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Abstract 

This paper investigates the degree and structure of interdependence between emerging (Asian and 

Latin American) and developed (USA and Japan) stock markets through the study of volatility 

spillovers for the period spanning from January 1, 1993 to October 13, 2010. Using both standard 

GARCH model and quantile regression approach, we find the evidence of significant interdependence 

between financial markets which may give evidence of volatility transmission existence. The volatility 

transmission is closely associated with geographical proximity as well as with crisis periods which 

confirm the presence of contagion. The analysis of upper and lower quantiles allows observing that the 

interdependence increases during bullish markets while decreases during bearish markets. 

Accordingly, the structure of interdependence is asymmetric for both Asian and Latin American 

emerging markets. These findings open up new insights for government policy makers and for 

managerial purposes.   

Keywords: Market interdependence, volatility spillovers, asymmetric interdependence, contagion, 

quantile regression. 
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1. Introduction  

The financial crises that have shaken the current synchronized world economy were more 

frequent and more insistent especially for the emerging economies. A number of studies show 

that the sustainable international financial integration (IFI) in addition to the synchronization 

of economic sectors are essentially the basis of these financial turbulences. Econometric tests 

in studies of Phylaktis (1999) and Phylaktis and Ravazzolo (2002) show that financial 

openness made the integrated financial markets more sensitive to external or common shocks. 

Other studies, including that of Calvo and Reinhart (1996) show that financial 

interdependencies between stock markets results frequently in volatility spillovers and 

amplifies the transmission of crises from one country to another.  

The financial literature has recently focused on the study of stock markets 

interdependence and especially volatility spillover, particularly after the multiplicity of 

financial crises such as Mexico1994, Asia1997, Brazil 1998, Turkey 2001, and the recent 

2008 subprime crisis as the mostly affecting on emerging markets. Empirical results provided 

by previous works made use of several methodologies to deal with the concept of volatility 

transmission, including VAR and cointegration models, known as traditional measurement 

techniques of interdependencies and conditional variance modeling, regime switching models 

and stochastic volatility (SV) models, which represent the most robust and relevant techniques 

in terms of estimation. Recently, the VAR-GARCH approach of Ling and McAleer (2003) 

considers dynamic return links and volatility transmission through conditional first and 

second moments respectively. This methodology made success to capture interdependencies 

and spillover mechanisms either in bivariate or in multivariate system. It is worth mentioning 

that the majority of previous studies have led to the existence of unidirectional and sometimes 

bidirectional spillovers between international stock markets more amplified in times of 

financial crises and variant depending on the degree of integration (Gilenko and Fedorova, 

2014; Bekiros, 2014; Arouri et al., 2011; Li, 2007; Choudhry, 2004; Darrat and Benkato, 

2003; Xu and Fung, 2002; Caporale et al., 2002; Kasch-Haroutounian and Price, 2001; Forbes 

and Rigobon, 2001, 2002). 

Certainly, the increase in the volatility of financial asset prices results in spreads from 

one country to another during turbulence periods through a mechanism of contagion worries 

of emerging market governments that are most affected by these crises. This leads us to 

believe that a rigorous study of financial markets interdependencies in terms of volatility 

would be useful for governmental policy regulators and portfolio manager.  



 

 

In this framework, we focus first on the issue of volatility transmission between 

emerging and developed markets and second on the contagion effects that occurred during the 

recent financial crises. Our main objective is to look at the interdependencies in terms of 

volatility transmission between emerging and developed financial markets during both normal 

and turmoil periods. To achieve our objective, we adopt a more appropriate methodology 

which is generally characterized by its stability and is suitable for non-standard shaped 

distributions and by a non linear behavior, contrary to the conventional least squares which, in 

our view, has not been yet used in this context. It’s the Quantile Regression (QR) model, 

which has been previously used in the financial literature to study the value-at-risk (Engle and 

Manganelli, 2004; Rubia and Sanchis-Marco, 2013), the systemic risk (Adrian and 

Brunnermeier, 2011) the prediction of failure (Li and Miu, 2010) and also the modeling of 

dependence between financial variables (Bassett and Chen, 2001; Chuang et al., 2009; Baur et 

al., 2012;. Lee and Li, 2012; Tsai, 2012; Ciner et al., 2013; Gebka and Wohar, 2013). This 

approach seems to be more robust because it uses different measures of central tendency and 

dispersion statistics for a further detailed analysis of the relationship between variables.  

In our study, we use the QR model since it allows considering the conditional 

dependence of specific quantile for each stock market while respecting the conditioning 

variables. The QR approach gives also an accurate overview of the interdependencies between 

stock markets in different market circumstances, namely: Bearish markets (lower quantile), 

balanced markets (average quantile) and bullish markets (upper quantile). In addition, the QR 

approach is suitable to capture additional marginal effects derived from various stock markets, 

particularly where financial crises are considered. In this context, we used time-varying crises 

indices to take into account the evolutionary characteristics of emerging stock markets. 

The remaining of this article is organized as follows: The second section presents a review of 

literature on the transmission of volatility and contagion. The third section is devoted to the 

presentation of methodology. The fourth section describes the data used and their statistical 

properties. The fifth section reports results of both the conditional volatility and the quantile 

regression models. The sixth section discusses the policy implications and concludes. 

2. Literature review  

Studies on volatility spillovers have involved the interest of many researchers for a long time. 

During the last decades, several studies in empirical finance and financial economics have 

focused on the analysis of volatility transmission between emerging markets with regard to 

the increase in their degree of financial integration after their liberalization process (Gilenko 



 

 

and Fedorova, 2014; Bekiros, 2013; Bensafta and Samedo, 2011; Kearney, 2000; Leachman 

and Francis, 1996; Karolyi, 1995; Hamao et al., 1990). By reviewing the financial literature, 

we can remark that several methods were applied to investigate the interdependencies 

between financial markets in terms of volatility. In the following, we present an overview on 

the pioneering studies on this subject by reference to their methodologies. 

Since the introduction of conditional variance models, several ARCH/GARCH 

specifications have been widely applied to study the relationship between financial markets 

and especially of international volatility transmission.  

Li (2007) examines the volatility relationships eventually existing between two 

emerging stock markets (mainland China and Hong Kong) and the US market using a 

multivariate GARCH model identical to the BEKK approach developed by Engle and Kroner 

(1995) in order to take into account the regularities which characterize stock indices. Results 

show evidence of unidirectional transmission of volatility from Hong Kong stock market to 

those of Shanghai and Shenzhen. However, no evidence of link was found between stock 

markets in the mainland China and the United States. In addition, a weak dependence between 

volatility in the Hong Kong and the China markets is verified. The author attributes this weak 

dependency to the weak degree of market integration. 

Darrat and Benkato (2003) used a GARCH model and a multivariate co-integration 

specification to test the interdependence between return and volatility between Istanbul Stock 

Exchange (ISE) and the world market represented by the stock markets of the United States, 

United Kingdom, Japan and Germany. Results suggest that the ISE has become significantly 

integrated into the global market after the liberalization process towards the end of 1989. 

Results further show that both the US and the UK markets are the principal sources of 

volatility spillovers for the ISE. Aggarwal et al. (1999) use a model that combines GARCH 

and regime switching models. In particular, they use the heteroscedastic ICSS algorithm of 

Inclan and Tiao (1994) to determine the changing points of volatility and examine local and 

global events that took place. These changes are introduced as dummy variables in the 

variance equation of GARCH model. Results suggest that, on emerging markets, the most 

changes in volatility derive from local factors. 

More recently, Gilenko and Fedorova (2014) use the four-dimensional BEKK-GARCH-

in mean model to investigate the external and the internal links eventually existing between 

the BRIC and the global stock markets. During the pre-crisis period, they conclude the 

existence of some lagged mean-to-mean spillovers between the BRIC stock markets, and find 

as well that the volatility-to-volatility spillovers are largely present. After the crisis, the 



 

 

volatility-to-volatility spillovers almost disappear while the volatility-to-mean spillovers have 

not been identified for any period. Furthermore, the influence of external spillovers from 

developed stock markets to the rest of emerging markets is analyzed before and since the 

crisis. The authors suggest that the linkages between the developed and the BRICs stock 

markets have significantly changed after the crisis.  

