMs for Collinsville will best reflect the yield.  Foster et al. (2013) have already 

conducted an analysis for the NEM for five variables, including three of the four drivers, but 

their focus is temperature rather than DNI.  Their choice of the carbon emission scenario is 

SRES A1FI, which best reflects the high carbon emissions trajectory currently occurring 

around the world.  Clarke and Webb (2011) select three GCMs from 23 GCMs reflecting two 

extremes and an average case for Foster et al. (2013): 

• Most likely case – MRI-CGCM2.3.2 

• Hottest case – CSIRO-Mk3.5 

• Coolest case – MIROC3.2 

For the five environment variables: 

• solar radiation 

• temperature 

• relative humidity 

• wind speed 

• rainfall 

The hottest case is the worst case from a climate change perspective but the hottest case 

could be the best case from an LFR perspective because higher temperatures help provide 

more yield and increase electricity demand in Queensland. 

Table 5 shows the projected change in climate from 1990 to 2040 for the location at latitude 

and longitude (-20.5, 148) from the ozClim projection series (CSIRO 2011; Page & Jones 

2001).  This location is the closest to the proposed plant at (-20.5344, 147.8072).  Notable is 

the magnitude of the projected mean temperature changes where the most likely case is 

smaller than both the coolest and hottest cases.  As discussed earlier, the local effect can 

run counter to the global effect.  The fourth driver, pressure, is omitted from the table 

because ozClim (CSIRO 2011; Page & Jones 2001)  lacks pressure projections. 
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Table 5: projected change in climate from 1990 to 2040 

 Coolest case 
MIROC3.2-Medres 

Most likely case 
MRI-CGCM2.3.2 

Hottest case 
CSIRO-Mk3.5 

Solar radiation (%) -1 0.1 0.8 
Temperature Mean (°C) 1.21 1.04 1.33 
Relative humidity Mean (%) 0.8 -0.7 -0.9 

(Source: CSIRO 2011; Page & Jones 2001) 

Therefore, the most likely expected percentage change in solar radiation, the main driver for 

yield, from 1990 to 2040 is 0.1 percent.  The change in temperature is just over 1 °C and a 

decrease in humidity is 0.7 percent.  These three changes taken together would increase 

yield but only by a tiny amount.  Similarly, in the hottest case, the changes would act to 

increase yield slightly.  In the coolest case, the changes may slightly decrease yield.  Section 

3.5 and Section 4.4.4 discuss the methodology and results, respectively, for the sensitivity 

analysis to provide estimates that are more exact. 

2.6 Typical Meteorological Year and Wholesale Spot Prices 

This section discusses the use of the Typical Meteorological Year (TMY) with consideration 

to matching electricity demand data for the given meteorological conditions and calculating 

the associated wholesale spot price and dispatch.  Our ensuing ‘Energy economics and 

dispatch forecasting report’ (Bell, Wild & Foster 2014a) uses the TMY yield projections from 

this report to help forecast wholesale prices and dispatch. 

2.6.1 TMY as both a technique and format 

Marion and Urban (1995) and Wilcox and Marion (2008) provide user manuals for the 

collection and processing of data to produce TMY2 and TMY3 data files that are TMY 

versions 2 and 3.  TMY is both a format and a technique.  SAM (2014) can use both TMY3 

and TMY2 formats.  This report uses the TMY3 format and we introduce a modified TMY 

technique.  As a format, the TMY files are an hourly record of selected weather variables for 

an entire year for a specific location.  Importantly, TMY’s hourly data represents the average 
of the weather variable for the previous hour.  This representation contrasts with BoM’s data 
that usually records the instantaneous reading. 

Originally, the TMY technique calculated a hypothetical year that could represent a number 

of years ranging from 15 to 30 years to estimate the typical heating and cooling costs for 

buildings.  However, the renewable energy generation sector now uses the TMY technique, 

which required extension of the technique for use in the sector.  The TMY technique involves 

finding the 12 most typical meteorological months (TMMs) from a range of years.  The 

existing TMY technique requires weighting the meteorological variables of interest according 

to their importance to yield or heating requirements.  This weighted average helps select the 

TMMs. 

The advantages of the TMY technique include the simplicity of the technique, simplifying 

ensuing calculations, such as providing a single baseline year in sensitivity analysis.  These 

factors in turn provide easy to explain results.  The disadvantages include lacking analysis of 

the variability between years, so lacking P90 analysis, and subjectivity of assigning weights 
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to each meteorological variable and the technology dependency of the weights.  For 

instance, appropriate weights for a LFR and wind generator would differ considerably. 

To address the subjectivity of the weights and their technology dependence, this report 

introduces a modified TMY technique that compares average monthly yield within the range 

of years to determine the 12 TMMs.  This simultaneously avoids the explicit assignment of 

weights to each of the four drivers (DNI, temperature, humidity and pressure) to ensure 

technologically appropriate implicit weights for the four drivers. 

To address the lack of analysis of variability for CSP yield, Stoffel et al. (2010, p. 101) 

suggests using several years in the analysis rather than a single year or a TMY to assess 

the effects of inter-year variability.  However, analysis of each year carries a large 

computational overhead that becomes excessive for any sensitivity analysis. 

Whether to conduct sensitivity analysis or variability analysis requires an assessment of 

priorities.  Section 7.1 discusses variability analysis for further research rather than the TMY 

method used in this report and our subsequent report (Bell, Wild & Foster 2014a). 

2.6.2 TMY implications for demand and supply in the NEM  

The dependence of electricity demand on meteorological conditions is a long established 

relationship but the production of electricity in a predominantly fossil fuel generation fleet is 

relatively independent of meteorological conditions.  However, with the introduction of more 

renewable energy, the production of electricity is becoming more dependent on the weather 

and since the marginal cost of the renewable segment is nearly zero, meteorological 

conditions now have an even more dramatic effect on wholesale market spot prices.  

Figure 2 shows the average demand across the NEM for the years 2007 to 2011 by time of 

day.  Bell, Wild and Foster (2013) calculate that the introduction of solar PV largely explains 

the increasing midday depression in net demand.  Further solar PV installations without 

battery storage will exacerbate this reduction in net midday demand.  In contrast, the 

introduction of solar water heaters replacing electrical water heaters reduces demand in the 

early hours of the morning because electrical water heaters generally use off-peak power 

that is available in the early hours of the morning.  This transformation of the net demand 

curve requires a consistent application of the TMMs calculated for Collinsville’s LFR across 

the NEM to determine generation mix and net demand to calculate realistic wholesale spot 

prices.  We discuss in more detail the implications for net demand, wholesale prices and 

dispatch in our ensuing ‘Energy economics and dispatch forecasting’ report Bell, Wild and 

Foster (2014a). 



Collinsville solar thermal project: Yield Forecasting 

 

page 29 

 

Figure 2: NEM’s net average demand for 2007 to 2011  

 

(Source: Bell, Wild & Foster 2013) 

2.6.3 ENSO implications for TMY selection 

The requirement of the subsequent reports to select a TMY from the years 2007-12 and 

ENSO cycle have implications for finding a “Typical” representative year for a TMY.  
Selecting a TMY from a larger number of years would average out the ENSO cycle to find a 

more representative TMY but the constraints of the subsequent reports eliminate this 

possibility. 

How has climate change affected the ENSO cycle?  If climate change produces a La Niña or 

El Niño bias, then this bias restricts the use of previous years to average out the ENSO. 

Sections 5.6 and 5.7 discuss a comparative analysis of yield from years 2007-2013 with 

earlier years to investigate this concern.  Section 7.7 in further research recommends 

extending the TMY process to include earlier years. 

2.7 Conclusion 

The literature review has both established the research questions and provided direction for 

the methodology to address these questions. 

Motivating the research question is the questionability of using yield projections from nearby 

sites at MacKay, Rockhampton, and Townsville as yield proxies for Collinsville.  The appeal 

of using these three comparison sites is their complete historical environmental datasets of 

the four drivers for yield (DNI, temperature, humidity and pressure).  However, the literature 

review has established considerable differences in climate between Collinsville and the 

comparison sites.  The comparison sites have coastal climates moderated by the daily 

alternating cycle of the sea and land breeze.  In contrast, Collinsville has a colder wetter 
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start in the early morning but lacking the moderating sea breeze, temperatures surpass 

those of the coastal comparison sites in the mid-afternoon.  In Queensland, the wholesale 

price of electricity is generally higher in the late afternoon.  Therefore, Collinsville’s climate 

relatively engenders a shift in LFR yield production to become more profitable. 

Furthermore, the efficacy of using the raw hourly BoM (2013) DNI data derived from satellite 

images for Collinsville is questionable when comparing the daily total solar intensity derived 

from satellite images and cloud coverage at Collinsville and its three comparison sites.   

Additionally, the dew and dust effects make the use of raw BoM DNI satellite data 

questionable.  The review introduces the concept of “effective” DNI to help ameliorate dew 
and dust effect concerns and a modified TMY technique to eliminate the need for technology 

specific weighting of environmental variables.  The methodology further develops these two 

items. 

The BoM Collinsville Post Office weather station, in operation since 1939, provides thrice-

daily measurements for temperature and humidity but lacks any pressure data.  This 

coverage is far short of the hourly coverage required by SAM (2014) to calculate yield.  

However, Allen (2013) provides one-minute data for all four drivers starting in December 

2012 but this coverage is far short of the 2007-2013 yield projection period requirements of 

the subsequent reports. 

2.7.1 Research questions 

The research questions arising from the literature review. 

The overarching research question is: 

Can modelling the weather with limited datasets produce greater yield predictive 

power than using the historically more complete datasets from nearby sites?  

This overarching question has a number of smaller supporting research questions: 

 Does BoM’s DNI satellite dataset adequately adjust for cloud cover at Collinsville? 

 Given the dust and dew effects, is using raw satellite data sufficient to model yield?  

 Does elevation between Collinsville and nearby sites affect yield? 

 How does the ENSO affect yield? 

 Given the 2007-2012 constraint, will the TMY process provide a “Typical” year over 
the ENSO cycle? 

 How does climate change affect yield? 

 Is the method to use raw satellite DNI data to calculate yield and retrospectively 

adjusting the calculated yield with an effective to satellite DNI energy per area ratio 

suitable? 

A further research question arises in the methodology but is included here for completeness. 

 What is the expected frequency of oversupply from the Linear Fresnel Novatec Solar 

Boiler? 
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3 Methodology 

3.1 Introduction  

This section describes the methods used to address the research questions arising from the 

literature review in the previous section.  The overarching research question: 

Can modelling the weather with limited datasets produce greater yield predictive 

power than using the historically more complete datasets from nearby sites?  

This report uses the Systems Advisor Model (SAM 2014) to calculate yield from the 

proposed LFR at Collinsville from the four drivers. 

 DNI 

 Temperature 

 Humidity  

 Pressure 

The previous section established the questionability of using complete historical datasets of 

the four drivers from nearby sites to calculate yield as a proxy for yield at Collinsville.  This 

questionability necessitated using datasets from Collinsville for the four drivers. 

The hourly BoM DNI dataset starting in 1990 derived from satellite imagery for Collinsville 

meets both temporal requirements for this report.  These requirements are an hourly dataset 

for SAM (2014) and the range of years, 2007-2012, for our subsequent report (Bell, Wild & 

Foster 2014a).  However, as discussed in the literature review, the dew and dust effects and 

ambiguity over cloud cover makes the use of this DNI dataset questionable without 

modification for the aforementioned effects. 

The BoM weather station at the Collinsville post office in operation since 1939 provides both 

temperature and humidity datasets but these datasets contain only thrice-daily readings 

taken at 6 am, 9 am and 3 pm.  This thrice-daily reading is insufficient to meet the hourly 

requirement for SAM (2014).  In addition, the weather station lacks any datasets for the 

fourth driver, pressure. 

We develop models of the four drivers to overcome the inadequacies in the BoM datasets 

and satisfy the hourly requirement for SAM (2014) and the range of years, 2007-2012, for 

the subsequent reports.   

Allen (2013) provides one-minute resolution terrestrial based measurements taken at 

Collinsville for all four drivers.  Allen (2013) converted these one-minute datasets into hourly 

datasets to meet SAM’s (2014) requirements.  But Allen’s (2013)  datasets start in 

December 2012, which fails to meet the 2007-2012 requirement of the subsequent reports.  

However, Allen’s datasets are suitable to calibrate models of the four drivers with the 

inadequate BoM datasets. 

Modelling the four drivers requires considering their explanatory variables for inclusion in a 

model.  As discussed in the literature review, there are a set of direct relationships 

moderated by the hydrological cycle.  The direct relationships include solar irradiance 

causes temperature rise, temperature change causes pressure change, and pressure 

gradients cause wind.  There is considerable interrelation between the four drivers and their 
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explanatory variables, which is unremarkable, since we are dealing with weather cycles.  

There are 22 variables available to explain the four drivers.  This presents two problems: 

highly correlated environmental variables and the curse of dimensionality.  

There is a great possibility that the environmental variables are highly correlated or 

synchronised, so a subset of the variables, that are the most uncorrelated, are selected to 

model the four drivers, in a procedure known as principle component analysis.  For instance, 

three variables temperature, wind direction, and month could be sufficient to model pressure. 

Regarding the ‘curse of dimensionality’, neural networks are used to develop the models as 
they are a standard tool within the electricity industry to analysis weather-demand 

relationships and are well suited to modelling non-linear systems, such as the weather 

(Deoras 2010; Hippert, Pedreira & Souza 2001).  However, neural networks are non-

communicative, that is the order of the explanatory variables affects the results of the fitted 

model.  Therefore, there are 22! (= 1.124x1021) ways to order 22 variables.  This simple 

factorial fails to account for all combinatorial possibilities with fewer than 22 explanatory 

variables that are potential models for the four drivers. 

Using the Akaike Information Criteria (AIC) (Akaike 1974) within a pragmatic search routine 

to find a minimal set of explanatory variables eliminates the need to calculate every 

combination of explanatory variables.  The AIC value helps to select between models and 

provides a trade-off between goodness of fit and model complexity.  The number of variables 

k in the model indicates the level of complexity.  For example, a simpler two-variable model 

(temperature and wind direction) or a more complex three-variable model (temperature, wind 

direction, and month) could model pressure.  The first line in Equation 3 shows the 

generalised AIC form and the last line shows the residual sum of the squares (RSS) form 

(Burnham & Anderson 2002, p. 342) used in this report.  The RSS form assumes 

independent, normally distributed errors with a mean of zero.  In that case, the likelihood 

function L is the residual sum of the squares divided by the number of observations RSS/n 

for large values of n.  In model selection, the model with the smallest AIC is preferred.  The 

2k provides a penalty for model complexity and the natural log of the likelihood function 

2ln(L) provides a measure of goodness of fit.  In model comparison, it is suitable to ignore 

the constant c. 

