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QUANTITY COMPETITION IN THE PRESENCE OF STRATEGIC

CONSUMERS

ANDREI BAZHANOV, YURI LEVIN AND MIKHAIL NEDIAK

Abstract. Oligopolistic retailers decide on the initial inventories of an undifferentiated limited-
lifetime product offered to strategic consumers. A manufacturer sets the first-period (full) price,
while the second-period (clearance) price is determined by a market clearing process. The resulting
symmetric pure-strategy equilibria may lead to no sales in the first or second period (Cournot
outcome versus collusion), and sales in both periods with the clearance price above or at the
salvage value. The equilibria possess a comprehensive set of monotonic properties. In particular,
increasing strategic behavior can benefit retailers and hurt consumers, increasing competition may
harm the local economy, and high levels of strategic behavior may insure against oversupply that
leads to clearance sales at the salvage value. The welfare-optimal number of retailers can lead to
the above-cost clearance price.

1. Introduction

In the current global economy, it is common for major transnational manufacturers to introduce
a new product in local markets. Characteristic examples include a December 23, 2013 launch of
Samsung Galaxy Grand 2 in India, an introduction of Brazuca (The Official Match Ball of the 2014
FIFA World Cup) by Adidas in Brazil, and a 2013 introduction of six new Ford models in China.
The rapid pace of fashion, innovation, and technological progress limits the lifetime of products,
making them obsolete within a relatively short time. At the time of entry, the manufacturer
may wield considerable market power and an ability to control the initial price but, eventually,
competing innovation or fashion takes its course and reduces consumer willingness to pay for the
product. A local market for such limited-lifetime product may have an arbitrary number of retailers
that initially sell it at the manufacturer-controlled price, but eventually engage in clearance sales
to liquidate the remaining inventory.

A similar process takes place in local markets for transportation services. Cargo forwarders and
aggregator companies have to negotiate seasonal allotment contracts with carriers that ultimately
provide the underlying capacity. The predominant fixed-commitment contracts (see Pompeo and
Sapountzis (2002)) force forwarders to offer discounts for any unused capacity with the approach
of the departure time. In their roles, a carrier is similar to a manufacturer, while forwarders and
aggregators are similar to retailers.

A major operational decision faced by retailers and cargo forwarders is determining the quantity
of the product that they are going to supply to the market. At the strategic level, this decision
involves more than just procuring a certain inventory of the product; it can include choosing which
retail outlets carry the product or even opening new outlets, allocating the warehouse capacity,
making shipping arrangements, sizing the sales staff, and making other marketing and operational
decisions. All these complicating aspects contribute to product cost and supply inflexibility. The
same factors increase the importance of the product quantity decision which, in isolation, is rela-
tively easy to formalize.

On the consumer side of the market, we see a population that is accustomed to quick changes in
fashion, the emergence of new products, and their limited life cycles. Consumers are familiar with
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typical price trajectories resulting from intertemporal price discrimination by the sellers, and may
engage in strategic (forward-looking) shopping behavior by delaying the purchase until the period
of price reductions. In doing so, consumers realize that delaying the purchase may reduce the sense
of novelty and their enjoyment of the product, but they still make this calculated trade-off. Sitting
between a manufacturer with near-monopoly power and strategic consumers, retailers must make
their best of the situation while aggressively competing for their market shares.

This setting brings the following research questions. First and foremost, what are the effects
of strategic consumer behavior on retailer inventory decisions and profits? A common view is
that strategic consumer behavior is detrimental for retailers, but is this necessarily true? Does the
speed of reduction in product value play a substantial role in these effects? Better yet, do consumers
themselves necessarily benefit from their strategic behavior? The answer is not obvious because
consumer behavior drives competitive responses from the retailers. Finally, do the increases in
strategic consumer behavior and retailer competition benefit the local economy?

In addressing these questions, we consider a stylized two-period model where a manufacturer
sets the first-period list price (manufacturer suggested retail price or MSRP) for a limited-lifetime
product, and identical retailers engage in quantity competition by making inflexible first-period
supply decisions. The history of resale price maintenance by the manufacturer traces back to
the nineteenth century and “has been one of the most controversial antitrust topics ever since”
(Orbach (2008)). The phenomenon of MSRP is considered as a legal practice for branded goods
and is “informally” used for non-branded products. There are a number of explanations as to
why manufacturers offer MSRP and retailers accept it. In particular, collusive retailers can force a
manufacturer to declare a desirable first-period price (Orbach (2008)), or retailers may be forbidden
to carry the product when there is a lack of competition among manufacturers. A review by Butz
(1996) concludes that “manufacturers have many, many instruments” to punish or reward retailers
in order to control the retail price “and to some extent will do so whether or not the law permits
it.” Retailers may follow MSRP under repeated interactions even when this price is non-binding
since the manufacturer uses it to communicate private information on marginal cost and consumer
demand to the retailers (Buehler and Gärtner (2013)).

Since the main intention of first-period operational decisions, associated with the quantity deci-
sions, is to increase first-period sales, we assume that the first-period demand and the resulting sales
are non-decreasing in the initial order quantities. In the first period, regular consumers plan their
purchases according to their expectations of the second-period price. Because of the capacity com-
mitments of the retailers, the second-period (clearance) sales are described by the Nash-Cournot
model. The lower bound on the second-period price is provided by the salvage value since there is
usually a large number of bargain-hunter consumers who are ready to absorb the excess supply at
a sufficiently low price.

We answer the research questions by deriving a closed-form solution for the rational expectations
symmetric equilibrium (RESE) in pure strategies for the proposed generalized Nash-Cournot model.
This analytical tractability is a distinguishing feature of our approach to an otherwise unwieldy
problem. The equilibrium permits a complete characterization and takes one of the following forms:

(1) When the MSRP is sufficiently high relative to consumer valuations, all consumers delay
their purchases until the second period effectively turning the market into a one-period
Nash-Cournot.

(2) When the MSRP is relatively low, the market reduces to the first period only because
retailers limit the amount of product they supply to the market. This is essentially an
indirect collusive outcome facilitated by MSRP.

(3) For intermediate values of the first-period price and a sufficiently low salvage value, RESE
results in sales during both periods, as well as a second-period price higher than the salvage
value.
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(4) In the same range of the first-period price as form 3, and with a sufficiently high salvage
value, RESE still results in sales in both periods. However, the second-period sales take
place at the salvage value. This “salvaging” outcome is not attractive to the retailers
because they incur a large loss in the second period due to product oversupply.

Within each type, the equilibrium is unique. Across all types, the unique equilibrium always exists
under the conditions of RESE 1 and 2, but it may not be unique in the complementary case. For
the latter, we provide a sufficient condition that guarantees that RESE 3 exists and is unique. This
condition requires the unit cost to be high compared to the salvage value. The equilibria exhibit
stability in terms of consumer expectations and the strategies used by the individual retailers,
which is manifested by convergence of realized expectations or retailer actions to equilibrium under
a linear adjustment process.

We characterize all possible outcomes for the entire range of feasible values of the first-period
price. These results shed light on the nature of the interaction between oligopolistic retailers and
strategic consumers in various regimes allowing, e.g., to find a profit-maximizing MSRP for the
manufacturer. If the manufacturer operates only in a single market, this value of the MSRP in
combination with other parameters, including the number of retailers and the level of strategic be-
havior, will determine the type of equilibrium. We show in §5.3 that, for the manufacturer, the most
beneficial markets have intermediate values of the ratio of MSRP to the highest consumer valuation
and RESE 4 is possible. As a rule, however, transnational manufacturers operate in multiple mar-
kets with notably different valuations for the same product whereas, to comply with anti-dumping
regulations, prices must be comparable when converted to local currencies. Consequently, compa-
rable currency-denominated MSRP values may substantially vary across the markets when they
are expressed in terms of the maximum consumer valuation, leading to different outcomes.

The equilibrium possesses intuitive monotonic properties, while it also delivers several unexpected
insights. It is intuitive that, when the number of retailers increases, the total supply of the product
does not decrease, the resulting second-period price falls, the total profit of retailers decreases, and
the total surplus of consumers increases. However, it is not always true that the aggregate welfare
(the sum of the total profit and consumer surplus) increases with the level of competition. For
example, when a relative decrease in consumer valuations for the product between two periods is
very small, the aggregate welfare may be increasing, decreasing, or it may even attain an internal
maximum. From a regulator’s point of view, the corresponding optimal market structure would
involve, respectively, a monopolistic retailer, a perfect competition, or an oligopoly. For the third
form of RESE, the maximum of the aggregate welfare with respect to the level of competition
results in a clearance price above the unit cost.

The response of equilibrium to changes in the level of strategic consumer behavior is more com-
plex. The quantity supplied to the market never increases with an increase in strategic behavior.
This means that retailers always respond to strategic behavior by reducing supply despite com-
petitive pressures. As a result, retailers may capitalize on strategic behavior since the total profit
may be non-monotonic. Typically, total profit decreases as consumers become more strategic, e.g.,
when the relative decrease in valuations between the two periods is large or in a monopoly. How-
ever, there are two distinct cases leading to profit gains resulting from the equilibrium response of
retailers to strategic consumer behavior:

• the “continuous gain” is characterized by continuously increasing profit in the level of strate-
gic behavior; this gain may happen when the second-period sales are either profitable or
at loss, but only when the relative decrease in valuations is small and the level of strategic
behavior is high;

• the “discontinuous gain” occurs at various levels of strategic behavior and the relative
decrease in valuations, but only when the difference between the unit cost and the salvage
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value is relatively small; profit increases because retailers reduce inventories in response to
increased strategic behavior, which leads to the switch from RESE 4 to RESE 3.

The most pronounced form of these phenomena is the “boundary-value gain”, i.e., profit with
myopic consumers is less than with fully strategic consumers. This may occur only when a strong
first-period inventory competition leads to the second-period sales below cost.

Since RESE 4 is unfavorable for the retailers, they would generally prefer to avoid it whenever
possible. It is then particularly noteworthy that an increase in strategic consumer behavior may
prevent salvaging equilibrium from taking place. We provide a sufficient condition to rule out
RESE 4 in the form of a lower bound on the level of strategic behavior.

The total consumer surplus is not generally monotonic and may attain maximum at an interme-
diate level of strategic behavior. Thus, the consumer population as a whole does not necessarily
benefit from becoming more strategic, and may, in fact, lose by being “too strategic.” Similarly,
the aggregate welfare is generally non-monotonic: it may attain a maximum that tends to arise for
high levels of retailer competition and a small relative decrease in valuations. Non-monotonicity of
the aggregate welfare is characterized in closed form for the case of salvaging equilibrium.

We present a review of related literature in §2, describe the model in §3, and state the char-
acterization of equilibrium as well as a sufficient condition for its existence and uniqueness in §4.
We analyze equilibrium properties and some extensions of the model in §5 and the properties of
consumer surplus and the aggregate welfare in §6. Finally, §7 provides a summary of monotonic
properties and outlines several possibilities for extending and applying the proposed model. All
mathematical proofs are presented in the online appendix.

2. Quantity decisions and strategic consumers

One of the first to recognize the importance of strategic consumer behavior is Lazear (1986) who
studies a monopoly pricing problem with fixed inventory. Among a variety of two-period settings,
Lazear considers a given population of strategic buyers whose valuations for a fashion good decrease
by a fixed factor in the second period.

Coase (1972) has initiated a study of strategic buyer behavior in an intertemporal pricing problem
faced by a durable good monopolist. The essence of his famous conjecture is that “the competitive
outcome may be achieved even if there is but a single supplier”. As one of the possible solutions to
this problem, Coase proposes to restrict the quantity of the good supplied to the market through
contractual or other arrangements.

