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This paper introduces several new Bayesian nonparametric models suitable for cap-
turing the unknown conditional distribution of realized covariance (RCOV) matrices.
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1 Introduction

This paper introduces several new Bayesian nonparametric models suitable for capturing the
unknown conditional distribution of realized covariance (RCOV) matrices. The nonpara-
metric models extend existing dynamic Wishart specifications to countably infinite mixture
models of Wishart and inverse-Wishart distributions. Mixture models with constant weights
as well as models with time-varying weights are introduced.

Beginning with Andersen & Bollerslev (1998) there has been a great deal of interest
in estimating and modeling daily ex post measures of volatility. Recent work has focused
on realized measures of multivariate covariances estimated from high frequency intraday
data. The theoretical foundation for RCOV as an estimate of the quadratic variation for
semimartingale processes is set forth in Andersen et al. (2003) and Barndorff-Nielsen & Shep-
hard (2004) while the latter also establishes the asymptotic theory for the estimator. Since
then, focus has shifted to improving the estimator in the presence of market microstruc-
ture dynamics (Barndorff-Nielsen et al. 2011, Hautsch et al. 2012, Corsi et al. 2013) often
through a kernel based estimator. This work provides accurate estimates of ex post covaria-
tion for asset returns. A developing area of research is how to econometrically model realized
covariances.

This paper contributes to the literature on time-series modeling of RCOV. There are
several existing approaches. One is to use some form of a decomposition to the matrix of
realized variances and covariances and then use standard time-series models for the trans-
formed data (Bauer & Vorkink 2011, Chiriac & Voev 2011). Another strand of the literature
directly models RCOV using dynamic models. Examples of this approach include the mul-
tivariate high-frequency-based volatility (HEAVY) model of Noureldin et al. (2012) which
exploits ex post volatility measures in a GARCH-like setting. Extensions to this approach
are Sheppard & Xu (2014) and Janusa et al. (2014) and a closely related approach is Hansen
et al. (2013).

Another approach has developed around time-varying Wishart distributions. Gourieroux
et al. (2009), Bonato et al. (2008), Golosnoy et al. (2012), Jin & Maheu (2013) and Bauwens
et al. (2014) develop dynamic Wishart and noncentral-Wishart models for RCOV. Building
on Uhlig (1997), Windle & Carvalho (2014) provide a tractable state space model that can
be used to model realized covariance matrices. Wishart distributions have also been popular
in traditional multivariate stochastic volatility models that only use returns (Philipov &
Glickman 2006, Asai & McAleer 2009, Fox & West 2011, Lin et al. 2012, Triantafyllopoulos
2012, Asai & So 2013).

Although some of the aforementioned papers use flexible distributions for RCOV distribu-
tions they are all essentially parametric. The purpose of this paper is to provide nonparamet-
ric models for capturing the unknown conditional distribution of RCOV. It is important to
allow the unknown conditional distribution to change over time as a function of observables
as well as latent variables. This allows for general forms of time dependence.

By far the most popular approach to Bayesian nonparametrics uses the Dirichlet process
(DP) prior. The Dirichlet process mixture (DPM) model was popularized by Escobar &
West (1995) and is useful for modeling a fixed unknown continuous distribution. This model
is often embedded in a richer time-series model. Some examples in finance include Delatola
& Griffin (2013), Jensen & Maheu (2013a), Virbickaite et al. (2013) and Kalli & Griffin
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(2014).1

Therefore, a natural starting point for our work is a DPM model that mixes over dis-
tributions defined on positive definite matrices. We extend the dynamic Wishart model of
Jin & Maheu (2013) to countably infinite mixtures based on Wishart and inverse-Wishart
kernels. These models give significant gains in forecast precision compared to parametric
benchmarks. However, it has been recognized that the DPM model may not be adequate
for financial data which display complicated dependencies. Extensions to the DPM model,
featuring nonparametric dependence in time or through a covariate are pursued in Griffin
& Steel (2006), Griffin & Steel (2011), Rodriguez & Dunson (2011) and Jensen & Maheu
(2013b). Dependent Dirichlet processes are formalized by MacEachern (2000).

Our first extension to incorporate time dependence in the mixture model is based on
the infinite hidden Markov model (iHMM). The iHMM generalizes the popular finite state
Markov switching model of Hamilton (1989) to an infinite number of states and is well-
suited for capturing changes in the unknown conditional distribution of RCOV. The iHMM
is introduced in Teh et al. (2006) and uses a hierarchical Dirichlet process (HDP). The HDP
serves as a prior to link the rows of the infinite-dimension transition matrix of the hidden
Markov chain. Extensions of the iHMM include the sticky model of Fox et al. (2011) which
allows estimation and control of state persistence and the hierarchical prior governing the
data density parameters by Song (2014). Other successful applications of the iHMM to
economic and financial data are Dufays (2012), Jochmann (2014) and Shi & Song (2014).

The iHMM is a nonparametric model that allows the unknown distribution to flexibly
change over time. The applications to date assume once a state is entered, the observation
is governed by a parametric distribution. This may be appropriate for some forms of data
(macroeconomic and low frequency financial data) but if the data do not conform to this
assumption the model will require rapid switching among states to approximate the true
density. This will expand the size of the latent state space and increase model complexity
and computation time. To avoid this we introduce a new specification in which the state
dependent data density is modelled nonparametrically. In this model each state of the
Markov chain follows its own DPM model. Rather than having a potentially infinite number
of DPM models to keep track we use a second HDP to reuse the existing atoms of support
while allowing weights in each DPM to differ. This results in a very flexible approach that
combines the benefits of the iHMM and the DPM model. That is, the model combines the
benefits of Markov switching with i.i.d. switching and is self-organizing in the sense that the
size of each mixture is endogenously determined given a finite dataset. Of course each of the
simpler specifications are also nested in this new model. We show how the beam sampler
of Van Gael et al. (2008) can be extended to estimate this model efficiently. The empirical
results show the new model provides very significant gains in density forecasts for RCOV and
returns and competitive point forecasts of RCOV. The parametric models fail to account for
extreme observations in diagonal and off-diagonal elements of realized covariance matrices
while the nonparametric models do significantly better.

Each of the models introduced in this paper can be combined with returns to produce a
coherent joint model of returns and realized covariances. When combined with returns, and

1There are numerous applications in economics, e.g. Hirano (2002), Conley et al. (2008), Burda et al.
(2008), Chib & Greenberg (2010) and Bassetti et al. (2014).
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conditional on appropriate quantities, all of the mixture models based on inverse-Wishart ker-
nels imply infinite mixtures of Student-t distributions with constant or time-varying weights.

Besides introducing several new nonparametric models of RCOV matrices this paper
makes several additional contributions to the literature. We empirically estimate and com-
pare multi-period density forecasts of RCOV matrices from parametric and nonparametric
models. We find that mixtures of inverse-Wishart distributions are very promising for mod-
eling realized covariance matrices and perform better than models based on the Wishart
distribution.2 Mixture models with constant weights and time-varying weights provide such
large improvements in the fit that they render the parametric specifications (based in Wishart
and inverse-Wishart) uncompetitive.

This paper is organized as follows. The data and estimation of realized covariances are
discussed next. Following this parametric benchmark models for RCOV based on dynamic
Wishart and inverse-Wishart distributions are reviewed. Section 4 introduces the Dirichlet
process mixture models based on Wishart and inverse-Wishart dynamic models. Extensions
to this model are discussed in Section 5, which include an infinite hidden Markov model, a
sticky variant and a model that mixes iHMM and DPM behaviour. How to extend each of the
models for RCOV to joint models of returns and RCOV is discussed in Section 6. Results are
in Section 7 and conclusions in Section 8. A detailed appendix of all the posterior simulation
steps is found in Section 9.

2 Data

The data is the same as that used in Jin & Maheu (2013). It consists of transactions obtained
from the TAQ database for Standard and Poor’s Depository Receipt (SPY), General Electric
Co. (GE), Citigroup Inc.(C), Alcoa Inc. (AA) and Boeing Co. (BA). The sample period is
from 1998/12/04 - 2007/12/31 giving 2281 days. We follow Barndorff-Nielsen et al. (2011)
and their kernel based approach to construct daily realized covariance (RCOV) matrices. We
compute daily returns and RCOV matrices based on close-to-close data. For more details
see Jin & Maheu (2013). Daily RCOV matrices are denoted as Σt and daily returns as rt,
t = 1, . . . , T , and summary statistics are reported in Table 1. Time-series plots of realized
volatility and associated realized correlations are displayed in Figure 1.

3 Parametric Wishart Models

In this section we review a dynamic Wishart model for RCOV and introduce a similar version
based on the inverse-Wishart distribution.

2One reason for this is that the second moments of a Wishart variate always exist while the second
moments of an inverse-Wishart variate exist only if the degree of freedom is sufficiently large. This may
allow greater tail thickness from the inverse-Wishart density. We thank Silvia Frühwirth-Schnatter for
bringing this to our attention.
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3.1 An additive component Wishart model: W-A(M)

The additive component Wishart model of Jin & Maheu (2013) is designed to capture the
strong persistence in the elements of RCOV matrices by using several components that affect
the scale matrix. Each component is a rolling window average of past values of Σt and the
window size is estimated.

Consider a time series of k × k realized covariance matrices Σt, t = 1, 2, . . . , T and let
Σ1:t = {Σ1, . . . ,Σt}. In the W-A(M) model the conditional distribution of Σt is defined as

f(Σt|Σ1:t−1, ν,Θ) = Wishartk

(
Σt|ν,

1

ν
Vt

)
(1)

Vt = B0 +
M∑

j=1

Bj ⊙ Γt−1,ℓj (2)

Γt−1,ℓ =
1

ℓ

ℓ∑

i=1

Σt−i (3)

Bj = bjb
′
j, j = 1, . . . ,M (4)

1 = ℓ1 < . . . < ℓM . (5)

Wishartk(.|ν, 1νVt) denotes the density3 of a Wishart distribution over positive definite ma-
trices of dimension k with ν > k degrees of freedom and scale matrix 1

ν
Vt. ⊙ denotes the

element-by-element (Hadamard) product of two matrices and Θ represents all parameters
concerning the dynamics of Vt and includes B0, b1, . . . , bM , ℓ2, . . . , ℓM . B0 is a k × k sym-
metric positive-definite matrix, and bj’s are k × 1 vectors making each Bj rank 1. Γt−1,ℓj

is the jth (additive) component defined as the average of past Σt over ℓj observations. The
first component is equal to Σt−1 by construction with ℓ1 = 1. For component j ≥ 2, rather
than preset to either weekly or monthly term, each ℓj is allowed to be a free parameter to
be estimated. The model specification ensures that 1

ν
Vt is symmetric positive-definite. The

conditional mean of Σt is

E(Σt|Σ1:t−1, ν,Θ) = Vt = B0 +
M∑

j=1

Bj ⊙ Γt−1,ℓj . (6)

Instead of estimating B0, Jin & Maheu (2013) implement RCOV targeting by setting
B0 = (ιι′ −B1 − · · · −BM)⊙ Σt, where Σt is the sample mean of Σt and ι is a k × 1 vector
of ones. This ensures that the long-run mean of Σt is equal to Σt and leads to improved
forecasts. In estimation any posterior draws in which B0 is not positive definite are rejected.
In addition, to ensure the mean exists draws that violate

∑M
j=1Bj < 1 are rejected.

For posterior simulation a Metropolis-Hastings (MH) step using a joint random walk
proposal is used for b1, . . . , bM . For each lag length, ℓj is sampled according to a random
walk with Poisson increments that are equally likely to be positive or negative. Additional

3The density function of a Wishart distribution for k × k symmetric positive-definite ma-
trix Σ with ν degrees of freedom and positive-definite scale matrix V is Wishartk(Σ|ν, V ) =

|Σ|
ν−k−1

2 |V |−
ν
2

2
νk
2 πk(k−1)/4

∏k
j=1 Γ( ν+1−j

2 )
e−

1
2 tr(V

−1Σ).
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details of posterior simulation are found in Jin & Maheu (2013) along with stationarity
conditions.

The W-A(M) model is a very competitive specification. In Jin & Maheu (2013) the model
is extensively compared to models from Gourieroux et al. (2009) and Chiriac & Voev (2011),
as well as extensions of Gourieroux et al. (2009) and Philipov & Glickman (2006) to handle
RCOV matrices. The W-A(3) model provides superior point forecasts of RCOV matrices
and when linked with returns in a joint model gives the best density forecasts of returns at
multiple horizons.