Equation 3: Akaike Information Criteria 

AIC = 2k – 2ln(L)   - general form 

AIC = n ln(RSS/n) + 2k + c  - RSS form use in this report 

Where 

L = likelihood function 

k = number of variables 

RSS = residual sum of the squares 

c = constant 

We use the selected models to produce projections of the four drivers for the years 2007-13, 

which SAM (2014) uses to calculate yield for 2007-13.  As discussed in the literature review, 

there is the option whether to use a single Typical Meteorological Year (TMY) in a sensitivity 

analysis on gas prices or analyse individual years to calculate inter-year variability and 
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develop a P90 for lifetime revenue.  However, obstacles to acquiring data in a timely fashion 

for this report precluded the possibility of the variability analysis.  Therefore, this report 

calculates a single TMY to enable a sensitivity analysis on gas prices in the subsequent 

report (Bell, Wild & Foster 2014a).  Section 4.4.3 presents the results from selecting the 12 

typical meteorological months (TMM) from the years 2007-12.  Section 4.4.1 helps validate 

the four drivers models for the year 2013 by comparing the yields calculated from driver 

models with the yields calculated from Allen (2013).  

The following sections elaborate on the process outlined above where necessary.  Section 2 

discusses preparation of the datasets.  Section 3 discusses selecting the best models for the 

four drivers.  Section 4 discusses modelling yield from the four drivers.  Shah, Yan and Saha 

(2014b) present the methodology for calculating yield from the comparison site at 

Rockhampton. 

3.2 Preparing the data 

This section discusses the preparation of the datasets for use in this report.  The outline 

below shows a hierarchy of the datasets and of their functional use.   

 Target or dependent variable  

o Allen’s (2013) datasets 

 Input or explanatory variables  

o BoM’s hourly solar satellite data 

o BoM’s Collinsville Post Office weather station  

o Other  

There are 4 target variables and 22 explanatory variables available.  

3.2.1 Allen’s datasets: Target or dependent variables 

Allen (2013) collects one-minute data from a terrestrial weather station at the Collinsville site 

for the four drivers of yield.  Allen (2013) converts the one-minute data into an hourly form 

specifically to meet the requirements of SAM (2014).  SAM’s (2014) requirement for hourly 

data is the average of the instantaneous values of the previous hour. 

3.2.2 BoM’s Collinsville Post Office datasets: Input or explanatory variables 

BoM observes data at three different frequencies at Collinsville: 

 Once daily 

 Thrice daily 

 Six times daily  

The frequency of measurement of the environmental variables determines their preparation, 

so the following discussion groups the datasets or variables by frequency.  We interpolated 

missing values using the average of the previous and following day.  Similarly, we 

interpolated missing values in the thrice or six times daily measurements using the average 

of the measurements taken at the same time the previous day and next day. 

3.2.2.1 Once daily data 

The outline below shows the datasets with a single daily data reading. 
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o Temperature dry bulb 

 Maximum 

 Minimum 

o Evaporation 

o Solar exposure 

BoM takes daily data readings at 9 am for the previous 24 hours, except for the total daily 

solar exposure, which BoM estimates from satellite images 

We assume that minimum temperatures occur in the early hours of the morning and 

maximum temperatures occur in the remaining hours of the day.  Therefore, we assign the 

same minimum dry bulb temperature that day for the hours 00:00 to 09:00 and the same 

maximum dry bulb temperature for the hours 10:00 to 23:00 for the previous day.   

Evaporation is a daily rate, so the value was simply assign to the hours 00:00 to 09:00 that 

day and the hours 10:00 to 23:00 for the previous day.  

We simply assigned solar exposure to every hour of the day.  We calibrated the model using 

data from only the daylight hours.  Therefore, assigning solar exposure during the night is a 

non-issue.  

3.2.2.2 Thrice daily data 

BoM takes thrice-daily readings at 6 am, 9 am, and 3 pm for the following variables.   

o Temperature 

 Dry bulb 

 Wet bulb 

 Dew point 

o Relative humidity 

o Wind 

 Speed 

 Direction 

o Cloud cover 

o Visibility 

o Precipitation 

As discussed in the literature review, wind speed and direction are fickle and unsuitable for 

interpolation with such low-resolution datasets.  However, the other environmental variables 

are slower changing, so are more amenable to interpolation and modelling.  Additionally, 

only the daylight hours require modelling, which in effect doubles the resolution of the thrice-

daily readings.  We simply interpolated the thrice-daily readings with the following exceptions. 

Precipitation is a cumulative measurement.  In contrast, the other variables are 

instantaneous measurements.  Therefore, we converted precipitation into a rate and the rate 

simply assigned to the relevant hours. 

We recommend improving the interpolation for wind direction for two reasons.  First, the 

wind direction 360° represents north and 0° represents no-wind or calm, so a simple 

interpolation between 0° and a positive value is misleading.  Second, the wind may simply 
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switch directions, for instance from a land breeze to a sea breeze, which also makes 

interpolation misleading. 

3.2.2.3 Six times daily data – weather present and past  

The BoM uses the codes in Table 6 to record weather phenomena present at 6 am, 9 am, 

and 3 pm and in the past hours.  These past and present weather recordings taken thrice 

daily in effect give six daily readings.  We simply assigned the codes for the present times to 

the respective hour of the day and the codes for the past times to the previous intervening 

hours.  For example, we assigned the code for the past weather reading taken at 9 am to 7 

am and 8 am. 

Table 6: BoM’s past and present weather phenomena types and codes 

4 Smoke 
5 Haze 
6-7 Dust 
8 Dust whirls 
9 Dust storm 
10 Mist 
11,41 Fog patches 
12 Shallow fog 
13 Lightning 
14 Distant/nearby virga 
15-16 Distant precipitation 
17 Thunder 
18 Squall 
19 Funnel cloud 
20 Recent drizzle 
21 Recent rain 
22,26 Recent snow 
23 Recent rain and snow 
24 Recent precipitation 
25 Recent shower 
27 Recent hail 
28 Recent fog 
29 Recent thunderstorm 
30-32 Dust storm 
33-35 Severe dust storm 

38-39 Blowing snow 
40 Distant fog 
42-49 Fog 
50-55 Drizzle 
56-57 Freezing drizzle 
58-59 Drizzle 
60-65 Rain 
66-67 Freezing rain 
68-69 Sleet 
70-75 Snow 
76 Ice prisms 
77 Snow grains 
78 Starlike crystals 
79 Ice pellets 
80-81 Shower 
82 Violent shower 
83-84 Sleet 
85-86 Snow shower 
87-88 Soft hail shower 
89-90 Hail shower 
91-95 Thunderstorm 
96,99 Thunderstorm and hail 
97 Heavy thunderstorm 
98 Thunderstorm and dust 

(Source: BoM 2011)  

However, there are issues with interpolating the missing codes.  For instance, averaging 

code 4 for smoke with code 98 for “Thunderstorm and dust” gives a code 51 for drizzle.  We 

recommend developing a more sophisticated algorithm to handle the missing readings.   

Nevertheless, two factors ameliorate any concern over the averaging of missing codes.  First, 

the weather phenomena are a composite of existing variables such as visibility, relative 

humidity, precipitation, temperature, cloud cover, and evaporation.  Therefore, we have 

already modelled many of the components of the codes in Table 6.  Second, the same code 

exists on either side of the missing code in many instances.  Therefore, the frequency of 

interpolation between differing codes is low. 
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3.2.3 BoM’s Satellite datasets: Input or explanatory variables 

As discussed in the literature review, the BoM’s hourly satellite data for DNI and GHI 

requires adjustment for minutes past the hour according to the latitude of the observation, 

see Table 4.  We adjust the BoM’s DNI and GHI readings for the minutes past the hour then 

interpolate to provide the readings on the hour to match those datasets from BoM’s 
Collinsville post office weather station.  

3.2.4 Other input or explanatory variables 

This section discusses other variables derived from the BoM datasets or otherwise.  The 

following outline groups these variables by type. 

 Astrological angles 

o Azimuth 

o Zenith 

o Altitude 

 DHI 

 Pressure represented as a sine wave 

 Time 

o Month 

o Hour 

We calculate the astrological angles for every hour of the year for Collinsville, using the 

algorithm described in section 2.2.1.2. 

We use Equation 1 to calculate DHI using the original DNI and GHI datasets discussed in 

Section 3.2.3.  We then adjust DHI for the satellite latitude / minute past the hour deviation 

as described in Section 3.2.3. 

Pressure is modelled as a sine wave with maximums at 10 am and 10 pm and minimums at 

4 pm and 4 am (NOAA 2012) to capture the atmospheric tide as discussed in section 2.2.4. 

Lastly, we assume that the hour of the day and month of the year capture any other cyclical 

variation. 

3.3 Selecting the best model for the four drivers  

As discussed in section 3.1, we use AIC in a pragmatic search routine to select a minimal 

set of explanatory variables for each of the four drivers.  The routine addresses two 

problems: highly correlated environmental variables and the curse of dimensionality.  This 

section discusses the steps in the search routine. 

3.3.1 Step 1 – finding the besting fitting one-variable models  

The first step involves finding the first explanatory variable for each of the four drivers to 

provide the best fitting single-variable model.  This involves simply calculating the R-squared 

(R2) values for each of the 22 explanatory variables and selecting the explanatory variable 

with the highest R2 value.  AIC is unsuitable for this first step because AIC fails to convey 

information in an easily interpretable way about goodness of fit of the model whereas R2 

does.  Equation 4 shows the calculation of R2.  In this report the total sum of squares SStot is 

the variability in Allen’s (2013) dataset and the residual sum of squares SSres is the square 
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residuals between the fitted model and Allen’s (2013) datasets.  Therefore, an R2 value 

closer to one denotes a better fit as the SSres approaches zero. 

Equation 4: R-squared a measure of a model's goodness of fit 

R2 = 1 – SSres / SStot 

Where  

SSres = Residual sum of squares 

SStot = Total sum of squares 

3.3.2 Step 2 – selecting two-variables models 

In the second step, we use the best fitting explanatory variable for each of the four drivers to 

form 21 two-variable models by appending one of the remaining 21 explanatory variables.  

For instance if the explanatory variable, month, provides the best fitting single-variable 

model for the driver, pressure, then the driver, pressure, is modelled with the following two-

variables models:  (month, temperature), (month, humidity), (month, hour), and so forth.      

3.3.3 Step 3 – selecting three-variable models 

In the third step, we select the two-variable model with the lowest AIC and the remaining 20 

explanatory variable to form 20 three-variable models.  For instance, if the two-variable 

model, (month, hour), provides the lowest AIC value for the driver, pressure, then the driver, 

pressure, is modelled with the following three-variable models: (month, hour, temperature), 

(month, hour, humidity), (month, hour, DNI), and so forth.  

3.3.4 Step N – iterating through N-variable models until information is 
exhausted 

The above routine is iterated until there lacks any significant decrease in AIC.  At this point, 

we have exhausted the information value in the remaining explanatory variables and adding 

further explanatory variables to the model just introduces noise into the results.  

3.3.5 Neural network internal weights affecting the number of variables in 
value k 

In this report, all the neural networks optimised to provide model fit have 10 internal weights.  

These weights in effect add extra variables to the models by increasing the value of k in 

Equation 3.  We can ignore the effect of these weights on AIC because the weights add the 

same constant to each AIC and constants can be ignored as discussed in Section 3.1. 

However, we cannot ignore the weight effect in Equation 5 for adjusted-R2 (adj-R2).  The adj-

R2 extends the R2 for single-variable models in Equation 4 for use with multi-variable models.  

Failing to allow for the weights will slightly over report the adj-R2 value. 
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Equation 5: Adjust R-squared a measure of goodness of fit for multi-variable models 

Adj-R2 = R2 – (1 – R2) k / (n – k – 1)  

Where  

k = number of variables in the model 

n = number of observations used in the model 

Nevertheless, the effect of the 10 weights on the adj-R2 values in Equation 5 is trivial as 

looking at the worst case scenario can show.  Calculating the term k / (n – k – 1) for a single-

variable model with and without the weights, that is k = 1 & 11, and with the number of 

observation as the number of daytime hours in year (n = 4380), gives the following results of 

0.000228 & 0.002518, respectively.  The overall effect on adj-R2 is less than 0.25% as the 

term (1 – R2) is always less than one.  Ameliorating this effect even further is that the 

degrees of freedom of the 10 weights require only adding 9 weights to the term k.  

Furthermore, only a fraction of each weight may require reflecting in the term k.  Section 7.5 

in further research discusses this weight issue but for this report, we can safely ignore this 

issue. 

3.3.6 Neural network and variability of AIC and adj-R2 

In the above steps, we use the mean adj-R2 or AIC of 10 simulations because the goodness-

of-fit of each simulation of a neural network can differ slightly.  This variation arises because 

there is a random assignment of the data into segments for specific purposes: training (70%), 

validation (15%) and testing (15%) (MathWorks 2014a).  Where the training set provides the 

data to find the best fit; the validation set provides data to prevent over fitting the training 

data (MathWorks 2014b); and the test set provides data that is independent of both training 

and validation.  This test set independence offers predictive falsifiability of the fitted model 

providing a scientific foundation for the modelling.  We ran the neural network over a number 

of simulations and averaged the adj-R2 or AIC values to help improve the veracity of the 

results.  The veracity derives from randomly assigned data into the training, validation and 

testing sets for each simulation. 

3.4 Calculating yield with the Systems Advisor Model from four drivers 

SAM (2014) calculates the hourly yield for LFR given hourly values for the four drivers in 

TMY format (Wagner 2012; Wagner & Zhu 2012).  We use SAM version 2014.1.14 for this 

report.  The company Novatec Solar will provide the LFR technology for Collinsville.  SAM 

(2014) has a sample file for a “Linear Fresnel Novatec Solar Boiler”.  This file contains all the 
default parameters for a standard Novatec Solar installation.  Table 7 shows the changes 

from the default setting advised by Novatec Solar. 
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Table 7: Advised default setting changes to SAM’s ‘Linear Fresnel Novatec Solar Boiler’ 

Field groupings Input fieldnames Advised 

value 

Default 

value 

Solar Field 

parameters 

Field aperture: 174,624 m2 862,848 

Number of modules in boiler section: 11 12 

Number of modules in superheater section: 6 6 

Collector azimuth angle: -10° 0 

Steam Conditions 

at design 

 

Field outlet temperature: 500 °C 500 

Turbine inlet pressure:  120 bar 90 

Plant Design   Design turbine gross output:  30.07 MWe 49.998 

Rated cycle efficiency 0.407 0.3941 

(Source: Glaenzel 2013) 

The field aperture size results from Novatec’s techno-economical optimization process for 

the plant where various dimensions are tested until reaching a minimum levelised cost of 

electricity.  This process considers the physical limitations of the propose site.  For instance, 

reducing the number of modules in the boiler section from 12 to 11 allows the Novatec boiler 

to fit on the land space available.  Additionally, the collector azimuth angle -10°, meaning a 

10° inclination to the west, allows the LFR plant to maximise the collection field within the 

land space available. 