These early studies have led to further research in consumer behavior in the context of intertem-
poral pricing. Shen and Su (2007) survey results involving strategic consumer models, and Aviv
et al. (2009) review the research on the mitigation of strategic consumer behavior. We focus our
attention on results where quantity-based decisions of sellers affect strategic consumers. For a mo-
nopolistic retailer, Cachon and Swinney (2009) consider a two-period model with uncertain demand
and find that the optimal choice of the initial inventory and subsequent markdown is better than
committing to a price even in the presence of strategic consumers. Moreover, an opportunity to
replenish the inventory at the beginning of the second period is much more valuable for the retailer
in the presence of strategic consumers than when all consumers are myopic.

Su (2007) considers a deterministic model of monopolistic pricing and rationing policy for a fixed
inventory of a limited-lifetime product. The market consists of four segments characterized by one
of the two fixed valuation levels (high- or low-valuation consumer types) and one of the two given
values of waiting costs (patient or impatient consumers). Su shows that market heterogeneity
may lead to profit gains from the increased strategic behavior of low-valuation consumers when
high-valuation consumers are myopic (impatient). In this case, the retailer sells the product at
a high price to the arriving high-valuation consumers, while the arriving low-valuation patient
(fully strategic) consumers are waiting for clearance. When the market of low-valuation consumers
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becomes large enough, the monopolist drops the price, effectively exploiting a price discrimination
scheme. This effect relies on the threat of stockouts for high-valuation consumers, which increases
their willingness to pay, and on the proportional rationing rule used in the model.

Liu and van Ryzin (2008) concur that “capacity decisions can be even more important than price
in terms of influencing strategic consumer behavior”; they study the effects of capacity decision
when prices are fixed while consumers have full information and can be risk-averse. The decision is
expressed in terms of consumer rationing risk. Liu and van Ryzin find that capacity rationing can
mitigate strategic consumer behavior, but it is not profitable for risk-neutral consumers. Under
competition, the effectiveness of capacity rationing is reduced, and there exists a critical number
of firms beyond which rationing never occurs in equilibrium.

These studies suggest that retailers are most challenged by strategic consumer behavior when
there is a large number of competitors, consumers are risk-neutral, and the market is homogeneous
with respect to the level of strategic behavior. Moreover, when consumers do not know the total
supply of the product, it is impossible to use strategic rationing to control their behavior. Our
study fills the gap in the existing results for this challenging setting.

Without strategic consumers or two-period demand, quantity competition has been considered
by Sherali et al. (1983) for a homogeneous product in a leader-follower framework, and by Fara-
hat and Perakis (2011) and Kluberg and Perakis (2012) for differentiated products. Kreps and
Scheinkman (1983) argued that the first-stage capacity commitment by duopolistic firms selling an
undifferentiated product yields a Cournot outcome even if the equilibrium production and prices
are determined by price competition in the second stage.

3. Model description

We consider a two-period market for a limited-lifetime product with an arbitrary number of
identical retailers. All the retailers have the same per-unit cost c and offer the product to regular
consumers at the same first-period price p1 > c. This assumption is not unusual “in a competitive
retail market, where retailers frequently stock identical products, sell them at the same suggested
retail prices, and at nearly identical costs from manufacturers” (Liu and van Ryzin (2008)).

If there is some product remaining after the first period, retailers engage in clearance sales in
the second (clearance) period. Since the product offerings are undifferentiated, the retailers lower
their prices until all remaining inventory is cleared, that is, second-period price p2 (identical for all
retailers) is sufficiently low for the total clearance demand to equal the total remaining inventory.
Similarly to Cachon and Swinney (2009), we assume that, in the second period, there is an infinite
number of bargain-hunting consumers who can buy any remaining product at per-unit salvage
value s < c. As a result, p2 never goes below s. The salvage value also allows for the possibility of
inventory buy-back contracts of retailers with the manufacturer, or the availability of alternative
sales channels for the retailers.

Each retailer maximizes its profit by selecting the initial inventory level. The resulting game
among the retailers is similar to the classical Nash-Cournot model, but with a substantially distinct
two-period structure and a special role played by MSRP in the first period.

We now describe the market dynamics. Let retailers be indexed by set I of size n = |I|, and
retailer i ∈ I product supply and sales in the first period be yi and qi. Since the second-period
market is cleared, each retailer’s second-period supply and sales are equal to yi − qi. Denote the
total first-period product supply and sales as Y =

∑

i∈I y
i and Q =

∑

i∈I q
i, respectively. Then

the total second-period supply is Y −Q and the retailer i profit is

ri = −cyi + p1q
i + p2(y

i − qi). (1)

First-period sales qi are determined based on a consumer decision model.
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3.1. Consumer decision model. The consumer decision model describes two aspects: demand
allocation between two periods and among the retailers. We will start with the first one.

3.1.1. Demand allocation between two periods. We normalize the number of regular consumers to
one, and let first-period valuations v be drawn from a uniform distribution on the interval [0, 1].
Normalization of valuations effectively expresses revenue and inventory as “unitless” quantities and
MSRP as a share of maximum valuation. In order to capture a typical decrease in valuations for
seasonal and limited-lifetime products, we introduce factor β ∈ [0, 1]: if the consumer’s first-period
valuation is v, the second-period valuation becomes βv. Two logical restrictions ensure non-trivial
equilibrium results. First, inequality β > c guarantees that the highest-valuation consumer is
prepared to pay more than the unit cost in the second period. If this restriction does not hold,
the clearance price can never be above the unit cost. We also suppose that p1 > s

β to ensure that

salvage value s is less than the highest second-period valuation βp1 of regular consumers who are
forced to delay their purchases by MSRP. Similarly to β > c, this restriction supports a non-trivial
second-period outcome in an equilibrium with a substantial role of regular consumers.

The availability of information about total supply of the product varies among the markets.
Some markets, such as land or real estate, have nearly perfect information, an assumption used in
Liu and van Ryzin (2008). In many other markets, total system-wide inventory is unobservable,
which reduces the ability of retailers to use rationing as a tool for stimulating first-period demand
from strategic consumers. When consumers do not observe total supply, they cannot infer exact
price p2 and probability α ∈ {0, 1} that the product is available in the second period.

Assumption 1. Consumers do not know the total product supply and make their decisions based
on: (a) expected probability that there are second-period sales ᾱ ∈ {0, 1}; (b) expected second-period
price p̄2.

Given these expectations, consumers decide whether a first or second-period purchase maximizes
their intertemporal surplus, which is similar to Lazear (1986), Su (2007), and Cachon and Swinney
(2009):

Assumption 2. When the product is available, a consumer with valuation v buys in the first
period if the first-period surplus σ1 , v − p1 is not less than the expected second-period surplus
σ2 , ᾱρ(βv − p̄2)

+, where ρ ∈ [0, 1) is a discount factor.

Consumers with v < p1 never buy in the first period because such a purchase would result in
a negative surplus. The proposition below describes the first-period demand, where we use the
notation a ∨ b , max{a, b}, a ∧ b , min{a, b}.
Lemma 1. Given consumer expectations, surplus-maximizing behavior is to buy in the first period

if v ≥ vmin, where the unique valuation threshold is given by vmin = p1 ∨
(

p1−ᾱρp̄2
1−ᾱρβ ∧ 1

)

. The

resulting total first-period demand is D = 1− vmin.

Undervaluation of the surplus from delaying a purchase means that even for a product that does
not depreciate much by the second period, i.e., β is near one, consumers with any valuation may
myopically ignore the second period during the first-period deliberations, i.e., have ρ = 0. The
value of ρ may depend on the market targeted by the product, e.g., for age- or culture-oriented
products, and on the consumer confidence in the stability of the financial situation. As ρ increases,
consumers place more emphasis on the second period in their wait-or-buy decisions. Thus, unlike
β, which models an objective decrease in valuations, ρ is a subjective parameter of the consumers
describing the level of their strategic behavior. The essence of the distinct roles of β and ρ has
been succinctly captured by Pigou (1932): “Everybody prefers present [i.e., ρ < 1] pleasures or
satisfaction of given magnitude to future pleasures and satisfaction of equal magnitude [i.e., β = 1],
even when the latter are perfectly certain to occur.” Consumer discount rates can be estimated in
practice, as Busse et al. (2013) illustrate in the context of car purchases.
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3.1.2. Demand allocation among retailers. Since consumers have no preferences among the retailers,
the marketing and distribution efforts are the only differentiating aspect. It is recognized both in
practice and in research (e.g., Balakrishnan et al. (2004)), that typical consumer behavior results
in larger sales of a particular retailer if the product is presented to consumers at a larger number of
retail outlets, in larger quantities on store shelves, and in more ads. We consider attraction ai(yi)
as a measure of retailer i efforts that are not decreasing in the retailer’s inventory.

Assumption 3. The function ai(yi) is continuous, not decreasing in yi, and ai(0) = 0. Consumers
do not know the functional form of ai(yi) and observe only the resulting vector of attraction values.

Identical retailers operate under alike conditions and use similar recipes for creating the firm’s
attractions, i.e., ai(yi) = a(yi) for all i ∈ I. Moreover, any two identical retailers with the same
attraction have equal market shares, and the market share of any retailer decreases by the same
amount if the attraction of any other retailer is increased by a particular amount. These properties,
complemented by a simple assumption that zero attraction leads to zero market share, satisfy the
conditions of the market share theorem of Bell et al. (1975), which claims that the functional form
of the market share of retailer i, in this case, is a(yi)/

∑

j∈I a(y
j). Thus, effectively, consumers

observe market shares.
The first-period demand di of retailer i, determined by its market share, depends not only on

yi via a(yi) but also, inversely, on y−i – the vector of inventories of the others. Assumption 1
implies that demand di is homogeneous of degree zero: di(kyi, ky−i) = di(yi,y−i) for any k > 0,
i.e., total supply cannot influence di when the ratios yi/Y , i ∈ I remain the same. Since the total
first-period demand D =

∑

i∈I d
i(yi,y−i) is also homogeneous of degree zero, retailer i market

share di(yi,y−i)/D, is homogeneous of degree zero. The following lemma specifies the functional
form of a(yi).

Lemma 2. If retailer i market share is homogeneous of degree zero and has functional form
a(yi)/

∑

j∈I a(y
j), where a(y) is continuous in y, a(y) has the unique functional form a(y) = a(1)yγ .

By choosing the scale of attraction so that a(1) = 1, we obtain the functional form for demand
di :

di(yi,y−i) , D

(

yi
)γ

∑

j∈I (y
j)γ

, i ∈ I, (2)

where γ ∈ [0, 1] is the inventory elasticity of attraction or inventory elasticity of demand, normalized
by the market share of other retailers (Online Appendix B). Function (2) is a symmetric form of
a widely used general attraction model (e.g., Monahan (1987), Gallego et al. (2006)). The case
γ = 0 means that a retailer’s attraction does not depend on yi, and di ≡ D

n for any yi > 0 and
i ∈ I. This case was used in §4.4 of Liu and van Ryzin (2008) to study the effect of rationing on
strategic behavior of risk-averse consumers. An empirical study of Naert and Weverbergh (1981)
concludes that the attraction model is “more than just a theoretically interesting specification.”
This model “may have a significantly better prediction power than the more classic market share
specifications.” This conclusion is supported by later studies (e.g., Klapper and Herwartz (2000)).

Since product is undifferentiated and the retailers are identical, consumers buy from any retailer
with available product. If the combined supply of retailers is insufficient to satisfy the combined
demand, one of the rationing rules can be used. For example, according to the surplus-maximizing
rule (see Tirole (1988)), consumers buy in the order of their valuations. The following lemma shows
that retailers have no stockouts independently of the rationing rule.