Bekiros (2013) uses vector autoregressions and various multivariate GARCH 

representations to analyze the volatility spillovers among the U.S., the EU and the BRIC 

markets and finds that the BRICs have become more internationally integrated and that 

contagion is further substantiated since the U.S. financial crisis. Bensafta and Semedo (2011) 

study the multivariate dynamics of returns for various national financial markets. Conditional 

mean of market returns are modeled using a VAR specification while their conditional 

variances are modeled by a multivariate GARCH specification. This study aims at proving the 

existence of multiple regimes in the variance. In addition, this model estimates transmissions 

variance and test contagion based on the stability of cross-correlations. Authors consider a 

sample of 11 stock market indices in Europe, North America and Asia between 1985 and 

2006. Results on mean transmission confirm the significant effect of American stock prices 

on other stock markets prices. In addition, there is almost unidirectional transmission of 

volatility from the American market to other markets. There exist also regional transmissions 

in Europe and Asia. Moreover, Bensafta and Semedo (2011) argue that the acceleration of the 

stock markets interdependence is no stranger to the financial liberalization process introduced 

in the 90s. 

The SV models are another alternative for analyzing volatility transmission between 

financial markets. Although these models they have not been as popular as GARCH models, 

several studies affirmed the relevance of this type of modeling in detecting interdependencies 

between markets. We cite, in this framework, the study of So et al. (1997), which adopt a SV 

model to examine volatility transmission between equity markets in seven Asian countries. 

Their findings provide evidence in favor of volatility transmission between financial markets 

in Asia. Wongswan (2006) applies the SV model for high-frequency data, more precisely, for 

the returns of the following stock markets: USA, Japan, Korea and Thailand. In particular, he 

focuses on the effect of macroeconomic announcements in the United States and Japan on 

volatility and trading volume in Korea and Thailand. This paper provides evidence of 

transmission of information from the U.S. and Japan to Korean and Thai equity markets 

during the period from 1995 through 2000. Lopes and Migon (2003) combine the factorial 

models with SV models. They analyze the dependence between stock market indices in Latin 



 

 

America and USA. According to these authors, the multivariate SV models may be the 

solution to dimensionality problems and computation.  

Finally, Markov switching regime models are used to analyze both mean and volatility 

equations. Indeed, Edwards and Susmel (2001) apply a bivariate SWARCH model and 

conclude that high volatility tends to be linked to international crises. Their results show 

interdependence rather than contagion. Also, Edwards and Susmel (2003) use a switching 

regime model to analyze the volatility of interest rates in emerging markets. The SWARCH 

model allows researchers to locate and to date the periods of high volatility, and it is found 

that, on emerging markets, they tend to be similar in geographically separated regions.  

QR has been as well used by a range of recent studies in order to analyze 

interdependence between financial markets. For instance, Baur (2013) recommended the use 

of the QR to study the degree and structure of dependence as it is able to disclose information 

on the asymmetric and non-linear effects of conditional variables on the dependent variables. 

This technique allows the effects to vary across quantiles representing different states of 

nature and let for multivariate asymmetry in the studied relationship while linear extant 

models examines the average influence by assuming a symmetric impact of exogenous factors 

on the endogenous one. The QR modeling is then offering outsized flexibility and provides 

new insights for this class of particular issues.  

To that end, previous literature review shows the evidence of miscellaneous used 

methodologies in the analysis of volatility spillover. This paper attempts to explore the 

dynamics of volatility spillovers between emerging and developed markets in normal times 

(transmission) and in times of financial crises (contagion) using the quantile regression 

methodology which has been newly used in this framework.  

3. Econometric methodology  

Many critics were addressed to the correlation coefficients technique, especially in its ability 

to measure the degree of dependence between variables. As known, this technique considers 

only symmetric linear links between variables and cannot provide distinction between 

dependence during up and down markets or between large and small stock price movements. 

Therefore, a more robust and pertinent tool is required in order to capture the multifaceted 

dependence between financial time series. 

Quantile regression, developed by Koenker and Bassett (1978), is an extension of the 

traditional least squares estimation of the conditional mean to a compilation of models for 

different conditional quantile functions. Compared to a traditional regression model, the QR 



 

 

functions present more specific and accurate results of the impact of conditional variables on 

the exogenous variables (Koenker, 2005). More precisely, as the median (quantile) regression 

estimator minimizes the symmetrically weighted sum of absolute errors to estimate the 

conditional median (quantile) function, other conditional quantile functions are estimated by 

minimizing an asymmetrically weighted sum of absolute errors, where the weights are 

functions of the quantile of interest. Moreover, QR technique gives information on the 

average dependence as well as the upper and lower tail dependence. Thus, quantile regression 

is robust to the presence of outliers. This technique has been widely used in the past decade in 

many areas of applied econometrics; applications include investigations of wage structure 

(Buchinsky and Leslie, 1997), earnings mobility (Eide and Showalter, 1999; Buchinsky and 

Hunt, 1999), and educational attainment (Eide and Showalter, 1998). This technique has been 

also used in the financial sector for solving problems related to the Value at Risk and option 

pricing (Morillo, 2000; Engle and Manganelli, 2004), CoVaR (Adrian and Brunnermeier, 

2011), and especially to model the dependence of financial variables and to study the structure 

and level of dependence (Chuang et al. 2009; Lee and Li, 2012; Baur, 2013).  

Generally, the QR fonction can be formulated in the following manner:    

  '( ) ( ) ( ) ( )
y y k kk

Q x inf b F b x x x          

Where y is a dependent variable that is assumed to be linearly dependent on x and ( )
y

F b x is 

the conditional distribution function of y given x.  ( ), 0,1    represent the QR coefficient, 

that can determines the dependence relationship between vector x and the th  conditional 

quantile of y. Dependence  is  unconditional  if  no  exogenous  variables  are  included  in  x. 

The values of ( )  determine the complete dependence structure of y. The dependence of y 

based on a specific explanatory variable in vector x could be: (a) constant where the values 

( )  do not change for different values of   ; (b) monotonically increasing (decreasing) 

where ( )  increases (decreases) with the value of   ; and (c) symmetric (asymmetric) where 

the value of  is similar (dissimilar) for lower and upper quantiles.  

The coefficients ( )  for a given   are estimated by minimizing the weighted sum of 

absolute errors as following:  
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'
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(Eq.1) 

(Eq.2) 



 

 

The solution to this problem is obtained using the linear programming algorithm suggested by 

Koenker and D’orey (1987). The pair boostrapping procedure introduced by Buchinsky 

(1995) can be used to obtain the standard errors for the estimated coefficients because it 

provides asymptotically valid standard errors under misspecifications of the QR function and 

heteroscedasticity.  

As we try to introduce the variable of financial crisis in order to investigate the different 

effects that the conditioning variables have on the quantile function in the quiet and crises 

periods. Thus, our empirical model is specified as follows: 

( ) ( ) ( ) ( ) ( )
y k k k k

k k

Q X X D X              
   

 

Where D, is the financial crisis dummy variable. It takes the value “one” if the dependent 

variable experiences a financial crisis in period t and “zero” otherwise. This variable is the 

combination of currency, banking and twin crises. For each quantile  , the additional 

marginal effects of the different conditional variables in the financial crisis sub-periods is 

given by ( )   and ( )
k

   parameters. While the effects in the quiet periods is given by the 

parameters ( )   and ( )
k

  . So, the QR model in equation (Eq.3) allows one to first examine 

the nature of interdependence structure eventually existing between stock market’s volatility; 

then it makes easy to know how the interdependence structure is affected by different 

regressors; and finally, it allows to identifying how the financial crisis affect the 

interdependence structure and the co-movement between stock market’s volatility.  

4. Data and descriptive analysis 

With the aim to, empirically, examine the interdependence structure between financial 

markets in terms of volatility. We use volatility series of ten emerging countries (Argentina, 

Brazil, Chile, Colombia, India, Malaysia, Mexico, South Korea, Philippines, Thailand) and 

two developed countries (United States and Japan) obtained by fitting an standard GARCH 

model. We selected markets whose data on stock indices are available during the period 

spanning from January 01, 1993 to October 13, 2010, so as to cover several episodes of 

financial crises. To determine the series of volatility, we used the MSCI market indices for 

both emerging and developed markets, extracted from DATASTREAM.  