The increase in the default ‘design turbine gross output’ is consistent with the increase in 

‘design turbine gross output’.  This implies the plant will exceed the 30 MW AEMO imposed 

dispatch limit under ideal climatic conditions, which may involve some spillage of excess 

supply but the amount is uncertain.  Therefore, we add the supplementary research 

question: 

What is the expected frequency of oversupply from the Linear Fresnel Novatec Solar 

Boiler? 

Section 4.4.6 presents the results from analysing the frequency of oversupply. 

3.5 What is the effect of climate change on plant yield? 

A sensitivity analysis provides the methodology to determine the effect of climate change on 

yield.  Section 2.5 in the literature review discusses the selection of three Global Climate 

Models (GCM) for the coolest, most likely and hottest cases.  Table 5 provides the expected 

change in solar radiation, mean temperature, and relative humidity from 1990 to 2040 for the 

three GCM’s.  The GCMs lack atmospheric pressure information.  Therefore, we assume no 

change in atmospheric pressure from 1990 to 2040. 

In Table 8, we derive the representative values for 1990 for temperature and relative 

humidity from  BoM (2014b) climate statistics for the Collinsville Post Office for the periods 

1971-2000 and 1981-2010 by averaging the 9 am and 3 pm values.  The averaging between 

the 9 am and 3 pm values provides representative dry temperature and relative humidity for 

when the plant is operating.  The averaging between the periods 1971-2000 and 1981-2010 
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weights the averages in the period 1981-2000 to more heavily reflect conditions a decade 

either side of 1990 the baseline year for the GCMs.  

Table 8: Collinsville average temperature and humidly for 1971-2000 and 1981-2010 

Driver 
1971-2000 1981-2010 

mean 
9 am 3 pm 9 am 3 pm 

Dry temperature (°C) 23.1 28.8 23.3 29.3 26.1 
Relative humidity (%) 67 44 66 43 55 

(Source: BoM 2014b) 

BoM (2014b) also lacks data on atmospheric pressure as do the three comparison sites at 

Rockhampton, Townsville and MacKay.  Therefore, we use the average atmospheric 

pressure supplied by Allen (2013) for the period 12 December 2012 to 11 February 2014 

that is 989.5 hPa or 98.95 kPa.  Collinsville’s average atmospheric pressure is slightly less 

than the pressure defined in both the ‘standard temperature pressure’ and ‘standard ambient 
temperature and pressure’ that use 100 kPa (1 bar).  We expect a lower pressure given 

Collinsville’s 197 m altitude and both the ‘standard temperature pressure’ and ‘standard 
ambient temperature and pressure’ definitions assume the atmospheric pressure at sea level. 

The BoM (2013) states that typical values for DNI are up to around 1000 W/m2.  We 

calculate an effective to satellite DNI ratio of 0.767 in Section 4.3.1.  Therefore, we use a 

DNI value of 767 W/m2 for 1990 for the sensitivity analysis. 

Section 4.4.4 presents the yield sensitivity analysis results using the values derived in this 

section. 

3.6 Does elevation between Collinsville and nearby sites affect yield? 

A sensitivity analysis provides the methodology to determine the effect of elevation on yield.  

Section 2.2.4.1 in the literature review discusses the requirement for a sensitivity analysis on 

the effect of altitude between Collinsville and the nearby sites of which only Rockhampton 

presents sufficiently complete data for analysis. 

In Table 9, we derive the representative values for 1990 for temperature and relative 

humidity from  BoM (2014b) climate statistics for Rockhampton Aero for the periods 1971-

2000 and 1981-2010 by averaging the 9 am and 3 pm values.  This averaging technique 

parallels that for Collinsville in Table 8.  Therefore, the Collinsville values in Table 8 can also 

act as the baseline in this research question. 

Table 9: Rockhampton average temperature and humidly for 1971-2000 and 1981-2010 

Driver 
1971-2000 1981-2010 

mean 
9 am 3 pm 9 am 3 pm 

Dry temperature (°C) 22.3 27.2 22.7 27.4 24.9 
Relative humidity (%) 69 48 67 46 57.5 

(Source: BoM 2014b) 

We also assume the same DNI value of 767 W/m2 derived in Section 3.5 for Collinsville.  For 

atmospheric pressure, we assume a value of 1 bar or 1000 hPa because Rockhampton is 

much closer to sea level than Collinsville.  Section 3.5 also discusses the selection of a 
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value for atmospheric pressure.  Section 4.4.5 presents the results of the elevation 

sensitivity analysis. 

3.7 Is the method to use raw satellite DNI data to calculate yield and 
retrospectively adjusting the calculated yield with an effective to 
satellite DNI energy per area ratio suitable? 

A sensitivity analysis also provides the methodology to determine the suitability of the 

method to use raw satellite data to calculate yield and retrospectively adjusting the yield with 

an effective to satellite DNI energy per area ratio.  Section 2.3 in the literature review 

discusses the requirement for a sensitivity analysis to test the suitability of the suggested 

method. 

In the sensitivity analysis, we assume constant temperature, humidity, pressure and effective 

to satellite DNI energy per area ratio as 26.1°C, 55%, 989.5 hPa and 0.767 as given in 

Section 3.5.  Table 10 shows the change in DNI values for use in the sensitivity analysis 

where the raw satellite values represent high, medium, and low DNI values and the adjusted 

satellite values are the raw satellite values factored by the effective to satellite DNI energy 

per area ratio. 

Table 10: DNI values to test suitability of retrospectively adjust yield based on raw satellite DNI data 

DNI (W/m2) high medium low 
raw satellite 1,000 667 333 
adjusted satellite 767 511 256 
 

Section 4.4.7 presents the results of conducting the sensitivity analysis. 

3.8 How has climate change affected the ENSO cycle? 

Section 2.6.3 discusses this research question.  We simply compare the mean of the SOI for 

the period 1876-1944 with 1945-2013 to test for an increase in a La Niña or El Niño bias. 

3.9 Conclusion 

This section, building on the literature review, has discussed the methodologies that are 

ready to apply to the research questions to provide the results in the next section.  

The overarching research question:  

Can modelling the weather with limited Collinsville datasets produce greater yield 

predictive power than the more extensive datasets from nearby sites?  

Now has a supplementary question: 

What is the expected frequency of oversupply from the Linear Fresnel Novatec Solar 

Boiler? 
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4 Results and analysis 

4.1 Introduction 

This section presents the results from running the simulations described in the methodology 

in Chapter 3 to address the research questions arising in the literature review: 

Can modelling the weather with limited datasets produce greater yield predictive 

power than using the historically more complete datasets from nearby sites?  

Section 2 presents the results from modelling the four environment variables that are drivers 

for yield in the Systems Advisor Model (SAM 2014).  We calibrate the model using the 

dataset from Allen (2013) for the year 2013.  Section 3 calculates annual DNI energy per 

area to provide an effective to satellite DNI ratio and a benchmark for the LFR yield against 

the reference year 2013.  Section 4 calculates the yield, compares the model yield for 2013 

against Allen’s (2013) data, and benchmarks the yield for earlier years against the annual 
DNI energy per area.  Section 4 also presents the results from two sensitivity analyses on 

climate change and elevation. 

4.2 Selecting the best models for the four drivers 

Sections 3.2 and 3.3 discuss the preparation of the data and methodology for this section.  

The four drivers for yield calculations in SAM (2014) are: 

 DNI 

 Temperature  (Dry bulb) 

 Humidity 

 Pressure 

Allen (2013) provides the datasets for the four drivers from his observations at Collinsville.  

These four drivers are the target or dependent variables.  BoM provides most of the 22 input 

or explanatory variables.  Section 3.2 provides details.  

4.2.1 Step 1 – selecting the one-variable models 

Table 11 shows the mean adj-R2 values for the four drivers against the 22 input or 

explanatory variables ranked by descending mean adj-R2.  We use the mean adj-R2 of 10 

simulations because the results from each simulation of a neural network can differ slightly.  

Section 3.3.6 discusses the importance of using more than one simulation. 

The selection of the first explanatory variable in the first row of Table 11 for DNI, temperature, 

and relative humidity is unsurprising.  However, selecting the first explanatory variable for 

pressure is more vexing but Section 2.2.4 discusses the moderating effect of the 

hydrological cycle and the direct relationships: temperature causes pressure changes and 

pressure gradients cause wind.  Consistent with these relationships, Table 11 (d) shows that 

four forms of temperature measurement rank within the six highest mean R2 explanatory 

variables.  Month and Azimuth also feature in the highest six, which would reflect the annual 

atmospheric tide discussed in Section 2.2.4.  However, the mean R2 values for wind speed 

and direction indicate no fit.  As discussed in the literature review the three daily 

observations for wind is insufficient for such a fickle variable. 
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Table 11: Step 1 - selecting the one-variable models for the four drivers using R
2
 

Rank 
(a) DNI (b) Temperature (c) Humidity (d) Pressure 

Explanatory 
Variables 

mean 
adj-R2 

 
mean 
adj-R2 

 
mean 
adj-R2 

 
mean 
adj-R2 

1 dni 0.81 temp 0.93 hum 0.81 wet 0.57 
2 ghi 0.50 maxMin 0.85 hour 0.55 mon 0.55 
3 dhi 0.39 wet 0.62 maxMin 0.51 dew 0.40 
4 cloud 0.33 hum 0.52 dni 0.42 azimuth 0.37 
5 zenith 0.30 azimuth 0.45 azimuth 0.42 temp 0.35 
6 altitude 0.30 hour 0.44 ghi 0.40 maxMin 0.34 
7 hour 0.29 ghi 0.36 temp 0.38 evap 0.21 
8 solar 0.27 altitude 0.35 speed 0.38 rain 0.14 
9 hum 0.22 zenith 0.35 zenith 0.27 hour 0.12 
10 speed 0.14 mon 0.33 altitude 0.27 weather 0.11 
11 pressure 0.13 speed 0.24 solar 0.21 solar 0.10 
12 direct 0.12 evap 0.22 direct 0.19 hum 0.10 
13 rain 0.12 solar 0.21 cloud 0.18 direct 0.09 
14 azimuth 0.11 dni 0.21 dew 0.17 pressure 0.08 
15 evap 0.11 dhi 0.21 evap 0.16 cloud 0.07 
16 weather 0.11 direct 0.17 weather 0.16 altitude 0.06 
17 dew 0.08 dew 0.13 dhi 0.15 vis 0.06 
18 maxMin 0.07 cloud 0.11 rain 0.13 speed 0.06 
19 mon 0.07 pressure 0.08 vis 0.12 zenith 0.05 
20 vis 0.06 weather 0.05 mon 0.11 dni 0.05 
21 temp 0.05 vis 0.03 pressure 0.09 dhi 0.03 
22 wet 0.04 rain 0.01 wet 0.06 ghi 0.02 

 

Equation 6 shows the one-variable models from the Table 11 for step 1. 

Equation 6: The best fitting one-variable models and their mean adj-R
2
 

dnia = f(dnib)    mean adj-R2 = 0.81 (a) 

tempa = f(tempb)   mean adj-R2 = 0.93 (b) 

huma = f(humb)   mean adj-R2 = 0.81 (c) 

presa =  f(wetb)   mean adj-R2 = 0.57 (d) 

Where 

a = Alan’s (2013) dataset 
b = Bureau of Meteorology’s dataset 
temp = Dry bulb temperature (°C) 

hum = Relative humidity (%) 

wet = Wet bulb temperature (°C) 

pres = Atmospheric Pressure (mbar) 

We use the results from the one-variable model selection in step 2. 
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4.2.2 Step 2 – Selecting the two-variable models 

The unshaded rows in Table 12 show the mean AIC and adj-R2 values for the four drivers 

against the 21 two-variable models input or explanatory variables ranked by ascending order 

of mean AIC.  The first row in the Table 12 is shaded grey to indicate this is the one-variable 

model from step one above.  Equation 7 shows the best two-variable model, with ‘best’ 
defined as the model with the lowest AIC. 

Equation 7: Best fitting two-variable models and their mean adj-R
2
 

dnia = f(dnib, month)    mean adj-R2 = 0.83 (a) 

tempa = f(tempb, ghib)    mean adj-R2 = 0.95 (b) 

huma = f(humb, dnib)    mean adj-R2 = 0.86 (c) 

presa =  f(wetb, month)   mean adj-R2 = 0.67 (d) 

We use these two-variable models in step 3 to find the three variable models as discussed in 

Section 3.3.3.  We continued this process for 11 steps with the results discussed in the next 

section. 
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Table 12: Step 2 – Selecting the best two-variable model ranked by mean AIC 

(a) DNI 
Rank  AIC adj-R2 

 DNI 44634 0.81 

1 mon 44346 0.83 

2 ghi 44375 0.82 

3 dhi 44411 0.82 

4 maxMin 44413 0.82 

5 zenith 44426 0.82 

6 hour 44429 0.82 

7 azimuth 44431 0.82 

8 cloud 44435 0.82 

9 altitude 44454 0.82 

10 solar 44525 0.81 

11 pressure 44550 0.81 

12 hum 44570 0.82 

13 temp 44590 0.82 

14 evap 44597 0.81 

15 wet 44606 0.81 

16 rain 44617 0.81 

17 speed 44620 0.81 

18 weather 44636 0.81 

19 dew 44637 0.81 

20 direct 44657 0.81 

21 vis 44704 0.81 

    
 

(b) Temperature 
 AIC adj-R2 

TEMP 2072 0.93 

ghi 400 0.95 

hour 779 0.95 

altitude 811 0.95 

zenith 853 0.95 

azimuth 1039 0.95 

dni 1184 0.94 

maxMin 1323 0.94 

dhi 1536 0.94 

weather 1547 0.94 

pressure 1601 0.94 

rain 1745 0.94 

dew 1822 0.93 

solar 1840 0.93 

cloud 1846 0.93 

wet 1851 0.93 

hum 1886 0.93 

direct 1912 0.93 

mon 1921 0.93 

speed 1975 0.93 

vis 2005 0.93 

evap 2102 0.93 
 

(c) Humidity 
 AIC adj-R2 

HUM 17575 0.81 

dni 16622 0.86 

ghi 16632 0.86 

hour 16727 0.86 

azimuth 16813 0.85 

zenith 16932 0.84 

altitude 16980 0.84 

cloud 17008 0.84 

mon 17019 0.84 

pressure 17200 0.83 

dew 17239 0.83 

dhi 17265 0.83 

rain 17283 0.83 

solar 17285 0.83 

wet 17288 0.83 

temp 17296 0.83 

weather 17310 0.83 

speed 17411 0.82 

direct 17442 0.82 

evap 17456 0.82 

maxMin 17477 0.82 

vis 17578 0.82 
 

(d) Pressure 
 AIC adj-R2 

WET 7544 0.57 

mon 7012 0.67 

dew 7085 0.68 

temp 7100 0.67 

hum 7107 0.68 

maxMin 7123 0.65 

hour 7128 0.66 

dni 7140 0.61 

azimuth 7239 0.66 

cloud 7269 0.64 

ghi 7274 0.63 

evap 7330 0.63 

pressure 7351 0.63 

rain 7363 0.61 

weather 7392 0.61 

speed 7439 0.61 

solar 7445 0.64 

zenith 7448 0.62 

vis 7452 0.62 

dhi 7477 0.63 

altitude 7507 0.62 

direct 7604 0.62 
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4.2.3 Step 11 – Selecting the eleven-variable models 

Equation 8 shows the best eleven-variable model from Table 13, that is, the model with the 

lowest AIC.  The previous 10 steps provide similar tables but we exclude these tables to aid 

clarity and to save space.  Table 13 provides a composite of the previous 10 steps. 