3.2 An additive component inverse-Wishart model: IW-A(M)

In an similar fashion we can replace the Wishart density of the previous model with an
inverse-Wishart to obtain the following IW-A(M) specification.

f(Σt|Σ1:t−1, ν,Θ) = Wishart−1
k (Σt|ν, (ν − k − 1)Vt) (7)

Vt = B0 +
M∑

j=1

Bj ⊙ Γt−1,ℓj (8)

Γt−1,ℓj =
1

ℓj

ℓj∑

i=1

Σt−i. (9)

Wishart−1
k (.|ν, (ν−k−1)Vt) denotes the density of an inverse-Wishart distribution over k×k

symmetric positive-definite matrices with ν > k+1 degrees of freedom and scale matrix equal
to (ν − k − 1)Vt.

4

By the properties of the inverse-Wishart distribution, the conditional mean of Σt is

E(Σt|Σ1:t−1, ν,Θ) = Vt = B0 +
M∑

j=1

Bj ⊙ Γt−1,ℓj . (10)

The conditional second moments are (Press 2005)

Cov(Σt,ij,Σt,lm|Σ1:t−1, ν,Θ) =
2Vt,ijVt,lm + (ν − k − 1)(Vt,ilVt,jm + Vt,imVt,jl)

(ν − k)(ν − k − 1)2(ν − k − 3)
, (11)

which exist only if ν > k + 3.
Similar to the Wishart case quadratic transformations of inverse-Wishart distributed

matrices are themselves inverse-Wishart distributed.5

Property 1 Suppose A is l × k with l ≤ k and has full row rank. If Σ ∼ Wishart−1
k (ν, V ),

then AΣA′ ∼ Wishart−1
l (ν − k + l, AV A′).

4The density function of an inverse-Wishart distribution for k × k symmetric positive-definite ma-
trix Σ with ν degrees of freedom and positive-definite scale matrix V is Wishart−1

k (Σ|ν, V ) =

|V |
ν
2 |Σ|−

ν+k+1
2

2
νk
2 πk(k−1)/4

∏k
j=1 Γ( ν+1−j

2 )
e−

1
2 tr(V Σ−1).

5See Press (2005).
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Let w be a k× 1 portfolio allocation vector. A direct implication of Property 1 is that under
IW-A(M), the conditional distribution of the realized portfolio variance RVw,t ≡ w′Σtw
follows a univariate inverse-Wishart:

RVw,t|Σ1:t−1, ν,Θ ∼ Wishart−1
1 (ν − k + 1, (ν − k − 1)w′Vtw), (12)

its density coincides with that of an inverse-Gamma distribution

Gamma−1

(
ν − k + 1

2
,
(ν − k − 1)w′Vtw

2

)
. (13)

From this, the diagonal elements of Σt, which are realized variances of individual assets,
follow the inverse-Gamma distribution

Σt,ii|Σ1:t−1, ν,Θ,∼ Gamma−1

(
ν − k + 1

2
,
(ν − k − 1)Vt,ii

2

)
. (14)

The IW-A(M) andW-A(M) models are parallel to each other in the sense their conditional
expectations of Σt share the same dynamic structure in Vt. Any difference in the two models
comes from the Wishart or inverse-Wishart assumption. On the other hand, because of
the one-to-one correspondence between the parameter sets of the IW-A(M) and W-A(M),
posterior sampling of IW-A(M) can be carried out in the same fashion as for the W-A(M)
model.

4 Semiparametric RCOV Models

This paper will focus on mixture models with an infinite number of components. Before
discussing these models we give some examples of the flexibility that finite mixtures have in
which the density of Σt has the form

f(Σt) =
L∑

j=1

ωjWishart−1
2 (Σt|νj, Vj). (15)

Applying the results of (14) to this mixture to focus on the diagonal elements of the 2 × 2
Σt results in a mixture of corresponding inverse-Gamma distributions. Figure 2 displays the
densities from a two-component mixture along with a single component model, each of which
has the same mean. It is clear that the mixture provides more flexibility including bimodal
behaviour.

Figure 3 is a plot of the tail of the log-density from two different mixtures along with
a single-component model. Each model has the same mean and variance. However, as the
plot shows one mixture has a thinner tail and the other a fatter tail than the one-component
model.

Finally, Figure 4 displays simulated data for the covariance (off diagonal) element of
Σt from an inverse-Wishart and a mixture model. Each model has an identical mean and
variance. In the top panel it is clear that the mixture has fatter tails as we see more
extreme realizations. In the bottom panel the mixture appears to have thinner tails than
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the parametric model. In summary, finite mixture models provide a great deal of flexibility
in modeling the distribution of Σt. They can be used to capture multimodal behaviour and
various tail structures. The following sections consider the fully nonparametric model with
L→ ∞.

4.1 Dirichlet process mixture model

This paper will focus on semiparametric models based on the Dirichlet Process mixture
(DPM) and various extensions. The first specification to consider takes the following form
for the unknown density f(Σt|·),

f(Σt|Σ1:t−1,Θ, G) =

∫
h(Σt|Σ1:t−1,Θ, φ)G(dφ) (16)

G|G0, α ∼ DP(α,G0) (17)

where DP(α,G0) denotes the Dirichlet process with precision parameter α > 0 and base
measure G0. G is the unknown mixing distribution that governs φ and is assumed to follow
a Dirichlet process. G is centered around G0 since E[G] = G0. h(Σt|Σ1:t−1,Θ, φ) is a kernel
density defined over symmetric positive-definite matrices given Σ1:t−1 and parameters Θ and
φ. Θ collects other parameters common to each conditional density h(·|·).

Due to the Dirichlet process prior DP(G0, α), the random distribution G is almost surely
discrete and the model is a countably-infinite mixture:

f(Σt|Σ1:t−1,Θ,Ω,Φ) =
∞∑

j=1

ωjh(Σt|Σ1:t−1,Θ, φj) (18)

ωj = vj
∏

l<j

(1− vl), vj
iid∼ Beta(1, α), j = 1, 2, . . . (19)

φj
iid∼ G0 (20)

where Ω = {ωj}∞j=1, Φ = {φj}∞j=1. (19) and (20) give the stick-breaking representation
(Sethuraman 1994) of G =

∑∞
j=1 ωjδφj , where δφj is a point mass at φj, the random atoms

φj are i.i.d. draws from prior distribution G0, and the random weights ωj are constructed
using i.i.d. Beta variates vj. In the following the stick-breaking construction of the weights
are denoted as Ω ∼ SBP(α).

To implement the model we need to select a parametric kernel density h(.|.) defined
over symmetric positive-definite matrices. Given the discussion on the previous models it
is natural to consider the kernel as one of the models in Section 3.6 Those specifications
were designed to capture important features of the time-series properties of RCOV matrices.
Mixing over them (IW-A(M) or W-A(M)) will allow for more general distributional shapes
for the conditional density of Σt.

6Another choice is the noncentral Wishart density which has no closed form and can only be approximated
or computed recursively, making the computation formidable. Meanwhile, the empirical results in Jin &
Maheu (2013) and Chiriac & Voev (2011) show inferior results for WAR compared to other models. Thus,
we exclude it from our choice of kernels.
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Although several papers referenced in the introduction use Wishart distributions to model
the conditional distribution of RCOV we are not aware of any papers that use the inverse-
Wishart distribution. In the empirical work we found that the inverse-Wishart model dom-
inated the Wishart counterpart and therefore we focus on it. However, all of the following
models could use any kernel that is defined for positive definite matrices.

Extending the IW-A(M) to the semiparametric specification, IW-DPM, we have

f(Σt|Σ1:t−1,Θ,Ω,Φ) =
∞∑

j=1

ωjWishart−1
k (Σt|νj, (νj − k − 1)V

1/2
t Aj(V

1/2
t )′) (21)

Vt = B0 +
M∑

j=1

Bj ⊙ Γt−1,ℓj (22)

Γt−1,ℓj =
1

ℓj

ℓj∑

i=1

Σt−i (23)

Bj = bjb
′
j, j = 1, . . . ,M, 1 = ℓ1 < . . . < ℓM , (24)

where the evolution of Vt is identical to the parametric model, Ω ∼ SBP(α) and Aj are

k × k symmetric positive matrices and φj ≡ (νj, Aj) . V
1/2
t denotes the Cholesky factor

of Vt. Each component of the distribution j allows for a different scale matrix, (νj − k −
1)V

1/2
t Aj(V

1/2
t )′ , which by construction is positive definite, and a different degree of freedom

νj. The term V
1/2
t Aj(V

1/2
t )′ can represent any symmetric positive definite matrix. This is a

richer functional form than the parametric model. For instance, the conditional mean is a
weighted average of the component means,

E[Σt|Σ1:t−1,Θ,Ω,Φ] =
∞∑

j=1

ωjV
1/2
t Aj(V

1/2
t )′. (25)

Note that in this model, the parametric version previously discussed, is nested. For instance,
if ωj = 1 and Aj = I we have the IW-A(M) model exactly, while if only Aj = I ∀j, we have
an identical conditional mean in (25) but different higher order moments.

The analogous model with a Wishart kernel replaces (21) with

f(Σt|Σ1:t−1,Θ,Ω,Φ) =
∞∑

j=1

ωjWishartk

(
Σt|νj,

1

νj
V

1/2
t Aj(V

1/2
t )′

)
(26)

The definition of Vt and other portions of the model remain the same.
To complete the DPM models, the prior distribution G0 for the random atoms φj are

defined for IW-DPM as:

G0(νj, Aj) ≡ Expν>k+1(λ)×Wishartk

(
γ0,

1

γ0
I

)
, γ0 ≥ k (27)

and for W-DPM as:

G0(νj, Aj) ≡ Expν>k(λ)×Wishart−1
k (γ0, (γ0 − k − 1)I), γ0 ≥ k + 1; (28)

9



Under G0, νj and Aj are independently drawn from a truncated exponential distribution
and a Wishart (inverse-Wishart) distribution, respectively, such that the mean of Aj satisfies
E(Aj) = I. In other words, the nonparametric model has a prior that centers the conditional
mean of Σt to that of the parametric model.

The precision parameter α controls the distribution of the mixture weights ωj. We include
α in the posterior inference with the following prior,

α ∼ Gamma(a0, c0). (29)

4.2 Posterior inference

To sample from the posterior we use slice sampling techniques introduced by Walker (2007)
and extended by Kalli et al. (2011) and Papaspiliopoulos (2008). This samples from the
stick-breaking representation of the infinite mixture model by introducing a slice variable
that randomly truncates the model to a finite mixture model. This is done in such a way
that integrating out the slice variable gives the correct marginal distribution.

Recall that φj = (νj, Aj) and in the following conditioning on Σ1:t−1 is suppressed where
the context is clear. The general model is

f(Σt|Θ,Ω,Φ) =
∞∑

j=1

ωjh(Σt|Θ, νj, Aj), (30)

where h(Σt|Θ, νj, Aj) corresponds to either the inverse-Wishart in (21) or Wishart kernel in
(26). Introducing an auxiliary latent variable ut > 0, we define the joint conditional density
of Σt and ut as

f(Σt, ut|Θ,Ω,Φ) =
∞∑

j=1

1(ut < ωj)h(Σt|Θ, νj, Aj). (31)

Note that integrating out ut returns the original model (30). The parameter space is aug-
mented with u1:T = {u1, . . . , uT}. Let st = j assign observation Σt to component j with
data density h(Σt|Θ, νj, Aj) The target likelihood is now

f(Σ1:T , u1:T , s1:T |Θ,Ω,Φ) =
T∏

t=1

f(Σt, ut, st|Θ,Ω,Φ)

=
T∏

t=1

1(ut < ωst)h(Σt|Θ, νst , Ast), (32)

where s1:T = {st}Tt=1. The joint posterior is proportional to

p(Θ)p(ΩK)




K∏

i=1

p(νj, Aj)




T∏

t=1

1(ut < ωst)h(Σt|Θ, νst , Ast), (33)

where ΩK = {ωj}Kj=1 and K is the smallest natural number such that
∑K

j=1 ωj > 1−min{ut}.
The posterior sampling steps are as follows.
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1. p(φj|Σ1:T , s1:T ,Θ) ∝ p(φj)
∏

{t:st=j}
h(Σt|Θ, νj, Aj), j = 1, . . . , K.

