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Abstract

In the context of cost sharing in minimum cost spanning tree prob-

lems, we introduce a property called No Advantageous Merging. This

property implies that no group of agents can be better off claiming

to be a single node. We show that the sharing rule that assigns to

each agent his own connection cost (the Bird rule) satisfies this prop-

erty. Moreover, we provide a characterization of the Bird rule using

No Advantageous Merging.
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1 Introduction

Minimum cost spanning tree problems (mcstp) modelize situations where a

group of agents, located at different geographical points, want some partic-

ular service which can only be provided by a common supplier, or source.

There are many economic situations that can be modeled in this way, for

instance, some houses in a village may want to be connected to a common

water source or to a power plant. Other examples include communication

networks such as Internet, cable television or telephone.

The agents will be served through connections which entail some cost.

However, the agents are not concerned with whether they are connected

directly or indirectly to the source.

Hence, the optimal network is a minimum (cost spanning) tree (mt). An

algorithm for building an mt is provided by Prim (1957). But building an

mt is only a part of the problem. Another important issue is how to divide

the cost associated with the mt between the agents. Different rules give

different answers to this question. A rule is a mapping that determines, for

each specific problem, a division of the amount to be paid by the agents

involved in the problem.

Bird (1976) associated a coalitional game with any mcstp. In case the

mcstp has a unique mt, he proposed a rule that is known as the Bird rule.

Granot and Huberman (1981, 1984) studied the core and the nucleolus of the

coalitional game. Sharkey (1995) surveyed most of the literature. Recently,

Kar (2002) studied the Shapley value of the game that can be associated with

each mcstp. Dutta and Kar (2004) proposed a new rule and characterized

the Bird rule using a property of restricted consistency. Bergantiños and

Vidal-Puga (2004a) defined another rule, ϕ.

Feltkamp et al. (1994) introduced a rule formcstp called Equal Remaining

Obligations rule. This rule has been studied in other papers. Branzei et al.

(2004) obtained a characterization of the Equal Remaining Obligations rule

and Bergantiños and Vidal-Puga (2004b) proved that ϕ coincides with the

Equal Remaining Obligations rule. Moreover, Bergantiños and Vidal-Puga
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(2006) proved that ϕ is the Shapley value of a different coalitional game.

More recently, Tijs et al. (2004) defined a class of rules called Obligation

Rules. Moretti et al. (2005) studied this class of rules.

Different rules are usually associated with alternative sets of properties

that represent ethical or operational principles. The aim of the axiomatic

approach is, precisely, to identify each rule with a well-defined set of prop-

erties. This helps to understand the nature of the different rules and their

applicability. It is therefore important to have alternative characterizations

of the same rule, because this allows to have different insights on the princi-

ples underlying the rule and on the type of problems for which it might be

suitable.

In this paper, we focus on a new property calledNo Advantageous Merging

(NAM). The idea behind this property that there exists a planner who wants

to construct a network to connect all the agents to a source. In this kind of

situations some agents may have incentives to join in advance in order to be

treated as a single agent and get advantage. A rule satisfies No Advantageous

Merging if the agents have no incentives to do this.

In the general domain of the mcstp, No Advantageous Merging is in-

compatible with Symmetry. This implies that we should restrict the domain.

However, this new domain does not need to be very restrictive. In particular,

in case each mcstp has a unique mt, the Bird rule satisfies No Advantageous

Merging. Moreover, we provide an axiomatic characterization of the Bird

rule using No Advantageous Merging.

This property is related to others that have been studied in different prob-

lems. For instance, a bankruptcy problem describes a situation in which an

arbitrator has to allocate a given amount among a group of agents who have

claims on it. A property known as No Advantageous Merging has been stud-

ied in this framework. This property means that no group of creditors have

incentives to pool their claims and to present themselves as a single creditor.

We can find a similar example in Social Choice, where group-strategyproofness

ensures that no subset of agents can gain by reporting false preferences. All
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these properties have in common that they pretend to avoid agents cheating

in order to get advantage.

The paper is organized as follows. In Section 2 we show by an example

that No Advantageous Merging is a very strong property in the most general

framework. We hence have to restrict ourselves to a smaller class of mcstp.

In Section 3 we introduce the model. In Section 4 we present the properties

used in the characterization. In Section 5 we prove that the Bird rule satisfies

these properties and we also present the characterization result. In Section

6 we prove that the properties are independent.

2 An example

Example 2.1 There are three agents, 1, 2 and 3.The connection cost between

each agent and the source is 28. The connection cost between agents 1 and 2

and between agents 1 and 3 is 16. The connection cost between agents 2 and

3 is 8.

This problem is represented in the following figure:

2

31

0

16

28
28

8

16

28

where 0 is the source.

The minimum connection cost is 52 (there exist more than one possible

minimum tree).

Let xi be the assignment that a rule proposes to each agent i.