Equation 8: Best fitting eleven-variable models 

dnia = f(dnib, month, ghib, dhib, cloudb, pressure, visb, maxMinb, directb, solarb, tempb) (a) 

mean adj-R2 = 0.86 

tempa = f(tempb, ghib, solarb, maxMInb, weatherb, dewb, visb, hour, evapb, altitude, month) (b) 

mean adj-R2 = 0.97 

huma = f(humb, dnib, hour, month, dewb, solarb, weatherb, cloudb, zenith, visb, azimuth) (c) 

mean adj-R2 = 0.93 

presa =  f(wetb, month, dewb, solarb, hour, directb, humb, dnib, cloudb, ghib, altitude) (d) 

mean adj-R2 = 0.83 

The first ten rows, shaded in grey in Table 13, indicate the accumulation of the previous ten 

steps to find the ten-variable models.  The first greyed row shows the one-variable model 

and its mean AIC and R2 values.  The second greyed row shows the second variable of the 

two-variable model and its mean AIC and adj-R2 values.  The third greyed row shows the 

third variable of the three-variable model and its mean AIC and adj-R2 values and so forth 

until the tenth row. 

The 12 unshaded rows in Table 13 show the eleventh variable of the eleven-variable models 

and their mean AIC and adj-R2 values.  There are 12 eleven-variable models and they are 

ranked in ascending order of mean AIC.  Equation 8 shows the best models.  The next 

section discusses pruning these models.
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Table 13: Step 11 – selecting the best eleven-variable model by mean AIC 

(a) DNI 

Rank 
 Mean 

AIC 
Mean 
adj-R2 

1 dni 44654 0.81 

2 mon 44414 0.82 

3 ghi 44187 0.83 

4 dhi 43892 0.85 

5 cloud 43806 0.85 

6 pressure 43706 0.85 

7 vis 43716 0.85 

8 maxMin 43828 0.85 

9 direct 43764 0.85 

10 solar 43707 0.85 

1 temp 43587 0.86 

2 speed 43618 0.86 

3 hour 43640 0.86 

4 dew 43652 0.86 

5 rain 43718 0.85 

6 wet 43760 0.85 

7 altitude 43782 0.85 

8 evap 43790 0.85 

9 hum 43818 0.85 

10 azimuth 43858 0.85 

11 zenith 43908 0.85 

12 weather 43933 0.85 

    
 

(b) Temperature 
 Mean 

AIC 
Mean 
adj-R2 

temp 2144 0.93 

ghi 433 0.95 

solar 152 0.96 

maxMin -237 0.96 

weather -478 0.96 

dew -909 0.97 

vis -786 0.97 

hour -1363 0.97 

evap -1351 0.97 

altitude -1220 0.97 

mon -1766 0.97 

dni -1723 0.97 

dhi -1536 0.97 

zenith -1535 0.97 

pressure -1519 0.97 

wet -1502 0.97 

speed -1498 0.97 

rain -1484 0.97 

azimuth -1438 0.97 

direct -1418 0.97 

hum -1360 0.97 

cloud -1236 0.97 
 

(c) Humidity 
 Mean 

AIC 
Mean 
adj-R2 

hum 17550 0.81 

dni 16592 0.86 

hour 15825 0.89 

mon 14962 0.91 

dew 14666 0.92 

solar 14619 0.92 

weather 14595 0.92 

cloud 14324 0.92 

zenith 14280 0.92 

vis 13762 0.93 

azimuth 13795 0.93 

temp 13845 0.93 

wet 13869 0.93 

maxMin 13948 0.93 

rain 13975 0.93 

dhi 14028 0.93 

ghi 14035 0.93 

pressure 14050 0.93 

altitude 14390 0.92 

speed 14404 0.92 

direct 14418 0.92 

evap 14463 0.92 
 

(d) Pressure 
 Mean 

AIC 
Mean 
adj-R2 

wet 7546 0.57 

mon 7096 0.68 

dew 6501 0.74 

solar 6069 0.79 

hour 5817 0.80 

direct 5456 0.82 

hum 5604 0.81 

dhi 5575 0.81 

cloud 5324 0.83 

ghi 5399 0.82 

altitude 5076 0.83 

pressure 5085 0.83 

evap 5145 0.84 

dni 5242 0.82 

rain 5255 0.83 

maxMin 5313 0.82 

vis 5345 0.82 

weather 5375 0.83 

speed 5378 0.82 

azimuth 5438 0.82 

temp 5448 0.82 

zenith 5771 0.80 
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4.2.4 Pruning the models using signal to noise ratio 

This section discusses pruning the models in Equation 8 using an information signal to noise 

ratio to arrive at the models in Equation 9. 

Equation 9: Best fitting models after considering signal to noise 

dnia = f(dnib, month, ghib, dhib, cloudb, pressure)     (a) 

mean adj-R2 = 0.85 

tempa = f(tempb, ghib, solarb, maxMInb, weatherb, dewb)    (b) 

mean adj-R2 = 0.97 

huma = f(humb, dnib, hour, month, dewb, solarb, weatherb, cloudb, zenith, visb) (c) 

mean adj-R2 = 0.93 

presa =  f(wetb, month, dewb, solarb, hour, directb)     (d) 

mean adj-R2 = 0.82 

Examining the mean adj-R2 values in Table 13 shows that the information content available 

from adding an extra explanatory variable is nearly exhausted because the adj-R2 is no 

longer increasing or increases very little.  Additionally, the simulations of the models of 

various lengths in the shaded section of Table 13 have all been re-run and their mean AIC 

and adj-R2 values recalculated.  These AIC values no longer increase monotonically as was 

the case during their selection in the previous steps.  This indicates that the noise is greater 

than the information extracted in the current process.  Section 3.2.3 discusses the source of 

noise or variability in the goodness-of-fit between simulations of neural network. 

We could address this lack of monotonicity in the mean AIC values by averaging across 

more simulations.  This would improve the stability of the mean AIC value and possibly alter 

the order of the explanatory variables selected.  This is an approach taken in Woodd-Walker, 

Kingston and Gallienne (2001) who ran 100 simulations to address the variability in 

simulation results.  However, any increase in adj-R2 values is likely to be slight. 

Alternatively, the instability of the mean AIC value also provides an indicator of the point at 

which adding the extra explanatory variables provides such a poor signal to noise ratio that 

the variable can be ignored.  This poor signal to noise ratio can be seen in the greyed rows 6 

and 7 in Table 13(a) where the mean AIC increases from pressure to visibility.  The mean 

AIC also increases from visibility to max-min temperature in greyed rows seven and eight.  

Furthermore, Table 11(a) shows that the mean adj-R2 values for the visibility and max-min 

temperature are 0.06 and 0.07, respectively.  Pruning the DNI model at pressure is 

appropriate. 

In Table 13(b), pruning the temperature model at dew point is appropriate because the mean 

AIC value increases from dew point to visibility, and there is no increase in mean R2 value. 

In Table 13(c), pruning the humidity model at visibility is appropriate because the mean AIC 

values increase from visibility to azimuth, and there is no increase in mean R2 value. 

The mean adj-R2 values in Table 11(d) for the explanatory variables for the driver pressure 

are the poorest of the four drivers.  In Table 13(d), pruning the pressure model at direct that 

is wind direction, is appropriate because the mean AIC value increases from direct to hum 

and the mean adj-R2 values in Table 11(d) for the following explanatory variables in the 



Collinsville solar thermal project: Yield forecasting 

page 49 

 

pressure model are small.  Section 3.2.2.2 discusses the misleading aspect of interpolating 

wind direction and the requirement for a better algorithm. 

Equation 9 shows the models from Equation 8 but we have pruned the number of 

explanatory variables after considering poor signal to noise ratio that is increasing AIC. 

4.3 Approximating expected yield using DNI data 

DNI is the main driver for yield; therefore, it is informative to evaluate the DNI before 

examining the results of the yield modelling.  This evaluation looks at two aspects: effective 

DNI versus satellite DNI and the annual variation in satellite DNI. 

4.3.1 Effective versus Satellite DNI energy per area 

Section 2.3 discusses effective DNI versus Satellite DNI providing reasons for effective DNI 

to be less then satellite DNI.  Therefore, people basing yield calculations on satellite DNI will 

expect a higher yield than those using effective DNI.  Table 14 compares the effective DNI 

from Allen (2013)  with satellite DNI from BoM (2013) to calculate an effective DNI to satellite 

DNI ratio.  Allen’s data provides an incomplete coverage for year 2013 and SAM (2014) 

requires complete data for every driver for every hour of the year to calculate yield.  

Therefore, the comparison in Table 16 only totals energy per area (MWh/m2) for 309 days in 

the first column.  However, Allen (2013) has 343 complete days of DNI data.  Hence, the 

second column in Table 14 shows 343 days of data.  This extra number of days in the 

dataset of 343 days helps confirm the ratio 0.767 for the dataset of 309 days.   

Table 14: Effective versus satellite DNI and ratio for 2013 for 309 and 343 days 

 309 days 343 days 
Effective DNI (Allen) – MWh/m2 1.717 1.916 
Satellite DNI (BoM) – MWh/m2 2.239 2.500 
Effective-satellite DNI ratio 0.767 0.767 
 

A sensitivity analysis using SAM (2014) helps verify whether simply using the effective to 

satellite DNI energy per area ratio of 0.767 to adjust yield calculated using raw satellite DNI 

data is appropriate.  Section 4.4.7 presents the results from performing such a sensitivity 

analysis.  The conclusion is that it is unsuitable to adjust the yield using the effective to 

satellite DNI energy per area ratio.  This finding has implications for the comparison site at 

Rockhampton that uses raw satellite DNI data to calculate yield.  We are unable to simple 

adjust the Rockhampton yield with the effective to satellite DNI energy per area ratio.  

Therefore, in much of the subsequent analyses, we normalise the yield on year 2012 or 

2013 before making comparisons between Rockhampton’s yield calculated from raw satellite 

DNI data and Collinsville’s yield calculated from terrestrially derived DNI data from Allen 

(2013).  The normalisation process eliminates the need for the ratio.  Section 5.2 discusses 

the effective-satellite DNI ratio further. 

4.3.2 Variation in annual satellite DNI energy per area for 2007-13 

The major driver for yield is DNI.  Table 15 shows the variation in annual satellite DNI energy 

per area (MWh/m2) for the years 2007-13 in the first row and the second row is the energy 

normalised to the year 2013.  The model calibration year of 2013 has a markedly higher 

annual DNI energy per area than the projections years that are 2007-12.  The annual 

variation in the plant’s electricity power will reflect this annual variation in DNI energy. 
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Table 15: Variation in annual satellite DNI energy per area for 2007-13 for Collinsville  

 2007 2008 2009 2010 2011 2012 2013 
MWh/m2 1.917 1.943 1.968 1.467 1.882 2.032 2.662 
Normalised on 2013 72% 73% 74% 55% 71% 76% 100% 

(Source: BoM 2013) 

4.4 Calculating the yield from the Systems Advisor Model from four 
drivers 

SAM (2014) produces both a gross yield and net yield projection from TMY files containing 

the four drivers.  Gross yield less net yield gives the parasitic load.  The gross yield is 

electricity generated by the LFR boiler and exported to the grid.  The parasitic load is 

electricity used by the plant to operate and is imported from the grid.  The price paid for the 

exported and imported electricity differs; therefore, this report uses gross yield analysis 

rather than net yield analysis.  Additionally, the report uses 96% of the gross yield from SAM 

(2014) because we assume a 4% loss in yield to repair, maintenance and other down time. 

Subsection 1 validates the driver models by comparing yield calculated using these models 

against yield calculated using Allen’s (2013) data.  Subsection 2 presents the 2007-2013 

yield projections using the validated model and benchmarks the projections using the annual 

variation in DNI energy per area from the previous section.  Subsection 3 uses the 2007-13 

yield projections to calculate a TMY for the next report.  Subsections 4 and 5 perform 

sensitivity analysis for the effect of climate change and elevation on yield, respectively.  

Section 6 uses the 2007-13 yield projections to calculate the exceedance rate of 30 MW. 

4.4.1 Validating the weather modelling by comparing the solar electricity 
output 

This section compares the electricity output or yield calculated using the modelled weather 

variables with the yield calculated using Allen’s (2013) weather station data.  This 

comparison helps validate the modelling of the four weather variables.  The next section 

uses the validated weather models to calculate yield projections for years without Allen’s 
weather station data.  SAM (2014) calculates the yield from the four weather variables.  

Table 16 compares the average day’s yield by month for 2013 calculated from the four 
drivers using the neural networks described in the previous section.  Allen (2013) has data 

missing for some hours.  These missing hours present a modelling problem because SAM 

(2014) is a dynamic model where the previous hour’s values affect the next hour’s yield.  

Additionally, the SAM’s (2014) input files require a complete set of values for each of the 

8,760 hours in a year for each of the four drivers.  Therefore, the comparative analysis 

between Allen’s (2013) data and the reports model uses 309 days because Allen’s data has 
fifty-six days with one or more hour’s data missing. 



Collinsville solar thermal project: Yield forecasting 

page 51 

 

Table 16: Comparing average day’s MWh gross yield by month for 2013 between Allen and Model 

Yield 
(MWh) 

Allen 
(309 days) 

Model 
(309 days) 

Model 
(365 days) 

Jan 148.5 145.3 143.6 
Feb 113.6 112.7 110.0 
Mar 106.4 112.1 115.9 
Apr 101.8 96.4 96.4 
May 69.9 69.6 67.3 
Jun 85.6 84.3 84.3 
Jul 59.9 55.7 60.8 
Aug 183.1 173.1 171.9 
Sep 188.1 188.5 188.5 
Oct 208.8 202.6 202.6 
Nov 141.7 129.7 129.7 
Dec 179.8 193.4 193.4 
Annual 130.9 129.6 130.6 
 

For the 309 days, Table 16 shows that there is discrepancy between Allen and the Model’s 

average daily yield per month but the discrepancy in average daily yield per annum is less 

than 1%.  This validates the model for yield projections for 2007-12 because the gas 

component of the hybrid gas-solar plant tops-up any variation in solar yield to 30 MW.  