For financial crises, we tried to determine a composite index from three types of crises, 

namely the banking crises, the currency crises, and the twin crises. We identify episodes of 

(Eq.3) 



 

 

financial crises using two types of indicators1
: the exchange market pressure index (EMPI) for 

currency crises and the banking sector fragility index (BSFI) proposed by Kibritçioglu 

(2003)
2
 for banking crises. Twin crises are considered as the occurrence of both currency and 

banking crises during the same month. As shown in Figure 1, we can identify the evidence of 

a strong dependence between the proliferation of financial crises and the increase in the stock 

market volatility. Indeed, many break points in volatility indices coincide with the dates of 

financial crises. 

Table 1 presents the descriptive statistics of monthly returns. We note that they are 

globally similar to the findings of previous studies. First, market returns are significantly 

departing from normality according to the Jarque-Bera test. Second, the study of stationarity 

through the Dickey-Fuller unit root test clearly shows that the distributions of market returns 

are stationary, even at the 1% confidence level, since the ADF calculated value is strictly 

below the critical threshold. Finally, the Engle’s (1982) test for conditional heteroskedasticity 

rejects the null hypothesis of no ARCH effect in monthly returns. This justifies the use of the 

GARCH specification. 

[Table 1 near here] 

 

 

5. Empirical results and discussions 

In this section we report estimation results for the conditional volatility model (standard 

GARCH) and quantile regression model designed to analyze the interdependencies between 

emerging and developed stock markets. 

5.1. Results of conditional volatility model  

We use the standard GARCH(1,1)
3
 model to measure the conditional volatility for all 

markets. It is worth noting that the choice of the GARCH model is far from being arbitrary. 

Firstly, many authors argue that the GARCH(1,1) specification model is the most appropriate 

for predicting volatility given the existence of ARCH effect in returns series (Ramlall, 2010; 

Nikkinen et al. 2008; Charles and Darne, 2006; Bollerslev et al., 1994). Second, the choice of 

the GARCH model is made after a comparison with a non-linear EGARCH specification. The 

criteria used to determine the performance include the information criteria of Akaike and 



 

 

Schwarz and the log-likelihood value comparison. Result show a strong relevance of the 

standard GARCH compared to the EGARCH
4
. 

Table 2 presents the results of parameter estimation of the GARCH(1,1) model for 

individual markets, and make a detailed analysis of volatility series. We note that the 

parameters of the conditional variance equation are positive and statistically significant at 1% 

confidence level and satisfy the conditions of theoretical stability ( 0, 0 and 0)     . 

Furthermore, the persistence of conditional volatility is verified for the majority of stock 

markets, since the risk premium measured by ( )   is superior to 0,9. The diagnostic of 

standardized residuals presented in Table 2 (part III) suggests that the GARCH(1,1) model 

seems to be performing to explain the variations of stock market returns since the residuals 

and squared residuals are not serially correlated. Moreover, we note the absence of ARCH 

effect among residual series. 

[Table 2 near here] 

5.2. Results of QR model 

It is important to mention that by reference to the financial literature related to application of 

the quantile regression technique, we proceeded by calculate seven quantile, from the lower 

( 0.05)   to the higher one ( 0.95)  . However, we just reported in Tables 3 and 4 the 

results of three major quantiles ( 0.05, 0.5 and 0.95)  which relate, most frequently, the 

maximum of information. Indeed, these three quantiles allows us considering extreme 

situations inherent to financial markets, respectively bearish movements, mean movements 

and bullish movements. We report further the standard errors which are obtained using the 

pairs bootstrapping procedure (Buchinsky, 1995). We illustrate, in Figure 2 and 3, the 

graphical results for all the quantiles for two markets (Argentina and Brazil)
5
. 

Our decision rule concerning the existence or no of interdependencies between markets 

is based on the significance of the estimated coefficients for all the three quantiles and by 

reference to the analysis of the changes in the quantile regression coefficients obtained by 

applying the F-test for the equality of coefficients at low and high quantiles. This allows us to 

judge the nature of co-movement (symmetric or asymmetric).  

It is important to remember that, in the analysis of interdependencies between stock 

markets, we considered a very important factor that typify emerging markets, namely, the 



 

 

financial crises that have been in packet during the last decades in these economies. The 

incorporation of this factor in our model allows us to test interdependencies in terms of 

volatility during financial crises (known as the contagion phenomenon). 

Note that in order to take into account the effect of geographical proximity; we 

decomposed the sample into three groups (the Latin American markets, the Asian markets and 

the developed markets). 

[Table 3 near here] 

[Table 4 near here] 

 

When reading the Tables 3 and 4, which reports the estimation results of the quantile 

regression model, we can deduce that the model is able to describe and assess in an 

appropriate manner, the interdependence of volatility series. Indeed, the explanatory power of 

the exogenous variables associated with each quantile ( 0.05, 0.5 et 0.95)   is generally 

high. 

The results show a strong interdependence in terms of volatility between financial 

markets. With reference to our first judgment criterion (the absolute significance across 

quantile), we make out 70 significant relationships among 220 (11 x 2 x 10) relationships 

between emerging markets and developed markets (with a rate of 32%). Among the 70, 20 

relationships were identified in financial crises periods, which indicate that financial crises 

contributes with nearly 29% in the strengthening of interdependence between stock markets. 

The interdependence in the quiet periods is a sign of the existence of a volatility transmission, 

while those identified in times of financial crises are significant for the existence of contagion 

phenomenon (according to the contagion definition provided by the World Bank and 

described as very restrictive)
6
.  

In the light of our empirical findings, we clearly identify a strong interdependence in 

terms of volatility between emerging markets. Similarly, the regional transmission is 

effective. It has been proven at the two geographical areas for which belong all emerging 

countries. This transmission varies in the same way from one region to another. 

It should be noted that the impact of financial crises seems more effective for markets 

belonging to both different geographical areas (see Latin America and Asia region). This can 



 

 

be explained by the fact that more the markets are in the same area more they will be affected 

by the same event (good or bad), this is due to the rapid dissemination of information 

(informational efficiency).  

The whole markets volatility effect on the volatility of Latin American markets, as 

presented in Table 3, is generally positive and significant for all quantiles. The co-movement 

between them intensifies from the lower to the upper quantiles, indicating that the 

interdependence increases during the bullish market and vice versa. Indeed, the trend in 

correlations among the stock markets is not uniform through time when considering different 

quantiles. The Fisher test for the equality of coefficients at lower and upper quantiles rejects 

the null of equality. This evidence confirms that the estimates for the lower and upper 

quantiles are statistically different. Therefore, the Latin American stock markets display an 

asymmetric co-movement with all other markets as the intensity of interdependence increases 

when these markets are booming but interdependence loses intensity when the markets are 

bearish. However, since the onset of the financial crisis, we have the same results as the calm 

periods. Indeed, the intensity of dependence increases when these markets are booming and 

reversely when the markets are bearish. But we find that the crises effect is verified generally 

for both Asian region markets and developed markets. 

Looking to the Asian region we can make the same conclusions as for the Latin 

American region. Indeed, the positive and significant dependence between the Asian region 

stock markets and the entire stock markets (as presented in Table 4) is evident for all 

quantiles. The corresponding F-test for the equality of coefficients across those quantiles is 

unable to reject the null hypothesis. Accordingly, the interdependence structure has intensified 

across quantiles and the whole stock market’s volatility movement has a similar impact on the 

quantiles of the Asian stock markets volatility. In addition, the co-movement increases during 

the sub-period since the financial crisis. 

Estimation results related to the developed markets volatility effects on the Asian and 

Latin American region stock market’s volatility (Table 3 and 4) show strong interdependence 

at calm periods and at financial crises periods, and exhibit asymmetric co-movement, having 

lower tail independence and upper tail dependence structure.  

Finally, it is worth mentioning that the quantile regression approach has always shown 

its relevance in the study of interdependencies especially between variables that represent 

some non-linear trends. This technique gives information on the average dependence as well 

as the upper and lower tail dependence which proves its empirical pertinence to treat the 



 

 

presence of outliers. In addition, the QR approach is suitable to capture additional marginal 

effects derived from various treated concepts.  