Lemma 3. Consider any Ȳ ≥ 1 − vmin, symmetric inventory profile ( Ȳn , . . . ,
Ȳ
n ) ∈ R

n
+, and any

behavior of consumers under stockouts in the first period. For any i ∈ I, let y−i = ( Ȳn , . . . ,
Ȳ
n ) ∈

R
n−1
+ . The following claims hold: (I) any profit-maximizing response of retailer i to y−i must

satisfy yi ≥ y̆i, where y̆i is the unique positive solution to y̆i = di(y̆i,y−i); (II) for any yi ≥ y̆i, (a)



8 ANDREI BAZHANOV, YURI LEVIN AND MIKHAIL NEDIAK

✲
�

�❅
❅

✲

✲

✲

✲Manufacturer determines p1, c

Total demand: D = D(p1, p̄2, ᾱ, β, ρ)

Retailers supply yi, i ∈ I

Retailer i demand: di = di(yi,y−i)

Market clearing at p2 ≥ s

Regular sales

Clearance

Figure 1. Market timeline

stockouts are impossible, (b) the total first-period sales are Q = 1− vmin, the individual first-period
sales are qi = di(yi,y−i), the resulting second-period inventories are yi − qi, i ∈ I and (c) the
second-period price is

p2 = s ∨ [β(1− Y )]. (3)

The timing of main events in the game and the corresponding inputs are outlined in Figure 1.

3.2. Rational expectations equilibrium. Lemma 1 identifies rational consumer behavior for
given expectations, MSRP values, and behavioral parameters ρ, β. In particular, it specifies valu-
ation levels of consumers who purchase in the first period. However, these results are insufficient
to identify how consumer expectations form. While it is possible to look for equilibrium behavior
of retailers for given expectations, our ultimate goal is to find equilibria that can be sustained in
the long run. Therefore, we need to close the loop by identifying expectations that are rational.
That is, the equilibrium inventory levels of the retailers must lead to precisely the same observed
product availability and clearance prices as expected by the consumers. This notion works well for
equilibrium since consumers can infer the second-period price from the recognition of their own
and retailers’ rationality.

When a completely new technology, such as a personal computer or a cell phone, is introduced
to the market, consumers may not be able to form rational expectations about the appearance of
subsequent versions of the product and the resulting pricing policies. However, in mature markets,
manufacturers regularly launch similar products, or new models of the same product, and con-
sumers, getting accustomed to price-drop patterns, adjust their expectations about future pricing
policies to closely match their observations. Adjustments are no longer needed if the expectations
coincide with the eventual observations. On the other hand, retailers regularly conduct market
research to estimate current consumer expectations.

Using this notion of rationality, the rational expectations symmetric Cournot-Nash equilibrium
(RESE) in pure strategies is defined as follows:

(1) Given consumer expectations and y−i, let the best response of retailer i beBRi(y−i, p̄2, ᾱ) =
argmaxyi r

i(yi,y−i, p̄2, ᾱ).
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(2) Let ŷ = ŷ(p̄2, ᾱ) denote a symmetric Nash-Cournot equilibrium inventory level for given

expectations, i.e., ŷ(p̄2, ᾱ) = BRi [(ŷ, . . . , ŷ), p̄2, ᾱ] , where (ŷ, . . . , ŷ) ∈ R
n−1
+ , and Ŷ (p̄2, ᾱ) =

nŷ(p̄2, ᾱ) be the corresponding total inventory.

(3) The tuple (Y ∗, p∗2, α
∗) is a RESE if Y ∗ = Ŷ (p∗2, α

∗), p∗2 = s∨ [β(1−Y ∗)], and either α∗ = 0,
if Y ∗ = 1− v∗, or α∗ = 1, if Y ∗ > 1− v∗ where v∗ is the equilibrium value of vmin.

From now on, r∗ denotes the equilibrium profit of a retailer. Equilibrium values may be specified
for the type of RESE, e.g., r∗,3 or Y ∗,1, if necessary.

3.3. Discussion of model assumptions. We conclude this section with the discussion of specific
implications of model assumptions. Some of the assumptions are quite common and well under-
stood. For example, consumers are modeled as homogeneous in the level of strategic behavior ρ
and relative valuation decrease β. This assumption is applicable to any products targeting specific
market segments. The value of ρ may also be tied to the average time value of money (rate of
return), which is relatively homogeneous for all consumers. The assumption of retailer symmetry
is common for qualitative models of competition, when retailers do not differ in their cost structure
or brand value. For the current model, these differences are not important since the offerings of the
retailers are undifferentiated, and the manufacturer supplies the product to retailers at the same
wholesale price.

The information structure of the model is rather general. Indeed, it is relatively rare for the
total product supply in the market to be visible to consumers while the market share effort, such
as the number of outlets, does signal to consumers the relative market power of the retailers.
Generally, consumer expectations about the second-period price and rationing risk may or may
not be probabilistic in this context but, for pure strategy (deterministic) equilibria, deterministic
expectations are consistent with retailer behavior. As we show below, there is a considerable amount
of insight even from the pure-strategy case.

The assumption of a fixed first-period price (list price or MSRP) has justifications both in
practice and prior literature. Indeed, retailers would rarely start the selling season by deviating
from a well-publicized list price (such as $160 for Brazuca or $9,500 for a brand new Chevrolet
Sail in China) and, as was already mentioned, they are inclined to honor a non-binding MSRP
in the context of repeated interactions with the manufacturer. On the other hand, the (second-
period) clearance price does vary and may be considerably lower than the first-period one. The
Cournot-Nash approach to modeling equilibrium is one of the classical models for this case.

The following sections focus on the case of γ = 1 in the first-period demand (2) as most results
hold for any γ ∈ (0, 1], and this case is more reader-friendly than for intermediate values of γ. Some
of the effects weaken when γ goes to zero and disappear for γ = 0. The robustness of the main
results with respect to changes in γ, including the closed-form analysis for γ = 0, is shown in the
online appendix B.

4. Characterization of RESE

The restriction of rationality for consumer expectations immediately implies the following con-
clusions about the equilibrium.

Lemma 4. In any rational expectations equilibrium, (1) p2 < βp1 if there are sales in the second
period; (2) Y ≥ 1 − p1, which holds as an equality only if there are no sales in the second period;
(3) ρβY < 1 − p1 if there are sales in both periods and p2 > s; ρβY ≥ 1 − p1 and p2 ≥ c if there
are sales only in the second period; and (4) vmin = p1 if and only if ᾱ = 0 or ρ = 0.

Since vmin ≥ p1, part (2) of Lemma 4 justifies the assumption of Lemma 3 for a RESE.

4.1. No-salvaging RESE. We start by providing closed-form expressions for three of the possible
equilibrium cases.
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Theorem 5. A unique RESE with the stated structure exists if and only if the respective conditions
hold:

RESE 1 (No sales in the first period): v∗ = 1, α∗ = 1, p∗2 = c+ β−c
n+1 , Y

∗ = n
n+1

(

1− c
β

)

,

and r∗ = (β−c)2

(n+1)2β
under condition p1 ≥ 1− n

n+1ρ(β − c) , P1.

RESE 2 (No sales in the second period): v∗ = p1, α
∗ = 0, Y ∗ = 1−p1, and r∗ = 1

n(p1−
c)(1− p1) under condition p1 ≤ nc

n−1+β , P2.

RESE 3 (Sales in both periods, p∗2 > s): v∗ = p1−ρβ(1−Y ∗)
1−ρβ , α∗ = 1, p∗2 = β(1 − Y ∗),

where Y ∗ is the larger root of a quadratic equation, and r∗ = 1
n [(p1 − c)(1− v∗) + (p∗2 − c)(Y ∗ − 1 + v∗)],

under condition P2 < p1 < P1 and one of the following:

(a) n−1
n (p1 − s) (1− v∗)Y ∗ ≤ (c− s)

(

1− s
β

)2
, or (b) condition (a) does not hold, Y ∗ <

1 − s
β , and r∗ ≥ r̃i ,

{

√

(p1 − s) (1− v∗)−
√

n−1
n Y ∗ (c− s)

}2

, where r̃i is the maximum

profit of a firm deviating from this RESE in such a way that p2 = s (the total inventory is
greater than 1− s

β ).

The equilibrium characteristics Y ∗, v∗, and r∗ are continuous on the boundaries between these

forms of RESE. Moreover, in RESE 3, Y ∗ ≥ n
n+1

(

1− c
β

)

.

If the initial consumer expectations of the second-period price are such that p̄02 < p∗2, the game is
repeated, and expectations follow a linear adjustment process, then the sequence of games converges
to p̄2 = p∗2 for any sufficiently small speed of adjustment.

Equilibrium RESE 1 describes scenarios with high p1 when there are no sales in the first period
and all consumers wait for clearance sales. Inequality p1 ≥ P1 implies that this outcome is possible
only if consumers are strategic (ρ > 0), except for a degenerate case p1 = 1. The area of RESE 1
inputs increases in (i) ρ because more consumers delay the purchase, (ii) n since rational strategic
consumers expect a lower second-period price when competition grows, and (iii) difference β − c
because retailer profit increases in β − c and consumer second-period valuations increase in β. The
form of this RESE completely matches a one-period Nash-Cournot outcome.

RESE 2 is the opposite: p1 is low (high-valuation market), all consumers whose valuations are
higher than p1 buy in the first period, and there are no sales in the second period. Condition
p1 ≤ P2 implies that the existence of this RESE does not depend on ρ because ᾱ = 0 — rational
consumers do not expect second-period sales and, by Lemma 1, the equilibrium valuation threshold
of the first-period buyers is v∗ = p1 regardless of ρ. Also, RESE 2 input area shrinks in β and
n, disappearing for β = 1 and n → ∞. The “β-effect” results from increasing attractiveness of
the second-period market when retailers can gain from two-period price discrimination, and the
“n-effect”results from increasing quantity competition for the market share that may force retailers
to procure more inventory than just for the first period. The input area increases in c because the
second-period profit approaches zero in c faster than the first-period profit, decreasing the relative
attractiveness of the second-period sales. Retailers divide the profit associated with the total supply
that is just enough to cover the first-period market. Since the supply is determined by an externally
set MSRP, retailer competition is reduced to market sharing and we can interpret this outcome
as an MSRP-facilitated collusion. In either of the first two equilibria, the intertemporal effect of
competition is (locally) eliminated and, consequently, Y ∗ and r∗ do not depend on ρ.

RESE 3 describes scenarios with intermediate p1 leading to sales in both periods. It provides a
bridge between the opposites: a competitive Cournot outcome of RESE 1 and an MSRP-enabled
collusion of RESE 2. Conditions (a) and (b) correspond to different attractiveness of salvage-value
sales for a potential deviator from RESE 3 that increases inventory. Condition (a) means that the
deviator profit monotonically decreases, i.e., for the inputs that satisfy this condition, RESE 3 is
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stable with respect to small parameter deviations given that p1 is sufficiently far from the boundary.
Under condition (b), deviator profit has a local maximum with p2 = s but this maximum does not
exceed the profit under RESE 3. The inputs for which (b) holds are near the boundary of RESE 3
existence where this equilibrium may be unstable with respect to parameter misestimation.

For a monopolist, RESE 3 takes a simpler form described in the following corollary. In particular,
condition P2 < p1 < P1 is necessary and sufficient.

Corollary 6. For n = 1 and any c
β < p1 < 1− ρ

2(β− c), RESE is v∗ = 2p1−ρc
2−ρβ , α∗ = 1, p∗2 =

βv∗+c
2 ,

Y ∗ = 1− 1
2

(

c
β + v∗

)

.

Since price and quantity decisions are equivalent for a monopoly, this corollary provides a char-
acterization of the price-skimming policy when the first-period price is externally regulated. The
second-period price for a monopolist in our model always exceeds the unit cost (because v∗ ≥ p1 >

c
β

in RESE 1 and 3). On the other hand, increasing competition may drive the second-period price
below cost, which we demonstrate in a market for a durable good with myopic consumers and some
n > 2. The second-period price in this case remains above cost in a duopoly.

