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A need for experiments on the certainty effect near the 
certainty (near the probability  p = 1)  is stated in this paper. 
The need supported by the Aczél–Luce question whether 
Prelec’s weighting function  W(p)  is equal to  1  at  p = 1, by 
the purely mathematical restrictions and the “certain–
uncertain” inconsistency of the random–lottery incentive 
experiments.  The results of the experiments of the certainty 
effect near the certainty show that Prelec’s (probability) 
weighting function can be discontinuous at the probability  p = 
1.  There is a need for new experiments at probabilities which 
are closer to  p=1,  e.g., at probabilities  p=.99  and  p=.999.   

 
 

Introduction 
 

The purpose of the present paper is to investigate a so-called Certainty Effect.  
The paper sketches very roughly a future article.  It will be included into a group of 
three articles.  Supposed titles of the articles are:  “A possible discontinuity of 
Prelec’s function,” “Certainty Effect near Certainty” and “A ”certain-uncertain” 
inconsistency of the random-lottery incentive system.”   

There are a number of theories concerned with one or another concept of 
utility.  They include, e.g., Bernoullian expected utility, von Neumann–Morgenstern 
expected utility, subjective expected utility, subjectively weighted utility theories 
(see, e.g., a review by Schoemaker, 1982); prospect theory (see Kahneman and 
Tversky, 1979) and cumulative prospect theory (see Tversky and Kahneman, 1992) 
or, in other terminology, original prospect theory and prospect theory; the salience 
theory of choice under risk (see Bordalo, Gennaioli, Shleifer, 2012); expected 
uncertain utility theory (Gul and Pesendorfer, 2014); etc. 

In the present paper these theories are referred to as utility and prospect 
theories.  

Ever since Bernoulli (1738), the problems with the theory of utility exposed 
by the Saint Petersburg paradox have been investigated. Von Neumann and 
Morgenstern (1947) promised the feasibility of a correct and, naturally, rational 
foundation of economic theory with their book, Theory of Games and Economic 
Behavior. But these promises were dashed by the Allais paradox (Allais, 1953).  

Kahneman and Thaler (2006) pointed out that the basic problems of utility and 
prospect theories, including the paradoxes of Allais (Allais, 1953) and Ellsberg 
(Ellsberg, 1961), have not yet been adequately solved.  
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1.  Clarification 

 
Kahneman and Tversky (1979) stated at page 263:  “people underweight 

outcomes that are merely probable in comparison with outcomes that are obtained 
with certainty. This tendency, called the certainty effect, contributes to risk aversion 
in choices involving sure gains and to risk seeking in choices involving sure 
losses.”  

A second type of the certainty effect should be mentioned (see, e.g., Halevy, 
2008):  people prefer the certainty of the present to the uncertainty of the future.  

In this paper, we shall consider only the first type of the certainty effect:  
people prefer the certainty (the probability which is equal to 1 or guaranteed 
outcomes) to the uncertainty (the probability which is less than 1) at the same 
averages of distribution.   
 
 

2.  Reasons 

2.1.  The Aczél–Luce question  
 

An essential part of problems of utility and prospect theories consists in the 
problems that are connected with a probability weighting (see, e.g., Tversky and 
Wakker, 1995). A probability weighting means that subjects treat the probability  p  
by a probability weighting function  W(p)  which is not equal to  p  (see also 
uncertainty perception in (Gul and Pesendorfer, 2014) as an example of perception 
variety).  I define the function  W(p)  both for uncertain (probable) and certain 
outcomes. Prelec’s weighting function (Prelec, 1998) is one of the most popular 
probability weighting functions.  

One possible way to solve the above problems is to consider the vicinities of 
the borders of the probability scale, e.g. at  p ~ 1  (see, e.g., Aczél and Luce, 2007).  

Aczél and Luce (2007) emphasized a fundamental question: whether  W(1) = 
1  (whether Prelec’s weighting function  W(p)  (see Prelec, 1998) is equal to  1  at  p 
= 1).  In this article, I refer to this question as the Aczél–Luce question (or Luce 
question).  