Therefore, the plant would use the same quantity of gas over the year within 1% whether 

Allen’s (2013) or the model’s environment variables are prevalent.  Additionally, the model 

projection over the entire 365 days of the year agrees with Allen to within 0.2%.  Section 7.8 

in further research discusses reasons for monthly distribution of yield not following the 

expected high yield in summer and low yield in winter.  

4.4.2 Estimating solar electricity output for 2007-13 using weather model 
projections 

Table 17 shows the solar plant’s gross electrical output calculated using the modelled 
weather inputted into SAM (2014) for the years 2007-13.  The second to last row in Table 17 

shows the annual average daily electricity output normalised on the year 2013.  This 

normalised electricity output is comparable to the normalised DNI energy per area for 2007-

13 from Table 15.  The last row of Table 17 shows this normalised DNI information for ease 

of comparison. 
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Table 17: Comparing average day’s MWh yield by month for years 2007-13 

Yield (MWh) 2007 2008 2009 2010 2011 2012 2013 
Jan 54.9 57.5 13.9 32.6 102.9 106.6 143.6 
Feb 68.2 47.0 38.4 36.0 64.3 86.8 110.0 
Mar 92.2 69.9 123.0 41.5 19.2 43.7 115.9 
Apr 97.9 110.2 98.1 41.3 68.8 96.7 96.4 
May 44.8 70.2 37.8 81.5 93.0 66.6 67.3 
Jun 37.8 50.0 80.1 64.6 67.4 52.7 84.3 
Jul 107.9 68.2 99.1 41.2 94.0 53.4 60.8 
Aug 70.7 109.0 134.3 75.5 81.9 101.6 171.9 
Sep 152.8 125.6 158.9 55.4 153.3 121.7 188.5 
Oct 165.3 136.5 177.0 104.8 113.9 170.1 202.6 
Nov 81.7 134.8 94.1 21.3 117.9 172.3 129.7 
Dec 85.5 116.2 123.6 38.4 75.1 155.1 193.4 
Annual Yield 88.4 91.5 98.6 53.1 87.7 102.3 130.6 
Annual Yield normalised on 2013 68% 70% 75% 41% 67% 78% 100% 
Annual DNI energy per area 
 normalised on 2013 

72% 73% 74% 55% 71% 76% 100% 
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4.4.3 Selecting typical meteorological months from 2007-13 using the solar electricity output 

Table 18 shows the selection of the twelve typical meteorological months (TMMs) from the years 2007-13 using the plant’s solar electricity 

output to form the typical meteorological year (TMY) for this report and our subsequent Energy economics and dispatch forecasting report (Bell, 

Wild & Foster 2014a).  Section 2.6 discusses the reason for using the plant’s output to determine the TMMs. 

Table 18 shows the plant’s average daily energy output in MWh by month and year in the left panel.  In contrast, the right panel shows the 

difference from the average month.  The yellow highlighted differences are the smallest absolute differences from the average month.  The 

months of the years that have the months’ with the smallest difference from the average month form twelve TMMs to produce the TMY.  For 

instance, the average daily energy output in January 2008 is 57.5 MWh, highlighted in blue.  The January monthly average daily energy output 

is 73.1 MWh.  Therefore, the difference is -15.7 MWh.  This is the smallest absolute difference in January for years 2007 to 2013.  Therefore, 

the TMM for January is from year 2008.  The year 2009 has no TMMs.  We have no demand data for 2013.  Therefore, we expediently use 

year 2012 rather than year 2013 as to select the TMM for April.  Section 5.7 discusses the importance of the year 2013 having no TMMs.  

Section 7.8 in further research compares the TMY selection process for yield with a TMY selection process for DNI to evaluate why the TMY 

monthly yield distribution fails to follow an expected summer-winter cycle. 
Table 18: Selecting typical meteorological months from the years 2007-13 using the plant’s solar electricity output 

 Plant’s average daily energy output Month’s 
Ave. 

Difference from month’s average TMM 

(MWh) 2007 2008 2009 2010 2011 2012 2013 2007 2008 2009 2010 2011 2012 2013 year value diff. 

Jan 54.9 57.5 13.9 32.6 102.9 106.6 143.6 73.1 -18.3 -15.7 -59.2 -40.5 29.8 33.4 70.4 2008 57.5 -15.7 
Feb 68.2 47.0 38.4 36.0 64.3 86.8 110.0 64.4 3.8 -17.4 -26.0 -28.4 -0.1 22.4 45.6 2011 64.3 -0.1 
Mar 92.2 69.9 123.0 41.5 19.2 43.7 115.9 72.2 20.0 -2.3 50.8 -30.7 -53.0 -28.5 43.7 2008 69.9 -2.3 
Apr 97.9 110.2 98.1 41.3 68.8 96.7 96.4 87.0 10.8 23.1 11.1 -45.8 -18.3 9.6 9.4 2012 96.7 9.6 
May 44.8 70.2 37.8 81.5 93.0 66.6 67.3 65.9 -21.1 4.3 -28.1 15.6 27.1 0.7 1.4 2012 66.6 0.7 
Jun 37.8 50.0 80.1 64.6 67.4 52.7 84.3 62.4 -24.6 -12.4 17.7 2.1 5.0 -9.7 21.9 2010 64.6 2.1 
Jul 107.9 68.2 99.1 41.2 94.0 53.4 60.8 74.9 33.0 -6.7 24.1 -33.7 19.1 -21.6 -14.2 2008 68.2 -6.7 
Aug 70.7 109.0 134.3 75.5 81.9 101.6 171.9 106.4 -35.7 2.6 27.9 -30.9 -24.5 -4.8 65.4 2008 109.0 2.6 
Sep 152.8 125.6 158.9 55.4 153.3 121.7 188.5 136.6 16.2 -11.0 22.3 -81.2 16.7 -14.9 51.9 2008 125.6 -11.0 
Oct 165.3 136.5 177.0 104.8 113.9 170.1 202.6 152.9 12.4 -16.4 24.1 -48.1 -39.0 17.2 49.7 2007 165.3 12.4 
Nov 81.7 134.8 94.1 21.3 117.9 172.3 129.7 107.4 -25.7 27.4 -13.3 -86.1 10.5 64.9 22.3 2011 117.9 10.5 
Dec 85.5 116.2 123.6 38.4 75.1 155.1 193.4 112.5 -27.0 3.7 11.1 -74.1 -37.3 42.7 80.9 2008 116.2 3.7 

Annual 88.4 91.5 98.6 53.1 87.7 102.3 130.6 93.0 -4.6 -1.5 5.6 -39.9 -5.3 9.3 37.6 2008 93.5 0.5 
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4.4.4 What is the effect of climate change on yield? 

Section 2.5 in the literature review and Section 3.5 in the methodology discuss the effect of 

climate change on yield.  Table 5 in Section 2.5 shows the expected changes in the drivers 

for three Global Climate Models for the coolest, most likely and hottest cases.  Table 19 

compiles from Section 3.5 the values for the four drivers for yield for the 1990 baseline year 

and from Table 5 the expected changes from the baseline year. 

Table 19: Values representing the four drivers for the base year 1990 and sensitivities for Collinsville 

Driver 1990 
baseline 

Coolest case 
MIROC3.2-Medres 

Most likely case 
MRI-CGCM2.3.2 

Hottest case 
CSIRO-Mk3.5 

DNI (W/m2) 767 759 768 773 
Dry temperature (°C) 26.1 27.3 27.2 27.5 
Relative humidity (%) 55 55.4 54.6 54.5 
Pressure (hPa) 989.5 989.5 989.5 989.5 
 

Table 20 shows SAM’s (2014) annual gross yield calculations using the values for the four 

drivers in Table 19.  Table 20 also shows the percentage change in annual yield induced by 

climate change from 1990 to 2040 in the three GCMs.  The lifetime of the plant is less than 

the period 1990 to 2040.  Therefore, the magnitude of the percentage change in gross yield 

will be less. 

Table 20: Climate change induced percentage change in yield 

 1990 
baseline 

Coolest case 
MIROC3.2-Medres 

Most likely case 
MRI-CGCM2.3.2 

Hottest case 
CSIRO-Mk3.5 

Gross Yield (GWh) 82.80 81.81 83.06 83.82 
Change in yield (%) 0.0% -1.2% 0.3% 1.2% 
 

4.4.5 Does elevation between Collinsville and nearby sites affect yield? 

Section 2.2.4.1 in the literature review and Section 3.6 in the methodology discuss the effect 

of altitude on yield.  Table 21 compiles from Sections 3.5 and 3.6 the values for the four 

drivers for yield for the Collinsville to Rockhampton altitude sensitivity analysis. 

Table 21: Values for the four drivers for Collinsville-Rockhampton altitudes sensitivity analysis 

Driver Collinsville 1990 
baseline 

Rockhampton 
1990 

Altitude (m) 197 13 
DNI (W/m2) 767 767 
Dry temperature (°C) 26.1 24.9 
Relative humidity (%) 55 57.5 
Pressure (hPa) 989.5 1000 
 

Table 22 shows SAM’s (2014) gross yield calculations using the values for the four drivers in 

Table 21.  Table 22 also shows the percentage change in yield induced by altitude change 

from Collinsville to Rockhampton given constant DNI but allowing dry temperature and 

relative humidity to change for altitude.  Ignoring any altitude effects on DNI, the effect of 
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altitude on yield is slight.  Therefore, Rockhampton remains a potential candidate to proxy 

yield for Collinsville provided we adjust DNI. 

Table 22: Altitude induced percentage change in yield 

 Collinsville 1990 
baseline 

Rockhampton 
1990 

Gross Yield (GWh) 82.80 82.67 
Change in yield (%) 0.0% -0.1% 
 

4.4.6 Analysis of the plant’s LFR gross electricity output exceeding 30 MW 

The frequency of exceedance of 30 MW will determine whether to pay for higher 

transmission capacity for the plant.  This decision, in turn, will determine whether the 

modelling in our subsequent report (Bell, Wild & Foster 2014a) will dispatch the entire yield 

of the LFR or spill power exceeding 30 MW.  

Table 23 : Analysis of the plant’s gross electricity output exceeding 30 MW 

 2007 2008 2009 2010 2011 2012 2013 
Tot energy (GWh) 198 158 148 3 203 249 1,065 
Max power (GW) 5.9 5.5 5.9 1.4 6.0 6.0 6.1 
Mean power (GW) 2.9 2.6 3.2 0.5 3.3 2.4 3.7 
3rd Quartile (GW) 4.3 4.2 5.1 0.7 5.1 3.6 5.9 
Median (GW) 3.0 2.7 3.1 0.3 3.5 1.9 4.0 
1st Quartile (GW) 0.2 0.1 0.0 0.1 0.1 0.0 0.1 
Number of hours 68 60 46 6 62 102 288 
Operational (%) 1% 1% 1% 0% 1% 1% 3% 
 

4.4.7 Is the method to use raw satellite DNI data to calculate yield and 
retrospectively adjust the calculated yield with an effective to satellite 
DNI energy per area ratio suitable? 

Section 3.7 discusses the methodology for the sensitivity analysis in this section.  Table 24 

presents the results of the sensitivity analysis.  We use the same effective to satellite DNI 

ratio of 0.767 on three raw satellite DNI values of high, medium, and low to produce the 

adjusted satellite DNI data.  We use SAM (2014) to calculate the annual energy yield from 

the raw and adjusted satellite DNI data.  The raw to adjusted satellite yield ratio shows 

considerable variation without a simple correlation with the effective to satellite DNI ratio.  

We conclude that it is unsuitable to adjust retrospectively the yield calculated using raw 

satellite data with an effective to satellite DNI energy per area ratio. 

Table 24: Results of the suitability of retrospectively adjusting yield based on raw satellite DNI data 

 Satellite data high medium low 

DNI (W/m2) 
raw 1,000 667 333 
adjusted 767 511 256 

Yield (MWh) 
raw  108,192 68,574 20,171 
adjusted 82,795 46,247 8,102 

Raw to adjusted Satellite yield ratio 0.77 0.67 0.40 
 



Collinsville solar thermal project: Yield forecasting 

page 56 

 

4.4.8 How has climate change affected the ENSO cycle? 

Section 3.8 discusses the methodology for this research question.  We simply compare the 

mean of the SOI for the period 1876-1944 with 1945-2013 to test for an increase in a La 

Niña or El Niño bias. 

We find the period 1876-1944 has an SOI of 0.26 and the period 1945-2013 and SOI of 0.14.  

Therefore, climate change is inducing an El Niño bias.  This result calls into question the 

suitability of including earlier years in a TMY to average out ENSO effects.  However, we 

recommend further research to test the statistical significance of the result.  Additionally, 

would the bias outweigh the benefit of including earlier years in a TMY? 
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5 Discussion 

5.1 Introduction 

This section discusses the research questions and results within a wider context. 

5.2 Can modelling the weather with limited datasets produce greater 
yield predictive power than using the historically more complete 
datasets from nearby sites? 

The preliminary analysis in the literature review established that the climates between 

Collinsville and the coastal comparisons site differ considerably.  This difference calls into 

question their use as proxies for the climate and yield in Collinsville.  Given the climatic 

differences, we expect Collinsville to have a slightly higher yield and the yield in the 

afternoon will be particularly higher.  The results of the elevation sensitivity analysis in 

Section 4.4.5 confirm this initial evaluation.  However, the sensitivity analysis finds 

Rockhampton’s yield is only 0.1% less than Collinsville’s yield allowing pressure, 

temperature, and humidity to vary with elevation but assuming that DNI is constant. 

Section 5.2.1 compares the BoM DNI satellite data for Collinsville with three nearby sites 

MacKay Aero, Rockhampton Aero, and Townville Aero.  Section 5.2.2 compares this report’s 
yield calculations for Collinsville with the yield calculated by Shah, Yan and Saha (2014b) for 

a comparable plant sited at Rockhampton Aero. 

5.2.1 Comparing DNI satellite data for Collinsville and Rockhampton Aero 

Figure 3 compares the total annual BoM (2013) satellite hourly gridded DNI energy per area 

(MWh/m2) for MacKay Aero, Rockhampton Aero and Townsville Aero normalised against 

Collinsville’s annual DNI energy per area for the year 1990 to 2013.  Figure 3 shows that the 

comparison sites have higher satellite DNI energy per area than Collinsville for most years 

and this difference reduces from about 2007. 