Corollary 7. For β = 1, ρ = 0, and c < p1 < 1, RESE 1 and 2 cannot be realized and, in RESE 3,
the second-period price is below cost if and only if n > 2 + p1−c

1−p1
.

Increasing competition not only decreases the second-period price below cost, but undermines
the very existence of RESE 3. Indeed, condition (a) in RESE 3 holds for any n ≥ 1 only if s is
sufficiently low. On the contrary, for large s, condition (a) may not hold. Moreover, one can show
that the condition r∗ > r̃i will then be violated for all sufficiently large n (this is the case presented
below in Corollary 8). This means that growing competition provides an incentive for a retailer
to deviate from this form of RESE by increasing supply beyond the point where p2 = s. Despite
the resulting losses in the second period, this deviation can be profitable because the first-period
market share of the deviating retailer is dramatically higher. Hence, growing competition may
result in the non-existence of RESE 3 even though condition P2 < p1 < P1 holds.

Corollary 8. If condition P2 < p1 < P1 holds and condition (a) of RESE 3 existence is violated
in the limit of n → ∞, RESE 3 does not exist for all sufficiently large n.

This result shows that we need to refine our understanding of the equilibrium and conditions for
its existence. For monopoly (n = 1), Theorem 5 exhaustively covers all feasible parameter values.
Starting from duopoly, condition P2 < p1 < P1 may not guarantee the existence of RESE 3. The
result presented below shows that, in the same p1-range, there may exist one more form of RESE
with sales in both periods and p∗2 = s.

4.2. Salvaging RESE. The best response in the retailer game depends on Y −i , Y − yi — total
inventory less the inventory of retailer i. If Y −i < 1 − s

β , retailer i has control over the second-

period price. Namely, p2 > s if yi < 1 − s
β − Y −i (no salvaging) or p2 = s if yi ≥ 1 − s

β − Y −i

(salvaging). If Y −i ≥ 1 − s
β , salvaging is forced on retailer i, i.e., p2 = s regardless of supply

yi. Condition Y −i < 1 − s
β is used in a symmetric form with Y −i = n−1

n Y ∗ in the following

characterization of the last equilibrium form further referred to as RESE 4.

Theorem 9 (“Salvaging” RESE 4: sales in both periods, p∗2 = s). RESE with α∗ = 1, p∗2 = s, v∗ =
p1−ρs
1−ρβ , Y ∗ = n−1

n
p1−s
c−s (1 − v∗), and r∗ = p1−s

n2 (1 − v∗) exists if and only if one of the following

mutually exclusive conditions hold:

(a) salvaging is forced on retailers, i.e., n−1
n Y ∗ ≥ 1− s

β ;

(b) condition (a) does not hold, and

(

β
(

1− s
β

)2
+ (p1 − β) (1− v∗)

)

n−1
n

Y ∗

c+βv∗−2s ≥
(

1− s
β

)2
;
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(c) conditions (a) and (b) do not hold, Y ∗ > 1− s
β , and there are no real roots of the equation

2Y 3 −
(

2− v∗ − c

β
+

n− 1

n
Y ∗
)

Y 2 +

(

1− p1
β

)

(1− v∗)
n− 1

n
Y ∗ = 0 (4)

in the interval (1− v∗, 1− s
β ), or r∗ ≥ r̃i(Ỹ ), where r̃i(Ỹ ) is the maximum profit of a firm

deviating from this RESE in such a way that p2 > s, and Ỹ is the only root of (4) in the
interval

(

1− v∗, 1− s
β

)

.

If the initial consumer expectations of the second-period price are such that p̄02 > s, the game is
repeated, and expectations follow a linear adjustment process, then the sequence of games converges
to p̄2 = s for any sufficiently small speed of adjustment.

Unlike RESE 1-3, RESE 4 cannot exist for n = 1. This can be seen, e.g., from the expression for
Y ∗. The larger n is, the easier retailers find themselves in RESE with p∗2 = s. Similar to RESE 3,
conditions (b) and (c) correspond to different attractiveness of a higher second-period price for a
potential deviator from RESE 4 that decreases inventory. Condition (b) means that the deviator
profit monotonically increases in inventory, i.e., for the inputs that satisfy (b), RESE 4 is stable with
respect to small parameter changes when p1 is sufficiently far from the boundary. The first part

of condition (c) — no real roots of (4) in the interval
(

1− v∗, 1− s
β

)

— means that the deviator

profit has no local maximum with p2 > s, whereas inequality r∗ ≥ r̃i(Ỹ ) requires that when this

maximum exists at yi = Ỹ − n−1
n Y ∗, it does not exceed the profit under RESE 4. The inputs where

RESE 4 exists only by the second part of (c) are close to the boundary of RESE 4 existence where
this equilibrium may be unstable with respect to parameter misestimation. Conditions (a)-(c) hold
if c − s is sufficiently small, i.e., the cost is largely compensated by salvaging any excess units,
which makes this outcome attractive for the retailers. This form of equilibrium results in market
overcapacity and salvage value sales of a significant portion of the total supply.

Theorem 9 implies a necessary condition v∗ < 1, which means that there is positive demand in
the first period. This condition is equivalent to the upper bound p1 < 1− ρ(β − s) , P4 signifying
that a relatively high MSRP precludes salvaging outcome. Alternatively, this condition represents
an upper bound on the level of strategic behavior:

ρ <
1− p1
β − s

. (5)

As long as the product is durable enough for 1− p1 < β − s to hold, highly strategic (with ρ near
one) consumers guarantee that the salvaging outcome is impossible. Since P4 < P1 (the bound that
separates RESE 1 and 3), P4 separates RESE 4 and 3.

We now turn to the question of equilibrium uniqueness. By Theorem 5, RESE 1, 2, and 3 are
mutually exclusive since the corresponding p1-ranges do not intersect. The result below shows that
RESE 1, 2, and 4 are also mutually exclusive. Moreover, part (b) guarantees that condition (a) of
Theorem 5 holds for p1-range of RESE 3 and, at the same time, RESE 4 cannot exist.

Proposition 10. A unique RESE exists if any of the following conditions hold: (a) p1 ≥ P1, or

p1 ≤ P2, or (b.1) P2 < p1 < P1 and (b.2) n−1
n (p1 − s)(1− p1) ≤ (c− s)

(

1− s
β

)

.

Condition (b.2) trivially holds for n = 1. In general, it has the form of a lower bound on c − s,
i.e., the unit cost is sufficiently high compared to the salvage value. The condition holds for any
n > 1 and p1, if it holds for n → ∞ and p1 = 1

2(1 + s) (p1 maximizing the left-hand side). The

resulting stronger inequality is c − s ≥ (1−s)2

4(1−s/β) , which holds, e.g., for c = 0.25 and s = 0. Thus,

when the unit cost is relatively high, retailers avoid the unfavorable “salvaging” outcome.
The analysis of this section leaves a possibility that RESE does not exist. This is indeed the case,

but the fraction of model inputs where this may occur is very small. Combining all conditions in



QUANTITY COMPETITION WITH STRATEGIC CONSUMERS 13

(a) Prevalence of RESE structures (b) Prevalence of multiple or no RESE
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Figure 2. Fractions of model inputs resulting in a particular RESE structure for
given n

Theorems 5 and 9, we can determine which of the four types of equilibria exist (if any) for any given
set of inputs (n, ρ, β, c, s, p1) satisfying the feasibility conditions 0 ≤ ρ < 1, 0 ≤ s < c < β ≤ 1, and
s
β ∨ c < p1 ≤ 1. We have performed this analysis for 1,000,000 randomly (according to uniform

distribution) sampled feasible model inputs for different values of 1 ≤ n ≤ 1, 000. The results are
presented in Figure 2. Subgraph (a) is an area plot that shows the fractions of inputs resulting
in a particular equilibrium structure (RESE 1, 2, or 3 only, both RESE 3 and 4, RESE 4 only)
as the heights of the respective shaded areas for each n. As n increases, RESE 2 disappears and
the prevalence of RESE 1 and 4 grows with RESE 4 reaching more than 50% of model inputs.
Subgraph (b) shows the fractions of inputs resulting in both RESE 3 and 4 as well as non-existence
of equilibrium. The fraction of inputs where both RESE 3 and 4 exist is 4% for a duopoly and
considerably less for other levels of competition. The fraction of inputs where no RESE exists is at
most 0.191% (reached for n = 5).

5. Properties of RESE

The results of previous sections can be used, e.g., by a manufacturer or retailer to estimate
possible outcomes of entering the market. These outcomes depend on the current levels of com-
petition, strategic behavior, and other parameters. For an existing market, the effects of changes
in these parameters can be more relevant in order to anticipate possible market alterations. As to
changes in consumer strategic behavior, one of their drivers is macroeconomic. When the economy
is expanding, more consumers prefer to buy now than wait, and vice versa – an average consumer
is more inclined to delay the purchase when the economy shrinks. For example, a study of a For-
tune 500 retailer sales by Allenby et al. (1996) shows that even “fashion-forward consumers who
purchase apparel early in the season are more sensitive to economic conditions and expectations
than previously believed.”

Various forms of Consumer Confidence Indicators report on changes in consumer behavior. For
example, the Index of Consumer Confidence is defined by the Conference Board of Canada web site
as “a crucial indicator of near-term sales for companies in the consumer products sector... Data
is collected on each respondent’s age, sex, marital status, and geographic location of residence.”
Using these data and other macroeconomic variables, a retailer and/or manufacturer can estimate
possible changes in ρ and in market outcomes, respectively, given that the current situation is
known. Lemmens et al. (2005), in an empirical study of the European markets, conclude that
“the Consumer Confidence Indicators become much more homogeneous as the planning horizon is
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Figure 3. Typical boundaries between RESE 1-3 in (n, p1) and (ρ, p1) (example
for c = 0.3, s = 0.05, p1 = 0.5, β = 0.6, and, for left plot, ρ = 0.6)

extended.” This homogeneity emerges inside of regions, and is determined by cultural, economic
and geographic differences.

This section, on one hand, supports previous studies showing that equilibrium total supply
increases in n and decreases in ρ. Both trends typically decrease retailers’ profits. On the other
hand, we specify two distinct cases when these opposing trends “compensate” each other leading to
increasing profit in ρ. Increasing ρ also has different effects on consumer second-period surplus and
total second-period sales depending on the consumer valuation and market situation, respectively.

5.1. RESE 1-3 (no salvaging). The analysis below takes into account possible switches between
different forms of RESE. The requirement of a unique RESE in some statements can be guaranteed,
e.g., by Proposition 10.

5.1.1. Switches between RESE forms. When RESE is unique, p1-ranges indicated in Theorem 5
provide a unique mapping between input parameter values and different forms of RESE. Figure 3
illustrates how these ranges change with n and ρ:

(a) the bounds on p1 that separate RESE 3 from RESE 1 and 2 are decreasing in n;
(b) the upper bound on p1 in RESE 3 is decreasing, and the lower bound is constant in ρ; and
(c) the lowest possible value of p1 that leads to RESE 1 is strictly above the highest possible

value that leads to RESE 2.

These observations are summarized as follows:

Proposition 11 (Changes in RESE structure). For RESE 1-3, the following claims hold:

(1) (From 2 to 3 in n) If p1 ≤ c
β , there exists n2 ,

p1(1−β)
p1−c ≥ 1 such that RESE is realized with

sales only in the first period (RESE 2) for any n ≤ n2, and with sales in both periods and
p∗2 > s (RESE 3) for any n > n2.