Suppose now that the agents in {2, 3} join and act as a single one. The

resulting problem can be represented as follows:
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0

{2,3}1

28 28

16

By a symmetry argument, the allocation in this problem should be (22, 22).

Moreover, since the cost of connection between agents 2 and 3 is 8, under No

Advantageous Merging the rule should assign them no more than 30, i.e.

x2 + x3 ≤ 22 + 8.
Proceeding in the same way with coalitions {1, 2} and {1, 3}, we obtain

x1+ x2 ≤ 18+ 16 and x1+ x3 ≤ 18+ 16. However, the minimum connection
cost is 52, hence we have an incompatibility.

It may be argued that this is a special example, because there are more

than one possible minimum tree. In the literature of mcstp it is usual to

consider that there exists a unique minimum tree, or even that there are not

two arcs with the same cost (see, for instance, Bird (1976) and Dutta and

Kar (2004)). We study what happens in this situation.

Example 2.2 There are three agents, 1, 2 and 3. The connection costs be-

tween the source and agent 1 is 90, between the source and agent 2 is 72 and

between the source and agent 3 is 84. The connection cost between agents 1

and 2 is 18, between agents 1 and 3 is 12 and between agents 2 and 3 is 24.

This problem is represented in the following figure:
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2

31

0

18

72
84

24

12

90

where 0 is the source.

We study the assignment proposed by several rules in the literature. These

are given in the following table:

1 2 3

Shapley value (Kar, 2002) 37 28 37

Bird (1976) 18 72 12

Dutta and Kar (2004) 12 18 72

Nucleolus (Granot and Huberman, 1984) 32 32 38

Bergantiños and Vidal-Puga (2004a) 33 36 33

Assume now that the agents in {2, 3} join and act as a single one. The

resulting problem can be represented as follows:

0

{2,3}1

90 72

12
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In this case, the proposal given by each of the previous rules is:

1 {2, 3}

Shapley value (Kar, 2002) 51 33

Bird (1976) 12 72

Dutta and Kar (2004) 72 12

Nucleolus (Granot and Huberman, 1984) 51 33

Bergantiños and Vidal-Puga (2004a) 42 42

The question is: Do these rules satisfy No Advantageous Merging? If we

compare the costs that agents 2 and 3 have to pay in both situations, we have

Shapley value (Kar, 2002) 28 + 37 > 33 + 24

Bird (1976) 72+12<72+24

Dutta and Kar(2004) 18 + 72 > 12 + 24

Nucleolus (Granot and Huberman, 1984) 32 + 38 > 33 + 24

Bergantiños and Vidal-Puga (2004a) 36 + 33 > 42 + 24

Hence, in this example, only the rule defined by Bird (1976) satisfies No

Advantageous Merging. We will prove that this result holds in general.

3 The model

Given a finite set A, we denote the cardinal set of A as 2A, the cardinality

of A as |A| and the set of real |A|-tuples whose indices are the elements of A

as RA. Given a function f : A→ R, we denote the set of elements in A that

maximize f as argmaxa∈A{f(a)}. We define argmina∈A{f(a)} analogously.

Let N be a finite set of agents who want to be connected to a source.

Usually, we denote the set of agents as N = {1, 2, ...n}. Let N0 = N ∪ {0},
where 0 is the source.

A cost matrix on N0, C = (cij)i,j∈N0 represents the cost of direct link

between any pair of nodes. We assume that cij = cji ≥ 0 for each i, j ∈ N0,

and cii = 0 for each i ∈ N0.
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We denote the set of all cost matrices on N as CN . Given two matrices

C,C 0 ∈ CN , we say C ≤ C 0 if cij ≤ c0ij for all i, j ∈ N0.

A minimum cost spanning tree problem, briefly mcstp, is a pair (N0, C)

where N is the set of agents, 0 is the source, and C ∈ CN .
A network g over N0 is a subset of {(i, j) : i, j ∈ N0}. The elements of g

are called arcs. We assume that the arcs are undirected, i.e. (i, j) and (j, i)

represent the same arc.

Given a network g and a pair of nodes i and j, a path from i to j in g

is a sequence of different arcs {(ih−1, ih)}lh=1 satisfying (ih−1, ih) ∈ g for all

h ∈ {1, 2, ..., l}, i = i0 and j = il.

A tree over S ⊂ N0 is a network satisfying that for all i, j ∈ S there exists

a unique path from i to j.

Given a network g, we say that two nodes i, j are connected in g if there

exists a path from i to j in g.

Let GN denote the set of all networks over N0. Let G
N
0 denote the set of

all networks over N0 such that every node in N is connected to the source.

Let T N
0 denote the set of all trees over N0. Clearly, T

N
0 ⊂ GN0 ⊂ GN .

Given g ∈ GN , we define the cost associated with g in (N0, C) as

c(N0, C, g) =
X

(i,j)∈g
cij.

When no ambiguity, we write c(g) or c(C, g) instead of c (N0, C, g).