2. p(vj|s1:T , α) ∝ Beta(vj|a1,j, a2,j), j = 1, . . . , K, with a1,j = 1 +
∑T

t=1 1(st = j) and

a2,j = α+
∑T

t=1 1(st > j), where Beta(.|., .) denotes the density of a Beta distribution.

3. p(ut|ΩK , s1:T ) ∝ 1(0 < ut < ωst), t = 1, . . . , T .

4. Find the smallest K such that
∑K

j=1 ωj > 1−min{ut}.

5. P (st = j|Σ1:T ,Φ,ΩK ,Θ, u1:T ) ∝ 1(ut < ωj)h(Σt|Θ, νj, Aj).

6. p(α|K) ∝ p(α)p(K|α), where K is the number of active clusters in s1:T .

7. p(Θ|Σ1:T , s1:T ,Φ) ∝ p(Θ)
∏T

t=1 h(Σt|Θ, νst , Ast)

One sweep of the sampler delivers {{(νj, Aj, vj)}Kj=1, K, u1:T , s1:T , α,Θ}. In Step 1, the
conditional posterior of Aj is

p(Aj|νj,Σ1:T , s1:T ,Θ) ∝ p(Aj)
∏

{t:st=j}

h(Σt|Θ, νj, Aj). (34)

By conjugacy, we have for IW-DPM model

Aj ∼ Wishartk(γj, Qj), (35)

where γj = γ0 + njνj and Qj =
[
(νj − k − 1)

∑
{t:st=j}

[
(V

1/2
t )Σ−1

t ((V
1/2
t ))′

]
+ γ0I

]−1

, with

nj = #{t : st = j}. And for the W-DPM model

Aj ∼ Wishart−1
k (γj, Qj), (36)

where γj defined as before but Qj = νj
∑

{t:st=j}

[
(V

1/2
t )−1Σt((V

1/2
t )−1)′

]
+ (γ0 − k − 1)I.

The conditional posterior of νj is

p(νj|Aj,Σ1:T , s1:T ,Θ) ∝ p(νj)
∏

{t:st=j}

h(Σt|Θ, νj, Aj). (37)

Metropolis-Hastings (MH) steps are used to sample νj with Gaussian random walk proposals.
In Step 4, additional ωj and φj will need to be simulated from the prior if K is incremented.
Step 6 follows Escobar & West (1995) and consists of first sampling an auxiliary variable
η from Beta(α + 1, T ), and then sampling α from a two-component mixture of Gamma
distributions,

α ∼ pηGamma(a0 +K, c0 − logη) + (1− pη)Gamma(a0 +K − 1, c0 − logη), (38)

where pη/(1 − pη) = (a0 + K − 1)/(T (c0 − logη)). In Step 7, MH steps are used to
sample elements of bj’s and ℓj. As in the benchmark models, we impose the same re-
striction associated with RCOV targeting in the nonparametric models. That is, we set
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B0 = (ιι′ − B1 − · · · − BM) ⊙ Σt in estimation and reject any draws in which B0 is not
positive definite. This leads to significant improvements in forecasts.

After dropping a suitable number of draws as burn-in we collect the next N draws to be
used for posterior inference. Each iteration of the posterior sampler delivers a draw of the
unknown distribution G where

G(i) =
K

(i)∑

j=1

ω
(i)
j δφ(i)j

+


1−

K
(i)∑

j=1

ω
(i)
j


G0. (39)

This can be used to form the predictive density of ΣT+1 which is discussed next.

4.3 Predictive density

In Bayesian nonparametrics interest focuses on the predictive density. This can be computed
as follows. Given a draw G(i) from the posterior then

p(ΣT+1|Σ1:T , G
(i))

=
K

(i)∑

j=1

ω
(i)
j h(ΣT+1|Θ(i), φ

(i)
j ) +


1−

K
(i)∑

j=1

ω
(i)
j




∫
h(ΣT+1|Θ(i), φ)G0(dφ) (40)

≈
K

(i)∑

j=1

ω
(i)
j h(ΣT+1|Θ(i), φ

(i)
j ) +


1−

K
(i)∑

j=1

ω
(i)
j


 1

R

R∑

l=1

h(ΣT+1|Θ(i), φ[l]), (41)

where φ[l] iid∼ G0, l = 1, . . . , R. In the empirical work R = 10 but smaller values gave similar
accuracy.7 Finally, the predictive density with all parameter uncertainty integrated out is
estimated as

p(ΣT+1|Σ1:T ) ≈
1

N

N∑

i=1

p(ΣT+1|Σ1:T , G
(i)). (42)

5 Extensions

If there are features of the unknown conditional distribution of Σt that change over time and
cannot be captured through observables, such as Vt, then the DPM models cannot capture
these. We extend the DPM specifications to have time-varying weights to allow for time
variation in the conditional distribution.

5.1 Infinite hidden Markov models

The infinite hidden Markov model (iHMM) builds on a hierarchical Dirichlet process prior
(HDP) of Teh et al. (2006).8 They show that a sequence of draws from a Dirichlet process,

7An asymptotically equivalent, but potentially less accurate estimate in finite simulations, would be to
randomly draw φ from each sampled G(i) in (39) and then average h(·|·) over these draws.

8A related but different approach to allow dependence through a hierarchical structure is the nested DP
of Rodriguez et al. (2008).
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with a base measure that itself is a draw from a DP, can be used as a prior for the rows of
the transition matrix of an infinite Markov chain. The iHMM is also reviewed in Van Gael
& Ghahramani (2010). We propose the following iHMM model:

π0|α ∼ SBP(α) (43)

πi|π0, β ∼ DP(β,π0) (44)

φj
iid∼ G0, j = 1, 2, . . . (45)

st|st−1 = i,Π ∼ πi, i = 1, 2, . . . (46)

Σt|Σ1:t−1,Θ,Φ, st ∼ Ht(Σt|φst) (47)

The latent discrete state variable st follows a Markov chain on an infinite state space with
doubly-infinite transition matrix Π = (π′

1,π
′
2, . . .)

′, where πi = (πi,1, πi,2, . . .) is the i
th row

of Π. That is, p(st = j|st−1 = i) = πi,j, i, j ∈ {1, 2, . . .}. π0 = (π01, π02, . . .) denotes
an infinite-dimensional vector of probability weights which are drawn from a stick-breaking
process SBP(α). Conditional on π0 and scalar β, πi independently draws from the common
Dirichlet process prior DP(β,π0) for i = 1, 2, . . .. Ht(Σt|φst) would be either of the inverse-

Wishart model with density Wishart−1
k (Σt|νst , (νst − k − 1)V

1/2
t Ast(V

1/2
t )′) or the Wishart

analogue. These models are labelled IW-iHMM and W-iHMM.
There is a similar stick-breaking representation of the model with weights ωj in (21)

replaced with πst−1,st as

f(Σt|Θ,Π,Φ, st−1) =
∞∑

st=1

πst−1,stWishart−1
k (Σt|νst , (νst − k − 1)V

1/2
t Ast(V

1/2
t )′) (48)

πi,j = π̂i,j

j−1∏

l=1

(1− π̂i,l) (49)

π̂i,j
iid∼ Beta(βπ0j, β(1−

j∑

l=1

π0l)) (50)

The definition of the weights (Van Gael & Ghahramani 2010) follows from the properties
of the Dirichlet process and Dirichlet distribution and links the transition matrix Π to π0.
From this we have E[πi,j] = E[π0j] = αj−1/(1 + α)j. In other words, the prior centers the
infinite hidden Markov model around the DPM model discussed in the last section. The
parameters α and β play an important role in the distribution of the weights πst−1,st , and
can be used to set various prior beliefs. We impose the following priors to learn about these
parameters,

α ∼ Gamma(a1, c1), β ∼ Gamma(a2, c2). (51)

5.2 IW-sticky-iHMM

The original iHMM model does not differentiate between self-transitions and moves into
different states since each πi draws from the same Dirichlet prior in (44). The IW-iHMM
may not capture state persistence commonly present in economic time-series data. To solve
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this issue, a “sticky” version of iHMM was introduced by Fox et al. (2011) in which the prior
can reinforce self-transitions. This is done by replacing (44) in the IW-iHMM model with

πi|π0, β, κ ∼ DP

(
β + κ,

βπ0 + κδi
β + κ

)
. (44′)

The term βπ0 + κδi means that the amount κ ≥ 0 is added to the ith component of βπ0.
A κ > 0 increases the prior probability of self-transition and larger values impose stronger
beliefs on state persistence while κ = 0 gives the benchmark iHMM specification above. The
stick-breaking formulation of the weights replaces π̂i,j terms in (50) with

π̂i,j
iid∼ Beta(βπ0j + κδi, β + κ−

∑j
l=1(βπ0l + κδi)). (52)

Rather than setting the parameters we impose the following priors,

α ∼ Gamma(a3, c3), β + κ ∼ Gamma(a4, c4), ρ =
κ

β + κ
∼ Beta(a5, c5), (53)

which allow for learning from the data. This prior formulation is more convenient for poste-
rior sampling. These changes give the IW-sticky-iHMM model.

5.2.1 Posterior inference

Similar to the posterior sampling methods for the DPM model of Section 4 the idea of slice
sampling can be extended to the infinite hidden Markov model. Beam sampling introduced
by Van Gael et al. (2008) combines slice sampling and dynamic programming. The slice
sampling portion stochastically truncates the infinite dimension state space into a finite one.
With a finite state space, traditional posterior sampling methods can be applied such as the
forward filtering backward sampling (FFBS) of Chib (1996). This allows for the efficient
sampling of the state variables as one block.

An auxiliary latent variable ut > 0 is introduced such that its conditional density is

p(ut|st, st−1,Π) =
1(ut < πst−1,st)

πst−1,st

(54)

and is sampled with the other model parameters. With this slice variable, Van Gael et al.
(2008) show that the filtering step of the sampler becomes

p(st|u1:t,Σ1:t) ∝ h(Σt|φst)
∞∑

st−1=1

p(ut|st, st−1)p(st|st−1)p(st−1|Σ1:t−1, u1:t−1) (55)

∝ h(Σt|φst)
∞∑

st−1=1

1(ut < πst−1,st)p(st−1|u1:t−1,Σ1:t−1) (56)

∝ h(Σt|φst)
∑

st−1:ut<πst−1,st

p(st−1|u1:t−1,Σ1:t−1). (57)

Thus the infinite summation in this filter is reduced to a finite summation since the set
{st−1 : ut < πst−1,st} is finite. The backward sampling step follows

p(st|st+1,Σ1:T , u1:T ) ∝ p(st|u1:t,Σ1:t)1(ut+1 < πst,st+1). (58)
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sT is sampled from the last step of the filter p(sT |u1:T ,Σ1:T ) after which st, t = T − 1, . . . , 1
is sampled from (58).

It is convenient to find a finite set that includes all possible states that satisfy the con-
dition ut < πst−1,st . This must hold for each t and each row of the transition matrix.
States that do not satisfy this condition can be ignored. We require K states to be kept
track of such that the remaining states do not satisfy the condition, that is the K such
that

∑∞
j=K+1 πi,j < ut holds for each i and each t. This gives the following condition,

maxi∈{1,...,K}{1−
∑K

j=1 πi,j} < mint∈{1,...,T}{ut}, to select K.
After the states are sampled we keep track of the number of alive states in which at least

one observation is allocated to the state. These are ordered as the first K states. Each sweep
of the sampler updates the value of K.

The parameter set consists of {u1:T , s1:T ,π0,Π,Φ,Θ, α, β, κ}. In posterior sampling we
keep track of K + 1 rows for Π and K + 1 elements of π0. The first K rows of Π represent
the alive states while the K + 1 row is the residual probability. For other parameters such
as Φ we sample only the K values associated with alive states.

The sampling procedure sequentially simulates from the following conditional posterior
densities:

1. p(u1:T |s1:T ,Π),

2. p(s1:T |Π, u1:T ,Φ,Θ,Σ1:T ),

3. p(π0|s1:T , α, β, κ),

4. p(Π|π0, s1:T , β, κ),

5. p(Φ|s1:T ,Θ,Σ1:T ),

6. p(α, β, κ|s1:T ,π0),

7. p(Θ|s1:T ,Φ,Σ1:T ).

The Appendix 9.1 provides full details on each of the steps. For the (non-sticky) IW-iHMM
model discussed in the previous subsection the above sampling steps are used with κ = 0
and irrelevant steps are omitted.