There is a deal of evidence for the existence of a qualitative difference 
between subjects’ treatment of the probabilities of uncertain (probable) and certain 
outcomes (see, e.g., Kahneman and Tversky, 1979; McCord and de Neufville, 1986; 
Gneezy, List and Wu, 2006; Halevy, 2008). Therefore, in the general case, one 
should distinguish between the values of the probability weighting function  W(p)  
of a certain outcome and the limit of the probability weighting function  W(p)  of 
uncertain outcomes as the probability of uncertain outcomes tends to  1.   
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Let us additionally define or specify a value  WCertain  of the probability 

weighting function  W(p)  for a certain outcome. At that,  WCertain  may be assumed 
to be equal to  1.  Otherwise, other values of  W(p)  may be normalized by  WCertain.   

Let us here additionally specify a value  W(1)  as the limit of the probability 
weighting function  W(p)  for a probable (uncertain) outcome as  p  tends to  1   

)(lim)1(
1

pWW
p→

≡  .  

If  W(1) = WCertain,  then  W(p)  is continuous (at  p = 1).  This is usually 
assumed by default. But this has not been proven for the general case. So, if  
WImpossible  is defined for the impossible case, then, similar to Aczél and Luce 
(2007),  
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and  W(p)  can be continuous or discontinuous. 
One may modify the Aczél–Luce question whether  W(1) = 1  into the 

question whether  W(1) = WCertain  or whether  W(p)  is continuous at  p = 1.  Note, 
various aspects of continuity have been discussed in the literature. See, e.g., Aczél 
and Luce (2007), Kothiyal, Spinu and Wakker (2011), Delbaen, Drapeau and 
Kupper (2011), Spinu and Wakker (2013). 

To answer the modified question and to prove or disprove the continuity of  
W(p)  at  p=1  one should determine and measure the difference  

?)1( =−WWCertain   

The answer  W(1) ≠ WCertain  to the modified Aczél–Luce question means that 
the function  W(p)  has a discontinuity at  p=1.  This is not a quantitative but a 
qualitative, moreover, a topological feature. So, the answer to the question can 
qualitatively change the situation in utility and prospect theories, at least in their 
mathematical aspects.  
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2.2.  Purely mathematical restrictions 

 
Another possible way to solve the problems of utility and prospect theories 

has been widely discussed, e.g., in Schoemaker and Hershey (1992); Hey and Orme 
(1994); Chay, McEwan and Urquiola (2005); Butler and Loomes (2007); 
Galaabaatar and Karni (2013); Chambers and Hayashi (2014). Its essence consists 
in a proper attention to noise, uncertainty, imprecision, incompleteness, unforeseen 
contingencies and other reasons that might cause dispersion, scattering, a spread of 
the data.  

A purely mathematical investigation (see, e.g., Harin, 2010, 2012) has 
synthesized these two different ways. That is, it considers the dispersion of the data 
(or the influence of the dispersion of the data) near the borders of the probability 
scale.  

Purely mathematical theorems (see, e.g., Harin, 2010, 2012) prove that the 
probability  p  cannot attain  1  under the condition of a non-zero dispersion of the 
data.   

This signifies that under the condition of a non-zero dispersion of the data, the 
probability  p  cannot take on the value  1,  i.e.,  p < 1.  It cannot even be arbitrarily 
close.  

As a matter of fact, a non-zero dispersion of data can be caused, e.g., by non-
zero noise, which is practically unavoidable in economics.  

One may additionally suppose here, that if the probability weighting function  
W(p) ≤ p  at  p > 3/4  and  WCertain = 1,  then this opens up a possibility of the 
existence of a discontinuity of  W(p)  at  p = 1.  So, one may say the theorems 
predict the possibility of the existence of a discontinuity of the probability 
weighting function  W(p)  at the probability  p = 1,  under the condition of a non-
zero dispersion of the data.  
 
 

2.3.  The “certain–uncertain” inconsistency  
of the random–lottery incentive experiments 

 
The discontinuity of the probability weighting function  W(p)  at the 

probability  p = 1  is not evidently supported by experiments.  But the prevalent 
experimental procedure in utility and prospect theories is the random-lottery 
incentive system (see, e.g., Starmer, 2000 and Baltussen et al., 2012; etc.).   