A minimum (cost spanning) tree for (N0, C), briefly an mt, is a tree

t ∈ T N
0 such that c(t) = ming∈GN

0

c(g). Given anmcstp (N0, C), anmt always

exists but it does not need to be unique. We denote the cost associated with

any mt on (N0, C) as m(N0, C).

Given S ⊂ N0, let CS denote the matrix C restricted to S. We denote the

restriction to S of the mcstp (N0, C) as (S,CS), and the cost associated with

any mt on (S,CS) as m(S,CS), that is, m(S,CS) is the cost of connection

of the agents of S among themselves. Note that when 0 6∈ S, m(S,CS) does

not include the cost of connection to the source.

Given a tree t, we define the predecessor set of a node i in t as P (i, t) =
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{j ∈ N0 : j is in the unique path from i to the source}. We assume that

i 6∈ P (i, t) and 0 ∈ P (i, t) when i 6= 0. For notational convenience, P (0, t) =

∅. The geodesic distance from node i to the source in t is the cardinality of

P (i, t). The immediate predecessor of agent i in t, denoted as i0, is the node

that comes immediately before i, that is, i0 ∈ P (i, t) and k ∈ P (i, t) implies

either k = i0 or k ∈ P (i0, t).Note that P (i0, t) ⊂ P (i, t) and P (i, t)\P (i0, t) =

{i0}. The follower set of an agent i in t is the set F (i, t) = {j ∈ N : i ∈
P (j, t)}. The immediate followers of agent i in t, denoted as IF (i, t), is the

set of agents that come immediately after agent i, that is, IF (i, t) = {j ∈
F (i, t) : j0 = i}.

Let ΠN denote the set of all orders in N . Given π ∈ ΠN , let P
π
i denote

the set of elements in N which come before i in the order given by π, i.e.

P π
i := {j ∈ N : π(j) < π(i)}.

There are several algorithms in the literature to construct an mt. Prim

(1957) provides such an algorithm: Sequentially, the agents connect to the

source. At each stage, the cheapest arc between the connected and the un-

connected agents is added. Formally, Prim’s algorithm is defined as follows:

Let S0g = {0} and g0 = ∅.
Stage 1: Take an arc (0, i) such that c0i = min

j∈N
{c0j}. Now, S

1
g = {0, i}

and g1 = {(0, i)}.

Stage p: Assume we have defined Sp−1
g ⊂ N0 and gp−1 ∈ GN . We now

define Sp
g and gp. Take an arc (i, j), i ∈ Sp−1

g , j ∈ N0\S
p−1
g , such that

cij = min
k∈Sp−1g ,l∈N0\Sp−1g

{ckl}. Now Sp
g = Sp−1

g ∪ {i} and gp = gp−1 ∪ {(i, j)}.
This process finishes in n stages. We say that gn is a tree obtained via

Prim’s algorithm.

This algorithm provides an mt, but not necessarily unique (when the

minimizer arc is not unique). Moreover, each mt can be obtained via Prim’s

algorithm.

A (cost allocation) rule is a function φ that assigns to each mcstp (N0, C)

a vector φ(N0, C) ∈ RN such that
P

i∈N φi(N0, C) = m(N0, C), where
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φi(N0, C) represents the cost assigned to agent i.

Notice that we implicitly assume that the agents build an mt.

Bird (1976) introduced a rule which is defined through Prim’s algorithm.

He assumed that there is a unique mt.

Given an mcstp (N0, C) and an mt t = {(i
0, i)}i∈N in (N0, C), the Bird

rule (B) is defined as:

Bt
i(N0, C) = ci0i

for each i ∈ N .

The idea of the Bird rule is quite simple: The agents connect to the source

following Prim’s algorithm and each agent pays the cost of his connection.

Finally, we define a concept introduced by Norde et al. (2004) that will

be used in some of the proofs.

Given S ⊂ N0, we say that i, j ∈ S, i 6= j are (C, S)-connected if there

exists a path g from i to j satisfying that ckl = 0 for all (k, l) ∈ g.

We say that S ⊂ N0 is a C-component if two conditions hold: First, for

all i, j ∈ S, i and j are (C, S)-connected. Second, S is maximal, i.e. if S ( T,

there exist i, j ∈ T, i 6= j such that i and j are not (C, T )-connected.

The set of C-components constitutes a partition of N0.

4 Properties

Before introducing the properties of the rules, we define the domain restric-

tion on the set of permissible cost matrices that will be used. This restriction

is necessary because of the incompatibility presented in Section 2.

Definition 4.1 D := {C ∈ CN : no two edges with positive cost have the

same value}.

Remark 4.1 Dutta and Kar (2004) define two different domain restrictions.

These definitions are the following:

C1 := {C ∈ CN : C induces a unique mt for all N},

C2 := {C ∈ C1 : no two edges of the unique mt have the same cost}.
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Recall that Bird (1976) defines the Bird rule when there is a unique mt.

Over D, there might exist several mt. In the next Proposition, we prove that

even though this is true, the Bird rule’s assignment is the same for all of

them.