Figure 3 shows that Rockhampton for the years 2007-13 has a slightly higher DNI per area 

than Collinsville, which ameliorates concerns over the results from the elevation sensitivity 

analysis in Section 4.4.5, which finds that Rockhampton’s yield is 0.1% less than 

Collinsville’s yield.  Therefore, Rockhampton remains a potential yield proxy for Collinsville 

for 2007-13.  However, earlier years show a considerable deviation in DNI between 

Rockhampton and Collinsville, which would make Rockhampton a less than ideal proxy for 

yield at Collinsville. 
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Figure 3: Percentage deviation of DNI energy from Collinsville for comparison sites 

 

(Source: BoM 2013) 

This normalisation process in Figure 3 serves two further functions.  First, the normalisation 

more clearly identifies any deviation from Collinsville’s annual DNI energy per area.  The 
next section uses this percentage deviation to adjust the yield calculation by Shah, Yan and 

Saha (2014b) for the Rockhampton comparison site.  Second, the BoM (2013) hourly 

gridded data has missing days and hours particularly in the earlier years, see Figure 4.  This 

missing data makes inter-year comparisons inaccurate but the same hourly gridded data is 

missing for all sites, which allows inter-site comparison.  This inter-site comparison is the 

focus of this section. 

Figure 4: Annual number of hours of DNI satellite data for years 1990-2013 

 

(Source: BoM 2013) 
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The BoM (2013) provides three general reasons for the missing satellite DNI data in Figure 4: 

the satellite image was unavailable, the image was unprocessed, or the image failed quality 

control.  Reasons that are more specific include: 

 The lack of values for the first two hours and last two hours of the day for the period 

up until 30 Jun 1994, due to the absence of satellite images at these times during the 

initial period of operation of satellite GMS4. 

 The period July 2001 to June 2003 has fewer values because there was reduced 

imaging frequency at the end of the life of satellite GMS-5, and the initial few weeks 

of operation of satellite GOES-9 in the Australian region. 

 BoM calculates the DNI from GHI.  Therefore, if any GHI is missing, there is no DNI. 

This report develops its TMY from the period 2007-13 using the satellite DNI data to model 

effective DNI and then yield.  Figure 4 shows that the report’s TMY period has more annual 

DNI satellite images than the previous years, which provides for less interpolation and more 

accurate interpolation.  Additionally, Figure 3 shows a convergence of the percentage 

deviation of the comparison sites in the period 2007-13.  Both factors provide more 

confidence in the use of the percentage deviation during the report’s TMY period to compare 

yield for Rockhampton Aero calculated by Shah, Yan and Saha (2014b) with the yield for 

Collinsville calculated in this report.  Conversely, the period prior to 2007 carries less 

confidence.  Sections 5.6 and 5.7 make comparisons between the report’s TMY period and 

periods prior to 2007 to evaluate whether the reports TMY adequately represents any El 

Niño Southern Oscillation effects. 

Section 7.3 in further research discusses an alternative way to calculate the effective DNI at 

Collinsville using the inter-site variation in Figure 3 and the one-minute solar data from BoM 

(2012). 

5.2.2 Comparing Collinsville and Rockhampton yield calculations 

In order to address the research question, Shah, Yan and Saha (2014b) calculate the yield 

for a comparable Collinsville LFR plant situated at three comparison sites using datasets 

from Exemplary Energy (2014).  However, Shah, Yan and Saha (2014b) found that MacKay 

and Townsville had gaps in their datasets, which leaves only Rockhampton Aero as a 

comparison site.  Furthermore, the data for the year 2013 was unavailable from Exemplary 

Energy (2014) when Shah, Yan and Saha (2014b) wrote their report.   

Therefore, to calculate yield for 2013, Shah, Yan and Saha (2014b) use a TMY, as proxy for 

the year 2013.  The Commonwealth of Australia, Department of the Environment and Water 

Resources, Australia Greenhouse Office developed this TMY for use in Building Code 

compliance.  The Greenhouse Office TMY includes twelve TMMs from the years 1974 to 

2004 and is available for download from EnergyPlus (2014). 

5.2.2.1 Comparing Collinsville and Rockhampton 2013 yield using the Greenhouse 
Office TMY and Allen’s data 

Shah, Yan and Saha (2014b) use the Greenhouse Office TMY as a proxy for 2013 weather.  

However, there are limitations to comparing the yield calculated using the Greenhouse 

Office TMY as a proxy for weather in 2013 with the yield calculated using the 2013 weather 

station data from Allen (2013).  Specifically, the Greenhouse Office TMY consists of twelve 

TMMs from the years 1974 to 2004 and Allen’s 2013 data lies outside these years.  
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Moreover, the effect of El Niño Southern Oscillation (ENSO) on yield makes comparison 

between these periods problematic because the average SOI for 1974 to 2004 is -1.98 and 

for 2013 is 4.033, indicating both periods are in different phases of the ENSO cycle. 

Additionally, there are limitations to comparing the yield calculated from the Greenhouse 

Office TMY with the yield calculated from this report’s TMY for two reasons.  First, this 

report’s TMY provides a TMY constructed from the yield of the LFR plant whereas the 
Greenhouse Office’s TMY provides a TMY constructed for building code compliance.  
Second, this report’s TMY uses the years 2007 to 2013 whereas the Greenhouse Office’s 
TMY uses the years 1974 to 2004.  The effect of ENSO on yield makes comparison between 

these periods problematic because the average SOI for 1974 to 2004 is -1.98 and for 2007 

to 2013 is 5.4, indicating both periods are in different phases of the ENSO.  Sections 5.6 and 

5.7 discuss further the ENSO with respect to this report’s TMY period and earlier periods. 

Table 25 allows ease of comparison between the yield results for Collinsville and 

Rockhampton for the year 2013.  The Collinsville panel in Table 25 replicates Table 16 and 

the Rockhampton panel shows the yield calculations from Shah, Yan and Saha (2014b).  

The average daily annual yield calculated using the Greenhouse Office TMY data for 

Rockhampton is about 8% higher than that calculated using Allen’s ground based data.  Two 

factors can explain this difference: 

 the effective-satellite DNI energy per area ratio of 0.767 shown in Table 14; 

and 

 the Rockhampton-Collinsville satellite DNI ratio in Figure 3 

The Rockhampton-Collinsville satellite DNI ratio for 2013 is 0%.  Therefore, we exclude any 

adjustment for the ratio in Table 25. 

Table 25: Comparing average day’s MW yield by month for 2013 among Allen, Model and Rockhampton 

Month 

Collinsville Rockhampton 
Allen (2013) 
 (309 days) 

Model 
(309 days) 

Model 
(365 days) 

Shah, Yan and Saha (2014b) 
 (365 days) 

( x 0.767) 

Jan 148.5 145.3 143.6 163 125 
Feb 113.6 112.7 110.0 143 110 
Mar 106.4 112.1 115.9 151 116 
Apr 101.8 96.4 96.4 130 100 
May 69.9 69.6 67.3 100 77 
Jun 85.6 84.3 84.3 106 81 
Jul 59.9 55.7 60.8 122 94 
Aug 183.1 173.1 171.9 130 100 
Sep 188.1 188.5 188.5 150 115 
Oct 208.8 202.6 202.6 167 128 
Nov 141.7 129.7 129.7 171 131 
Dec 179.8 193.4 193.4 163 125 

Annual 130.9 129.6 130.6 141 108 
 

The annual yield calculated in this report’s model for Collinsville and that yield based on the 

Greenhouse Office TMY calculated by Shah, Yan and Saha (2014b) are about 17% different 

from Allen’s weather station data after adjusting the Rockhampton yield calculation by the 

effective-satellite energy per area ratio of 0.767.  Adjusting the yield calculated using the 
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Greenhouse Office TMY by the effective-satellite DNI energy per area ratio over 

compensates but comparing yield from the TMY and 2013 is a poor test for the usefulness of 

the ratio. 

Nevertheless, factoring the yield results from Shah, Yan and Saha (2014b) by 0.767 does 

allow easy comparison between the patterns of monthly yield amongst the yield based on 

Allen’s data and this reports’ model.  The report’s model more closely reflects the monthly 
variation in the yield based on Allen’s data than does the Rockhampton yield.  This 

Rockhampton’s monthly yield disparity result is unsurprising given Rockhampton’s yield is 
based on a TMY.  This report’s yield model has more predictive power of the yield based on 

ground-based data from Allen’s instrument than the yield based on the Rockhampton data.  

However, the result is ambiguous because it fails to address the research question 

adequately.  Rockhampton yield based on 2013 weather is required for a fair comparison 

between this report’s model of Collinsville’s yield and a Rockhampton yield model.  Sections 

7.2 and 7.3 in further research discuss ways to improve the Rockhampton comparison. 

5.2.2.2 Comparing Rockhampton 2007-12 yield using Exemplary Datasets against 
BoM DNI 

The major driver for yield is DNI.  Table 26 shows the variation in annual satellite DNI energy 

per area (MWh/m2) for the years 2007-12 for Rockhampton in the first row and the second 

row is the energy normalised to the year 2012.  The annual variation in the Rockhampton 

plant’s electricity yield should reflect this annual variation in DNI energy. 

Table 26: Variation in annual satellite DNI energy per area for 2007-12 for Rockhampton 

 2007 2008 2009 2010 2011 2012 
MWh/m2 1.955 1.955 1.939 1.510 1.918 2.044 
Normalised on 2012 96% 96% 95% 74% 94% 100% 

(Source: BoM 2013) 

Table 27 shows the average day’s MWh yield by month for the years 2007-12 for 

Rockhampton calculated by Shah, Yan and Saha (2014b) using the data from Exemplary 

Energy (2014).  The second to last row in Table 27 shows the annual average daily 

electricity output normalised on the year 2012.  This normalised electricity output should be 

comparable to the normalised DNI energy per area for 2007-12 in Table 26.  The last row of 

Table 27 shows this normalised DNI information for ease of comparison.  The years 2007, 

2008 and 2010 show considerable divergence between the Normalised DNI and yield. 

Exemplary Energy (2014) use the satellite data from BoM (2013) satellite in developing their 

weather input files but modify the data (Exemplary Energy 2013).  This modification could 

account for some of the discrepancy between the normalised DNI energy per area and yield 

in Table 27. 
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Table 27: Comparing average day’s MWh yield by month for years 2007-12 for Rockhampton 

Yield (MWh) 2007 2008 2009 2010 2011 2012 
Jan 112 72 68 109 204 167 
Feb 79 64 126 61 162 196 
Mar 140 127 176 81 87 128 
Apr 132 128 145 89 119 163 
May 87 93 96 98 136 113 
Jun 40 65 123 64 98 59 
Jul 108 58 139 36 130 78 
Aug 64 113 172 80 104 124 
Sep 139 110 187 63 196 181 
Oct 157 144 217 124 151 199 
Nov 102 139 215 30 192 218 
Dec 99 157 172 67 107 234 
Annual Yield 105 106 153 75 141 155 

Annual Yield Normalised on 2012 68% 68% 99% 48% 91% 100% 
DNI energy per area normalised on 2012 96% 96% 95% 74% 94% 100% 

(Source: Shah, Yan & Saha 2014b) 

5.2.2.3 Comparing Collinsville and Rockhampton yield by referencing BoM’s satellite 
DNI energy per area for 2007-13 

We adjust Rockhampton’s yield by the effective to satellite DNI ratio and Rockhampton to 

Collinsville DNI ratio before making a comparison. 

Table 28 shows Rockhampton’s annual average daily yields adjusted for the satellite to 

effective DNI ratio of 0.767.  Rockhampton’s annual average daily yields are from Table 25 

and Table 27.  Section 4.3.1 discusses the satellite to effective DNI ratio. 

Table 28: Adjusting Rockhampton's yield for satellite-effective ratio and Rockhampton-Collinsville ratio 

 2007 2008 2009 2010 2011 2012 2013 
Rockhampton Yield (MWh)  105 106 153 75 141 155 141 

Adjusted for Satellite-effective DNI ratio 
0.767 

80 81 117 58 108 119 108 

Adjusted for Rockhampton-Collinsville 
DNI ratio 

79 80 119 56 106 118 108 

 

Table 29 calculates the Rockhampton to Collinsville DNI energy per area ratio for the years 

2007-13 using data from BoM (2012).  Figure 3 shows this ratio graphically as a percentage 

deviation. 

Table 29: Collinsville and Rockhampton’s annual satellite DNI energy per area and ratio 

(MWh/m2) 2007 2008 2009 2010 2011 2012 2013 
Collinsville 1.917 1.943 1.968 1.467 1.882 2.032 2.662 
Rockhampton 1.955 1.955 1.939 1.510 1.918 2.044 2.652 
Ratio 1.02 1.01 0.99 1.03 1.02 1.01 1.00 
 

Table 30 makes a comparison between the annual average daily yield from Collinsville and 

Rockhampton normalised on the year 2013.  Table 30 repeats from Table 17 for ease of 
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comparison of both the Collinsville annual Satellite DNI and annual average daily yields 

normalised on 2013.  We calculate the normalised Rockhampton yield data in Table 30 from 

the yield data in Table 25 and Table 27, which we adjust by the Collinsville to Rockhampton 

DNI ratio in Table 29. 

Table 30 shows that the normalised modelled yield for Collinsville more closely follows the 

normalised DNI energy per area for Collinsville than the normalised yield for Rockhampton 

even after adjusting Rockhampton’s yield for both Rockhampton to Collinsville DNI ratio and 

satellite to effective DNI ratio.  

Table 30: Comparing normalised annual Rockhampton and Collinsville daily average yield and BoM’s 
satellite annual DNI energy per area for the years 2007-13 

 2007 2008 2009 2010 2011 2012 2013 
Collinsville Satellite DNI  72% 73% 74% 55% 71% 76% 100% 
Collinsville yield 68% 70% 75% 41% 67% 78% 100% 
Rockhampton yield 73% 74% 110% 52% 97% 109% 100% 
 

In summary, we find that modelling the weather with limited datasets from Collinsville 

produces greater yield predictive power than using the historically more complete datasets 

from nearby Rockhampton.  However, we recommend using one-minute solar data from 

BoM (2012) for Rockhampton to both improve the effectiveness of the comparison and 

potentially provide a way to improve the predictive power of the model for Collinsville.  

Section 7.2 and 7.3 in further research discuss the one-minute data from the BoM in more 

detail. 

5.3 Does BoM adequately adjust its DNI satellite dataset for cloud cover 
at Collinsville? 

Section 2.2.1 discusses discrepancies in Table 3 over cloud cover and the satellite derived 

daily solar exposure between Collinsville and the comparison sites.  This research arose to 

address these discrepancies.  Equation 10 helps address this research question.  Equation 

10 comprises of data from Table 11, Table 12 and Table 13. 