(2) (From 3 to 1 in n) For any ρ ∈ (0, 1), if 1 − ρ(β − c) < p1 < 1 − 1
2ρ(β − c), there exists

n1 , 1−p1
p1−1+ρ(β−c) ≥ 1 such that RESE is realized with sales in both periods and p∗2 > s

(RESE 3) for any n < n1, and with sales only in the second period (RESE 1) for any
n ≥ n1.

(3) (From 3 to 1 in ρ) For any n ∈ [1,∞), if 1− n
n+1(β−c) < p1 < 1, there exists ρ1 , n+1

n
1−p1
β−c

such that RESE is realized with sales in both periods and p∗2 > s (RESE 3) for any ρ < ρ1
and with sales only in the second period (RESE 1) for any ρ ≥ ρ1.
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(4) (No switches) If c
β < p1 ≤ 1− β + c, RESE is realized with sales in both periods and p∗2 > s

(RESE 3) for any n ≥ 1 and ρ ∈ [0, 1).

The changes in equilibrium structure generally lead to shifts in sales to the second period as the
levels of competition or strategic behavior increase. Next, we examine changes in the quantitative
characteristics of equilibrium.

5.1.2. Monotonicity of Y ∗, v∗, and nr∗. We now examine the monotonicity of v∗, Y ∗, and nr∗ in
n and ρ within RESE 1-3 and, by continuity, between these forms of RESE.

Proposition 12. For RESE described in Theorem 5, the following claims hold:

(1) The equilibrium total supply Y ∗ is non-decreasing in n (constant for RESE 2; increasing
for RESE 1 and 3) and non-increasing in ρ (decreasing for RESE 3; constant for RESE 1
and 2).

(2) v∗ is non-decreasing in n (constant for RESE 1, 2, and RESE 3 with ρ = 0; increasing for
RESE 3 with ρ > 0) and non-decreasing in ρ (increasing for RESE 3; constant for RESE
1 and 2).

(3) The total equilibrium profit of all retailers nr∗ is non-increasing in n (constant for RESE
2; decreasing for RESE 1 and 3), decreasing in ρ for RESE 3 with p1 ≥ β − n

2(n+1)(β − c)

or n = 1, and constant in ρ for RESE 1 and 2.

Monotonicity of the total supply and the total profit in the level of competition agree with
the theory of oligopoly and can be viewed as a sanity test for the model. On the other hand,
monotonicity in the level of strategic behavior (represented by ρ) is a much finer result. The
new insights of this paper are connected to the following non-trivial interaction between firms and
consumers while ρ is increasing. Part (2) of Proposition 12 states that v∗ is increasing in ρ when
there are sales in both periods (RESE 3) and retailers effectively engage in intertemporal price
discrimination. Increasing v∗ means that more consumers delay their purchases, even though total
supply Y ∗ is decreasing in ρ (by part (1)), resulting in a decreasing total number of purchases
and increasing second-period price. The nature and consequences of this interaction are considered
below in more detail. Part (3) of Proposition 12, for the monopoly, agrees with the existing
literature that strategic consumer behavior reduces profits. We generalize this effect to the case of
oligopoly when the product is not very durable (i.e., β is sufficiently low) or MSRP is relatively
high.

In RESE 3, oligopolistic retailers counteract additional consumer delays in purchase resulting
from increasing ρ by increasing the equilibrium second-period price p∗2 = β (1− Y ∗). As a result,
the expected surplus of waiting σ2 = ρ [βv − β (1− Y ∗)] may not be increasing in ρ. Indeed, its

derivative in ρ is ∂σ2

∂ρ = σ2

ρ + ρ∂Y ∗

∂ρ . The first term in the RHS is the realized second-period surplus,

which is non-negative for the consumers who buy in the second period. The second term reflects
the equilibrium response of the oligopolistic retailers. By part (1) of Proposition 12, this term is
negative for any ρ > 0. For RESE 3, the following corollary shows that increasing ρ has a different
effect on σ2 depending on the consumer valuation.

Corollary 13. For RESE 1 and 3, expected surplus σ2 of waiting is (1) increasing in n for any
v ∈ [0, 1], and (2) increasing in ρ for v0 < v ≤ 1, and decreasing in ρ for 0 ≤ v < v0, where

v0 = 1
β

(

p∗2 + ρ
∂p∗

2

∂ρ

)

= 1− Y ∗ − ρ∂Y ∗

∂ρ ∈
[

p∗
2

β , v∗
)

is such that ∂σ2

∂ρ

∣

∣

∣

v=v0
= 0.

For consumers with high valuations, σ2 is increasing in ρ. In particular, for the consumers with
v = v∗, the purchase in the second period is becoming more attractive than in the first period,
which means that v∗ is increasing in ρ (part (2) of Proposition 12). In contrast, σ2 is decreasing for
consumers with low valuations. For example, for the second-period buyers with the lowest valuation



16 ANDREI BAZHANOV, YURI LEVIN AND MIKHAIL NEDIAK

v =
p∗
2

β , the second-period surplus is becoming negative, leading to a decrease in the total number

of purchases. For myopic (ρ = 0) consumers, v0 =
p∗
2

β and ∂σ2

∂ρ > 0 for all second-period buyers.

An increase in ρ leads to either an increase or decrease in the total equilibrium second-period
sales Q∗

2 = Y ∗ − (1− v∗), depending on the parameters:

Corollary 14. For RESE 3, (1)
∂Q∗

2

∂ρ > 0 when n = 1; and (2)
∂Q∗

2

∂ρ < 0 when n → ∞, ρ = 0,

β < 1 and p1 is near 1.

Proposition 12 claims that nr∗,3 is decreasing in ρ for monopoly and oligopoly with a not very
durable good. To show that nr∗,3 may increase in ρ, we consider a limiting case of a durable
(within the time frame of the problem) product and consumers with the maximum level of strategic
behavior. In this case, the consumer choice of purchase time is determined only by price.

Proposition 15. Let n̄ , 1−p1
p1−c . For β = 1 and ρ → 1, RESE 2 and 4 do not exist and the

equilibrium has the form

(1) RESE 1 with v∗|ρ→1 = 1, Y ∗|ρ→1 =
n

n+1(1−c), p∗2|ρ→1 =
nc+1
n+1 < p1, and nr∗|ρ→1 =

n(1−c)2

(n+1)2

if n > n̄, and
(2) RESE 3 with v∗|ρ→1 = p1 + n(p1 − c), Y ∗|ρ→1 = 1 − p1, p∗2|ρ→1 = p1, and nr∗|ρ→1 =

(p1 − c)(1− p1) <
n(1−c)2

(n+1)2
if n < n̄ and

n− 1

n

(p1 − s) (1− p1 − n(p1 − c)) (1− p1)

(c− s) (1− s)2
< 1. (6)

Moreover, when n = n̄,

(3) the limiting cases (1) and (2) coincide, and
(4) (boundary-value gain) for all p1 and c such that n̄ ≥ 3, we have nr∗,3

∣

∣

ρ→1
> nr∗,3

∣

∣

ρ=0
.

In both limiting scenarios, sales occur at a single price: the one-period Nash-Cournot price in
part (1) and p1 in both periods in part (2). In part (1), representing a high level of competition, no
sales occur at p1, i.e., v

∗ = 1, and price decreases to Nash-Cournot in the second period. The Nash-
Cournot supply level in this case exceeds the MSRP-determined lower bound 1−p1 of Lemma 4. In
part (2), representing a low level of competition, retailers counteract strategic behavior by reducing
the total supply all the way to 1− p1 which exceeds the Nash-Cournot supply level.

Thus, the extreme level of strategic behavior, in combination with MSRP, forces retailers into
a collusive outcome. Part (3) shows that n = n̄ = 1−p1

p1−c plays a role of a parameter coordination

condition ensuring that the Nash-Cournot price coincides with p1. This condition is critical for
understanding part (4) that demonstrates the total profit increase as consumer behavior changes
from myopic to completely strategic.

This profit gain may appear counterintuitive because strategic consumer behavior is usually
considered detrimental. However, in this case, strategic behavior prevents the second-period sales
at a loss. Indeed, with completely strategic consumers, the total sales are equal to 1−p1 and occur
at p1. In the case of myopic consumers, the first-period sales are the same, while the second-period
sales are at loss for any n ≥ 3 according to Corollary 7. Since the increase in profit is strict, the
effect presented in part (4) is quite robust. Indeed, for each n ≥ 3, there is a continuum of model
instances satisfying the parameter coordination condition. Moreover, by continuity in parameters,
increased strategic behavior leads to an increase in profit in a local neighborhood of these instances.
The “boundary-value” profit gain described in part (4) results in this case from the “continuous
gain” since the entire range ρ ∈ [0, 1) belongs to the same equilibrium RESE 3 (Figure 4).

Example 16. Condition (6) is a limiting version of condition (a) of RESE 3 existence, which is
less restrictive than sufficient condition (b.2) of Proposition 10. Condition (6) holds for all p1 and
1 ≤ n < n̄ if c > 1+4s

5 , e.g., if s = 0 and c > 0.2.
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Figure 4. The total profit for RESE 3 with c = 0.45, s = 0.05, p1 = 0.5

(a) The second-period price (b) The total profit
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Figure 5. Overlap and switches between RESE 3 and 4 for c = 0.2, s = 0.1,
p1 = 0.4, β = 0.9

The numerical example below illustrates the behavior of the total profit in ρ. For small ρ, the
total profit is decreasing in ρ (see Figure 4 (a)). On the other hand, when β = 1, the total profit
is increasing for ρ near one. For all values of n ≤ n̄ = 10 in this example, the total profit attains
the limit (p1 − c)(1 − p1) established in part (2) of Proposition 15. It is natural to expect that
this effect of “durable-good non-monotonicity” is becoming weaker when β < 1. Indeed, Figure 4
(b) illustrates that, for β = 0.9, the total profit is decreasing in ρ for n = 1, 2, 3 and 5, and the
increase of nr∗ in ρ is small for n = 10. This increase can no longer compensate for the losses in
nr∗ resulting from increased competition.

5.2. RESE 4 (salvaging). The following proposition establishes the monotonic properties of
Y ∗, v∗, and nr∗ for RESE 4. These properties partially match those of RESE 1-3.

Proposition 17. For RESE 4, (1) v∗ is constant in n and increasing in ρ; (2) Y ∗ is increasing in
n and decreasing in ρ; and (3) nr∗ is decreasing in n and decreasing in ρ.

By part (a) of Proposition 10, RESE 4 does not exist under the conditions of RESE 1 and 2.
However, RESE 3 and 4 can both exist under the same inputs. In that case, one needs to resort
to focal-point arguments to predict which of the two equilibria will be realized. The example of
Figure 5 illustrates this fact.
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(a) β = 1, n = 5, p1 = 0.4 (b) β = 0.5, n = 10, p1 = 0.8

Figure 6. Equilibrium profit in ρ for c = 0.1, s = 0.05

The inputs for Figure 5 are such that inequality P2 < p1 < P1 and condition (a) of Theorem 5
for RESE 3 existence hold for n = 1 but this condition does not hold for n = ∞. By Corollary 8,
RESE 3 does not exist for sufficiently large n. At the same time, by part (b) of Proposition 10
and by rationality, RESE 4 does not exist and RESE 3 is realized uniquely for n = 1. It is also
straightforward to check that RESE 3 can be realized for n = 1, . . . , 11, while RESE 4 can be
realized for n = 8, . . . ,∞. For n = 8, . . . , 11 either equilibrium is possible.

In line with the interpretation of rational expectations equilibrium as a structure that is self-
sustaining in the long run, a possible focal point is an equilibrium with a structure that is similar to
the past. Figure 5 (b) shows that RESE 4 is considerably worse for the retailers than RESE 3. How-
ever, RESE 4 may be realized because a single retailer cannot unilaterally benefit from decreasing
its market share as long as others expect the RESE 4 structure and act accordingly.