Proposition 4.1 Let C ∈ D and let t, t0 be two different mt on (N0, C).

Then, Bt
i(N0, C) = Bt0

i (N0, C) for all i ∈ N .

Proof. We will construct t and t0 following Prim’s algorithm.

Since C ∈ D, both trees will have the same arcs until one agent connects
to the source with null cost. In that case, more than one arc with the same

cost may exist. Assume that it happens in stage p. Hence, tp−1 = t0p−1 and

Sp−1
t = Sp−1

t0 . By definition of the Bird rule, Bt
i(N0, C) = Bt0

i (N0, C) for all

i ∈ Sp−1
t = Sp−1

t0 .

Since we have found an arc with null cost, we have a non-trivial C-

component, say S ⊂ N0. Since all the agents in S, but the first one, con-

nect with null cost, whatever the order of connection of the agents from

the C-component, each of them should pay zero under t and t0. Hence

Bt
i(N0, C) = Bt0

i (N0, C) for all i ∈ S.

When all the agents in S are connected to the source, the following arc

that connects to the source, if any, will have positive cost. Hence, the domain

D requires that the arcs formed in both trees, t and t0 will be the same again

until a new C-component appears.

The procedure for the rest of the C-components is analogous because all

the agents in the C-component (but the first one) connect with null cost, and

they pay zero.

We now introduce different properties of the rules.

Definition 4.2 A rule φ satisfies Core Selection (CS) if for all mcstp (N0, C)

and all S ⊂ N,
P

i∈S
φi(N0, C) ≤ m(S0, CS0).

This property says that no group of agents can be better off constructing

their own network instead of paying what the rule φ proposes to them.
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Before moving on to the next property, we introduce the concept of an

extreme null point.

Definition 4.3 Given an mcstp (N0, C) and an mt t in (N0, C), we say that

i ∈ N is an extreme point in t if F (i, t) = ∅.

Definition 4.4 Given an mcstp (N0, C) we say that i ∈ N is an Extreme

Null Point (ENP) if it is an extreme point in all the mt in (N0, C) and

moreover ci0i = 0.

Dutta and Kar (2004) defined the concept of extreme point. They argued

that since node i is an extreme point, this node is of no use to the rest of the

network since no node is connected to the source through node i.

We argue the same for every extreme null point. Moreover, since i con-

nects to the source with null cost, it does not increase the total cost of the

network. Hence, we can consider that node i is not beneficial for the rest

of agents but neither is a problem for them. So, it seems reasonable that

the allocation of the rest of the agents does not change if he connects to the

source.

The property that we define states that if agent i is an ENP, no agent j

will pay a different cost in order to include agent i in the network. Formally:

Definition 4.5 A rule φ satisfies Independence of Extreme Null Points

(IENP) if for all mcstp (N0, C) and all ENP i ∈ N ,

φj(N0\{i}, CN0\{i}) = φj(N0, C)

for all j ∈ N\{i}.

This property implies that each ENP pays zero.

Remark 4.2 This property is similar to the one defined by Derks and Haller

(1999) called “Null Player Out”, which requires that a null player (that is,

an individual whose contribution to any coalition is zero) does not influence

the utility allocation within the rest of the society1.

1Hamiache (2006) uses the term "Independence of Irrelevant Players".
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We next consider the possibility that a group of agents A ⊂ N joins in

advance to be treated as a single node α ∈ A.

The result is a new problem, called reduced problem, where the cost of

connection between some node i in N0\A and α is the minimal connection

cost between node i and the agents in A. The rest of the costs remain as in

the initial problem. Formally,

Definition 4.6 Given an mcstp (N0, C) and α ∈ A ⊂ N , the reduced

problem (NAα
0 , CAα) is defined as NAα = (N\A) ∪ {α}, cAαij = cij for all

i, j ∈ N0\A, and c
Aα
iα = min

j∈A
{cij} for all i ∈ N0\A.

We introduce a new property in mcstp:

Definition 4.7 Given C ∈ D a rule φ satisfies No Advantageous Merging

(NAM) if X

i∈A
φi(N0, C) ≤ φα(N

Aα
0 , CAα) +m(A,CA)

for all α ∈ A ⊂ N .

This property asserts that no group of agents might have any incentive

to join in advance, assuming the cost, to be treated as a single agent.

In the next proposition we state that in the reduced problem the matrix

CAα is well-defined over D.

Proposition 4.2 If C∈ D, then CAα ∈ D for all α ∈ A ⊂ N .

The proof is straightforward and we omit it.

5 The main result

In this section we present a characterization of the Bird rule in D. It is the

only rule satisfying CS, IENP and NAM. First, in Proposition 5.1, we prove

that the Bird rule satisfies the mentioned properties.
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Proposition 5.1 Over the domain D, the Bird rule satisfies CS, IENP and

NAM.

Proof. B satisfies CS. See Bird (1976, page 340).

B satisfies IENP. It is straightforward.