Through the application of this approach for the first time to study financial markets 

interdependencies in terms of volatility, we confirm the results of previous studies which used 

different methodologies in order to judge the existence of unidirectional and sometimes 

bidirectional volatility spillovers between financial markets (Gilenko and Fedorova, 2014; 

Bekiros, 2014; Li, 2007; Darrat and Kasch-Haroutounian et Price, 2001; Forbes and Rigobon, 

2001, 2002; etc…). Our findings support the robustness of this methodology to detect 

interdependencies between volatility series which represent a non linear history over time. In 

addition, it has enabled us to detect the effects of financial crises (banking, currency or twin 

crisis) on the interdependencies among stock markets (emerging and developed markets) by 

determining a marginal effect, through its ability to integrate a time varying crisis variable. 

6. Concluding remarks 

This article aims at analyzing financial markets interdependence in terms of volatility 

(transmission and contagion). It contributes to the finance literature in two points. First, the 

use of the QR methodology which has a confirmed relevance through the use of different 

measures of central tendency and dispersion statistics as well as by means of its ability to 

form an accurate overview of the interdependencies under different market circumstances. 

Second, the consideration of the evolutionary character of emerging markets through the use 

of high-frequency data and essentially, financial time-varying indexes. 

Throughout this article, we were able to verify the existence of volatility transmission 

between emerging markets as well as between emerging and developed markets. This 

evidence can be explained by the reinforcement of financial integration level which 

strengthens the degree of dependence between emerging and developed markets. We note that 

several studies examined the interdependence in emerging economies and confirmed that they 

are stronger after financial integration (Bensafta et Samedo, 2011; Phylaktis and Ravazzolo, 

2002; Carrieri et al., 2007; Calvo et Reinhart, 1996). One of the important results of this paper 

is that the geographical proximity involves a great increase of transmission.    

The proliferation of financial crises over the last decades throughout the world and more 

specifically in emerging economies raises the problem of contagion as a transmission of 

shocks during financial crises. Several recent studies focused on contagion on emerging 

markets and verified its effectiveness (Bekaert et al., 2005; Forbes and Rigobon, 2001). Our 



 

 

results confirm the presence of transmission of great shocks during various crises periods 

which confirm the presence of contagion between emerging markets as well as between 

emerging and developed markets.  

In addition, financial crises seem more effective for markets belonging to the same 

geographical area (Latin America and Asia region). The effect of the whole market’s 

volatility on the volatility of Latin American markets is generally positive and significant for 

all quantiles. The co-movement between them intensifies from the lower to the upper 

quantiles, indicating that the interdependence increases during the bullish market and vice 

versa. Therefore, all stock markets and the Latin American markets display an asymmetric co-

movement as the intensity of dependence increases when these markets are booming but 

decreases when the markets are bearish.  

The same conclusions have been observed for the Asian region in so far as the positive 

and significant dependence with other stock markets is evident for every part of quantiles and 

the dependence increases at calm periods and during crisis periods and exhibit asymmetric co-

movement, having lower tail independence and upper tail dependence structure. 

So far, the most frequently useful question for governmental policy makers in emerging 

economies is: How to avoid volatility transmission and the risk of contagion? In fact, many 

studies tried to answer this question such as Masson (1999) and Forbes and Rigobon (2001). 

Given the high fragility of the emerging financial systems, it is necessary to rationalize their 

economic and financial openness in order to reduce the occurrence of financial crises and 

consequently the risk of contagion. More precisely, they must undertake some reforms related 

to exchange rate regimes and interest rates policy, in order to avoid the high devaluation of 

the national currency which generally results in financial crises (Nguyen, 2005). We note also 

that international cooperation is generally considered as alternative way to predict and avoid 

the risk of crises and contagion resulting from international fluctuations. This suggests that 

emerging countries have to take part in regional and international blocks (World Bank and 

FMI), which aims at making coordination between them and establishing common prudential 

rules.  

This paper’s findings have several economic and financial implications. Firstly, it 

presents a particular importance for regulators in emerging countries since it provides some 

answers about the risk management and stock markets stability. Secondly, it informs foreign 

or domestic investors about financial markets stability in terms of volatility transmission and 

contagion risk in order to help them to make investment decisions. 



 

 

Notes 

1. For further details about the construction of these crises indexes, see Kibritçioglu 

(2003, pp. 61–62) and Cartapanis et al. (1998). 

2. Kibritçioglu (2003) calculated the BSFI for 22 countries using monthly frequency data 

with different beginning dates and which ends at December 2002. We have updated 

this index for the period January 2002– October 2010. 

3. The variance equation for the GARCH(1,1) model is: 2

1 1t t t
h h      . 

4. For the sake of concision, the test results are not reported here, but they are available 

under request addressed to the corresponding author. 

5. For the sake of concision, the figures for the other markets are not reported here. They 

are available upon request from the corresponding author. 

6. Contagion, as defined by the World Bank, is the transmission of shocks in times of 

financial crises. 
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  Table 1. Basic statistics of stock markets monthly returns 

 Mean 
Standard 
deviation 

Skewness Kurtosis Jarque-Bera 
ADF 

Statistics 
Q(6) Q(12) ARCH (6) 

ARCH 
(12) 

Argentina 0.024 2.359 -1.045 20.520 60176.9+++ -65.480+++ 14.950++ 43.634++ 27.292+++ 56.978+++ 

Brazil 0.058 2.526 -0.117 8.938 6825.6+++ -47.819+++ 64.236+++ 73.505+++ 189.50+++ 111.273++ 

Chile 0.036 1.319 -0.070 14.157 24065.8+++ -57.875+++ 135.40+++ 152.13+++ 238.94+++ 141.88+++ 

Colombia  0.054 1.596 -0.143 13.697 22133.8+++ -55.132+++ 229.36+++ 255.47+++ 185.02+++ 104.09+++ 

India 0.038 1.767 -0.072 9.732 8764.7+++ -61.590+++ 61.590+++ 107.21+++ 55.098+++ 34.367+++ 

Malaysia  0.017 1.828 -0.839 68.207 822412.1+++ -28.603+++ 105.94+++ 115.91+++ 27.829+++ 16.554+++ 

Mexico 0.032 1.992 -0.066 14.620 26101.3+++ -62.453+++ 38.917++ 52.269++ 85.545+++ 50.312+++ 

South Korea 0.025 2.440 0.206 16.679 36202.2+++ -34.674+++ 85.459+++ 131.81+++ 169.48+++ 114.65+++ 

Philippines 0.004 1.745 0.484 15.129 28618.5+++ -57.079+++ 150.55+++ 180.40+++ 33.154+++ 18.979+++ 

Thailand  0.001 2.133 0.447 12.912 19145.7+++ -58.697+++ 128.78+++ 159.39+++ 86.358+++ 61.306+++ 

USA 0.022 1.199 -0.221 12.055 15885.2+++ -52.296+++ 34.297++ 47.321+++ 218.07+++ 141.03+++ 

Japan 0.000 1.467 0.113 7.203 3424.4+++ -51.684+++ 27.823++ 32.070++ 103.65+++ 59.158+++ 

Notes: The table presents basic statistics of monthly returns. Columns 1 to 5 are reserved to the mean (%). the standard deviation (%). the 

skewness. the kurtosis and the Jarque and Bera normality test statistics. Q (6) and Q (12) are statistics of the Ljung-Box autocorrelation 

test applied on returns with lags between 6 and 12. ARCH (6) and ARCH (12) are the statistics of the conditional heteroskedasticity test 
proposed by Engle (1982). using the residuals of the AR (1) model. ADF is the statistics of the ADF unit root test proposed by Dickey and 

Fuller (1981). The ADF test is conducted without time trend or constant. + and ++ denote that the null hypothesis of tests (no-

autocorrelation. normality. no-stationarity and homogeneity) are rejected at. respectively. 5% and 1% levels. The study period is from 

January 1976 to December 2008.
 