Moreover, in the random-lottery incentive system, the choices of certain (sure) 
outcomes are stimulated by uncertain lotteries (see Harin 2014). Because of this 
“certain–uncertain” inconsistency, the deductions from a random-lottery incentive 
experiment that includes a certain outcome cannot be unquestionably correct, 
especially at  p ~ 1.   

The well-known experiment of Starmer and Sugden (1991) evidently supports 
this inconsistency.   
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3.  Results 

 
So, investigations of the certainty effect near the certainty (near the 

probability  p = 1)  may be useful and crucial for utility and prospect theories.   
One can see below, that experiments at probabilities  p~1  support the 

possibility of the existence of a discontinuity of the probability weighting function  
W(p)  at the probability  p = 1.   
 
 

3.1.  The thought experiment of Halevy  
 

Halevy (2008) considered the thought experiment:   
“The two temporal choice problems translate into a choice between prospects: 

Problem 19. ($100, 1) or ($110, 0.96); 
Problem 29. ($100, 0.77) or ($110, 0.74), 

where prospect  ($x, p)  represents a lottery that pays  $x  with probability  p  and  
$0  with probability  1-p.  It has been well documented in experiments (Kahneman 
and Tversky 1979) that although expected utility theory predicts making the same 
choice ($100 or $110) in both, many subjects exhibit the certainty effect: they 
overweigh certain outcomes relative to very likely but not completely certain 
outcomes. As a result, they prefer $100 in Problem 19 and $110 in Problem 29.” 
 
 

3.2.  The experiment of Starmer and Sugden 
 

The well-known experiment of Starmer and Sugden (1991): 
“Page 974: “For groups A and D, this page began with an underlined text 

stating that question 22 would be played for real. For groups B and C, the 
corresponding text stated that one of the two questions would be played for real and 
that which question was to played out would be decided at the end of the 
experiment in the following way. The subject would roll a six-sided die. If the 
number on the die was 1, 2, or 3, then question 21 would be played; if the number 
was 4, 5, or 6, question 22 would be played.” 

“One problem, which we shall call P', required a choice between two lotteries 
R' (for "riskier") and S' (for "safer"). R' gave a 0.2 chance of winning ₤10.00 and a 
0.75 chance of winning ₤7.00 (with the residual 0.05 chance of winning nothing); S' 
gave ₤7.00 for sure.” 

So, in the R'-S' problem, R' gives  ₤10.00*0.2+₤7.00*0.75 = ₤7.25.  S' gives  
₤7.00*1 = ₤7.00.  Here  R' = ₤7.25>S' = ₤7.00.   

Let us consider the results from table 2 on Page 976, those are of interest here 
(the boldface is my own): 

• Group = B, Incentive = Random lottery, R':S' = 19:21 
• Group = C, Incentive = Random lottery, R':S' = 22:18 
• Group = D, Incentive = P' real,  R':S' = 13:27” 

One can see that the experiment supports the possibility of the existence of a 
discontinuity of  W(p)  at the probability  p = 1.   
 
 



6 

 

 
4.  Need for new experiments 

 
Unfortunately, the vast majority of experiments are performed at probabilities 

which are below  p=.9.   
There is a need for new experiments at probabilities  p~1.  The experiments 

may be, e.g., analogous of that of Starmer and Sugden (1991).  The probabilities 
under investigation in such experiments should be moved forward to p=1,  namely 
to, e.g.,  p=.99  or  p=.999.   
 
 

Conclusions 

 
Experiments on the certainty effect play an essential part in utility and 

prospect theories.  A need for experiments on the certainty effect near the certainty 
(near the probability  p = 1)  is supported by the Aczél–Luce question whether 
Prelec’s weighting function  W(p)  is equal to  1  at  p = 1, by the purely 
mathematical restrictions and the “certain–uncertain” inconsistency of the random–
lottery incentive experiments.   

The results of the experiments of the certainty effect near the certainty show 
that Prelec’s (probability) weighting function can be discontinuous at the 
probability  p = 1.   

Due to these reasons, there is a need for new experiments at probabilities  p~1.  
The experiments may be, e.g., analogous of that of Starmer and Sugden (1991).  
The probabilities under investigation in such experiments should be moved forward 
to p=1,  namely to, e.g.,  p=.99  or  p=.999.   
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