B satisfies NAM:

Let t = {(i0, i)}i∈N be an mt in the problem (N0, C). Let α ∈ A ⊂ N .

Consider now (A,CA) and let τ be anmt in (A,CA), i.e. c(τ) = m(A,CA).

Let i∗ be the first agent in A that connects to the source following Prim’s

algorithm in t (i.e. Sp
t ∩A = {i∗} and Sp−1

t ∩A = ∅). Note that i∗0 ∈ N0\A.

Given t, we construct a new network in the problem (N0, C). Let

t∗ = (t\{(i0, i)}i∈A) ∪ {(i∗0, i∗)} ∪ τ .

It is straightforward to check that t∗ is a tree in (N0, C).

Since t is an mt in this problem, we have that c (t) ≤ c (t∗). Hence,

c (t) ≤ c (t)−
X

i∈A
ci0i + ci∗0i∗ + c(τ)

that is, X

i∈A
ci0i ≤ ci∗0i∗ + c(τ) = ci∗0i∗ +m(A,CA).

Since i∗ is the first agent in A to be connected, ci∗0i∗ = min
j∈A
{ci∗0j} = cAαi∗0α.

Hence, we can rewrite the above expression as:

X

i∈A
ci0i ≤ cAαi∗0α +m(A,CA).

It is clear that, following Prim’s algorithm, we can construct an mt t0 in

(NAα
0 , CAα) such that (i∗0, α) ∈ t0. Hence, by definition of the Bird rule,

X

i∈A
Bi(N0, C) ≤ Bα(N

Aα
0 , CAα) +m(A,CA).

Now we present a characterization of the Bird rule.
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Theorem 5.1 Over the domain D, a rule φ satisfies NAM, CS, and IENP

if and only if φ = B.

Proof. Let t = {(i0, i)}i∈N be an mt in the problem (N0, C). Let φ be a rule

satisfying NAM, CS and IENP.

We will prove that φi(N0, C) = ci0i for all i ∈ N by induction on the

geodesic distance of agent i ∈ N to the source in t. Let σ(i) denote such a

geodesic distance.

For σ(i) = 0 the result is trivial.

Assume φi(N0, C) = ci0i for all i ∈ N such that σ(i) < l.

Now, we will prove that the result is true for any i ∈ N such that σ(i) = l.

Let S = P (i, t)\{0}. Notice that m(S0 ∪ {i}, CS0∪{i}) =
P

j∈S cj0j + ci0i.

Under CS,

X

j∈S
φj(N0, C) + φi(N0, C) ≤ m(S0 ∪ {i}, CS0∪{i}) =

X

j∈S
cj0j + ci0i.

Under the induction hypothesis, φj(N0, C) = cj0j for all j ∈ S. Hence,

φi(N0, C) ≤ ci0i.

Now we prove that ci0i ≤ φi(N0, C).

Let Fi = F (i, t) and let η = |IF (i, t)|. This means that there are η agents

connected directly to agent i in the mt, maybe η = 0.

Consider a new problem (N �
0, C

�) similar to (N0, C), but adding an imper-

fect substitute for agent i. Formally, N �
0 = N0 ∪ {α} with � > 0 sufficiently

small, c�jj0 = cjj0 for all j, j
0 ∈ N0, c

�
iα = 0, c�jα = cji + �j, �j ≤ � for all

j ∈ IF (i, t), and c�jα large enough for all j ∈ N0\ (IF (i, t) ∪ {i}). Under
these conditions, t� := t∪ {(i, i∗)} is an mt in (N �

0, C
�), c(t�) = c(t), and α is

an ENP in (N �
0, C

�).

Assume the agents in Fi∪{α} join to be treated as a single node α. That
is, consider the reduced problem2 (N �Aα

0 , C�Aα) with A = Fi ∪ {α}.
2We write N �Aα

0
instead of (N �)Aα

0
and C�Aα instead of (C�)Aα.
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By definition, c�Aαiα = min
j∈A
{c�ij}, hence c

�Aα
iα ≤ c�iα. Since c

�
iα = 0, we have

c�Aαiα = 0.

It is straightforward to check that t0 = {(j0, j)}j∈N\Fi ∪ {(i, α)} is an mt
in (NAα

0 , CAα).

Since φ satisfies NAM,

X

j∈A
φj(N

�
0, C

�) ≤ φα(N
�Aα
0 , C�Aα) +m(A,C�

A).

Under IENP, φα(N
�Aα
0 , C�Aα) = 0. Hence,

X

j∈A
φj(N

�
0, C

�) ≤ m(A,C�
A). (1)

We study both terms.

Let K = N\Fi. Note that i ∈ K and K = N �\A.

Claim I
P

j∈A
φj(N

�
0, C

�) = m(N0, C)−
P

j∈K\{i}
φj(N

�
0, C

�)− φi(N
�
0, C

�).

In the problem (N �
0, C

�),

m(N �
0, C

�) =
X

j∈K\{i}
φj(N

�
0, C

�) + φi(N
�
0, C

�) +
X

j∈A
φj(N

�
0, C

�).