 



 

 

 

 

  

Table 2. Parameters estimation of GARCH(1,1) and diagnostic tests for conditional volatility 
 

 Argentina Brazil Chile Colombia   India  
South 
Korea 

Malaysia Mexico Philippines Thailand Japan USA 

Part I: Estimated parameters 

  
0.000 

(0.000)*** 
0.000 

(0.000)*** 
0.000 

(0.000)*** 
0.000 

(0.000)*** 
0.000 

(0.000)***  
0.000 

(0.000)*** 
0.000 

(0.000)*** 
0.000 

(0.000)*** 
0.000 

(0.000)*** 
0.000 

(0.000)*** 
0.000 

(0.000)*** 
0.000 

(0.000)*** 

  
0.113 

(0.004)*** 
0.111 

(0.006)*** 
0.121 

(0.008)*** 
0.230 

(0.011)*** 
0.118 

(0.007)***  
0.067 

(0.004)*** 
0.096 

(0.005)*** 
0.138 

(0.005)*** 
0.113 

(0.007)*** 
0.095 

(0.005)*** 
0.084 

(0.006)*** 
0.067 

(0.004)*** 

  
0.863 

(0.004)*** 
0.873 

(0.007)*** 
0.848 

(0.010)*** 
0.731 

(0.010)** 
0.860 

(0.007)***  
0.929 

(0.004)*** 
0.906 

(0.048)*** 
0.834 

(0.006)*** 
0.861 

(0.008)*** 
0.890 

(0.003)*** 
0.900 

(0.007)*** 
0.927 

(0.004)*** 

( ) 
 

0.976 0.984 0.969 0.961 0.978  0.996 1.002 0.972 0.974 0.985 0.984 0.994 

Log-
likelihood 

11586.77 11265.12 14269.72 13630.47 12781.93  11820.83 14010.76 12434.10 12792.23 12038.59 13427.53 15004.23 

Part II: Basic statistics of conditional volatility 

Mean (%) 0,056 0,065 0,017 0,027 0,032  0,060 0,036 0,040 0,032 0,047 0,022 0,014 

Standard 
deviation (%) 

0,084 0,082 0,027 0,050 0,034  0,104 0,099 0,059 0,037 0,059 0,020 0,023 

Minimum 0,012 0,010 0,003 0,005 0,007  0,007 0,002 0,009 0,003 0,009 0,003 0,001 

Maximum 1,502 0,968 0,633 1,151 0,506  1,395 1,683 0,881 0,562 0,835 0,236 0,249 

Jarque-Bera 114203
2+++ 

241560,3+++ 6380008+++ 3262233+++ 203405,3+++  512101,5+++ 1508092+++ 435560,1+++ 421203,3+++ 363708,7+++ 346780,2+++ 400638,4+++ 

ADF test -
6.932+++ 

-6.730+++ -7.364+++ -8.060+++ -7.780+++  -5.628+++ -6.980+++ -5.726+++ -9.051+++ -5.917+++ -5.323+++ -5.158+++ 

Part III: Diagnostic of standardized residuals 

Mean -0.038 -0.035 -0.023 -0.015 -0.029  -0.023 -0.028 -0.050 -0.028 -0.024 -0.018 -0.031 

Standard 
deviation (%) 

0.999 0.999 0.999 0.999 0.999  0.999 0.999 0.998 0.999 0.999 0.999 0.999 

Minimum -7.996 -5.305 -6.925 -7.540 -6.471  -6.763 -7.325 -8.379 -5.947 -12.598 -5.230 -7.055 

Maximum 6.261 4.021 3.935 6.069 6.935  4.840 9.127 5.733 17.003 9.293 5.892 3.458 

Skewness -0.286 -0.330 -0.157 -0.117 -0.095  -0.185 0.081 -0.353 0.930 -0.224 -0.020 -0.469 

Kurtosis 6.804 4.436 4.189 5.971 5.767  4.546 7.357 6.049 22.506 11.453 4.294 5.044 

Jarque-Bera 2859.9+

++ 
483.6+++ 292.5+++ 1716.9+++ 1486.9+++  488.7+++ 3673.9+++ 1893.6+++ 74202.4+++ 13849.4+++ 324.3+++ 977.8+++ 

Q(12) 22.347+ 12.912 24.926++ 42.211+++ 34.438+++  11.692 24.366++ 8.473 18.259 31.855+++ 12.458 17.820 

Q2(12) 13.105 9.602 7.768 11.562 12.839  11.849 10.597 11.249 1.261 15.056 7.268 12.788 

ARCH(12) 

test 
1.088 1.254 0.641 0.961 1.054  0.984 0.841 0.904 0.104 1.215 0.609 1.046 

Notes: The variance equation for the GARCH(1,1) model is:
2

1 1t t t
h h      . * and ** indicate that coefficients are statistically significant at 5% and 1%, respectively. + 

and ++ indicate that the null hypothesis (no autocorrelation, normality, homogeneity and no stationarity) is rejected at 5% and 1% confidence level, respectively. 
 

 



 

 

 

Table 3. Quantile regression estimates for Latin America region (Markets: Argentina, Brazil, Chile, Mexico and Colombia) 

 Latin America region 

Dependent variables Argentina Brazil Chile  Colombia Mexico 

Quantile order Q0.05 Q50 Q95 Q0.05 Q50 Q95 Q0.05 Q50 Q95 Q0.05 Q50 Q95 Q0.05 Q50 Q95 

In
d
ep

en
d
en

t v
ariab

les 

L
atin

 A
m

erica reg
io

n
 

Argentina 

  

 

0.009** 

(0.003) 
-0.001 
(0.004) 

-0.04*** 

(0.011) 
0.010*** 

(0.002) 
0.021*** 

(0.007) 
0.024 
(0.017) 

0.000 
(0.001) 

0.011*** 

(0.003) 
-0.005 
(0.011) 

0.002 
(0.007) 

0.122*** 

(0.018) 
1.12*** 

(0.261) 

  
0.009 

(0.014) 
0.409*** 

(0.087) 
0.227** 

(0.095) 
-0.004* 
(0.002) 

-0.011 
(0.008) 

-0.016 
(0.018) 

-0.003 
(0.007) 

-0.024 
(0.019) 

0.263** 

(0.123) 
-0.001 
(0.007) 

-0.13*** 

(0.019) 
-1.15*** 

(0.262) 

Brazil 

  
0.028*** 

(0.007) 

0.142*** 

(0.018) 

0.242*** 

(0.060) 
 

0.015*** 

(0.004) 
0.067*** 

(0.009) 

0.173*** 

(0.020) 

-0.004* 

(0.002) 
-0.008 
(0.007) 

0.037 
(0.052) 

0.045*** 

(0.004) 

0.198*** 

(0.013) 

0.528*** 

(0.103) 

  
0.141** 
(0.065) 

0.121 
(0.083) 

-0.541 
(0.668) 

0.016*** 

(0.004) 
0.001 
(0.014) 

-0.123* 

(0.071) 
0.012 
(0.009) 

0.062*** 

(0.016) 
0.415*** 

(0.138) 
-0.001 
(0.013) 

-0.051 
(0.035) 

0.838*** 

(0.280) 

Chile 

  
0.269*** 

(0.041) 

0.727*** 

(0.065) 

0.720*** 

(0.264) 

0.511*** 

(0.057) 
0.984*** 

(0.075) 

3.43*** 

(0.464) 

 0.058*** 

(0.008) 
0.134*** 

(0.048) 
-0.107 
(0.226) 

0.232*** 

(0.035) 
0.326*** 

(0.035) 
-0.143 
(0.135) 

  
-0.203 

(0.169) 

-0.90*** 

(0.296) 

-0.441 

(2.268) 

0.129 

(0.202) 

-0.473** 

(0.202) 

-3.70*** 

(0.612) 

0.190*** 

(0.048) 

0.712*** 

(0.105) 

-0.566 

(0.419) 

0.399*** 

(0.080) 

0.451*** 

(0.055) 

0.499 

(0.809) 

Colombia  

  
0.022*** 
(0.007) 

0.047*** 

(0.018) 
0.005 

(0.025) 
0.041** 

(0.019) 
0.084*** 

(0.016) 
0.081 
(0154) 

0.022*** 

(0.003) 