5.2.2 Predictive density

The predictive density is computed in the following way. Given a draw from the posterior,

p(ΣT+1|Σ1:T ,Π
(i),Φ(i), s

(i)
1:T ,Θ

(i))

=
K(i)∑

j=1

π
(i)

s
(i)
T
,j
h(ΣT+1|Θ(i), φ

(i)
j ) +


1−

K(i)∑

j=1

π
(i)

s
(i)
T
,j




∫
h(ΣT+1|Θ(i), φ)G0(dφ) (59)

≈
K(i)∑

j=1

π
(i)

s
(i)
T
,j
h(ΣT+1|Θ(i), φ

(i)
j ) +


1−

K(i)∑

j=1

π
(i)

s
(i)
T
,j


 1

R

R∑

l=1

h(ΣT+1|Θ(i), φ[l]), (60)
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where φ[l] iid∼ G0, l = 1, . . . , R. Finally, the predictive density is estimated as

p(ΣT+1|Σ1:T ) ≈
1

N

N∑

i=1

p(ΣT+1|Σ1:T ,Π
(i),Φ(i), s

(i)
1:T ,Θ

(i)), (61)

which integrates out all uncertainty.

5.3 IW-sticky-iHMM-HDP

A potential drawback of the IW-sticky-iHMM model is that it allows for persistence in states
that have a fixed parametric density. However, if the conditional density of Σt given st is
not close to the inverse-Wishart then rapid mixing among other states may be necessary to
approximate it. This loses the interpretation of state persistence. In this section we propose
a new model that allows each conditional density of Σt given st to be nonparametrically
modelled as a DPM model. A related model is discussed in Fox et al. (2011). Our version
employs a hierarchical DP prior that links each of the DPM models in each state, in addition
to a separate HDP that governs the rows of the transition matrix as before. This second HDP
improves posterior sampling efficiency and exploits parameters already in use by pooling.

This model is the following

π0|α ∼ SBP(α), (62)

πi|π0, β, κ ∼ DP

(
β + κ,

βπ0 + κδi
β + κ

)
, (63)

st|st−1 = i,Π ∼ πi, i = 1, 2, . . . , (64)

φj
iid∼ G0, j = 1, 2, . . . , (65)

ψ0|αψ ∼ SBP(αψ), (66)

ψi|ψ0, βψ ∼ DP(βψ,ψ0), (67)

zt|st = i,Ψ ∼ ψi, i = 1, 2, . . . , (68)

Σt|Σ1:t−1,Θ,Φ, zt ∼ Ht(Σt|φzt). (69)

zt is a discrete variable taking on natural numbers indexing the component (parameter) as-
signed to observation t. ψi = (ψi,1, ψi,2, . . .) is the state-specific discrete probability measure
for state i, i = 1, 2, . . ., and Ψ = {ψi}∞i=1. ψ0 = (ψ01, ψ02, . . .) draws from a stick-breaking
process SBP(αψ). Conditional on ψ0 and scalar βψ, all ψis are independently drawn from
the common Dirichlet process prior DP(βψ,ψ0). Note that each of the DPM models, indexed
by st, shares the same points of support Φ but has different weights. The weights have a
common DP prior.

Using the inverse-Wishart distribution for Ht(Σt|φzt) we have the IW-sticky-iHMM-HDP
model. This model consists of two hierarchical Dirichlet processes. The first one includes
(62)-(63), which defines the prior for the transition probabilities of the infinite hidden Markov
chain. The second HDP corresponds to (65)-(67), which defines the prior for the set of state-
specific countably-infinite mixture distributions Gi =

∑∞
j=1 ψi,jδφj , i = 1, 2, . . ..
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There is a stick-breaking representation for this model. To distinguish between the two
hierarchical Dirichlet processes used, conditional on st, we have

f(Σt|Θ,Φ,Ψ, st) =
∞∑

zt=1

ψst,ztWishart−1
k (Σt|νzt , (νzt − k − 1)V

1/2
t Azt(V

1/2
t )′). (70)

This is a standard DPM model as discussed in Section 4. Changing st only changes the
weights ψst,zt while the mixture has the same points of support Φ. Now, mixing over states
as well, conditional on st−1, gives

f(Σt|Θ,Π,Φ,Ψ, st−1) =
∞∑

st=1

πst−1,st

∞∑

zt=1

ψst,ztWishart−1
k (Σt|νzt , (νzt − k − 1)V

1/2
t Azt(V

1/2
t )′).(71)

An important feature of this model is that it is possible to persist in a state st for many
periods but have the parameters affecting the data density, νzt and Azt , change. This is due
to each state having a DPM model with different weights mixing over the common set of
parameters Φ.

This model nests both the DPM model and the iHMM model. What this means in
practice is that we can separate out the states that mix in an i.i.d fashion from the states
that mix with persistence (Markov chain).

The IW-sticky-iHMM-HDPmodel is completed with the following priors α ∼ Gamma(a6, c6),
β + κ ∼ Gamma(a7, c7), ρ ∼ Beta(a8, c8), αψ ∼ Gamma(a9, c9) and βψ ∼ Gamma(a10, c10).

5.3.1 Posterior inference

From the stick-breaking representation of the model in (71) we can modify the previous
beam sampler to provide a valid sampler that stochastically truncates the state space to a
finite one in which the FFBS can be applied. The main difference is that now the probability
weights are πst−1,stψst,zt and to truncate the state space we need to consider two dimensions,
that of st and zt. The auxiliary latent variable ut > 0 is introduced such that its conditional
density is

p(ut|st, st−1, zt,Π,Ψ) =
1(ut < πst−1,stψst,zt)

πst−1,stψst,zt
. (72)

We seek to find truncation variables K and KZ such that the set {(st, zt)|st ≤ K, zt ≤ KZ}
contains all instances of ut < πst−1,stψst,zt for each t. First, find K such that maxj∈{1,...,K}{1−∑K

l=1 πj,l} < mint{ut}. Given K, we have ut > πst−1,stψst,zt for all st > K for any value of zt.

This holds since ψst,zt ≤ 1. Then, find KZ such that maxj∈{1,...,K}{1−
∑KZ

l=1 ψj,l} < mint{ut}.
Note that ut > πst−1,stψst,zt for any zt > KZ and st ≤ K since πst−1,st ≤ 1. Therefore, any
pair (st, zt) that satisfies ut < πst−1,stψst,zt will also satisfy st ≤ K, zt ≤ KZ . With this, the
double summation in (71) is truncated at K and KZ and the state variables st and zt can be
sampled jointly with the FFBS as in the previous iHMM models. The effective dimension
of the state space in the FFBS step is K ×KZ .

As before, after the state variables are sampled we keep track of only the states (st, zt)
in which at least one observation is assigned. These alive states are ordered from 1 to K for
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st and 1 to KZ for zt, respectively. Where appropriate we keep track of the first K + 1 or
KZ + 1 values of parameter vectors.

The full parameter set consists of {u1:T , s1:T , z1:T ,π0,Π,ψ0,Ψ,Φ,Θ, α, β, κ, αψ, βψ}, where
z1:T = {zt}Tt=1. The sampling procedure sequentially simulates from the following conditional
posterior distributions:

1. p(u1:T |s1:T , z1:T ,Π,Ψ),

2. p(s1:T , z1:T |Π,Ψ, u1:T ,Φ,Θ,Σ1:T ),

3. p(π0|s1:T , α, β, κ),

4. p(Π|π0, s1:T , β, κ),

5. p(ψ0|z1:T , αψ, βψ),

6. p(Ψ|ψ0, z1:T , βψ),

7. p(Φ|z1:T ,Θ,Σ1:T ),

8. p(α, β, κ|s1:T ,π0),

9. p(αψ, βψ|z1:T ,ψ0),

10. p(Θ|z1:T ,Φ,Σ1:T ).

See the Appendix for details of each of the sampling steps. Note that compared to the iHMM
models, the conditional posteriors of Φ and Θ depend on z1:T , rather than s1:T .

5.3.2 Predictive density

The predictive density can be computed in a similar way as before. Given a draw from the
posterior,

p(ΣT+1|Σ1:T ,Π
(i), s

(i)
1:T ,Ψ

(i), z
(i)
1:T ,Φ

(i),Θ(i))

=
K(i)∑

j=1


π(i)

s
(i)
T
,j

K
(i)
Z∑

q=1

ψ
(i)
j,qh(ΣT+1|Θ(i), φ(i)

q )




+


1−

K(i)∑

j=1


π(i)

s
(i)
T
,j

K
(i)
Z∑

q=1

ψ
(i)
j,q






∫
h(ΣT+1|Θ(i), φ)G0(dφ) (73)

≈
K(i)∑

j=1


π(i)

s
(i)
T
,j

K
(i)
Z∑

q=1

ψ
(i)
j,qh(ΣT+1|Θ(i), φ(i)

q )




+


1−

K(i)∑

j=1


π(i)

s
(i)
T
,j

K
(i)
Z∑

q=1

ψ
(i)
j,q




 1

R

R∑

l=1

h(ΣT+1|Θ(i), φ[l]), (74)
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where φ[l] iid∼ G0, l = 1, . . . , R. Thus, the predictive density with all parameter uncertainty
integrated out is obtained as

p(ΣT+1|Σ1:T ) ≈
1

N

N∑

i=1

p(ΣT+1|Σ1:T ,Π
(i), s

(i)
1:T ,Ψ

(i), z
(i)
1:T ,Φ

(i),Θ(i)). (75)

6 Joint Modeling of Return and RCOV

Although our focus is on nonparametric modeling of RCOV we also evaluate the performance
of our models through density forecasts of returns. Better models of RCOV should translate
into better density forecasts of returns. We link any of the previous specifications of Σt with
the following model to determine the distribution of returns given Σt,

9

p(rt|Σt) = N(rt|µ,Λ1/2Σt(Λ
1/2)′). (76)

As in Jin & Maheu (2013) Λ is a symmetric positive-definite matrix that can scale up or
down Σt. This is a slightly different specification than Jin & Maheu (2013) which leads to
better empirical performance. If Λ = I then Σt is synonymous with the variance of returns,
but we do not assume this is true in our analysis and place a prior on Λ1/2 to estimate it.
Besides allowing for additional flexibility an advantage of this approach is that (76) can be
estimated independently once and used for any of our models of Σt. Each element of Λ1/2

is assigned an independent normal prior with diagonal elements restricted to be positive for
identification purpose. Estimation is conducted with a random walk proposal in an MH
sampler.

If Σt is modelled parametrically or nonparametrically using the inverse-Wishart kernel
instead of the Wishart kernel, it can be shown that linking rt and Σt with (76) (instead of the
other alternative in Jin & Maheu (2013) ) renders a special implication for the conditional
distribution of rt. For example, if we assume (76) and Σt follows the IW-A(M) model, then
after integrating out Σt we have

f(rt|Σ1:t−1, ν,Θ) = Stk

(
rt

∣∣∣∣µ,
ν − k − 1

ν − k + 1
Λ1/2Vt(Λ

1/2)′, ν − k + 1

)
. (77)

Stk(.|µ, ν−k−1
ν−k+1

Λ1/2Vt(Λ
1/2)′, ν−k+1) denotes the density of a multivariate Student-t distribu-

tion with mean µ, ν−k+1 degrees of freedom and the scale matrix equal to ν−k−1
ν−k+1

Λ1/2Vt(Λ
1/2)′.

Similarly, if Σt obeys the IW-DPM model, we will have

f(rt|Σ1:t−1,Θ,Ω,Φ) =
∞∑

j=1

ωjStk

(
rt

∣∣∣∣µ,
νj − k − 1

νj − k + 1
Λ1/2V

1/2
t Aj(V

1/2
t )′(Λ1/2)′, νj − k + 1

)
,(78)

which means that conditionally rt follows an infinite mixture of multivariate Student-t distri-
butions, with each component distribution having a different scale matrix

νj−k−1

νj−k+1
Λ1/2V

1/2
t Aj(V

1/2
t )′(Λ1/2)′

and a different degree of freedom νj − k + 1.

9In estimation we fix µ = 0 but additional dynamics such as an autoregressive process could be used.
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These results also apply for the infinite hidden Markov models with an inverse-Wishart
kernel and conditioning on the last state st−1. That is, combining returns with any of the
inverse-Wishart based mixture models (with constant or time-varying weights) results in a
countably infinite mixture of Student-t distributions for returns.