Now, what is the effect of changing ρ when there is an overlap in inputs leading to RESE 3
and 4? For the data considered above, a minor increase in ρ from 0.5 to 0.6 qualitatively changes
the situation because, for ρ = 0.6, inequality P2 < p1 < P1 and condition (a) of RESE 3 existence
hold for any n ≥ 1 and neither of subcases (a)-(c) of Theorem 9 hold. Therefore, RESE 4 cannot
exist in the scenario considered above, and this increase in ρ leads to a discontinuous profit gain
and serves as an insurance against salvaging. Such an increase in ρ works by decreasing capacity in
RESE 3 at the cost of a slight decrease in profit (compare the solid and dashed lines in Figure 5 (b)).
The discontinuous profit gain can lead to the boundary-value gain even when β is small (Figure 6 b)
and can be combined with the continuous gain when β is near one. As a result, equilibrium profit
can have up to three local maxima in ρ (Figure 6 a).

An increase in ρ cannot always prevent retailers from realizing RESE 4, but it does reduce the
fraction of inputs leading to it. Figure 7 shows that for ρ = 0.999 the maximum fraction of model
inputs leading to RESE 4 reduces to 37.2% compared to more than 50% in Figure 2, where ρ is
unrestricted. Moreover, the area of inputs leading to both RESE 3 and 4 shrinks to less than 1.25%.

5.3. Equilibrium inventory and p1. As mentioned in the introduction, the paper primarily
focuses on exogenous p1, e.g., when p1 is specified by the manufacturer-retailer agreement (Orbach
(2008)). Manufacturers often operate in multiple markets with notably different valuations for the
same product, but MSRP must be comparable when converted to local currencies to comply with
anti-dumping regulations. In this case, the ratio of MSRP to the highest valuation on a specific
market can take any value from the range (c, 1] and lead to any type of RESE considered above.

However, a product may target only one specific market, or valuations on several markets might
almost be the same. In this case, the manufacturer can try to negotiate p1 to maximize its profit.
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Figure 7. Fractions of model inputs resulting in a particular RESE structure for
ρ = 0.999 and given n

(a) RESE 3 (b) RESE 4

Figure 8. Fractions of RESE 3 and 4 inputs resulting in Y ∗ > 1− c for given n

Keeping all other parameters constant, such p1 maximizes the total equilibrium inventory Y ∗ pro-
cured by the retailers. This section shows that RESE 4, which is the worst for the retailers, is
typically the best for the manufacturer.

The simplest “benchmark” case is RESE 2 where p1 is relatively low and Y ∗ = 1 − p1. The
supremum of the manufacturer’s profit in RESE 2 is obtained as p1 tends to c. In practice, this
supremum cannot be achieved because retailer profits must be positive and consumer valuations
are bounded from above. Therefore, the difference between MSRP and the unit cost, normalized
by the highest valuation, is separated from zero. The following results show that, depending on
the product (β) and the market situation (n, ρ, c, s), the values of p1 leading either to RESE 3 or
4 can be more profitable for the manufacturer than p1 → c.

Proposition 18. When the corresponding RESE exists, (1) Y ∗,1 < 1− c; (2) the unique maximum

of Y ∗,4 in p1 is Ȳ ∗,4 = (n−1)(p̄1−s)2

n(1−ρβ)(c−s) at p1 = p̄1 , 1
2(P4 + s); Y ∗,4 ≥ 1 − c if and only if c − s ≤

n−1
n

p1−s
1−c

1−p1−ρ(β−s)
1−ρβ ; (3) Y ∗,3 < 1− c for n = 1; for n → ∞ and p1 → P2 = c, Y ∗,3 → 1− c and, if

ρ = 0, ∂Y ∗,3

∂p1

∣

∣

∣

p1=P2+0
> 0.
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(a) n = 3, β = 0.6 (b) n = 5, β = 0.8

Figure 9. Y ∗ in p1 for ρ = 0.4, c = 0.3, s = 0.2, and

RESE 2 is the best for the manufacturer in a market with a single retailer and β < 1 (RESE 2
must exist). For n > 1, consistently with Proposition 12, Figure 8 shows that the fractions of
RESE 3 and 4 instances, where Y ∗,3 and Y ∗,4 are greater than 1 − c, are increasing in n. For
RESE 3, this fraction is zero at n = 1 and remains below 40% for n > 1, while it is at least 95% for
RESE 4. Therefore, the manufacturer may prefer markets with many retailers, where the ratio of
MSRP to the highest valuation takes intermediate values and RESE 4 can be realized. For Figure 8,
we used the same simulation approach as for Figure 2. Typical qualitative behavior of Y ∗ in p1 is
illustrated in Figure 9. As a rule, the maximum values of Y ∗,3 and Y ∗,4 are inside the p1-range of
the corresponding RESE.

When p1 maximizes the manufacturer profit, and the minimum first-period price is pmin
1 > c,

the results of Proposition 15 are still valid with the substitution p1 = pmin
1 . In particular, for any

pmin
1 ∈

(

0, 1+3c
4

]

, we have n̄ ≥ 3, and the boundary-value gain holds: nr∗,3
∣

∣

ρ→1
> nr∗,3

∣

∣

ρ→0
(part

4). This profit gain disappears only with pmin
1 = c leading to nr∗,3

∣

∣

ρ→1
= nr∗,3

∣

∣

ρ→0
= 0. However,

the case pmin
1 = c is infeasible and implausible in this problem.

This subsection illustrates a non-trivial nature of manufacturer-retailer interactions under oligopoly
with strategic consumers. The properties of possible outcomes described in the above sections can
be used to study these interactions in a two-tier supply chain framework. Such analysis includes a
distinct set of research questions, e.g., the comparison of supply chain efficiency under centralized
and decentralized settings with various types of contracts (see Su and Zhang (2008) for monopoly),
and deserves a separate consideration.

5.4. Retailer’s discount. Lazear (1986) (p. 25) showed that the discounted second-period profit
leads to decreasing prices, which typically corresponds to increasing sales. Our setting leads to
a similar result in terms of inventory. The proposition below shows that when retailers solve a
non-degenerate two-period profit-maximization problem, the equilibrium inventory increases if a
discount factor becomes less than one. We call a two-period problem degenerate if it reduces to
one period, which happens for RESE 1, 2, and for a monopolist in RESE 3 since, for n = 1, the
first-period demand does not depend on inventory.

Proposition 19. If retailer i’s profit is ri = (p1 − c)qi + λ(p2 − c)(yi − qi), λ ∈ (0, 1], equilibrium
total inventory Y ∗ decreases in λ for RESE 4, RESE 3 with n > 1 and constant for RESE 1,2,
and 3 with n = 1. If λ = (1 + δ)−1, where δ is the interest rate between two periods, the relative

increase in Y ∗,4 from introducing λ < 1 is
(

Y ∗,4
λ − Y ∗,4

)

/Y ∗,4 = p1−c
p1−sδ < δ.
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For example, if λ = 1, p1 = 0.5, n = 10, β = 0.75, c = 0.1, s = 0.05, and ρ = 0, then by condition
(a) of Theorem 9, RESE 4 is realized with Y ∗,4 = 4.05. If, for the same data, retailers consider a

2% interest rate between periods, Y ∗,4
λ = 4.122, which is around 1.8% greater than Y ∗,4. For the

same data, but ρ = 0.7, RESE 3 is realized by condition (a) of Theorem 5 with Y ∗,3 = 0.85276.

The same 2% interest rate yields Y ∗,3
λ = 0.85346, which is only about 0.08% greater than Y ∗,3.

5.5. RESE stability. An equilibrium is more likely to emerge in practice if it is (a) asymptotically
locally stable, i.e., when the initial retailers’ inventories are close to an equilibrium, they converge
to the equilibrium values, or (b) globally stable, i.e., when any initial inventories converge to an
equilibrium when it is unique. In our setting, by Theorem 5 and Proposition 10, RESE is unique
for any inputs except for a small fraction where both RESE 3 and 4 may exist (Figure 2). In the
latter case, however, the feasible inventory ranges for RESE 3 and 4 are separated by a non-empty
interval (Figure 9).

RESE 1,3, and 4, for n ≥ 2, represent a non-degenerate game between retailers that can be
reformulated as a one-period game with retailer i’s payoff function πi(yi, Y −i) = yiP (yi, Y −i) −
Ci(y

i). Then using, e.g., Theorem 3 in al Nowaihi and Levine (1985), the following result holds.

Proposition 20. For any inputs where RESE 1,3, or 4 exist in an open neighborhood of Y ∗, a
RESE is locally asymptotically stable.

As to global stability, a seminal work of Theocharis (1960) showed that for a linear demand
and constant per unit cost, the best-response discrete adjustment process yit+1 = BRi(Y −i

t ), t =

0, 1, . . . , i ∈ I, converges for n = 2 and any y10, y
2
0. This process means that each retailer observes

rivals’ inventories at some time t and makes a payoff-maximizing inventory decision for t+1. Further
studies refined this result for slower adjustment processes yit = yit−1 + ki

[

BRi(Y −i
t−1)− yit−1

]

or

yit = yit−1 + ki∂π
i/∂yi where ki ∈ (0, 1] is the speed of adjustment. In particular, according to

Fisher (1961), “given the number of sellers, it is always possible to find [slow enough] speeds of
adjustment such that the system is stable.”

6. Total consumer surplus and aggregate welfare

In this section, we examine the effects of strategic consumer behavior and retailer competition
on the consumers and the local economy. In a two-period problem, the total two-period (realized)

consumer surplus is Σ∗ , Σ1 + Σ2, where Σ1 is the total surplus of consumers buying in the
first period and Σ2 in the second. The second-period surplus is not discounted by ρ since ρ is a
subjective behavioral parameter and such a discount would not reflect the actual surplus. In the
extreme case of ρ = 0, such discounting would completely disregard the second-period surplus of
myopic consumers. The expression for Σ∗ is given by the following:

Lemma 21. For a RESE with valuation threshold v∗ and second-period price p∗2, total consumer

surplus is Σ∗ = (1− v∗)
[

1+v∗

2 − p1
]

+
(βv∗−p∗

2)
2

2β , where the first term is Σ1 and the second is Σ2.

Effects on the local economy can be measured in terms of the aggregate welfare of consumers
and retailers defined as W ∗ , Σ∗ + nr∗. The main structural result for Σ∗ and W ∗ is

Proposition 22. Under the conditions of Theorems 5 and 9,

(1) total consumer surplus Σ∗ is non-decreasing in n (constant for RESE 2 and 4 and increasing
for RESE 1 and 3), constant in ρ for RESE 1 and 2, and increasing in ρ for RESE 4;

(2) aggregate welfare W ∗ is
(2.1) increasing in n for RESE 1, constant for RESE 2, and decreasing for RESE 4;
(2.2) constant in ρ for RESE 1 and 2, and, for RESE 4, increasing in ρ for ρ < ρ+ and

decreasing for ρ > ρ+ where ρ+ ,
(

1− 1
n

p1−s
p1β−s

)/(

1− β
n

p1−s
p1β−s

)

if n > p1−s
p1β−s , and

ρ+ , 0 otherwise.
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Figure 10. The total surplus Σ∗ in ρ with c = 0.45, s = 0.05, p1 = 0.5

This proposition implies that the consumer population as a whole benefits from an increase
in competition. On the other hand, Σ∗ may not be globally monotonic in ρ for RESE 3. The
non-monotonicity is established below for the case of β = 1:

Corollary 23. Under the conditions of RESE 3, β = 1 implies: (1) for all n ≥ 1 and ρ sufficiently
close to one, ∂Σ∗

∂ρ < 0; and (2) for n = 1 or n → ∞ and ρ = 0, ∂Σ∗

∂ρ > 0.