0.030*** 

(0.010) 

0.055** 

(0.023) 

 0.013** 

(0.005) 
0.041*** 

(0.010) 
-0.041 
(0.030) 

  
0.065** 

(0.031) 
0.323*** 

(0.101) 
0.604 

(0.547) 
0.002 

(0.058) 
-0.086 
(0.054) 

-0.005 
(0.203) 

-0.007 
(0.006) 

0.002 
(0.019) 

0.273** 

(0.127) 
-0.010 
(0.034) 

-0.09*** 

(0.023) 
-0.096 
(0.129) 

Mexico 

  
0.113*** 

(0.009) 

0.196*** 

(0.029) 

0.175*** 

(0.029) 

0.161*** 

(0.015) 

0.321*** 

(0.035) 

0.934*** 

(0.137) 

0.021*** 

(0.002) 

0.056*** 

(0.008) 

0.169*** 

(0.035) 

0.003*** 

(0.001) 

0.003 

(0.007) 

0.010 

(0.016) 

 

  
0.184** 

(0.083) 
0.131 

(0.111) 
0.723 

(0.796) 
0.059 

(0.045) 
0.361** 

(0.160) 
1.01*** 

(0.252) 
-0.001 
(0.004) 

-0.07*** 

(0.017) 
0.232 
(0.173) 

-0.009 
(0.016) 

0.038 
(0.030) 

0.545** 

(0.238) 

A
sian

 reg
io

n
 m

ark
ets 

India 

  
0.039*** 

(0.008) 
0.024 

(0.015) 
-0.002 
(0.685) 

0.022 
(0.016) 

-0.06*** 

(0.012) 
-0.24*** 

(0.080) 
0.024*** 

(0.005) 

0.049*** 

(0.009) 

0.121*** 

(0.028) 

0.039*** 

(0.006) 

0.128*** 

(0.021) 

0.912*** 

(0.175) 

0.008 
(0.010) 

0.051*** 

(0.017) 
0.143*** 

(0.048) 

  
-0.186** 

(0.076) 

-0.43*** 

(0.128) 

-2.68*** 

(0.940) 

0.039 

(0.034) 

-0.000 

(0.098) 

0.133 

(0.210) 
-0.021** 

(0.010) 

-0.05*** 

(0.020) 

-0.21*** 

(0.058) 

-0.004 

(0.011) 

-0.030 

(0.037) 

1.097** 

(0.546) 

0.050*** 

(0.018) 

0.001 

(0.025) 

-0.019 

(0.176) 

Malaysia 

  
-0.02*** 

(0.006) 

0.036*** 

(0.100) 

0.059** 

(0.023) 

0.053*** 

(0.011) 
0.086*** 

(0.019) 
0.016 

(0.037) 
0.023*** 

(0.001) 
0.005 
(0.004) 

-0.01*** 

(0.004) 
0.001 
(0.001) 

-0.013* 

(0.007) 
-0.027 
(0.029) 

0.015** 

(0.007) 

0.035*** 

(0.005) 

-0.12*** 

(0.032) 

  
-0.103 
(0.219) 

0.673 
(0.424) 

1.032 
(2.001) 

-0.008 
(0.024) 

-0.12*** 

(0.040) 
-0.117** 

(0.049) 
-0.02*** 

(0.002) 
-0.02*** 

(0.008) 
-0.002 
(0.018) 

-0.002 
(0.008) 

-0.018 
(0.016) 

-0.004 
(0.063) 

-0.030** 

(0.014) 
-0.036** 

(0.015) 
0.030 
(0.124) 

South Korea 

  
0.011*** 

(0.002) 

0.001 

(0.001) 

-0.02*** 

(0.007) 
-0051*** 

(0.015) 

-0.03*** 

(0.013) 

-0.04*** 

(0.011) 

-0.01*** 

(0.005) 

-0.006 

(0.005) 

-0.06*** 

(0.015) 
-0.003*** 

(0.001) 

-0.007*** 

(0.001) 

-0.032*** 

(0.007) 

0.001 

(0.002) 

-0.000 

(0.002) 

0.101*** 

(0.023) 

  
0.262*** 

(0.055) 

0.917*** 

(0.193) 

13.30*** 

(2.544) 

0.133*** 

(0.034) 

0.278*** 

(0.074) 

0.324*** 

(0.117) 

0.015*** 

(0.005) 
0.007 
(0.006) 

0.053** 

(0.023) 
-0.020*** 

(0.006) 

-0.016* 

(0.011) 

-0.377*** 

(0.056) 

-0.026 
(0.016) 

0.061** 

(0.026) 
-0.244* 

(0.138) 

Thailand 

  
-0.02*** 

(0.006) 
-0.04*** 

(0.009) 
-0.039 
(0.045) 

-0.027** 

(0.013) 

-0.03*** 

(0.010) 

0.171** 

(0.084) 

0.004*** 

(0.001) 

0.011* 

(0.005) 

0.046* 

(0.026) 

-0.003 
(0.002) 

-0.017*** 

(0.005) 
-0.066 
(0.055) 

-0.005 
(0.003) 

0.004 
(0.006) 

0.046 
(0.031) 

  
0.125* 

(0.070) 

0.404*** 

(0.140) 

0.319 

(1.451) 

-0.157** 

(0.065) 

-0.19*** 

(0.069) 

-0.111 

(0.193) 

0.003* 

(0.002) 

0.007 

(0.009) 

-0.058* 

(0.031) 
0.014* 

(0.008) 

0.075*** 

(0.021) 

-0.144* 

(0.087) 

0.004 

(0.014) 

-0.037 

(0.030) 

-0.17*** 

(0.059) 

Philippines 

 

  
0.062*** 

(0.006) 
0.042*** 

(0.009) 
0.001 

(0.028) 
0.022*** 

(0.005) 
0.001 

(0.009) 
-0.148 
(0.102) 

0.002 
(0.003) 

0.028 
(0.021) 

0.007 
(0.034) 

0.018*** 

(0.005) 

0.122*** 

(0.028) 

0.385** 

(0.149) 

0.011 
(0.012) 

0.007 
(0.008) 

0.086 
(0.059) 

  
-0.141** 

(0.058) 
-0.068 
(0.137) 

0.049 
(1.839) 

0.059 
(0.066) 

0.389*** 

(0.088) 
0.351 

(0.493) 
-0.006 
(0.004) 

-0.011 
(0.028) 

0.083 
(0.056) 

-0.016*** 

(0.005) 
-0.123*** 

(0.028) 
0.150 
(0.181) 

0.165*** 

(0.052) 
0.185*** 

(0.040) 
-0.201 

(0.466) 

(continued on next page) 



 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
 
Table 3 (Continued) 

 Latin America region 

Dependent variables Argentina Brazil Chile  Colombia Mexico 

Quantile order Q0.05 Q50 Q95 Q0.05 Q50 Q95 Q0.05 Q50 Q95 Q0.05 Q50 Q95 Q0.05 Q50 Q95 

In
d
ep

en
d
en

t v
ariab

les 

D
ev

elo
p
ed

 m
ark

ets 

Japan 

  
0.147*** 

(0.023) 

0.087** 

(0.037) 

-0.303* 

(0.184) 

0.120** 

(0.052) 
0.539*** 

(0.068) 
-0.008 
(0.100) 

0.010 
(0.010) 

0.087*** 

(0.023) 
0.324*** 

(0.040) 
0.020*** 

(0.007) 
0.012 
(0.031) 

0.167 
(0.248) 

0.020*** 

(0.007) 
0.012 
(0.031) 

0.167 
(0.248) 

  
-0.49*** 

(0.125) 
-0.444** 

(0.210) 
-3.137 
(3.033) 

-0.120 
(0.159) 

-0.69*** 

(0.119) 
-0.80*** 

(0.215) 
-0.05*** 

(0.015) 
0.020 
(0.072) 

-0.244* 
(0.099) 

-0.067* 

(0.036) 
-0.024 
(0.059) 

2.011*** 

(0.682) 
-0.067* 

(0.036) 
-0.024 
(0.059) 

2.011*** 

(0.682) 

USA 

  
0.041* 

(0.023) 

0.328*** 

(0.058) 

1.354*** 

(0.218) 