7 Estimation Results

The full sample estimates are reported in Tables 2, 3 and 4. In the latter table we confine
our attention to iHMM models with the inverse-Wishart kernel as these performed better
in forecasting than the Wishart alternatives. All models have an identical specification for
Vt with 3 components which have the lag length estimated. Other specifications for Vt are
possible, such as adding in an asymmetric effect from lagged returns10 but this provided
little gains. Therefore, we focus on the best model in Jin & Maheu (2013).

The following prior parameters are used. For IW-DPM and W-DPM, α ∼ Gamma(2, 8).
For IW-iHMM, α ∼ Gamma(2, 8), β ∼ Gamma(2, 8); for IW-sticky-iHMM, α ∼ Gamma(2, 8),
β + κ ∼ Gamma(2, 8), ρ ∼ Beta(30, 0.1); for IW-sticky-iHMM-HDP, α ∼ Gamma(2, 20),
β + κ ∼ Gamma(2, 20), ρ ∼ Beta(30, 0.1), αψ ∼ Gamma(2, 8), βψ ∼ Gamma(2, 8). For all
the nonparametric models, γ0 = 10 and λ = 10. For IW-A(3) and W-A(3), ν ∼ Expν>k+1(10)
and ν ∼ Expν>k(10), respectively. The priors for Θ and Λ1/2 are the same for all models.
In particular, the priors for the elements of bj’s are all N(0, 100), except that the first ele-
ments of bj are truncated to be positive for identification purposes. The priors for ℓ2 and ℓ3
are uniform discrete with support {2, 3, . . . , 200}, with the restriction ℓ2 < ℓ3. Each of the
elements of Λ1/2 are assumed to have a N(0, 100) prior with diagonal elements restricted to
be positive. In posterior simulation the first 10000 draws are discarded and the next 10000
for used for inference.

Table 2 reports estimates for the parametric models. The estimates of the component
impacts, bij, indicate significant persistence. The lag lengths ℓ2 and ℓ3 are consistent with 2
weeks and just under 3 months for the IW-A(3) model.

Table 3 contains estimates of the DPM models IW-DPM and W-DPM. These models
assume the conditional density of RCOV is unknown and approximate it with an i.i.d.
mixture. All time variation in this specification comes through Vt as in the parametric
models. Estimates of bij and ℓ2 and ℓ3 are similar to those in Table 2 and very precisely
estimated. The parameter K is the number of alive clusters used. On average, the IW-DPM
uses about 38 components in the mixture, much less than the W-DPM model which uses
about 56. α, the precision parameter is also larger in the Wishart DPM model. According
to these estimates the IW-DPM is using approximately 646 parameters11, on average, to
capture the unknown distribution.

Estimates of bij and the lag lengths of components are broadly similar in the iHMM
models reported in Table 4. The IW-iHMM model and the IW-sticky-iHMM use an HDP to
model the transition matrix of the iHMM. The sticky version introduces a prior to estimate
the importance of state persistence. The final model, IW-sticky-iHMM-HDP employs two
HDPs to model the infinite transition matrix of the iHMM and to model the linked DPM

10See Jin & Maheu (2013) for an example.
1138× (k + 1)k/2 + 38 + 38 is the number of parameters in all Aj plus all vj plus weights.
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models in each state. The first two models in this table are similar and their hyperparameters
estimates are close. For instance, the number of active states (K) is about 28, while α is
just over 2.0. The first two iHMM specifications are using approximately 28 components to
capture the time-varying structure in the conditional density of Σt.

The hierarchical structure in the IW-sticky-iHMM-HDP is quite different from the other
two infinite hidden Markov models. The number of active states in the Markov chain drops
to 10. On the other hand, the number of active states in the DPM portion of the model
is around 26. If some of the structure in the conditional density of RCOV is constant over
time the IW-sticky-iHMM-HDP model estimates this more parsimoniously than the iHMM
specification. The precision parameters for the top level of the two hierarchical Dirichlet
processes are very different with α = 0.4806 for the Markov chain and αψ = 2.8799 for the
Dirichlet process mixtures. The estimates point to a clear distinction in the mixture model
dynamics needed to capture the conditional density of Σt.

Figure 5 displays the estimate of states changes, P (st 6= st−1|Σ1:T ) for the IW-sticky-
iHMM-HDP model. There are regular state changes and the model identifies these clearly.
Adding the HDP structure to the model also increases persistence of states. The persistence
parameter for states goes from 0 in the IW-iHMM to 0.57 (κ = (β + κ) ∗ ρ Table 4) for
the IW-sticky-iHMM-HDP. Average state durations go from 1.095 (IW-DPM ), 1.434 (IW-
sticky-iHMM) to 3.456 (IW-sticky-iHMM-HDP). Finally, Figure 6 shows the impact of time
variation in the IW-sticky-iHMM-HDP model versus the parametric version. Both panels
indicate significant moves in the degree of freedom parameter and the log-determinant of Aj
over time. The parametric model sets these to constants across time.

7.1 Forecasts

To compare the models we focus on out-of-sample density forecasts and also evaluate point
forecasts. The out-of-sample period extends from T0 = 2006/03/31 to 2007/12/31, for a
total of 441 observations. Each of the models is recursively estimated at each t in the out-
of-sample period and forecasts are computed. To reduce some of the computational burden
the first 3000 iterations of the posterior sampler are discard as burn-in and the next 5000
are used for inference.

As in Jin & Maheu (2013) a term structure of predictive likelihoods is computed for
each model. This evaluates out-of-sample density forecasts of Σt+h for h = 1, 5, 10, 20, 60
given time t information. The cumulative log-predictive likelihood for model A and forecast
horizon h is defined as

T−h∑

t=T0−h

log p(Σt+h|Σ1:t,A). (79)

This allows for comparison of the quality of density forecasts from each model from one day
out to about 3 months out.12 The log-predictive likelihoods for the full out-of-sample period
are found in Table 5. Larger values indicate better models and log-predictive Bayes factors
for the comparison of two models can be formed by subtracting the entries in the table for a

12For h > 1, the predictive density is computed in a similar way as with h = 1 in Sections 4 and 5, but
requires simulating out the latent variables.
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fixed h. A positive log-predictive Bayes factor favours the first model and a value in excess
of 5 is considered strong.

The first point to note from Table 5 is that the inverse-Wishart specification is uniformly
better than its Wishart counterpart. Yet, most of literature has used Wishart type models
(Gourieroux et al. 2009, Golosnoy et al. 2012, Jin & Maheu 2013). The improvements are
not minor. For instance, the log-Bayes factor for the IW-A(3) versus the W-A(3) is 1029.98
(h = 1), 813.97 (h = 5) and 754.69 (h = 60).

Moving from the IW-A(3) model to the IW-DPM model gives a huge improvement in
the accuracy of density forecasts. Log-predictive Bayes factors are in excess of 1000. The
difference in the individual log-predictive likelihoods at each time t is displayed in Figure 7.
Except for a few periods the IW-DPM model is better and often significantly better with
improvements in excess of 5 common. What we can conclude from this is that the parametric
models are simply not competitive in terms of density forecasts. Mixture models offer large
improvements and suggest important deviations from parametric distributional assumptions.

Table 5 also shows that when serving as a kernel in the DPM model, the inverse-Wishart
distribution again provides significantly better results than the Wishart distribution (IW-
DPM versus W-DPM) in all cases except for the longest forecast horizons h = 20, 60.

The ranking of the different nonparametric models is much closer, but successively more
sophisticated models yield substantial improvements. For instance, the IW-sticky-iHMM-
HDP against the IW-DPM has a log-Bayes factor of 84.48 (h = 1) while against the IW-
sticky-iHMM is still significantly better with a log-Bayes factor of 40.2. With the exception
of the forecast horizon of h = 60 the IW-sticky-iHMM-HDP significantly dominates every
other model in the table.

A display of various cumulative log-Bayes factors is shown in Figure 8. Also shown is the
log-generalized variance log |Σt|, which is a single measure of variability. It is clear that no
individual time period drives the results and that the final values reported on Table 5 are
the result of regular ongoing gains.

Table 6 provides further details on model differences. Although there are general gains
in moving to the nonparametric models this table identifies the differences in log-predictive
likelihoods for outliers of Σt that are beyond 3 and 5 standard deviations from their sample
mean. The outliers span the whole out-of-sample period and are not confined to diagonal
elements only. It is clear that the the nonparametric model always does better for these
outliers compared to the IW-A(3) model. In August 2007 the gains are particularly large.
The last column compares the differences between two nonparametric models. The improve-
ments from the IW-sticky-iHMM-HDP model are mixed but again this model does well in
August 2007. In summary, the parametric models fail to account for extreme observations in
diagonal and off-diagonal elements of realized covariance matrices while the nonparametric
models do significantly better.

Differences in the densities can be seen from Figure 9 which displays (in-sample) density
estimates of an equally weighted portfolio from selected models for three consecutive days
in the out-of-sample period. The vertical line is the realized variance of the portfolio. Just
before this period the realized variance takes a dramatic drop from about 10 to 1. The density
of the IW-iHMM is quite different than the other models and is able to adapt quickly to this
change in volatility.

Point forecasts in the form of predictive means are computed and their root mean squared
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errors are found in Table 7. Results are consistent with the density forecasts. That is, the
IW-sticky-iHMM-HDP performs the best at most forecast horizons. Compared to the IW-
A(3) model our preferred nonparametric model achieves reductions of 7% (h = 1), 4.7%
(h = 5), 5.4% (h = 10), 5.7% (h = 20) and 7.4% (h = 60) in root mean squared error.

Results on density forecasts for returns are found in Table 8. Each of the models for Σt is
linked to returns through (76) with Λ estimated in general. This table reports multi-period
log-predictive likelihood values for returns from each of the joint return-RCOV models. Also
included is an asymmetric VD-GARCH-t model which uses only daily returns

rt|r1:t−1 ∼ Stk(0, Ht, ζ) (80)

Ht = CC ′ + aa′ ⊙ rt−1r
′
t−1 + bb′ ⊙Ht−1 + ee′ ⊙ ηt−1η

′
t−1 (81)

where ηt = max[0,−rt], and a, b, e are all k × 1 vectors.
For the improvements in modeling RCOV to translate into improvements in return density

forecasts it is important to estimate Λ. Generally, the ranking of the models is similar to
our previous discussion, however, the gains are smaller but still significant. For instance, the
log-Bayes factor for IW-sticky-iHMM-HDP versus IW-A(3) is 27.33 (h = 1), 28.39 (h = 5)
and 37.24 (h = 60). The gains from modeling RCOV nonparametrically improve return
density forecasts for each forecast horizon as compared to the GARCH model.

In summary, the time-varying mixture models presented in this paper provide large gains
in density forecasts of RCOV and smaller, but still significant gains, for density forecasts for
returns. The improvements that the nonparametric models provide in fitting the data are
so substantial as to essentially make the parametric models we consider of little value.

7.2 Robustness

In this section we report on the sensitivity of the predictive likelihood results to various prior
configurations. We focus on the IW-DPM and IW-sticky-iHMM-HDP specifications. The
results are found in Tables 9 – 14. Tables 9 and 12 display the different prior assumptions for
the two models. To match the previous results we estimate and compute forecast quantities
for each t in the out-of-sample period for the the models with each new prior specification.

The log-predictive likelihoods of Σt+h for both models are fairly robust. There is some
variation with the different priors, often leading to improved performance, but overall the
gains discussed in the previous section are found here as well.

In both Tables 10 and 13 the final columns report the posterior mean of the number of
alive clusters (K for IW-DPM and K and KZ for IW-sticky-iHMM-HDP) from full sample
estimation. The first value is from the benchmark prior and discussed above. The number of
active clusters in the IW-DPM model is very robust to changes in the prior. The IW-sticky-
iHMM-HDP model shows more changes but it is always the case that KZ is about twice or
more the size of K. In other words, the Markov switching component of the model has a
much smaller dimension once each state st is modelled as a nonparametric DPM model.

The other Tables 11 and 14 report the cumulative log-predictive likelihoods for returns.
In contrast to predictive likelihoods for Σt+h, different prior assumptions results in very little
changes.
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In summary, the dominance of the new nonparametric models is robust to different prior
assumptions and the importance of combining Markov-switching behaviour with a DPM
model is preserved in the IW-sticky-iHMM-HDP model.