Clearly, m(N �
0, C

�) = m(N0, C) and hence the result.

Claim II m (A,C�
A) ≤ m(N0, C)−m

³
K0\{i}, C

�
K0\{i}

´
− ci0i + η�.

Let IFi = IF (i, t). By definition of C�, for an � sufficiently small, we

can construct anmt τ on (A,C�
A) such that the immediate followers of i

in t connect to α and the rest of agents in A connect to the same nodes

as in t, i.e. τ = {(j0, j)}j∈Fi\IFi ∪ {(α, j)}j∈IFi is an mt on (A,C�
A).

Hence, m(A,C�
A) =

P

j∈Fi\IFi
c�j0j +

P

j∈IFi
c�αj.

By definition, c�j0j = cj0j for all j ∈ Fi\IFi and c�αj ≤ cij + � for all

j ∈ IFi. Since η = |IFi|, we have

m(A,C�
A) ≤

X

j∈Fi
cj0j + η�. (2)
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Consider now (Fi ∪ {i}, CFi∪{i}). It is straightforward to check that we

can construct an mt t∗ on (Fi ∪ {i}, CFi∪{i}) such that each agent in Fi

connects to the same nodes as in t, i.e. t∗ = {(j0, j)}j∈Fi is an mt on

(Fi ∪ {i}, CFi∪{i}).

Hence, m(Fi ∪ {i}, CFi∪{i}) =
P

j∈Fi
cj0j.

Replacing this expression in (2), we have

m(A,C�
A) ≤ m(Fi ∪ {i}, CFi∪{i}) + η�.

On the other hand, since no agent in K connects to the source through

agent i in t, we have

m(N0, C) = m(K0\{i}, CK0\{i}) + ci0i +m(Fi ∪ {i}, CFi∪{i}).

Combining the last two expressions:

m(A,C�
A) ≤ m(N0, C)−m(K0\{i}, CK0\{i})− ci0i + η�

= m(N0, C)−m(K0\{i}, C
�
K0\{i}

)− ci0i + η�.

Applying Claim I and Claim II in (1) we deduce

m(K0\{i}, C
�
K0\{i}

)−
X

j∈K\{i}
φj(N

�
0, C

�) + ci0i − η� ≤ φi (N
�
0, C

�) .

Since φ satisfies CS,

ci0i − η� ≤ φi (N
�
0, C

�) .

Under IENP, φi (N
�
0, C

�) = φi (N0, C). Thus, ci0i − η� ≤ φi (N0, C). But

φi(N0, C) does not depend on �. Hence, ci0i ≤ φi(N0, C).
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6 Independence of the axioms

In this section we show that the three axioms used in Theorem 5.1 are inde-

pendent.

The following rule assigns to each agent half of the cost of his adjacent

arcs in the mt. Moreover, the agents that connect directly to the source pay

the entire connection cost with the source. Formally,

φ1i (N0, C) :=





c0i +
1
2

P

j∈IF (i,t)
cij if i0 = 0

1
2
ci0i +

1
2

P

j∈IF (i,t)
cij if i0 6= 0

for all C ∈ D and i ∈ N .

This rule satisfies a stronger property than NAM, which states that if a

group of agents A join in advance in order to be treated as a single node, no

agent in N\A gets worse off in the reduced problem. Formally,

Definition 6.1 Let C ∈ D and α ∈ A ⊂ N. A rule φ satisfies Strong No

Advantageous Merging (SNAM) if

φi
¡
NAα
0 , CAα

¢
≤ φi (N0, C)

for all i ∈ N\A.

It is not difficult to check that SNAM implies NAM.

Even though this property is defined for any A ⊂ N , we can restrict

ourselves to the case |A| = 2. The reason is that any rule that satisfies

SNAM for |A| = 2 will also satisfy SNAM for every |A| > 2.

Hence, it is useful to study the reduced problem when A = {α, β}. Given

an mt t in (N0, C), we can construct an mt in
¡
NAα
0 , CAα

¢
by simply deleting

the most expensive arc in the path that joins α and β, as shown in Figure 1.

This result is formally stated in the next lemma:

Lemma 6.1 Let (N0, C) be an mcstp and let t be an mt in (N0, C). Given

A = {α, β} ⊂ N , let ταβ be the path that connects α and β in t. Let

t̂ : = t\ {(k, l)} for some (k, l) ∈ argmax(i,j)∈ταβ cij.
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k

α

β

l

0 0

α β

a) b)

l

k

Figure 1: Figure 1a) represents an mt in (N0, C). The most expensive arc in

the path that connects α and β is (k, l). In Figure 1b) nodes α and β join

and the most expensive arc is removed. The resulting tree is an mt in the

reduced problem.

The network

tAα :=
³
t̂\ {(β, i)}(β,i)∈t̂

´
∪ {(α, i)}(β,i)∈t̂

is an mt on
¡
NAα
0 , CAα

¢
.