0.571*** 

(0.061) 

0.724*** 

(0.081) 

0.865*** 

(0.168) 

0.051*** 

(0.012) 

0.062*** 

(0.016) 

-0.088** 

(0.043) 

0.064*** 

(0.012) 

-0.139*** 

(0.025) 

-0.383*** 

(0.109) 

0.064*** 

(0.012) 

-0.139*** 

(0.025) 

-0.38*** 

(0.109) 

  
-0.217 
(0.140) 

-0.528 
(0.449) 

-15.0*** 

(3.887) 
0.263** 

(0.112) 

-0.552** 

(0.243) 

-0.438* 

(0.264) 

0.049* 

(0.029) 

0.447*** 

(0.094) 

0.589** 

(0.256) 

-0.026 
(0.033) 

-0.345*** 

(0.053) 
-1.815*** 

(0.259) 
-0.026 
(0.033) 

-0.345*** 

(0.053) 
-1.82*** 

(0.259) 

  
0.001** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0000) 
0.000** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 
0.000** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 

  0.000 
(0.000) 

-0.000** 

(0.000) 
-0.000 
(0.000) 

-0.000 
(0.000) 

-0.00*** 

(0.000) 
-0.00** 

(0.000) 
0.000 
(0.000) 

-0.000 
(0.000) 

-0.000 
(0.000) 

0.000 
(0.000) 

-0.000** 

(0.000) 
-0.000*** 

(0.000) 
0.000 
(0.000) 

-0.000** 

(0.000) 
-0.00*** 

(0.000) 

 Pseudo R2 0.156 0.306 0.548 0.275 0.422 0.643 0.144 0.319 0.728 0.057 0.163 0.452 0.057 0.163 0.452 

Notes: This table presents the quantile regression estimates for Latin America region according to the empirical model defined by Eq. (3). The numbers in parentheses are the bootstrapped 

standard errors. *, ** and *** indicate that coefficients are significant at 10%, 5% and 1% level, respectively. Absolute significance through three quantiles is in bold type. The additional 

marginal effects of the different conditional variables in the financial crisis sub-periods is given by ( )   and ( )
k

   parameters. While the effects in the calm periods is given by the 

parameters ( )   and ( )
k

  . 



 

 

 
Table 4. Quantile regression estimates for Asian region (Markets: India, Malaysia, South Korea, Thailand and Philippines) 

 Asian region 

Dependent variables India Malaysia South Korea Thailand Philippines 

Quantile order Q0.05 Q50 Q95 Q0.05 Q50 Q95 Q0.05 Q50 Q95 Q0.05 Q50 Q95 Q0.05 Q50 Q95 

In
d
ep

en
d
en

t v
ariab

les 

L
atin

 A
m

erica reg
io

n
 

Argentina 

  
-0.003* 

(0.002) 

-0.024*** 

(0.004) 

0.003 

(0.045) 
-0.013*** 

(0.005) 

-0.030* 

(0.015) 

-0.041* 

(0.022) 

0.037*** 

(0.003) 

0.049*** 

(0.005) 

0.198*** 

(0.057) 

0.011 

(0.009) 

0.004 

(0.022) 

-0.15*** 

(0.032) 

0.029*** 

(0.008) 

0.027* 

(0.014) 

-0.013 

(0.030) 

  
-0.044* 

(0.026) 
0.104*** 

(0.036) 
0.170 

(0.162) 
-0.006 
(0.006) 

-0.020 
(0.017) 

0.006 
(0.029) 

-0.074** 

(0.029) 
-0.18*** 

(0.041) 
0.070 
(0.125) 

-0.014 
(0.010) 

-0.016 
(0.022) 

0.130*** 

(0.034) 
-0.03*** 

(0.008) 
-0.018 
(0.016) 

0.007 
(0.031) 

Brazil 

  
0.009** 

(0.003) 
-0.027*** 

(0.006) 
-0.055* 

(0.033) 
0.004 
(0.004) 

0.060*** 

(0.006) 
0.174*** 

(0.024) 
-0.005 
(0.006) 

-0.08*** 

(0.009) 
-0.19*** 

(0.029) 
-0.010 
(0.007) 

-0.03*** 

(0.007) 
-0.018 
(0.046) 

0.000 
(0.008) 

0.012* 

(0.007) 
0.026 
(0.032) 

  
-0.008** 

(0.012) 

-0.012 

(0.013) 

0.014 

(0.065) 
0.013* 

(0.007) 

-0.078** 

(0.033) 

1.400*** 

(0.490) 

0.083*** 

(0.031) 

0.248*** 

(0.022) 

-0.034 

(0.071) 

0.028 

(0.031) 

0.058*** 

(0.016) 

0.213** 

(0.086) 

0.007 

(0.011) 

0.037** 

(0.015) 

-0.006 

(0.048) 

Chile 

  
0.044** 

(0.017) 

0.387*** 

(0.048) 

0.943*** 

(0.248) 

0.072*** 

(0.015) 
0.056 
(0.046) 

-0.013 
(0.087) 

-0.056** 

(0.028) 
-0.24*** 

(0.046) 
0.071 
(0.198) 

0.072*** 

(0.027) 

0.171*** 

(0.055) 

0.657*** 

(0.138) 

0.061** 

(0.025) 

0.281*** 

(0.033) 

0.614*** 

(0.165) 

  
0.121** 

(0.051) 

-0.406*** 

(0.106) 

-0.852** 

(0.337) 

-0.094** 

(0.037) 
-0.082 
(0.102) 

-0.674 
(1.031) 

-0.183** 

(0.089) 

-0.36*** 

(0.107) 

-0.628** 

(0.294) 

-0.173** 

(0.073) 

-0.175* 

(0.099) 

-1.94*** 

(0.430) 

0.065** 

(0.032) 
-0.243*** 

(0.054) 
0.081 
(0.310) 

Colombia  

  
0.038*** 

(0.010) 

0.169*** 

(0.016) 

0.442*** 

(0.123) 

-0.013*** 

(0.004) 

-0.051*** 

(0.006) 

-0.11*** 

(0.026) 

0.007 

(0.010) 

0.017** 

(0.006) 

-0.039** 

(0.016) 

0.079*** 

(0.011) 

0.069*** 

(0.017) 

-0.012 

(0.084) 

0.015** 

(0.007) 

0.053*** 

(0.019) 

0.054 

(0.108) 

  
-0.021 

(0.015) 
-0.030 
(0.044) 

-0.353*** 

(0.131) 
0.004 
(0.012) 

-0.057** 

(0.028) 
-0.152 
(0.193) 

0.034 
(0.037) 

0.020 
(0.023) 

-0.122 
(0.077) 

-0.07*** 

(0.013) 
-0.09*** 

(0.018) 
-0.013 
(0.121) 

0.010 
(0.011) 

0.030 
(0.028) 

-0.020 
(0.108) 

Mexico 

  
-0.009*** 

(0.003) 

-0.008*** 

(0.003) 

-0.064*** 

(0.012) 

0.031*** 

(0.007) 
0.077*** 

(0.016) 
0.004 
(0.022) 

0.014*** 

(0.002) 
0.025*** 

(0.007) 
-0.057 
(0.059) 

-0.002 
(0.004) 

-0.008* 

(0.004) 
-0.019 
(0.032) 

0.002 
(0.004) 

-0.016*** 

(0.005) 
-0.042** 

(0.018) 

  
-0.016 

(0.016) 

-0.055** 

(0.023) 

0.101 

(0.192) 

-0.001 

(0.007) 

-0.014 

(0.020) 

-0.025 

(0.301) 

0.107*** 

(0.024) 

-0.020 

(0.045) 

-0.258 

(0.187) 

0.061 

(0.042) 

0.098** 

(0.046) 

0.366*** 

(0.092) 
0.038*** 

(0.011) 

0.053*** 

(0.013) 

0.084** 

(0.034) 

A
sian

 reg
io

n
 m

ark
ets 

India 

  

 

0.022*** 

(0.007) 
0.001 

(0.023) 
0.456*** 

(0.075) 
0.079*** 

(0.011) 
0.068** 

(0.029) 
0.118 

(0.089) 
-0.011 
(0.032) 