Equation 10: Cloud cover and DNI modelling 

(a) Dnia = f(dnib)      mean adj-R2 = 0.81 

(b) Dnia = f(cloudb)      mean adj-R2 = 0.33 

(c) Dnia = f(dnib, cloudb)     mean adj-R2 = 0.82 

(d) Dnia = f(dnib, mon, ghib, dhib, cloudb, pressure)  mean adj-R2 = 0.85 

Where 

a = Allen’s (2013) dataset 
b = BoM’s dataset 
cloud = cloud cover 

Equation 10(a) and Equation 10(b) show the mean adj-R2 values for the single-variable 

models: dnib and cloudb at 0.81and 0.33, respectively.  Equation 10 (c) shows a mean adj-R2 

value of 0.82 for the two-variable model (dnib, cloudb).  The one percentage point increase in 

mean adj-R2 from the one-variable model in Equation 10(a) to the two-variable model in 

Equation 10(c) indicates that the BoM’s DNI data estimation from satellite images 
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adequately incorporates cloud coverage.  This comes with the caveat that cloudb is thrice 

daily dataset and dnib is hourly.  Equation 10(d) shows the final model selected for the driver 

DNI.  The inclusion of cloudb after mon, ghib and dhib indicates that cloudb plays a very small 

part in the model.  ghib and dhib already incorporate cloud coverage in their derivation.  This 

further reduces the role of cloudb in the final model. 

In summary, we find that the BoM adequately adjusts for cloud coverage in the DNI satellite 

dataset.  

5.4 Given dust and dew effects, is raw satellite data sufficient to model 
yield? 

Section 2.3 discusses the dust and dew effect and introduces the concept of “effective” DNI 
to ameliorate concern over these effects for the use of terrestrial measurement of DNI for 

LFR yield calculations.  However, satellite data uses image evaluation, so is unadjusted for 

dust and dew effects but may allow for some dust-in the atmosphere.  Equation 10(a) shows 

the relation between “effective” DNI and satellite DNI represented by dnia and dnib, 

respectively.  The mean adj-R2 = 0.81 indicates that raw satellite data is good approximation 

to effective DNI but lacks a good fit.  Additionally, Section 4.3.1 discusses the DNI effective 

to satellite ratio of 0.767 for the Allen’s data against the BoM’s satellite data.  The effective-

satellite DNI ratio of 0.767 and the mean adj-R2 = 0.81 indicate that the raw satellite data 

overestimates DNI energy. 

However, cleaning regimes can alter the effective-satellite DNI ratio.  For instance Allen 

(2013) in his January to May 2013 report states that construction at the Powerlink Substation 

50 m from the DNI measuring instrument is causing dust and mud contamination and bird 

fouling on the instruments has necessitated a daily cleaning regime.  Additionally, 

consecutive wet days caused a number of problems including short-circuit and battery failure.  

Allen (2013) in his September to November 2013 report states that Transfield are cleaning 

the equipment daily but recently they changed to every second day.  The reductions in 

cleaning regime, consecutive wet day problems and surrounding earth works would reduce 

the effective-satellite DNI ratio.   

Furthermore, differences in cleaning regimes for the measuring instruments (Allen 2013) and 

LFR boiler (Guan, Yu & Gurgenci 2014) would induce disparity between the effective-

satellite DNI ratios for each.  Reducing this disparity requires some coordination between the 

people overseeing the DNI measuring instrument and the people overseeing the cleaning 

regime for the LFR, so the cleaning regime for the measuring instrument mimics the cleaning 

regime for the LFR.  Currently, cleaning for both the LFR and measuring instrument are 

undergoing change induced by ongoing research.  Therefore, coordination for the current 

project is difficult but future projects will have the findings of the current research to help 

establish the required coordination. 

Determining whether this effective-Satellite DNI ratio is more widely applicable to other sites 

warrants further research.  Section 7.2 discusses using the one-minute solar data collected 

from ground-based weather stations available from BoM (2012) with the hourly gridded 

satellite data from BoM (2013) to determine the wider applicability of the effective-satellite 

DNI ratio. 
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In summary, we find that raw satellite data overestimates effective DNI.  Therefore, we 

recommend adjusting raw DNI satellite data either by modelling effective DNI or by using an 

effective-satellite DNI energy per area ratio before calculating yield to prevent overestimation.  

We also recommend coordination between overseers of the DNI measuring instrument and 

LFR to ensure the effective-satellite DNI ratio is comparable. 

5.5 Does elevation between Collinsville and nearby sites affect yield? 

Section 2.2.4 discusses the lapse rates for temperature and pressure, that is, the change in 

temperature or pressure with change in elevation.  Temperature and pressure decrease with 

increased elevation but this relationship is far from simple with temperature having three 

lapse rates interrelated with cloud dynamics.  Using the simple pressure and environmental 

lapse rates (ELR) to perform a sensitivity analysis on the yield difference between 

Rockhampton and Collinsville provides an opportunity to recalibrate Rockhampton’s yield 
data for the pressure and temperature difference.  A simple application of the ELR would 

imply a small temperature decrease for Collinsville but examining Table 3 shows that the 

temperature range for Collinsville is wider relative to the three comparison sites. 

Section 4.4.5 finds a 0.1 decrease in yield by decreasing elevation from Collinsville to 

Rockhampton.  This sensitivity analysis kept DNI constant and adjusted for changes in 

temperature, humidity, and pressure.  However, Figure 3 shows the inter-year variability in 

DNI between Rockhampton and Collinsville often exceeds this elevation effect. 

In summary, other effects such as variability in DNI, the presence or absence of a sea 

breeze play a more important role in determining yield. 

5.6 How does the ENSO cycle affect yield? 

Section 2.4 discusses the ENSO cycle where the El Niño phase relative to the La Niña 

phase increases DNI, temperature and pressure and reduces humidity.  The overall El Niño 

effect is to increase yield and electricity demand. 

To address this research question quantifiably, Shah, Yan and Saha (2014b) calculate the 

yield from a comparable LFR plant located at Rockhampton using datasets of the four 

drivers from Exemplary Energy (2014).  Table 31 and Table 32 show the average daily yield 

of the Rockhampton plant for the period 2007-12 and 2000-2005, respectively.  In 

comparison, Figure 5 shows the mean annual SOI for 1875-2013 where positive SOI 

indicates a La Niña (BoM 2014d) bias and the negative SOI indicates an El Niño (BoM 

2014c) bias.  The mean annual SOI for the period 2007-12 is 5.63, which indicates a strong 

La Niña bias, and for the period 1999-2006 is -0.4167, which indicates El Niño bias.  

Therefore, we would expect a higher average yield for the period 1999-2006 than 2007-12.  

In agreement, the average daily yield for 2000-05 in Table 21 is 0.140 GWh and for 2007-12 

in Table 20 is 0.122 GWh.  Hence, the El Niño weather pattern provides a 14% increases in 

yield over La Niña weather pattern. 
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Table 31: Average daily yield of Rockhampton 2007-2012 

(GWh) Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec 

2007 0.112 0.079 0.14 0.132 0.087 0.040 0.108 0.064 0.139 0.157 0.102 0.099 

2008 0.072 0.064 0.127 0.128 0.093 0.065 0.058 0.113 0.11 0.144 0.139 0.157 

2009 0.068 0.126 0.176 0.145 0.096 0.123 0.139 0.172 0.187 0.217 0.215 0.172 

2010 0.109 0.061 0.081 0.089 0.098 0.064 0.036 0.08 0.063 0.124 0.03 0.067 

2011 0.204 0.162 0.087 0.119 0.136 0.098 0.13 0.104 0.196 0.151 0.192 0.107 

2012 0.167 0.196 0.128 0.163 0.113 0.059 0.078 0.124 0.181 0.199 0.218 0.234 

Monthly 0.122 0.115 0.123 0.129 0.104 0.075 0.092 0.11 0.146 0.166 0.149 0.138 

(Source: Shah, Yan & Saha 2014b) 

 
Table 32: Average daily yield of Rockhampton 2000-2005 

(GWh) Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec 

2005 0.163 0.213 0.148 0.118 0.126 0.052 0.099 0.089 0.17 0.14 0.209 0.247 

2004 0.166 0.17 0.168 0.135 0.118 0.096 0.09 0.167 0.19 0.21 0.187 0.185 

2003 0.179 0.09 0.117 0.115 0.077 0.059 0.078 0.098 0.174 0.147 0.073 0.126 

2002 0.156 0.112 0.153 0.112 0.087 0.07 0.093 0.091 0.168 0.193 0.209 0.189 

2001 0.219 0.172 0.151 0.106 0.16 0.072 0.128 0.198 0.179 0.234 0.167 0.217 

2000 0.147 0.102 0.116 0.112 0.109 0.095 0.09 0.115 0.134 0.162 0.104 0.145 

Monthly 0.172 0.144 0.142 0.116 0.113 0.074 0.096 0.128 0.169 0.181 0.158 0.185 

(Source: Shah, Yan & Saha 2014b) 

 
Figure 5: Mean annual Southern Oscillation Index 1875-2013 

 
(Source: BoM 2014e) 

However, this analysis comes with three caveats.  
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 Shah, Yan and Saha (2014b) use DNI data from Exemplary Energy (2014) in their 

yield calculations.  Exemplary Energy (2014) use DNI satellite data from BoM (2013) 

to develop their DNI projects.  Figure 4 shows that the number of hours of satellite 

imagery for BoM (2013) differs considerably between the periods 2000-05 and 2007-

12.  For instance, there are 2,741 hours of images in 2002 and 6,572 hours in 2012.  

Therefore, the above analysis compares a period using a high proportion of 

interpolated data with a period containing mostly original data. 

 Section 5.2.2.2 discusses the discrepancies between the yield calculated in the 

period 2007-12 using Exemplary Energy (2014) data and the BoM (2013) satellite 

DNI data highlighted in Table 27. 

 The TMY developed in this report uses the period 2007-13 and the comparison 

period in Shah, Yan and Saha (2014b) uses the period 2007-12.  Section 5.7 

discusses how comparing the average yield from 2000-05 with that yield from 2007-

12 rather than 2007-13 will overstate the ENSO induced difference in yield. 

In summary, we recommend readdressing this research question with one-minute solar data 

(BoM 2012) to ensure measurement consistency between the periods being analysed.  

Sections 7.2, 7.3 and 7.7 in further research discuss this recommendation in more detail. 

5.7 Given the 2007-12 electricity demand data constraint, will the 2007-
13 based TMY provide a “Typical” year over the ENSO cycle? 

Section 2.6 discusses the TMY process and the period 2007-2012 constraint due to 

available electricity demand data in our subsequent report (Bell, Wild & Foster 2014a).  

However, in Section 4.4.3 during the development of the report’s TMY, we found it possible 

to both meet the electricity data constraint and include the year 2013 within the TMY 

processes to select the 12 TMMs because the year 2013 had relatively high yields for all 

months.  Therefore, the report’s TMY process includes the years 2007-13 but selects no 

TMMs from 2013.  Consequently, this 2007-13 based TMY both meets the 2007-12 

constraint of the electricity demand data and the inclusion of the year 2013 acts to increase 

the yield of each TMM to improve the TMY’s ability to represent the ENSO as Section 5.6 

discusses. 

The analysis in section 5.6 discusses the average daily yield for Rockhampton for the El 

Niño period 2000-05 at 0.140 GWh and for the La Niña period 2007-12 at 0.122 GWh.  The 

yield calculated in the El Niño period is 14% higher than the La Niña period.  We would 

expect Collinsville to follow a similar pattern.  However, three factors ameliorate concerns 

over this 14% difference in yield between the two periods.  

 The 40-year lifetime of the proposed plant requires considering the long-term mean 

annual SOI rather than the short comparison periods.  The mean annual SOI for 

1875-2013 is 0.02 and the mean annual SOI for the comparison periods 1999-2006 

and 2007-12 is -0.4167 and 5.63, respectively.  Both these comparison periods are 

bias in opposite directions to longer-term mean annual SOI.  Hence, the 14% 

overstates the difference from the long-term 1875-2013 mean annual SOI.   

 The report’s TMY incorporates the extra year 2013 to cover the period 2007-2013 

whose mean annual SOI is 5.40.  This SOI is less than the mean annual SOI 5.63 for 

the comparison period 2007-2012.  Hence, the 14% overstates the difference in yield 

since this report’s TMY incorporates the year 2013. 
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 Figure 4 shows that the number of hours of satellite imagery per year prior to 2007 is 

sparser than after 2007.  This sparseness reduces the confidence in the yield 

calculation for the comparison period 1999-2006. 

Extending the 2007-13 period of the TMY would encompass more ENSO cycles to allow a 

more representative TMY.  However, the current TMY period 2007-13 uses actual electricity 

demand and extending this period would entail modelling demand, which would introduce 

modelling error into any calculations.  Exacerbating the demand modelling error is the 

sparseness of satellite DNI data prior to 2007.  An alternative to using satellite data is the 

one-minute data from BoM (2012) which starts in 1996 for Rockhampton and data collection 

continues to date.  Additionally, the period 1996-2013 has a mean average SOI of 1.52 that 

is much closer to the long-term SOI of 0.02. 

In summary, there are good grounds to assume that yield based on the report’s TMY will 

underreport yield due to ENSO but this underreporting will be less than 14%.  We 

recommend readdressing this research question with one-minute solar data (BoM 2012) to 

ensure measurement consistency between the periods being analysed and to accurately 

quantify the underreporting of yield.  Sections 7.2 and 7.3 in further research discuss the use 

of the one-minute data in more detail.  Section 7.7 discusses increasing the number of years 

in the TMY to average out the ENSO cycle.  

5.8 How does climate change affect yield? 

Section 2.5 discusses that the most likely effects of climate change are to reduce humidity 

and increase temperature and DNI but increase DNI only by a tiny amount.  The climate 

change data-series lack projections for atmospheric pressure.  However, this scenario is 

similar to the El Niño phase described above, which indicates an increase in pressure.  

Therefore, the El Niño phase and climate change have similar implications for the LFR at 

Collinsville that are increasing yield and electricity demand. 

Section 4.4.4 presents the results of a sensitivity analyses on the climate change induced 

change in gross yield from 1990 to 2040 in Table 20.  In the most likely and hottest cases, 

the increase in yield is less than 0.3% and 1.2% respectively and in the coolest cases, the 

decrease is less than 1.2%.  Modelling the NEM becomes complex very quickly, so it is 

essential to focus on the core issue of the feasibility study that is to gain a PPA for the solar 

thermal project.  EEMG’s reports strive to strike a balance by avoiding too many 
complexities but providing sufficient complexity to address the core issue of the feasibility 

study.  Incorporating climate change into the modelling in the subsequent reports would 

impose a great deal of complexity over a small effect for the proposed plant.   

However, Section 4.4.4 presents only the change in gross yield and for a complete analysis 

the change in wholesale electricity prices induced by climate change needs consideration.  

Bell and Wild (2013) calculate the effect of climate change on the NEM’s demand from 2009 

to 2030.  They find a 1.57% increase in total net demand and a 2.23% increase in peak 

demand for the Collinsville node, which would have an upward pressure on wholesale spot 

prices.  Our subsequent report (Bell, Wild & Foster 2014a) specifically addresses wholesale 

spot prices and will make any recommendations for further research. 