8 Conclusion

This paper introduces several new Bayesian nonparametric models suitable for capturing the
unknown conditional distribution of realized covariance (RCOV) matrices. Existing dynamic
Wishart models are extended to countably infinite mixture models. We consider mixture
models with constant weights as well as time-varying weights to capture time dependence
in the unknown distribution. Each of our models can be combined with returns to provide
a coherent joint model of returns and RCOV. The extensive forecast results show the new
models provide very significant improvements in density forecasts for RCOV and returns and
competitive point forecasts of RCOV. The parametric models fail to account for extreme
observations in diagonal and off-diagonal elements of realized covariance matrices while the
nonparametric models do significantly better.

The best performing model combines mixture dynamics from an infinite hidden Markov
model and a Dirichlet process mixture. Our conclusion is that dynamic mixtures of inverse-
Wishart distributions are a very promising area of research for modeling the conditional
density of realized covariance matrices.

9 Appendix

In this section we provide details for the beam samplers for IW-sticky-iHMM and IW-sticky-
iHMM-HDP.

9.1 Sampling details for IW-sticky-iHMM

Let K denote the number of active states in the state sequence s1:T . Let njl denote the
number of transitions from state j to state l in s1:T , that is, njl = #{t : st−1 = j, st = l}.
Also let nj. =

∑
l njl, n.l =

∑
j njl. A set of auxiliary variables, m = {mjl}, m̃ = {m̃j},

m = {mjl}, are introduced to facilitate the sampling. We use the notation mj. =
∑

lmjl,
m.l =

∑
jmjl, m.. =

∑
j

∑
lmjl. Similar notations are used for m̃ and m.

1. Initializing: Choose a starting value for K and a starting state sequence s1:T consisting
of K active states which are labelled 1, . . . , K; The infinite many inactive states are
merged into one state. Initialize π0 and πj for j = 1, . . . , K, all of which have K + 1
elements; Initialize φj for j = 1, . . . , K; Initialize α, β, κ,Θ.

2. Sampling u1:T : For t = 1, . . . , T , sample ut from U(0, πst−1,st), a uniform distribution
on (0, πst−1,st).

3. Sampling s1:T :
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(a) Set the initial value of K equal to K and if max{πj,K+1}Kj=1 > min{ut}Tt=1, repeat
the following steps:

i. Draw πK+1 ∼ Dirichlet(βπ0).

ii. Break the last probability weight of π0, π0K+1:

A. Draw ζ ∼ Beta(1, α).

B. Add new probability weight π0K+2 = (1− ζ)π0K+1.

C. Update π0K+1 = ζπ0K+1.

iii. Break the last probability weight of πj for j = 1, . . . , K + 1:

A. Draw ζj ∼ Beta(βπ0K+1, βπ0K+2).

B. Add new probability weight πj,K+2 = (1− ζj)πj,K+1.

C. Update πj,K+1 = ζjπj,K+1.

iv. Draw AK+1 ∼ Wishartk(γ0,
1
γ0
I), νK+1 ∼ Expν>k+1(λ).

v. Increment K.

(b) Sample s1:T from p(s1:T |Π, u1:T ,Φ,Θ,Σ1:T ) using the forward filtering and back-
ward smoothing method based on Chib (1996):

i. Working sequentially forwards in time for t = 1, . . . , T , repeat the following
steps:

Prediction step: for j = 1, . . . , K, calculate

p(st = j|u1:T ,Π,Φ,Θ,Σ1:t−1) ∝
K∑

i=1

1(ut < πi,j)p(st−1 = i|u1:T ,Π,Φ,Θ,Σ1:t−1).(82)

Update step: for j = 1, . . . , K, calculate

p(st = j|u1:T ,Π,Φ,Θ,Σ1:t) ∝ p(st = j|u1:T ,Π,Φ,Θ,Σ1:t−1)h(Σt|Σ1:t−1,Θ, φj).(83)

ii. Working sequentially backwards in time, sample s1:T :

A. Sample sT from p(sT |u1:T ,Π,Φ,Θ,Σ1:T ).

B. Sample st from p(st|u1:T ,Π,Φ,Θ,Σ1:t)1(ut+1 < πst,st+1) for t = T −
1, . . . , 1.

(c) Cleaning up: Update K given s1:T , re-label all the active states in s1:T in the
order of 1, . . . , K and remove the inactive states; Adapt π0, Π, A, ν according to
the new labelling; Collapse π0K+1 and πj,K+1 for j = 1, . . . , K.

4. Sampling auxiliary variables m, m̃, m:

(a) Samplem: For j = 1, . . . , K and l = 1, . . . , K, samplemjl as follows: Setmjl = 0.

For i = 1, . . . , njl, draw xi ∼ Bernoulli( βπ0l+κδ(j,l)
i−1+βπ0l+κδ(j,l)

), where δ(., .) denotes the
discrete Kronecker delta. If xi = 1, increment mjl.

(b) Sampling m̃: For j = 1, . . . , K, sample m̃j ∼ Binomial(mjj,
ρ

ρ+π0j(1−ρ)
), where

ρ = κ
β+κ

.
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(c) Update m: For j = 1, . . . , K and l = 1, . . . , K, set mjl = mjl if j 6= l; set
mjj = mjj − m̃j.

5. Sampling π0: Draw

π0 ∼ Dirichlet(m.1, . . . ,m.K , α). (84)

6. Sampling Π: For j = 1, . . . , K, sample

πj ∼ Dirichlet(βπ01 + nj1, . . . , βπ0j + κ+ njj, . . . , βπ0K + njK , βπ0K+1). (85)

7. Sampling Φ: for j = 1, . . . , K,

(a) draw

Aj ∼ Wishartk(γj, Qj), (86)

where γj = γ0+n.jνj, andQj =
[
(νj − k − 1)

∑
{t:st=j}

[
(V

1/2
t )Σ−1

t ((V
1/2
t ))′

]
+ γ0I

]−1

;

(b) sample

νj ∼ p(νj|Σ1:T , s1:T , Aj,Θ)

∝ p(νj)
∏

{t:st=j}

h(Σt|Θ, νj, Aj). (87)

An MH step with Gaussian random walk proposal is used.

8. Sampling hyperparameters α, β and κ:

(a) Sample β + κ:

i. For j = 1, . . . , K, draw ηj ∼ Bernoulli(
nj.

nj.+β+κ
).

ii. For j = 1, . . . , K, draw η̃j ∼ Beta(β + κ+ 1, nj.).

iii. Sample β + κ ∼ Gamma(a4 +m.. −
∑K

j=1 ηj, c4 −
∑K

l=1 logη̃l).

(b) Sample ρ: Sample ρ ∼ Beta(a5 + m̃., c5 +m.. − m̃.).

(c) Sample α:

i. Draw ω̃ ∼ Bernoulli( m..
m..+α

).

ii. Draw ω ∼ Beta(α + 1,m..).

iii. Sample α ∼ Gamma(a3 + K̃ − ω̃, c3 − log(ω)), where K̃ =
∑K

l=1 1(m.l > 0).

9. Sample Θ: Note p(Θ|s1:T ,Φ,Σ1:T ) ∝ ∏T
t=1 h(Σt|Θ, φst)p(Θ). MH steps are used to

sample elements of bj’s and ℓj as discussed in the benchmark models.

10. Repeat 2-9.

For IW-iHMM, fix κ = 0 and omit 4b, 8b while replace m with m.
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9.2 Sampling details for IW-sticky-iHMM-HDP

Let K denote the number of active states in the state sequence s1:T , and njl denote the
number of transitions from state j to state l in s1:T . Let KZ denote the number of active
clusters in sequence z1:T , and nZjl denote the number of times cluster l is visited in state j,
that is, nZjl = #{t : st = j, zt = l}. An extra auxiliary variablemZ = {mZjl} is introduced.

1. Initializing: Choose a starting value for K and a starting state sequence s1:T consisting
of K active states which are labelled 1, . . . , K; The infinite many inactive states are
merged into one state. Choose a starting value for KZ and a starting z1:T sequence
consisting of KZ clusters which are labelled 1, . . . , KZ ; The infinite many unvisited
components are merged into one component. Initialize π0 and πj for j = 1, . . . , K, all
of which have K + 1 elements; Initialize ψ0 and ψj for j = 1, . . . , K, all of which have
KZ + 1 elements; Initialize φj for j = 1, . . . , KZ ; Initialize α, β, κ, αψ, βψ,Θ.

2. Sampling u1:T : For t = 1, . . . , T , sample ut from U(0, πst−1,stψst,zt).

3. Sampling s1:T , z1:T :

(a) Set the initial value of K equal to K and if max{πj,K+1}Kj=1 > min{ut}Tt=1, repeat
the following steps:

i. Draw πK+1 ∼ Dirichlet(βπ0).

ii. Break the last probability weight of π0, π0K+1:

A. Draw ζ ∼ Beta(1, α).

B. Add new probability weight π0K+2 = (1− ζ)π0K+1.

C. Update π0K+1 = ζπ0K+1.

iii. Break the last probability weight of πj for j = 1, . . . , K + 1:

A. Draw ζj ∼ Beta(βπ0K+1, βπ0K+2).

B. Add new probability weight πj,K+2 = (1− ζj)πj,K+1.

C. Update πj,K+1 = ζjπj,K+1.

iv. Draw ψK+1 ∼ Dirichlet(βψψ0).

v. Increment K.

(b) Set the initial value of KZ equal to KZ and if max{ψj,KZ+1}Kj=1 > min{ut}Tt=1,
repeat the following steps:

i. Break the last probability weight of ψ0, ψ0KZ+1:

A. Draw ζ ∼ Beta(1, αψ).

B. Add new probability weight ψ0KZ+2 = (1− ζ)ψ0KZ+1.

C. Update ψ0KZ+1 = ζψ0KZ+1.

ii. Break the last probability weight of ψj for j = 1, . . . , K:

A. Draw ζj ∼ Beta(βψψ0KZ+1, βψψ0KZ+2).

B. Add new probability weight ψj,KZ+2 = (1− ζj)ψj,KZ+1.

C. Update ψj,KZ+1 = ζjψj,KZ+1.
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iii. Draw AKZ+1 ∼ Wishartk(γ0,
1
γ0
I), νKZ+1 ∼ Expν>k+1(λ).

iv. Increment KZ .

(c) Sample s1:T , z1:T from p(s1:T , z1:T |Π,Ψ, u1:T ,Φ,Θ,Σ1:T ) using the forward filtering
and backward smoothing method:

i. Working sequentially forwards in time for t = 1, . . . , T , repeat the following
steps:

Prediction step: for j = 1, . . . , K, l = 1, . . . , KZ calculate

p(st = j, zt = l|u1:T ,Π,Ψ,Φ,Θ,Σ1:t−1)

∝
K∑

i=1

KZ∑

q=1

1(ut < πi,jψj,l)p(st−1 = i, zt−1 = q|u1:T ,Π,Ψ,Φ,Θ,Σ1:t−1).(88)

Update step: for j = 1, . . . , K, l = 1, . . . , KZ calculate

p(st = j, zt = l|u1:T ,Π,Ψ,Φ,Θ,Σ1:t)

∝ p(st = j, zt = l|u1:T ,Π,Ψ,Φ,Θ,Σ1:t−1)h(Σt|Θ, φl,Σ1:t−1). (89)

ii. Working sequentially backwards in time for t = 1, . . . , T , sample s1:T , z1:T :

A. Sample (sT , zT ) from p(sT , zT |u1:T ,Π,Ψ,Φ,Θ,Σ1:T ).

B. Sample (st, zt) from p(st, zt|u1:T ,Π,Ψ,Φ,Θ,Σ1:t)1(ut+1 < πst,st+1ψst+1,zt+1)
for t = T − 1, . . . , 1.

(d) Cleaning up: Update K given s1:T , re-label all the active states in s1:T in the
order of 1, . . . , K and remove the inactive states; Update KZ given z1:T , re-label
all the alive clusters in z1:T in the order of 1, . . . , KZ and remove the unvisited
components; Adapt π0, Π, ψ0,Ψ, A, ν according to the new labelling; Collapse
π0K+1 and πj,K+1 for j = 1, . . . , K, and collapse ψ0KZ+1 and ψl,KZ+1 for l =
1, . . . , K.

4. Sampling auxiliary variables m, m̃, m:

(a) Samplem: For j = 1, . . . , K and l = 1, . . . , K, samplemjl as follows: Setmjl = 0.

For i = 1, . . . , njl, draw xi ∼ Bernoulli( βπ0l+κδ(j,l)
i−1+βπ0l+κδ(j,l)

). If xi = 1, increment mjl.