Corollary 23 and continuity of Σ∗ in β imply that Σ∗ has a maximum in ρ if β is sufficiently
large (Figure 10 (a)). Non-monotonic behavior is less pronounced for smaller β (Figure 10 (b)).

Along with the monotonicity of Σ∗, Proposition 22 describes certain settings with monotonic ag-
gregate welfare. The direction of monotonicity in a particular parameter varies depending on
the equilibrium structure and other inputs. For example, W ∗ is increasing in n for RESE 1
(Nash-Cournot outcome), which matches increasing welfare results for a standard one-period Nash-
Cournot equilibrium corresponding to our model. However, in other quantity competition settings,
welfare may not be increasing in the level of competition. For example, Bulow et al. (1985) (§VI,
Example E) claim that the welfare may decrease when a relatively inefficient retailer with high
marginal costs enters a monopoly market. In our model, the aggregate welfare decreases in n for
RESE 4 (salvaging outcome) because the resulting increase in product oversupply does not benefit
the consumers and only decreases profits of the retailers. For RESE 4, the level of strategic behavior
ρ+ attains the internal maximum of W ∗ as long as β < 1 and the level of competition is sufficiently
high, i.e., n > p1−s

p1β−s . For n ≤ p1−s
p1β−s , W

∗ is decreasing for all ρ. The dependence of W ∗ on n was

omitted in Proposition 22 for RESE 3 because this case warrants special attention:

Corollary 24 (Non-monotonicity of W ∗ in n). Treating n as a continuous variable and p∗2 as a
function of n under the conditions of RESE 3, the following result holds:

∂W ∗

∂n
R 0 if and only if p∗2 R c

(1− ρβ)2

1− 2ρβ + ρ2β
+ p1

ρβ(1− β)

1− 2ρβ + ρ2β
. (7)

The right-hand side of (7) equals c when ρ = 0 or β = 1 and strictly greater than c otherwise.

If there exists nW that is strictly within the feasible interval for RESE 3 and maximizes W ∗, it
satisfies (7) as equality. When ρ = 0 or β = 1, this means that the second-period price corresponding
to nW equals the unit cost. On the other hand, when ρ > 0 and β < 1, the corresponding second-
period price is strictly greater than the unit cost. Since, by Proposition 12, Y ∗ and, therefore,
p∗2 are strictly monotonic for RESE 3, nW is unique whenever it exists. From this unique value,
we obtain the maximum of the aggregate welfare (the candidates for the integer-valued point of
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Figure 11. The aggregate welfare W ∗ in n with c = 0.45, s = 0.05, p1 = 0.5
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Figure 12. The aggregate welfare W ∗ in ρ with c = 0.45, s = 0.05, p1 = 0.5

maximum are ⌊nW ⌋ and ⌈nW ⌉ since, generally, the solution to this equation is real-valued). We
illustrate the behavior of W ∗ in n and ρ in Figures 11 and 12, respectively, for the same set of inputs
as our earlier illustrations. For β = 1, Figure 11 (a) demonstrates that the aggregate welfare can
be monotonically increasing in n (for high levels of strategic behavior), and it can also attain the
maximum at intermediate values of n (for lower levels of strategic behavior). The latter illustrates
Corollary 24. For β = 0.9, Figure 11 (b) shows that the aggregate welfare may remain monotonically
decreasing in the whole range of ρ. In all cases presented in Figure 11 (b), the maximum value of
the aggregate welfare is attained by the monopoly. These findings may provide theoretical support
for a regulator introducing a policy that affects the number of independent retail chains. Figure 12
indicates that myopic consumer behavior or strategic behavior at an intermediate level may be the
best for the local economy in terms of the aggregate welfare. Myopic behavior is best for low levels
of competition, and the optimum level of ρ tends to increase as n increases. A smaller value of
β = 0.9 leads to the optimality of myopic behavior in a wider range of n.

7. Conclusions

Even when consumers are risk-neutral and homogeneous in the level of strategic behavior, re-
tailers can gain from increasingly strategic consumers for any level of competition. There are two
distinct cases of this effect: the continuous gain, when the equilibrium profit increases continuously
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Table 1. Summary of monotonic properties in n and ρ by equilibrium form

Monotonicity in n Monotonicity in ρ
RESE 1 2 3 4 1 2 3 4
Y ∗ ր ≡ ր ր ≡ ≡ ց ց
v∗ ≡ ≡ ր ≡ ≡ ≡ ր ր
nr∗ ց ≡ ց ց ≡ ≡ ց,min ց
Σ∗ ր ≡ ր ≡ ≡ ≡ ր,ց,max ր
W ∗ ր ≡ ր,ց,max ց ≡ ≡ ր,ց,max ր,ց,max

in the level of strategic behavior, and the discontinuous gain, when the profit increases because
of the switch from the “salvaging” equilibrium to another two-period equilibrium with a higher
second-period price.

The first type of gain occurs only for relatively high levels of strategic behavior and small de-
creases in valuations. With this gain, retailers use strategic consumer behavior to approach an
outcome that is equivalent, in terms of the profit value, to a tacit collusion. The discontinuous gain
occurs at various levels of strategic behavior and the relative decrease in valuations, but only when
salvage sales are attractive enough, i.e., the salvage value is relatively close to the unit cost. For
a manufacturer, increasing strategic behavior is always unfavorable because it decreases the total
equilibrium inventory procured by the retailers. Both types of retailer profit gains are reversible.
When the economy picks up, more consumers buy at the first-period price, becoming less strategic.
Then, the incentive for quantity competition increases, and retailers may find themselves in the
unfavorable “salvaging” outcome.

We summarize the monotonic properties of equilibrium characteristics with respect to competi-
tion level n and strategic behavior level ρ in Table 1 using ր, ց, and ≡ to indicate a monotonically
increasing, decreasing, or constant property, respectively. The possibility of an internal maximum
or minimum is indicated by “max” or “min”, respectively. When multiple symbols are present,
it means that different behaviors are possible for different inputs. The monotonicity results with
respect to the level of competition are quite conclusive and are obtained in the analytic form. The
direction of monotonicity can only vary for the aggregate welfare in RESE 3. The latter finding is
very important, as it may affect regulatory policies with respect to the level of competition. For
RESE 4, the increasing level of competition is always detrimental for the local economy.

Advantages of the presented model include its analytical tractability and natural connections to
established oligopoly results. Possible extensions cover a wide range of problems in the study of
competition in the presence of strategic consumers, for example: (1) analysis of policy decisions,
including taxes and subsidies for the manufacturer, retailers, and/or consumers; (2) study of supply-
chain coordination; (3) analysis of competition when advertisement and inventory decisions are
decoupled; and (4) study of price-matching contracts as a tool to counteract strategic consumer
behavior.
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Appendix A. Main text supplement

A.1. Proof of Lemma 1 (first-period demand). Recall that, for a first-period buyer with
valuation v ≥ p1, the surpluses of buying in the first period and that of waiting are, respectively,
σ1 = v − p1 and σ2 = ρᾱ(βv − p̄2)

+. Condition σ1 ≥ 0 is equivalent to v ≥ p1. Condition σ1 ≥ σ2
is equivalent to v− p1 ≥ ρᾱ(βv− p̄2) ⇔ v ≥ p1−ᾱρp̄2

1−ᾱρβ . Combining these inequalities, we obtain the

stated expression for vmin. Since all consumers with v ≥ vmin would buy in the first period, the
total demand is D = 1− vmin.

A.2. Proof of Lemma 2 (a(y) = yγ). By the conditions of the lemma, equality a(kyi)/
∑n

j=1 a(ky
j) =

a(yi)/
∑n

j=1 a(y
j) holds for any yj > 0, j ∈ I, and k > 0. Therefore, it holds for yi = y > 0,

yj = 1, j 6= i, and yl = y, yj = 1, l 6= i, j 6= l. Namely,

a(ky)

a(ky) + (n− 1)a(k)
=

a(y)

a(y) + (n− 1)a(1)
and

a(k)

a(ky) + (n− 1)a(k)
=

a(1)

a(y) + (n− 1)a(1)
,

which implies a(ky)/a(y) = a(k)/a(1) ⇔ a(ky) = a(k)a(y)/a(1). Denoting k̃ , ln k, ỹ , ln y, and

ã(z) , ln(a(ez)) − ln a(1), the logarithm of the last equation is ln a[exp(k̃ + ỹ)] = ln a[exp(k̃)] +

ln a[exp(ỹ)]− ln a(1) or ã(k̃+ ỹ)+ln a(1) = ã(k̃)+ln a(1)+ ã(ỹ) ⇔ ã(k̃+ ỹ) = ã(k̃)+ ã(ỹ). Since any
continuous additive function of one variable is linear with zero intercept, we have ã(ỹ) = γỹ (note
that by the definition of ã(z), ã(0) is, indeed, zero), which implies a(y) = a(1) exp[γ ln y] = a(1)yγ .

A.3. Proof of Lemma 3 (no stockouts). Part (I). The existence of the unique positive solution
y̆i to equation y̆i = di(y̆i,y−i) is established in §B.3.1. Moreover, the reasoning implies that
yi ≤ di(yi,y−i) for any yi ≤ y̆i. Thus, if yi ≤ di(yi,y−i), retailer i sells only in the first period and,
by (1), its profit function is ri = (p1 − c)yi, which is increasing in yi for any yi ∈ [0, y̆i]. Therefore,
inventory yi of a profit-maximizing retailer is never less than the first-period demand, i.e., yi ≥ y̆i

holds.
Part (II). Claim (a) is straightforward when yi ≥ y̆i holds and when retailer i sets the inventory

above the symmetric level Ȳ /n. In that case, the first-period demand of other retailers decreases
compared to Ȳ /n (constant for γ = 0), which cannot lead to stockouts.

Stockouts may potentially arise only when retailer i sets the inventory below Ȳ /n, increasing the
first-period market share of other retailers above the symmetric level. In this case, we show that the
first-period demand dj of any retailer j 6= i is not greater than inventory yj = Ȳ /n. Suppose that
yi = y̆i, which is the minimum possible inventory of a retailer rationally responding to a symmetric

profile, and that y̆i ≤ Ȳ
n . Then dj =

(1−vmin)(Ȳ /n)
γ

(n−1)(Ȳ /n)
γ
+(y̆i)γ

, and the no-stockout condition dj ≤ Ȳ /n can

be written as

(1− vmin)
(

Ȳ /n
)γ−1 ≤ (n− 1)

(

Ȳ /n
)γ

+
(

y̆i
)γ

.

Since y̆i = di =
(1−vmin)(y̆i)

γ

(n−1)(Ȳ /n)
γ
+(y̆i)γ

, the RHS of the last inequality equals (1 − vmin)
(

y̆i
)γ−1

. Then

dj ≤ Ȳ /n trivially holds for γ = 1 and, for γ ∈ [0, 1), is equivalent to y̆i ≤ Ȳ /n (since γ < 1),
which holds by the assumption.

Part (II) (b) follows from part (II) (a).
Part (II) (c). The second-period total inventory is Y −Q = Y − (1−vmin). Suppose this number

is positive. The number of consumers remaining in the market is vmin, and the upper bound of
their second-period valuations is βvmin. Therefore, as long as p2 ≥ s, the market clearing condition

for the second period takes the form vmin βvmin−p2
βvmin = Y − 1 + vmin, or, equivalently, p2 = β(1− Y ).

If β(1− Y ) < s, bargain-hunters absorb any excess supply at price s. Combining these two cases,
we get the second-period price in the form p2 = s ∨ [β(1− Y )], which is continuous in yi, i ∈ I.
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A.4. Profit function, its properties and inventory decisions for γ = 1. By Lemma 3, the
first-period total sales are Q = 1− vmin and retailer i sales are qi = di(yi,y−i), which, for γ = 1, is

yi QY . The second-period sales of retailer i are equal to its second-period inventory yi
(

1− Q
Y

)

.