Collinsville solar thermal project: Yield forecasting 

page 69 

 

5.9 What is the expected frequency of oversupply from the Linear 
Fresnel Novatec Solar Boiler? 

Section 3.4 discusses yield calculation using SAM’s (2014) default “Linear Fresnel Novatec 
Solar Boiler” that is modified to reflect the LFR at Collinsville.  These modifications indicate 
the boiler is likely to exceed the 30MW limit imposed by AEMO.  This issue of exceeding the 

AEMO limit requires consideration of both frequency and size of exceeding the limit to 

determine whether exceeding the limit is acceptable by AEMO or spillage is required. 

In summary, section 4.4.6 and Shah, Yan and Saha (2014b) present yield exceedance 

analysis for Collinsville and Rockhampton respectively.  Consequently, RATCH Australia 

decided to export all yield from the LFR to the grid based on the analysis. 
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6 Conclusion 

In this report, we have addressed the research questions and produced a TMY of yield for 

the proposed plant at Collinsville for use in our subsequent report Energy economics and 

dispatch forecasting (Bell, Wild & Foster 2014a).  We have calibrated our yield model for the 

proposed plant against weather observations provided by Allen (2013) to within 1% of gross 

annual yield, see Section 4.4.1.  We have also introduced a new technique to develop TMYs 

for renewables energy generation, see Sections 2.6 and 4.4.3.  Additionally, we have 

introduced the term effective DNI to help supplement our discussion of raw and adjusted 

satellite DNI data and terrestrially measured DNI, see Sections 2.3 and 4.3.1. 

This report uses the 2013 terrestrially measured DNI provided by Allen (2013) to model DNI 

for the years 2007 to 2013.  In contrast, other reports use satellite data provided by BoM 

(2013) either directly or indirectly.  We found a ratio of 0.767 between the terrestrial and 

satellite DNI energy per square meter for 2013.  Consequently, the yield calculated in this 

report based on terrestrially measured DNI is lower than reports that use satellite DNI data.  

Hence, we recommend further research using the Rockhampton terrestrially measured one-

minute solar data (BoM 2012) to investigate this discrepancy. 

We express some concerns about yield calculated from satellite DNI data (BoM 2013) prior 

to 2007 and suggest alternative methods, such as, using the terrestrial based one-minute 

solar data (BoM 2012).  We acknowledge that the report may underreport the yield from the 

proposed plant because the report’s TMY development period of 2007-13 has a La Niña bias.  

Sections 7.2, 7.3 and 7.7 discuss extending the study using one-minute data that can both 

overcome the La Niña bias and sparseness of satellite DNI data prior to 2007. 

The overarching research question is: 

Can modelling the weather with limited datasets produce greater yield predictive 

power than using the historically more complete datasets from nearby sites?  

The results show that modelling the weather for the four drivers of yield at Collinsville from 

limited data provides higher predictive performance in yield modelling then using the more 

complete data from Rockhampton.  
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7 Further research 

This section compiles the further research discussed elsewhere in this report. 

7.1 Inter-year variability rather than TMY 

Section 2.6.1 compares two approaches to yield analysis.  The TMY approach that allows 

sensitivity analysis and the individual year approach that allows inter-year variability analysis 

to calculate a P90.  This report and the subsequent reports use the TMY approach.  The 

inter-year variability approach requires further research. 

7.2 Using BoM’s one-minute solar dataset for Rockhampton site 
comparison 

Sections 5.6 and 5.7 discuss the comparative analysis of the yield calculations between 

Collinsville and Rockhampton.  For the comparative analysis, Shah, Yan and Saha (2014b) 

calculate yield for the Rockhampton comparison site using datasets from two sources: for 

the period 1999 to 2012 they use the datasets from Exemplary Energy (2014) and for 2013 

they use a TMY from the Green House Office downloadable from EnergyPlus (2014). 

Using the one-minute solar data from the BoM (2012) provides a way to improve the 

Rockhampton yield calculations for comparative analysis.  This one-minute solar data 

overcomes two shortcomings in the existing Rockhampton yield calculations for use in 

comparative analysis: 

 Fragmentation of the Rockhampton yield analysis across two different sources; and 

 Remove the requirement for any satellite to effective DNI adjustment. 

The one-minute solar data for Rockhampton Aero data from the BoM (2012) starts in 1996 

and data collection continues, which removes fragmentation of the Rockhampton yield 

calculations.  BoM (2012) uses ground based weather station observation, which removes 

the need to perform satellite to effective DNI adjustment.  In comparison, Exemplary Energy 

(2014) derives its DNI data using satellite data from BoM (2013). 

7.3 Adjusting BoM’s one-minute solar data using BoM’s satellite data to 
model Collinsville’s DNI 

Section 5.2.1 discusses how the BoM (2013) satellite data has far fewer hourly satellite 

images prior to 2007, which reduces the accuracy of inter year comparisons prior to the year 

2007 but still allows inter-site comparison because the same hours are missing for all sites. 

Adjusting BoM (2012) one-minute solar data for Rockhampton Aero with an hourly inter-site 

satellite DNI ratio provides an alternative way to model effective DNI for the Collinsville site 

starting in 1999.  Figure 3 illustrates the inter-site satellite DNI variability.  Nevertheless, 

modelling a small adjustment to reflect differing atmospheric opacity would still be required 

between Allen’s (2013) effective DNI data and the adjusted one-minute solar data (BoM 

2012). 

7.4 Climate change adjusted yield and demand forecasts 

Section 2.5 discusses the effect of climate change on yield, using three GCMs to represent 

three cases: most likely temperature rise, hottest and coolest for the NEM’s geographic area.  
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Using climate change induced change in DNI rather than change in temperature in selecting 

GCMs provides a way to improve this analysis because the main driver for yield is DNI 

rather than temperature.  However, the local effect in Collinsville determines yield but the 

global effect in the NEM region determines demand and wholesale electricity prices.  

Therefore, this would require selecting GCMs for the three cases: most likely change in solar 

radiance, dullest and brightest for both the NEM region and for Collinsville.  Comparing the 

GCM selection for Collinsville with the NEM region would indicate if any local climate change 

effect in Collinsville is running counter to the global effect in the NEM region. 

7.5 The effects of weights in the neural networks on adj-R2 and AIC 

Section 3.3.5 discusses the effect of the internal weights within the neural networks to cause 

an overestimation of adj-R2 values and shows the effect is trivial for this report.   

In addition to adj-R2 values to indicate model fit, this report uses AIC to select between 

models.  The effect of the weights on AIC in this report was shown to be irrelevant because 

10 weights are used throughout this report. 

However, keeping the weights fixed at 10 reduces the possibility of fine-tuning the neural 

networks.  Using alternative weighting regimes to improve predictive performance would 

entail some research into the consequences for the comparisons of AIC and adj-R2 values 

from differing weight regimes. 

7.6 Ensuring consistent cleaning regimes between LFR and DNI 
terrestrial measurement instrument  

Section 2.3.2 discusses the dust-effect and the requirement to maintain consistent cleaning 

regimes between the LFR and DNI terrestrial measurement instrument to ensure the 

effective DNI is the same for both.  This would require some collaboration between Allen 

(2013), who manages the terrestrial DNI measuring instrument, and Guan, Yu and Gurgenci 

(2014) who are researching the LFR mirror cleaning. 

7.7 Increasing the number of years in the TMY selection process to 
average out the effects of the ENSO cycle on both yield and demand 

Sections 2.4, 2.6.3, 5.6 and 5.7 discuss the ENSO cycle and the TMY’s selection period and 
the implications for electricity demand, wholesale spot prices and yield.  We find a La Niña 

bias in the reports’ TMY section period 2007-13.  This bias results in underestimating 

demand, wholesale spot prices, and the LFR yield.  Together, these will underestimate the 

revenue of the plant.  We recommend extending the TMY selection period to reduce ENSO 

effects causing an over or underestimation of yield for the lifetime of the plant. 

7.8 The DNI’s model’s month variable as a latent variable for changes in 
cleaning regimes or the idiosyncrasies of a particular year 

Sections 4.4.1 and 4.4.3 present respectively the yield for the calibration year 2013 and the 

yield for the TMY selected from the years 2007-13.  The monthly distributions of these yields 

fail to follow the expected summer-winter cycle.  This section investigates why the yield fails 

to follow the expected cycle using a comparative analysis between yield and DNI energy per 

area, the main driver for yield.  We find three factors contributing to the unexpected non-

cyclic yield: 
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 January and February are the months with the lowest DNI for the years 2007-13 

 the nonlinearity of the LFR amplifies this effect 

 the TMY selection process also amplifies the effect. 

While these three factors can explain the non-cyclical behaviour, they fail to preclude the 

possibility that the variable month in the DNI model is acting as a latent variable for other 

factors. 

Table 33 and Table 34 show the daily average satellite DNI from BoM (2013) and the 

proposed plant’s yield for each month for the years 2007-13 in the left panel.  BoM (2013) 

calculates these DNI readings from satellite imagery and we calculate the yield using SAM 

and this report’s weather modelling of the four drivers for yield.  Our weather modelling is 

calibrated using data from Allen (2013).  The normalised percent daily average yield and DNI 

allows easy comparison between them.  Both January and February are the lowest 

normalised percentage DNI (83% and 79%), which supports the lower yield forecast in the 

summer months. 

Additionally, Section 4.4.7 shows considerable nonlinearity between DNI input and yield 

output in SAM (2014).  This nonlinearity further attenuates the low DNI input signal into SAM 

(2014), which is consistent with the relatively lower normalised percent daily average yield of 

79% and 69% in January and February compared to DNI of 83% and 79%.  

The right panel in Table 33 and Table 34 shows the TMY selection process for both DNI and 

yield from the years 2007-13.  Section 4.4.3 described the TMY selection process in detail.  

In the last column, Table 33 and Table 34 show the normalised daily average DNI and yield 

for the TMMs of the TMY.  Comparing this TMY normalised percentage with the normalised 

percent daily average of each month shows the TMY selection process has amplified the 

percentage variation.  For instance, the DNI percentage daily average for January DNI is 83% 

and the TMM is 76%. 

While these three factors contribute to the unexpected non-cyclical annual yield, they fail to 

rule out latent variables within the variable month for the DNI model.  We suspect that the 

variable month in the DNI model may contain latent variables for the idiosyncrasy of the DNI 

measuring instrument or the year 2013.  Allen’s (2013) data could contain latent variables 

that affect DNI measurement emanating from changes in cleaning regimes, nearby 

earthworks and months when instrument faults are more prevalent.   

Cures for the latent variables in Allen’s (2013) data include dropping the variable month in 

the DNI model or including data from the year 2014 to make the model fitting more robust.  

In addition, replacing the variable month with the more theoretically derived variable altitude 

could further ameliorate any concerns. 
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Table 33: Daily average BoM satellite DNI each month and TMY selection for Collinsville (Wh/m
2
) 

DNI daily average each month Absolute difference from the monthly average TMY 

 2007 2008 2009 2010 2011 2012 2013 Ave percent 2007 2008 2009 2010 2011 2012 2013 Min year value percent 
Jan 4,060 3,756 1,853 2,972 5,821 5,693 7,531 4,527 83% 466 770 2,673 1,554 1,295 1,166 3,004 466 2007 4,060 76% 
Feb 4,277 3,353 2,417 3,535 4,362 5,440 6,709 4,299 79% 22 945 1,882 764 63 1,141 2,410 22 2007 4,277 80% 
Mar 5,692 4,527 6,537 4,102 2,423 3,261 7,143 4,812 89% 880 286 1,724 710 2,389 1,551 2,331 286 2008 4,527 84% 
Apr 6,224 6,019 5,534 3,839 4,594 6,090 6,307 5,515 102% 709 504 19 1,676 922 575 792 19 2009 5,534 103% 
May 4,688 5,663 4,187 5,677 5,741 4,709 5,831 5,214 96% 526 450 1,027 463 527 504 617 450 2008 5,663 106% 
Jun 3,097 5,076 6,168 5,436 4,978 4,574 6,915 5,178 95% 2,081 102 991 258 200 604 1,737 102 2008 5,076 95% 
Jul 6,786 4,939 6,528 4,221 6,245 4,255 5,950 5,561 102% 1,225 621 967 1,340 684 1,305 389 389 2008 4,939 92% 
Aug 4,742 5,953 6,789 4,449 5,019 5,768 8,465 5,884 108% 1,142 70 906 1,434 865 115 2,581 70 2008 5,953 111% 
Sep 6,783 6,006 6,917 3,709 6,748 5,838 8,636 6,377 118% 406 371 540 2,668 371 538 2,259 371 2009 6,917 129% 
Oct 6,900 6,367 7,212 5,064 5,339 6,728 8,388 6,571 121% 329 204 641 1,507 1,232 157 1,817 157 2012 6,728 125% 
Nov 4,637 5,942 3,871 1,992 5,953 7,183 6,356 5,134 95% 496 809 1,263 3,142 820 2,050 1,223 496 2007 4,637 86% 
Dec 5,046 6,062 6,421 3,148 4,640 7,085 9,205 5,944 110% 898 118 477 2,796 1,304 1,141 3,262 118 2008 6,062 113% 
Ave 5,253 5,316 5,391 4,019 5,157 5,549 7,294 5,426 100% 173 109 35 1,407 268 123 1,868 35 2009 5,364 100% 

(Source: BoM 2013) 

Table 34: Daily average yield each month and TMY selection for the LFR at Collinsville (MWh) 

Yield daily average each month Absolute difference from the monthly average TMY 
 2007 2008 2009 2010 2011 2012 2013 Ave percent 2007 2008 2009 2010 2011 2012 2013 Min year value percent 

Jan 55 57 14 33 103 107 144 73 79% 18 16 59 40 30 33 70 16 2008 57 61% 

Feb 68 47 38 36 64 87 110 64 69% 4 17 26 28 0 22 46 0 2011 64 69% 

Mar 92 70 123 41 19 44 116 72 78% 20 2 51 31 53 28 44 2 2008 70 75% 

Apr 98 110 98 41 69 97 96 87 94% 11 23 11 46 18 10 9 9 2012 97 103% 

May 45 70 38 82 93 67 67 66 71% 21 4 28 16 27 1 1 1 2012 67 71% 

Jun 38 50 80 65 67 53 84 62 67% 25 12 18 2 5 10 22 2 2010 65 69% 

Jul 108 68 99 41 94 53 61 75 81% 33 7 24 34 19 22 14 7 2008 68 73% 

Aug 71 109 134 76 82 102 172 106 114% 36 3 28 31 25 5 65 3 2008 109 117% 

Sep 153 126 159 55 153 122 188 137 147% 16 11 22 81 17 15 52 11 2008 126 134% 

Oct 165 136 177 105 114 170 203 153 164% 12 16 24 48 39 17 50 12 2007 165 177% 

Nov 82 135 94 21 118 172 130 107 115% 26 27 13 86 10 65 22 10 2011 118 126% 

Dec 85 116 124 38 75 155 193 112 121% 27 4 11 74 37 43 81 4 2008 116 124% 

Ave 88 91 99 53 88 102 131 93 100% 5 2 6 40 5 9 38 2 2008 93 100% 
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