Proof. Consider the mcstp (N0, C
0) defined as c0ij = cij for all {i, j} 6=

{α, β} and c0αβ = ckl. It is straightforward to check that t is also an mt on

(N0, C
0) (see for example the proof of Proposition 2.2iii in Aarts and Driessen

(1993)).

Since the cost of the arc (α, β) does not affect the definition of
¡
NAα, CAα

¢
,

both CAα and C 0Aα coincide. Hence, it is enough to prove that tAα is an mt

on
¡
NAα, C 0Aα

¢
. We proceed by a contradiction argument. Assume there

exists a tree t∗ on
¡
NAα, C 0Aα

¢
such that c

¡
t∗, C 0Aα

¢
< c

¡
tAα, C 0Aα

¢
. The

counterpart of t∗ in (N0, C
0) is defined as follows. Let

Oβ :=
©
(α, i) ∈ t∗ : c0Aααi = c0βi

ª

be the set of arcs in t∗ that would be adjacent to β (the rest of the arcs
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(α, i) ∈ t∗ satisfy c0Aααi = c0αi). We define the following tree in (N0, C
0):

t0 := (t∗\Oβ) ∪ {(α, β)} ∪ {(β, i)}(α,i)∈Oβ
.

To see that t0 is indeed a tree in (N0, C
0), notice that it has exactly n arcs

(n−1 arcs from t∗ plus (α, β)) and all of the nodes in N are connected to the

source: those that connect to the source through Oβ in t∗ will now connect

first to β and then to α through (α, β).

We will prove that c (t0, C 0) < c (t, C 0), which is a contradiction because t

is an mt on (N0, C
0). Notice that c0Aαij = c0ij for all (i, j) ∈ t∗\Oβ. Thus,

c (t∗\Oβ, C
0) = c

¡
t∗\Oβ, C

0Aα
¢
.

Hence,

c (t0, C 0) = c (t∗\Oβ, C
0) + c0αβ +

X

(α,i)∈Oβ

c0βi

= c
¡
t∗\Oβ, C

0Aα
¢
+ c0αβ +

X

(α,i)∈Oβ

c0Aααi

= c
¡
t∗, C 0Aα

¢
+ c0αβ < c

¡
tAα, C 0Aα

¢
+ c0αβ ≤ c (t, C 0)

where the last inequality comes from

c
¡
tAα, C 0Aα

¢
= c

³
t̂\ {(β, i)}(β,i)∈t̂ , C

0Aα
´
+
X

(β,i)∈t̂
c0Aααi

≤ c
³
t̂\ {(β, i)}(β,i)∈t̂ , C

0
´
+
X

(β,i)∈t̂
c0βi

= c
¡
t̂, C 0

¢
= c (t, C 0)− c0kl = c (t, C 0)− c0αβ.

Proposition 6.1 Over the domain D, φ1 satisfies SNAM and IENP.

Proof. Let C ∈ D and let t be an mt in (N0, C).

It is straightforward to check that φ1 satisfies IENP.

We prove that φ1 satisfies SNAM.

We can assume that |A| = 2. Let A = {α, β} ⊂ N .
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Under Lemma 6.1, tAα is an mt in
¡
NAα
0 , CAα

¢
.

We prove that no agent i ∈ NAα\{α} is worse off in the reduced problem

than in (N0, C).

Let (i, j) ∈ tAα, i 6= α, β. We have two cases:

� If j = α, by definition of tAα, (i, α) ∈ t or (i, β) ∈ t. By definition,

cAαiα = min{ciα, ciβ}. Hence, whatever agent i pays in the reduced prob-

lem for (i, α) is not more than what he pays in (N0, C) for (i, α) or

(i, β).

� If j 6= α, by definition of tAα, (i, j) ∈ t. Moreover, cAαij = cij. Hence,

whatever agent i pays in the reduced problem for (i, j) is the same as

what he pays in (N0, C) for (i, j).

This rule violates CS. Consider the mcstp (N0, C) with N = {1, 2}, c01 =

10, c02 = 15, and c12 = 6. The unique mt is t = {(0, 1), (1, 2)}. In this case,

φ11(N0, C) = 13 > 10 = m({0, 1}, C{0,1}).

Now we present a rule that satisfies CS and SNAM (and hence NAM )

but does not satisfy IENP. First, we order the agents following their cost of

direct link to the source. Second, we assign to each agent the cost of the

most expensive arc from him to a source, taking into account that the agents

that precede him in the order are considered as sources. We define the rule

formally as follows:

Given an mt t on (N0, C) and i, j ∈ N , let τ ij denote the path that

connects i and j in t. Let π ∈ ΠN such that π(i) < π(j) ⇒ c0i ≤ c0j. The

rule φ2 is defined as follows:

φ2i (N0, C) := min
j∈Pπ

i ∪{0}
max{ckl : (k, l) ∈ τ ij}.

This rule appears in Bergantiños and Vidal-Puga (2004a, after Corollary

4.1) with a different formulation.