(b) Sampling m̃: For j = 1, . . . , K, sample m̃j ∼ Binomial(mjj,
ρ

ρ+π0j(1−ρ)
).

(c) Update m: For j = 1, . . . , K and l = 1, . . . , K, set mjl = mjl if j 6= l; set
mjj = mjj − m̃j.

5. Sampling π0: Draw

π0 ∼ Dirichlet(m.1, . . . ,m.K , α). (90)

6. Sampling Π: For j = 1, . . . , K, sample

πj ∼ Dirichlet(βπ01 + nj1, . . . , βπ0j + κ+ njj, . . . , βπ0K + njK , βπ0K+1). (91)
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7. Sampling auxiliary variablesmZ : For j = 1, . . . , K and l = 1, . . . , KZ , sample mZjl as

follows: Set mZjl = 0. For i = 1, . . . , nZjl, draw xi ∼ Bernoulli(
βψψ0l

i−1+βψψ0l
). If xi = 1,

increment mZjl.

8. Sampling ψ0: Draw

ψ0 ∼ Dirichlet(mZ.1, . . . ,mZ.KZ , αψ). (92)

9. Sampling Ψ: For j = 1, . . . , K, sample

ψj ∼ Dirichlet(βψψ01 + nZj1, . . . , βψψ0KZ
+ nZjKZ , βψψ0KZ+1). (93)

10. Sampling Φ: for j = 1, . . . , KZ ,

(a) draw

Aj ∼ Wishartk(γj, Qj), (94)

where γj = γ0+nZ.jνj andQj =
[
(νj − k − 1)

∑
{t:zt=j}

[
(V

1/2
t )Σ−1

t ((V
1/2
t ))′

]
+ γ0I

]−1

;

(b) sample

νj ∼ p(νj|Σ1:T , z1:T , Aj,Θ)

∝ p(νj)
∏

{t:zt=j}

h(Σt|Θ, νj, Aj). (95)

An MH step with Gaussian random walk proposal is used.

11. Sampling hyperparameters α, β and κ:

(a) Sample β + κ:

i. For j = 1, . . . , K, draw ηj ∼ Bernoulli(
nj.

nj.+β+κ
).

ii. For j = 1, . . . , K, draw η̃j ∼ Beta(β + κ+ 1, nj.).

iii. Sample β + κ ∼ Gamma(a7 +m.. −
∑K

j=1 ηj, c7 −
∑K

l=1 logη̃l).

(b) Sample ρ: Sample ρ ∼ Beta(a8 + m̃., c8 +m.. − m̃.).

(c) Sample α:

i. Draw ω̃ ∼ Bernoulli( m..
m..+α

).

ii. Draw ω ∼ Beta(α + 1,m..).

iii. Sample α ∼ Gamma(a6 + K̃ − ω̃, c6 − log(ω)), where K̃ =
∑K

l=1 1(m.l > 0).

12. Sampling hyperparameters αψ, βψ:

(a) Sample βψ:

i. For j = 1, . . . , K, draw ηj ∼ Bernoulli(
nZj.

nZj.+βψ
).

ii. For j = 1, . . . , K, draw η̃j ∼ Beta(βψ + 1, nZj.).
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iii. Sample βψ ∼ Gamma(a10 +mZ.. −
∑K

j=1 ηj, c10 −
∑K

l=1 logη̃l)

(b) Sample αψ:

i. Draw ω̃ ∼ Bernoulli( mZ..
mZ..+αψ

).

ii. Draw ω ∼ Beta(αψ + 1,mZ..).

iii. Sample αψ ∼ Gamma(a9 +KZ − ω̃, c9 − log(ω)).

13. Sample Θ: Note p(Θ|Σ1:T , z1:T ,Φ) ∝
∏T

t=1 h(Σt|Θ, φzt)p(Θ). MH steps are used to
sample elements of bj’s and ℓj as discussed in the benchmark models.

14. Repeat 2-13.

To initialize parameters in this model we start with a fixed truncation version of the
model and iterate on this for several hundred draws. After this we switch to the beam
sampling approach discussed above.
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Table 1: Summary Statistics: Daily Returns and RCOV

Sample covariance from daily returns Average of realized covariances
SPY GE C AA BA SPY GE C AA BA

SPY 1.30 1.52 1.70 1.29 1.07 1.27 1.39 1.56 1.11 0.96
GE 3.18 2.19 1.66 1.32 3.18 1.83 1.29 1.12
C 4.35 1.75 1.38 4.62 1.41 1.21
AA 5.13 1.46 5.08 1.01
BA 4.14 3.84

This table reports the sample covariance from daily returns and the sample average of the realized covariances.
The data are Standard and Poor’s Depository Receipt (SPY), General Electric Co. (GE), Citigroup Inc.(C),
Alcoa Inc. (AA) and Boeing Co. (BA). Total observations is 2281.

Table 2: Full Sample Estimates for IW-A(3) and W-A(3)

IW-A(3) W-A(3)
Mean Stdev 0.95DI Mean Stdev 0.95DI

b11 0.3580 0.0128 (0.3330, 0.3870) 0.4226 0.0163 (0.3906, 0.4522)
b12 0.4048 0.0127 (0.3796, 0.4286) 0.4601 0.0161 (0.4284, 0.4929)
b13 0.3987 0.0122 (0.3732, 0.4192) 0.4410 0.0201 (0.4021, 0.4753)
b14 0.3265 0.0179 (0.2895, 0.3597) 0.3824 0.0249 (0.3324, 0.4293)
b15 0.5232 0.0118 (0.4993, 0.5448) 0.5587 0.0173 (0.5250, 0.5926)
b21 0.7154 0.0090 (0.6973, 0.7312) 0.6651 0.0130 (0.6387, 0.6893)
b22 0.6896 0.0109 (0.6685, 0.7134) 0.6045 0.0154 (0.5782, 0.6383)
b23 0.7252 0.0093 (0.7055, 0.7415) 0.6547 0.0170 (0.6150, 0.6881)
b24 0.5723 0.0169 (0.5378, 0.6056) 0.4825 0.0241 (0.4368, 0.5291)
b25 0.6009 0.0180 (0.5624, 0.6350) 0.5291 0.0225 (0.4840, 0.5719)
b31 0.5005 0.0122 (0.4771, 0.5239) 0.5696 0.0111 (0.5474, 0.5938)
b32 0.5235 0.0148 (0.4941, 0.5547) 0.6187 0.0130 (0.5907, 0.6433)
b33 0.4970 0.0131 (0.4716, 0.5209) 0.5882 0.0138 (0.5611, 0.6157)
b34 0.6863 0.0158 (0.6541, 0.7176) 0.6575 0.0161 (0.6233, 0.6858)
b35 0.4906 0.0208 (0.4494, 0.5297) 0.5612 0.0161 (0.5271, 0.5888)
ν 12.5621 0.0494 (12.4619, 12.6562) 10.6395 0.0639 (10.5127, 10.7640)
ℓ2 13.0000 0.0000 (13.0000, 13.0000) 5.0000 0.0000 (5.0000, 5.0000)
ℓ3 62.3684 0.8608 (61.0000, 63.0000) 65.9914 0.0923 (66.0000, 66.0000)

This table reports the posterior mean, standard deviation and 0.95 probability density intervals for model
parameters.
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Table 3: Full Sample Estimates for IW-DPM and W-DPM

IW-DPM W-DPM
Mean Stdev 0.95DI Mean Stdev 0.95DI

b11 0.2419 0.0164 (0.2091, 0.2720) 0.2817 0.0168 (0.2484, 0.3143)
b12 0.2802 0.0227 (0.2342, 0.3274) 0.2918 0.0194 (0.2513, 0.3267)
b13 0.2751 0.0210 (0.2290, 0.3174) 0.3026 0.0233 (0.2553, 0.3462)
b14 0.2478 0.0365 (0.1766, 0.3162) 0.2349 0.0335 (0.1671, 0.2997)
b15 0.4209 0.0207 (0.3795, 0.4608) 0.4430 0.0214 (0.4004, 0.4830)
b21 0.6532 0.0112 (0.6318, 0.6751) 0.6264 0.0129 (0.6014, 0.6519)
b22 0.6274 0.0140 (0.6016, 0.6551) 0.6020 0.0170 (0.5740, 0.6366)
b23 0.6742 0.0127 (0.6515, 0.7003) 0.6679 0.0162 (0.6341, 0.6953)
b24 0.4888 0.0251 (0.4394, 0.5368) 0.4994 0.0286 (0.4391, 0.5534)
b25 0.4577 0.0274 (0.4003, 0.5099) 0.4600 0.0276 (0.4021, 0.5167)
b31 0.6302 0.0133 (0.6024, 0.6556) 0.6386 0.0137 (0.6114, 0.6648)
b32 0.6473 0.0149 (0.6177, 0.6749) 0.6647 0.0157 (0.6297, 0.6914)
b33 0.6283 0.0146 (0.5997, 0.6583) 0.6191 0.0165 (0.5866, 0.6547)
b34 0.7376 0.0191 (0.6993, 0.7729) 0.7150 0.0224 (0.6687, 0.7550)
b35 0.7035 0.0228 (0.6580, 0.7430) 0.6802 0.0210 (0.6357, 0.7199)
ℓ2 13.0000 0.0000 (13.0000, 13.0000) 13.2716 0.5052 (13.0000, 15.0000)
ℓ3 64.6217 0.9445 (64.0000, 67.0000) 64.2398 0.6671 (63.0000, 66.0000)
α 2.7012 0.4635 (1.8680, 3.6653) 4.0587 0.5904 (2.9989, 5.2988)
K 38.1623 1.8080 (35.0000, 42.0000) 56.5360 2.9715 (51.0000, 63.0000)

This table reports the posterior mean, standard deviation and 0.95 probability density intervals
for model parameters. K is the number of alive clusters.
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Table 4: Full Sample Estimates

IW-iHMM IW-sticky-iHMM IW-sticky-iHMM-HDP
Mean 0.95DI Mean 0.95DI Mean 0.95DI

b11 0.1871 (0.1509, 0.2245) 0.1386 (0.0960, 0.1837) 0.2430 (0.2078, 0.2773)
b12 0.1984 (0.1406, 0.2469) 0.1728 (0.1062, 0.2300) 0.2903 (0.2507, 0.3298)
b13 0.2438 (0.1891, 0.2960) 0.2013 (0.1462, 0.2481) 0.2890 (0.2500, 0.3303)
b14 0.2609 (0.1533, 0.3225) 0.1317 (0.0180, 0.2260) 0.2021 (0.1444, 0.2584)
b15 0.2707 (0.1850, 0.3346) 0.2920 (0.2384, 0.3369) 0.3616 (0.3155, 0.4031)
b21 0.6212 (0.5941, 0.6449) 0.6096 (0.5819, 0.6354) 0.6028 (0.5753, 0.6303)
b22 0.5922 (0.5621, 0.6183) 0.5759 (0.5451, 0.6126) 0.5777 (0.5437, 0.6116)
b23 0.6502 (0.6163, 0.6862) 0.6407 (0.6131, 0.6659) 0.6083 (0.5728, 0.6400)
b24 0.4572 (0.4078, 0.5095) 0.4738 (0.4259, 0.5199) 0.4829 (0.4230, 0.5456)
b25 0.4311 (0.3665, 0.4992) 0.4281 (0.3728, 0.4838) 0.4076 (0.3332, 0.4805)
b31 0.6698 (0.6444, 0.6938) 0.6877 (0.6636, 0.7142) 0.6653 (0.6371, 0.6890)
b32 0.6937 (0.6660, 0.7192) 0.7135 (0.6817, 0.7406) 0.6719 (0.6417, 0.7009)
b33 0.6577 (0.6225, 0.6850) 0.6786 (0.6533, 0.7048) 0.6707 (0.6447, 0.6991)
b34 0.7434 (0.7051, 0.7821) 0.7569 (0.7163, 0.7957) 0.7360 (0.6904, 0.7780)
b35 0.7760 (0.7341, 0.8138) 0.7611 (0.7248, 0.7992) 0.7550 (0.7094, 0.7958)
ℓ2 14.2747 (13.0000, 16.0000) 13.4932 (13.0000, 14.0000) 15.9964 (16.0000, 16.0000)
ℓ3 64.2628 (63.0000, 68.0000) 64.0265 (64.0000, 64.0000) 67.0946 (64.0000, 68.0000)
α 2.0792 (1.3270, 2.9635) 2.0203 (1.2841, 2.9260) 0.4806 (0.2390, 0.8078)
β + κ 1.9951 (1.6541, 2.3818) 2.1287 (1.7650, 2.5303) 0.6802 (0.4273, 0.9891)
ρ 0.0000 (0.0000, 0.0000) 0.2682 (0.2106, 0.3288) 0.6814 (0.5636, 0.7911)
K 28.5290 (28.0000, 30.0000) 27.2671 (27.0000, 28.0000) 10.4747 (10.0000, 11.0000)
αψ −− −− −− −− 2.8799 (1.9606, 3.9650)
βψ −− −− −− −− 1.8194 (1.3499, 2.3314)
KZ −− −− −− −− 26.4110 (26.0000, 28.0000)

This table reports the posterior mean and 0.95 probability density intervals for model parameters. K is the
number of alive clusters in the infinite hidden Markov model and KZ is the number of alive clusters in the
state dependent DPM mixture in the IW-sticky-iHMM-HDP specification.