0.096*** 

(0.016) 
0.153*** 

(0.053) 
0.016*** 

(0.004) 
-0.005 
(0.016) 

-0.056* 

(0.029) 

  
-0.066*** 

(0.017) 

-0.147*** 

(0.039) 

-0.79*** 

(0.127) 

0.042 
(0.047) 

0.021 
(0.045) 

-0.441** 

(0.188) 
0.039 
(0.035) 

0.005 
(0.023) 

0.299** 

(0.129) 
-0.09*** 

(0.015) 
-0.078** 

(0.031) 
0.126 
(0.125) 

Malaysia 

  
-0.007 

(0.008) 

-0.032** 

(0.014) 

0.018 

(0.055) 

 -0.007 

(0.013) 

0.507*** 

(0.039) 

1.468*** 

(0.375) 
0.263*** 

(0.039) 

0.384*** 

(0.019) 

0.304*** 

(0.046) 

0.114*** 

(0.016) 

0.169*** 

(0.013) 

0.266* 

(0.147) 

  
0.002 
(0.009) 

-0.000 
(0.016) 

-0.062 
(0.062) 

0.003 
(0.015) 

-0.55*** 

(0.039) 
-1.49*** 

(0.418) 
-0.22*** 

(0.039) 
-0.32*** 

(0.028) 
-0.112 
(0.155) 

-0.07*** 

(0.017) 
-0.118*** 

(0.020) 
-0.102 
(0.151) 

South Korea 

  
0.044*** 

(0.008) 

0.111*** 

(0.015) 

0.209*** 

(0.063) 

0.054*** 

(0.011) 

0.233*** 

(0.077) 

0.437*** 

(0.072) 

 0.153*** 

(0.027) 

0.367*** 

(0.030) 

0.562*** 

(0.082) 

0.015** 

(0.007) 
-0.011 
(0.015) 

0.418*** 

(0.159) 

  
-0.039*** 

(0.008) 

-0.119*** 

(0.015) 

-0.24*** 

(0.064) 

0.027* 

(0.014) 

-0.036 

(0..083) 

-0.36*** 

(0.082) 
-0.073** 

(0.029) 

-0.117** 

(0.046) 

-0.31*** 

(0.118) 

-0.000 

(0.008) 

0.016 

(0.018) 

-0.46*** 

(0.162) 

Thailand 

  
0.013*** 

(0.004) 

0.054*** 

(0.016) 

0.204*** 

(0.076) 

0.033** 

(0.013) 

0.333*** 

(0.057) 

0.761*** 

(0.135) 

0.011 
(0.008) 

0.253*** 

(0.037) 
0.947*** 

(0.136) 
 0.004 

(0.011) 
0.156*** 

(0.017) 
0.255*** 

(0.091) 

  
-0.006 

(0.014) 
-0.007 
(0.019) 

-0.28*** 

(0.083) 
-0.018 
(0.019) 

-0.19*** 

(0.063) 
-0.68*** 

(0.137) 
-0.045 
(0.043) 

0.235** 

(0.099) 
3.026*** 

(0.556) 
0.021* 

(0.012) 

0.082** 

(0.037) 

0.233** 

(0.117) 

Philippines 
 

  
0.020*** 

(0.003) 

-0.012* 

(0.006) 

-0.11*** 

(0.011) 

0.018*** 

(0.003) 

0.164*** 

(0.042) 

0.264*** 

(0.067) 

0.012 

(0.030) 

0.085*** 

(0.032) 

0.080 

(0.079) 
0.119*** 

(0.025) 

0.412*** 

(0.043) 

0.768*** 

(0.132) 

 

  
-0.065** 

(0.020) 
-0.004 
(0.029) 

0.392** 

(0.163) 
-0.021** 

(0.009) 

0.408*** 

(0.127) 

1.404*** 

(0.241) 

-0.058 
(0.304) 

0.079* 

(0.046) 
-0.41*** 

(0.150) 
-0.012 
(0.027) 

-0.23*** 

(0.061) 
0.423* 

(0.241) 

(continued on next page) 



 

 

 

 
 
Table 4 (Continued) 

 Asian region 

Dependent variables India Malaysia South Korea Thailand Philippines 

Quantile order Q0.05 Q50 Q95 Q0.05 Q50 Q95 Q0.05 Q50 Q95 Q0.05 Q50 Q95 Q0.05 Q50 Q95 

In
d
ep

en
d
en

t v
ariab

les 

D
ev

elo
p
ed

 m
ark

ets 

Japan 

  
0.058*** 

(0.019) 

0.394*** 

(0.034) 

0.593** 

(0.302) 

0.034*** 

(0.011) 

-0.057* 

(0.031) 

0.254* 

(0.138) 

0.141*** 

(0.039) 
0.096** 

(0.040) 
0.045 
(0.331) 

-0.025 
(0.051) 

-0.089** 

(0.038) 
-0.044 
(0.082) 

-0.12*** 

(0.025) 

-0.117*** 

(0.019) 

-0.28*** 

(0.074) 

  
0.070* 

(0.043) 
-0.044 
(0.071) 

-0.243 
(0.393) 

0.057 
(0.062) 

1.332*** 

(0.189) 
3.707*** 

(0.705) 
0.069 
(0.082) 

0.784*** 

(0.119) 
0.597 
(0.589) 

0.240*** 

(0.056) 

0.321*** 

(0.062) 

-0.563** 

(0.291) 

0.187*** 

(0.041) 
0.210*** 

(0.059) 
0.131 
(0.240) 

USA 

  
-0.053* 

(0.021) 

0.203*** 

(0.054) 

0.998*** 

(0.303) 

-0.072*** 

(0.021) 

-0.555*** 

(0.118) 

-0.87*** 

(0.057) 

0.759*** 

(0.021) 

1.431*** 

(0.044) 

1.534*** 

(0.198) 

-0.071* 

(0.038) 

-0.48*** 

(0.055) 

-0.92*** 

(0.204) 

0.172*** 

(0.021) 

0.269*** 

(0.033) 

-0.254* 

(0.153) 

  
0.532*** 

(0.053) 

0.317** 

(0.124) 

-0.939** 

(0.416) 

0.015 
(0.064) 

-0.283* 

(0.168) 
-0.833 
(0.537) 

0.156 
(0.138) 

-0.080 
(0.095) 

-0.536 
(0.325) 

-0.095 
(0.063) 

0.334*** 
(0.069) 

0.106 
(0.252) 

-0.13*** 

(0.034) 
-0.354*** 

(0.046) 
-0.086 
(0.234) 

  
0.001*** 

(0.000) 
0.000*** 

(0.000) 
0.000* 

(0.000) 
-0.000 
(0.000) 

-0.000*** 

(0.000) 
-0.000** 

(0.000) 
0.000*** 

(0.000) 
0.000 
(0.000) 

0.000 
(0.000) 

0.000*** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 

  -0.000** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 
-0.000** 

(0.000) 
-0.00*** 

(0.000) 
-0.000 
(0.000) 

-0.00*** 

(0.000) 
-0.00*** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 
0.000*** 

(0.000) 
0.000 
(0.000) 

-0.000 
(0.000) 

0.000 
(0.000) 

 Pseudo R2 0.085 0.259 0.439 0.114 0.258 0.673 0.209 0.443 0.680 0.224 0.415 0.576 0.178 0.326 0.522 

Notes: This table presents the quantile regression estimates for Latin America region according to the empirical model defined by Eq. (3). The numbers in parentheses are the bootstrapped 

standard errors. *, ** and *** indicate that coefficients are significant at 10%, 5% and 1% level, respectively. Absolute significance through three quantiles is in bold type. The additional 

marginal effects of the different conditional variables in the financial crisis sub-periods is given by ( )   and ( )
k

   parameters. While the effects in the calm periods is given by the 

parameters ( )   and ( )
k
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Figure 1. Conditional volatility, banking and currency crisis in selected emerging economies. 
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Fig. 2. Changes in the quantile regression coefficients for Argentina 
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Panel A2 : Asian region 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Panel A3 : Developed markets 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. Changes in the quantile regression coefficients for Brazil 
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Panel A2 : Asian region 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Panel A3: Developed markets 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