Consider the following example:
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Let (N0, C) such that N = {1, 2, 3, 4} and

c01 = 0, c02 = 0, c03 = 20, c04 = 40

c12 = 8, c13 = 10, c14 = 5

c23 = 25, c24 = 30, c34 = 2.

The mt is t = {(0, 1), (0, 2), (1, 4), (4, 3)}.

In this case, there are two admissible orders: π1 = (1, 2, 3, 4) and π2 =

(2, 1, 3, 4). In both orders, φ2(N0, C) = (0, 0, 5, 2).

We can also see that this rule is different from the Bird rule.

As φ1 does, φ2 satisfies SNAM and hence NAM. We prove this result in

the next proposition.

Proposition 6.2 Over the domain D, φ2 satisfies SNAM and CS.

Proof. First we prove that φ2 satisfies CS:

Bergantiños and Vidal-Puga (2004a, after Corollary 4.1) prove that this

rule satisfies Population Monotonicity (PM), and moreover PM implies CS.

We now prove in a intuitive way that φ2 satisfies SNAM:

Let C ∈ D and let t be an mt on (N0, C).

We can assume that |A| = 2. Let A = {α, β} ⊂ N.

Under Lemma 6.1, tAα is a mt in (NAα
0 , CAα).

We prove that every agent i ∈ N\A is not worse off in the reduced problem

than in (N0, C).

Let Π0 be the set of orders over NAα, let π0 ∈ Π0 such that π0(i) < π0(j)⇒
cAα0i ≤ cAα0j .

Note that by definition, the order π0 coincides with the order π in the

sense that the order is preserved in both problems. Formally,

� If i, j 6∈ A, then π(i) < π(j) iff π0(i) < π0(j).

� For the agents in A, if the first agent in A is in position p in π, then

α will be in position p in π0.

Let i ∈ N\A. We need to prove that φ2i
¡
NAα
0 , CAα

¢
≤ φ2i (N0, C).
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Let j ∈ P π
i . It is enough to prove that the maximum cost of the path

between i and j in tAα (we take α when j = β) is not more than the maximum

cost of the path between i and j in t. Let (k, l) be the most expensive arc in

the path from α to β in t. We distinguish two cases:

� If (k, l) does not belong to the path from i to j in t, the path from i to

j in tAα is the same. Hence, the maximum cost of the path from i to j

is the same in t as in tAα.

� If (k, l) belongs to the path from i to j in t, the cost from i to j in tAα

is not more because we have removed the most expensive arc of the path

from α to β.

Since φ2 satisfies NAM and CS, and it is different from the Bird rule it

is clear that φ2 violates IENP.

Finally, we define a rule, φ3, that satisfies CS and IENP but does not

satisfy NAM.

This rule is similar to the rule proposed by Dutta and Kar (2004). How-

ever, φ3 assigns zero cost to the ENP ’s and the assignment of the rest of the

agents does not depend on the ENP ’s.

Formally:

Let Ω := {i ∈ N : i is an Extreme Null Point in (N0, C)}

Consider the following algorithm:

Let S0 = {0}, t0 = ∅, p0 = 0. Let S0c = N0\S
0.

Step 1: Choose an ordered pair (a01, a1) such that (a
0
1, a1) ∈ arg min

(i,j)∈S0×S0c
j 6∈Ω

cij.

Define p1 = max(p0, ca0
1
a1), S

1 = S0 ∪ {a1}, t1 = t0 ∪ {(a01, a1)}, S1c =
N0\S

1.

Step k: Assume we have defined pk−1, Sk, tk−1 and Sk
c . Take an ordered

pair (a0k, ak) ∈ arg min
(i,j)∈Sk−1×Sk−1c

j 6∈Ω

cij. Now, S
k = Sk−1 ∪ {ak}, tk = tk−1 ∪

{(a0k, ak)}, p
k = max(pk−1, ca0kak) and Sk

c = N0\S
k.
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Also,

φ3ak−1(N0, C) = min(p
k−1, ca0kak). (3)

The algorithm finishes at step m = |N | \ |Ω| . We define:

φ3am(N0, C) = tm (4)

and

φ3i (N0, C) = 0 for all i ∈ Ω. (5)

The rule φ3 is described by equations (3),(4) and (5).

In case that the set of ENP is empty, φ3 coincides with the rule proposed

by Dutta and Kar (2004).

To see that φ3 does not satisfy NAM we can consider Example 2.2. In

this example, the assignment proposed by φ3 coincides with the assignment

proposed by the rule presented by Dutta and Kar (2004) because there are

no ENP’s.

Proposition 6.3 Over the domain D, φ3 satisfies CS and IENP.

Proof. It is clear that φ3 satisfies IENP. On the other hand, the proof that

φ3 satisfies CS is similar to the proof that the rule proposed by Dutta and Kar

(2004) satisfies CS (see Dutta and Kar (2004, Theorem 1)) and we omit it.
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