Table 5: Cumulative Log-predictive Likelihoods for RCOV

Model h = 1 h = 5 h = 10 h = 20 h = 60
IW-A(3) −968.51 −1344.51 −1471.53 −1708.97 −1959.79
W-A(3) −1998.49 −2158.48 −2315.78 −2558.65 −2714.48

IW-DPM 110.41 −82.15 −169.58 −335.31 −523.33
W-DPM −6.30 −161.38 −204.20 −333.36 −383.15
IW-iHMM 137.10 −70.32 −157.66 −313.68 −492.52
IW-sticky-iHMM 154.69 −75.01 −161.56 −296.96 −467.45
IW-sticky-iHMM-HDP 194.89 −39.08 −107.01 −260.69 −397.63

The table reports the cumulative log-predictive likelihoods for RCOV at different fore-
cast horizon h. The first two models are parametric while the remainder are nonpara-
metric.
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Table 6: Difference in Log-predictive Likelihoods for Outliers

Outlier Difference in log-predictive likelihoods
date 3 stdev 5 stdev IW-DPM/IW-A(3) IW-sticky-iHMM-HDP/IW-DPM

060411 Σ4,4 5.65 0.04
060515 Σ4,4 4.09 −0.24
061011 Σ4,4 3.39 −1.49
070213 Σ4,4 3.59 0.40
070425 Σ4,4 4.80 −0.67
070507 Σ4,4 3.50 −2.31
070712 Σ4,4 5.91 0.82
070719 Σ4,4 6.56 0.29
070809 Σ4,1,Σ4,3 12.67 2.48
070810 Σ4,1 14.24 2.11
070816 Σ4,1 Σ4,4 17.99 3.77
070817 Σ3,1,Σ4,1 6.93 1.67
071101 Σ3,3 5.89 −1.48
071108 Σ4,4 11.20 −1.46

average of above 7.6 0.28
average of whole out-of-sample 2.44 0.19

The table reports the differences in log-predictive likelihoods between IW-DPM and IW-A(3) models; and
IW-sticky-iHMM-HDP and IW-DPMmodels for outliers in the out-of-sample period. The RCOV element Σij

identifies the observations that are 3 and 5 standard deviations away from their sample means. The second
last row gives the average for the outliers. The last row gives the average among the whole out-of-sample
period.

Table 7: Root Mean Squared Error RMSEh for the Predictive Mean of RCOV

Model h = 1 h = 5 h = 10 h = 20 h = 60
IW-A(3) 5.3140 5.7362 5.9561 6.2834 6.4737
W-A(3) 5.2909 5.7633 6.0153 6.2777 6.4130

IW-DPM 5.2409 5.5306 5.7038 5.9637 6.0080
W-DPM 5.4044 5.7769 6.0192 6.4580 7.2087
IW-iHMM 4.9687 5.5081 5.6800 5.9403 5.9734
IW-sticky-iHMM 4.9592 5.5089 5.6950 5.9417 5.9970
IW-sticky-iHMM-HDP 4.9395 5.4623 5.6318 5.9246 5.9883

The table reports the root mean squared error for predictive mean of RCOV at different
forecast horizon h. RMSEh = 1

T−T0+1

∑T−h

t=T0−h‖Σt+h − E[Σt+h|Σ1:t]‖, where ‖A‖ =√∑
i

∑
j |aij |2, and E[Σt+h|Σ1:t] denotes a model’s predictive mean. The first two

models are parametric while the remainder are nonparametric.
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Table 8: Cumulative Log-predictive Likelihoods for Returns

Model h = 1 h = 5 h = 10 h = 20 h = 60
asymmetric VDGARCH-t −2989.07 −3008.07 −3013.54 −3038.39 −3083.56
IW-A(3) Λ = I −2989.19 −3025.39 −3037.46 −3069.36 −3095.36
IW-A(3) −2965.69 −3002.47 −3014.11 −3048.35 −3077.35

IW-DPM −2945.71 −2973.57 −2985.46 −3015.57 −3042.97
IW-iHMM −2944.43 −2974.58 −2986.59 −3016.89 −3044.78
IW-sticky-iHMM −2946.01 −2973.73 −2985.07 −3015.11 −3040.68
IW-sticky-iHMM-HDP −2938.36 −2974.08 −2984.69 −3011.38 −3040.11

The table reports the cumulative log-predictive likelihoods for return data at different
forecast horizon h. The first three models are parametric while the remainder are
nonparametric.

Table 9: Prior Specifications for IW-DPM

prior 0 γ0 = 10, λ = 10, α ∼ Gamma(2, 8)
prior 1 γ0 = 15, λ = 15, α ∼ Gamma(2, 8)
prior 2 γ0 = 10, λ = 10, α ∼ Gamma(1, 12)
prior 3 γ0 = 15, λ = 15, α ∼ Gamma(1, 12)
Prior 0 is the benchmark prior used in the paper.

Table 10: Cumulative Log-predictive Likelihoods for RCOV, IW-DPM

IW-DPM h = 1 h = 5 h = 10 h = 20 h = 60 K
prior 0 110.41 −82.15 −169.58 −335.31 −523.33 38
prior 1 124.96 −77.10 −164.10 −336.93 −511.05 43
prior 2 113.88 −77.05 −164.22 −335.76 −513.05 40
prior 3 120.32 −82.69 −172.32 −337.81 −519.10 43

The table reports the cumulative log-predictive likelihoods for RCOV at different fore-
cast horizon h for the IW-DPM model. Prior 0 is the benchmark prior used in the
paper. The last column, K, records the posterior mean of the number of alive clusters
based on a full sample estimation.

Table 11: Cumulative Log-predictive Likelihoods for Returns, IW-DPM

IW-DPM h = 1 h = 5 h = 10 h = 20 h = 60
prior 0 −2945.71 −2973.57 −2985.46 −3015.57 −3042.97
prior 1 −2945.27 −2974.18 −2985.39 −3015.56 −3042.42
prior 2 −2945.65 −2974.12 −2985.02 −3015.22 −3041.67
prior 3 −2945.60 −2974.67 −2985.44 −3015.37 −3042.56

The table reports the cumulative log-predictive likelihoods for return data at different
forecast horizon h for the IW-DPM model. Prior 0 is the benchmark prior used in the
paper.
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Table 12: Prior Specifications for IW-sticky-iHMM-HDP

prior 0 γ0 = 10, λ = 10, α ∼ Gamma(2, 20), β + κ ∼ Gamma(2, 20), ρ ∼ Beta(30, 0.1),
αψ ∼ Gamma(2, 8), βψ ∼ Gamma(2, 8)

prior 1 γ0 = 15, λ = 15, α ∼ Gamma(2, 20), β + κ ∼ Gamma(2, 20), ρ ∼ Beta(30, 0.1),
αψ ∼ Gamma(2, 8), βψ ∼ Gamma(2, 8)

prior 2 γ0 = 10, λ = 10, α ∼ Gamma(2, 8), β + κ ∼ Gamma(2, 8), ρ ∼ Beta(30, 0.1),
αψ ∼ Gamma(2, 8), βψ ∼ Gamma(2, 8)

prior 3 γ0 = 10, λ = 10, α ∼ Gamma(2, 20), β + κ ∼ Gamma(2, 20), ρ ∼ Beta(10, 0.1),
αψ ∼ Gamma(2, 8), βψ ∼ Gamma(2, 8)

prior 4 γ0 = 10, λ = 10, α ∼ Gamma(2, 20), β + κ ∼ Gamma(2, 20), ρ ∼ Beta(30, 0.1),
αψ ∼ Gamma(1, 12), βψ ∼ Gamma(1, 12)

prior 5 γ0 = 15, λ = 15, α ∼ Gamma(2, 8), β + κ ∼ Gamma(2, 8), ρ ∼ Beta(10, 0.1),
αψ ∼ Gamma(1, 12), βψ ∼ Gamma(1, 12)

Prior 0 is the benchmark prior used in the paper.

Table 13: Cumulative Log-predictive Likelihoods for RCOV, IW-sticky-iHMM-HDP

IW-sticky-iHMM-HDP h = 1 h = 5 h = 10 h = 20 h = 60 K KZ

prior 0 194.89 −39.08 −107.01 −260.69 −397.63 10 26
prior 1 203.69 −49.04 −122.58 −279.99 −392.22 10 30
prior 2 197.99 −41.48 −137.86 −250.54 −376.65 14 28
prior 3 180.12 −54.10 −130.80 −249.36 −404.28 13 29
prior 4 200.62 −40.67 −119.68 −256.28 −407.29 10 27
prior 5 190.29 −60.65 −135.12 −270.67 −397.97 14 28

The table reports the cumulative log-predictive likelihoods for RCOV at different fore-
cast horizon h for the IW-sticky-iHMM-HDP model. Prior 0 is the benchmark prior
used in the paper. The last two columns, K and KZ , report the posterior mean of the
number of alive clusters for st and zt, respectively, based on a full sample estimation.

Table 14: Cumulative Log-predictive Likelihoods for Returns, IW-sticky-iHMM-HDP

IW-sticky-iHMM-HDP h = 1 h = 5 h = 10 h = 20 h = 60
prior 0 −2938.36 −2974.08 −2984.69 −3011.38 −3040.11
prior 1 −2941.34 −2975.59 −2986.56 −3018.58 −3037.28
prior 2 −2940.27 −2976.00 −2984.90 −3014.64 −3037.54
prior 3 −2943.41 −2975.64 −2983.53 −3013.30 −3039.17
prior 4 −2941.97 −2975.68 −2982.07 −3012.40 −3042.08
prior 5 −2943.29 −2979.02 −2986.43 −3016.49 −3035.63

The table reports the cumulative log-predictive likelihoods for return data at different
forecast horizon h for the IW-sticky-iHMM-HDP model. Prior 0 is the benchmark
prior used in the paper.
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Figure 1: Realized Variances (RV) and Realized Correlations (RCORR) 1998-2007
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Figure 2: Densities of Two-component Mixture
The red solid line is the density of the two-component mixture of inverse-Gamma ω1IG(2, 0.9) + (1 −
ω1)IG(2, 0.1). The black dotted line is the component density of the mixture scaled by weight (ω1 or
1− ω1). The green solid line is the density of the inverse-Gamma IG(2, 0.9ω1 + 0.1(1− ω1)), which has the
same mean as the mixture.
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Figure 3: Log-density for the Tail
This figure displays the log-density of: mixture 1, 0.5IG(7, 2) + 0.5IG(7, 4); mixture 2, 0.5IG(3.5, 1) +
0.5IG(11, 6); and IG(5, 2).
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Figure 4: Simulated Data on Covariances
The top panel displays the simulated values from the off-diagonal of Σt ∼ 0.5IW2(15, 10I) +
0.5IW2(15,

√
212I) and Σt ∼ IW2(7, 2I). The bottom panel displays the simulated values from the off-

diagonal of Σt ∼ 0.5IW2(6, I) + 0.5IW2(8,
√
24I) and Σt ∼ IW2(10, 7I). In each panel the covariance from

each model has the same mean and variance.
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Figure 6: Comparison of IW-sticky-iHMM-HDP with IW-A(3)
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Figure 7: Difference in Log-predictive Likelihoods for RCOV
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(a) Density plots: t = 2007/08/24
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(b) Density plots: t = 2007/08/27
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(c) Density plots: t = 2007/08/28

Figure 9: Densities of Realized Variance from an Equally-weighted Portfolio

49