Then the general expression for retailer i profit, using (1) and (3), takes the form

ri = −cyi + p1
yi

Y
(1− vmin) + {s ∨ [β (1− Y )]}

{

yi − yi

Y
(1− vmin)

}

. (8)

While this expression is continuous in all parameters and inventory yi, it is generally not globally
differentiable. Next, we consider all possible subintervals in terms of yi. Each subinterval results
in a differentiable expression for the profit function and a qualitatively distinct market outcome.

A.4.1. No sales in the second period. Formula (1) for profit becomes ri = (p1 − c)yi, which yields

a unique profit-maximizing inventory yi =
(

1− vmin − Y −i
)+

, where Y −i =
∑

j 6=i y
j , and the

maximum profit ri = (p1 − c)
(

1− vmin − Y −i
)+

, leading to the following lemma:

Lemma 25. For given model inputs and consumer expectations, retailer rationality implies that the
effective domain of the inventory decision is yi ≥ (1− vmin − Y −i)+ and (p1 − c)(1− vmin − Y −i)+

is the lower bound for the optimal profit.

A.4.2. second-period sales with p2 > s. If vmin > 1− Y (or yi > 1− vmin − Y −i), there are sales in
the second period. If this condition is combined with0 < yi < 1 − s

β − Y −i, then p2 > s and the

profit is given by

ri = −cyi + p1
yi

Y

(

1− vmin
)

+ β (1− Y ) yi
(

1− 1− vmin

Y

)

= yi
[

β (1− Y )− c+ (p1 − β (1− Y ))
1− vmin

Y

]

(9)

= yi
[

β (1− Y )− c+ β
(

1− vmin
)

+
(p1 − β)(1− vmin)

Y

]

(10)

with the derivative

∂ri

∂yi
= β (1− Y )− c+ [p1 − β (1− Y )]

1− vmin

Y
(11)

+yi
[

β

(

−1 +
1− vmin

Y

)

− (p1 − β (1− Y ))
1− vmin

Y 2

]

,

which, using equations Y = yi + Y −i and (10), can be rewritten as

∂ri

∂yi
= β

(

1− Y −i
)

− c+ β
(

1− vmin
)

− 2βyi + (p1 − β)(1− vmin)
Y −i

Y 2
. (12)

The second derivative is

∂2ri

∂ (yi)2
= −2

[

β + (p1 − β)(1− vmin)
Y −i

Y 3

]

. (13)

A.4.3. second-period sales with p2 = s. This case is possible only under oligopoly (Y −i > 0) be-
cause, for a monopolist, any price p2 ≤ c is not rational. If there are sales in the second period and
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yi ≥
(

1− s
β − Y −i

)+
(or Y ≥ 1− s

β ), then p2 = s and (8) becomes

ri = −cyi + p1
yi

Y

(

1− vmin
)

+ syi
(

1− 1− vmin

Y

)

= −(c− s)yi +
yi

Y
(p1 − s)

(

1− vmin
)

(14)

with the derivative

∂ri

∂yi
= −(c− s) +

Y − yi

Y 2
(p1 − s)

(

1− vmin
)

= −(c− s) +
Y −i

Y 2
(p1 − s)

(

1− vmin
)

, (15)

which is monotonically strictly decreasing in yi when vmin < 1.

A.4.4. Properties of the profit function. The following lemma provides the properties of retailer i
profit ri, using the continuity of ri in yi.

Lemma 26. The profit function ri is such that

(1) If 1− s
β − Y −i > 0, then

(1.1) ∂ri

∂yi

∣

∣

∣

yi=1− s
β
−Y −i−0

< ∂ri

∂yi

∣

∣

∣

yi=1− s
β
−Y −i+0

;

(1.2) ri
(

1− s
β − Y −i

)

≤ 0 if and only if

(p1 − s)
(

1− vmin
)

(

1− s
β

)

(c− s)
≤ 1; (16)

(1.3) ri is pseudoconcave in yi and strictly concave if p1 ≥ βvmin on the interval (1− vmin−
Y −i)+ ≤ yi ≤ 1− s

β − Y −i;

(1.4) ri is strictly concave on the interval leading to p2 = s, i.e. yi ≥ 1− s
β − Y −i; and

(1.5) ri is pseudoconcave on the interval yi ≥ (1− vmin − Y −i)+ if either

∂ri

∂yi

∣

∣

∣

∣

yi=1− s
β
−Y −i+0

≤ 0 or
∂ri

∂yi

∣

∣

∣

∣

yi=1− s
β
−Y −i−0

≥ 0.

(2) If 1− s
β − Y −i ≤ 0, ri is strictly concave on its entire domain yi ≥ 0.

A.5. Proof of Lemma 4 (p2 < βp1). From Lemma 1, we have vmin = p1 if and only if p1−ᾱρp̄2
1−ᾱρβ ≤

p1, which can be equivalently rewritten as ᾱρβp1 ≤ ᾱρp̄2. Within feasible parameter values, the
later holds if and only if either ᾱ = 0, ρ = 0, or βp1 ≤ p̄2. By Lemma (25), Y ≥ 1 − vmin. Thus,
either of ρ = 0, ᾱ = 0 or βp1 ≤ p̄2 implies that Y ≥ 1 − p1. Moreover, Y = 1 − p1 means there
are no sales in the second period, while Y > 1− p1 means that these sales occur at price p2 < βp1
according to the market clearing condition (3).

Part (1): We conclude that p̄2 ≥ βp1 would never be rational and, in any rational expectations
equilibrium, we must have p2 < βp1.

Part (2): By the above reasoning, ᾱ = 0 implies vmin = p1 and Y ≥ 1−p1. However, Y > 1−p1
in combination with vmin = p1 means that there are sales in the second period and ᾱ = 0 is not
rational.

If ᾱ = 1, by part (1) and condition (3), we have β(1 − Y ) ≤ s ∨ [β(1 − Y )] = p2 < βp1. Thus,
Y > 1− p1 in any rational expectations equilibrium with ᾱ = 1.

Part (3): Since in any rational expectations equilibrium, p̄2 = p2 and ᾱ = 1 if there are sales
in the second period, Lemma 1 implies that, if there are sales in both periods, vmin < 1, which,
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using (3), is equivalent to p1 − ρβ(1− Y ) < 1− ρβ or ρβY < 1− p1. If there are sales only in the
second period, p1 − ρβ(1− Y ) ≥ 1− ρβ or ρβY ≥ 1− p1; p2 ≥ c since, in this case, ri = (p2 − c)yi,
and retailers are profit-maximizing.

Part (4): Since p̄2 ≥ βp1 would never be rational, vmin = p1 can occur in a rational expectations
equilibrium if and only if ᾱ = 0 or ρ = 0.

A.6. Proof of Theorem 5 (RESE with p∗2 > s). The theorem exhaustively considers all possible
market outcomes without salvaging: no sales in the first period (RESE 1), no sales in the second
period (RESE 2), and sales in both periods (RESE 3). Logically, these three outcomes are mutually
exclusive but it is not obvious a priori that they cannot exist under the same model inputs. In
the course of the proof we establish that these outcomes also do not overlap in the sense of their
necessary and sufficient conditions on model parameters. Parts (1) and (2) of the RESE definition
(§3.2) rely on the notion of a symmetric equilibrium for given consumer expectations. The structure
of such an equilibrium is one of the major sources of necessary and sufficient conditions. Another
source is the rationality of consumer expectations. We first classify the outcomes by the presence
of second-period sales.

No second-period sales: RESE 2. The absence of second-period sales along with retailer rationality,
by Lemma 25, means that the best response in a symmetric equilibrium occurs with Y = 1− vmin.
Consumer rationality in this case demands that ᾱ = 0 and vmin = p1 implying that the candidate
RESE is described by v∗ = p1, Y

∗ = 1 − v∗, and, therefore, α∗ = 0 and r∗ = 1
n(p1 − c)(1 − p1).

This implies that n−1
n Y ∗ = n−1

n (1− p1) < 1− p1 < 1− s
β and condition of part (1) of Lemma 26 is

satisfied.
Since, by part (1.3) of Lemma 26, ri is pseudoconcave on the interval (1− vmin − Y −i)+ ≤ yi <

1− s
β − Y −i, the candidate RESE exists if and only if

(i) there is a local maximum of ri at yi = 1− v∗ − n−1
n Y ∗ = Y ∗

n and

(ii) the profit ri at this maximum is greater than at a potential local maximum on the interval
yi > 1− s

β − n−1
n Y ∗.

Condition (i) is equivalent to ∂ri

∂yi

∣

∣

∣

yi=1−v∗−n−1

n
Y ∗+0

≤ 0. Since yi = 1
n(1− p1), the last inequality,

using (11), becomes βv∗−c+p1−βv∗+ 1
n(1−p1)

[

−(p1−βv∗) 1
1−v∗

]

≤ 0, which, after the substitution

for v∗ = p1 and multiplication by n, takes the form np1 − p1(1− β) ≤ nc or p1 ≤ nc
β+n−1 = P2. We

showed that this condition is necessary.
Condition (ii) is satisfied if ri is nonincreasing for yi > 1 − s

β − n−1
n Y ∗. Since ri is concave on

this interval by part (1.4) of Lemma 26, it is nonincreasing if ∂ri

∂yi

∣

∣

∣

yi=1− s
β
−n−1

n
Y ∗+0

≤ 0. The latter,

using (15), can be written as

−c+ s+
n−1
n (1− p1)
(

1− s
β

)2 (p1 − s)(1− p1) ≤ 0 or
n− 1

n

(p1 − s)(1− p1)
2

(c− s)
(

1− s
β

)2 ≤ 1. (17)

Since p1 > s
β , we have (1−p1)2

(

1−s/β
)2 < 1, and (17) is implied by (n− 1)(p1 − s) ≤ n(c− s). The latter

holds because, by (already proved as necessary) condition p1 ≤ P2, n(c− s) ≥ (n− 1+β)p1−ns =
(n− 1)(p1 − s)+ βp1 − s > (n− 1)(p1 − s). Therefore, condition p1 ≤ P2 is necessary and sufficient
for the existence of RESE 2.

There are second-period sales: RESE 1 or 3. When sales in the second period do occur, a symmetric
equilibrium Y = Ŷ is provided by Ŷ > 1−vmin, which is an internal maximum of the profit function
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for each retailer. For p2 > s, the first-order optimality condition ∂ri

∂yi
= 0 is provided by setting (12)

(see §A.4.2) to zero with substitutions yi = Y
n and Y −i = n−1

n Y :

β

(

1− n− 1

n
Y

)

− c+ β(1− vmin)− 2β
Y

n
+ (p1 − β)(1− vmin)

n− 1

n

Y

Y 2
= 0

or − β
n+ 1

n
Y − c+ β(2− vmin) + (p1 − β)(1− vmin)

n− 1

n

1

Y
= 0.

Multiplication of the last equation by − n
β(n+1)Y yields

Y 2 − Y
n

n+ 1

(

2− vmin − c

β

)

− n− 1

n+ 1

(

p1
β

− 1

)

(1− vmin) = 0. (18)

Equation (18) along with the relation between vmin and Y from Lemma 1 and inequality Y >
1− p1 (from part (2) of Lemma 4) provide the necessary conditions for any equilibria with sales in
the second period and p2 = β(1− Y ) > s.

It is convenient to analyze RESE existence in terms of vmin as a function of Y . For rational
expectations ᾱ = 1 and p̄2 = p2 = β(1 − Y ), denote the mapping from Y to vmin resulting from
Lemma 1 as function

vmin
1 (Y ) , p1 ∨

(

p1 − ρβ(1− Y )

1− ρβ
∧ 1

)

. (19)

When ρ > 0, this function is increasing and piecewise linear with two breakpoints. It is straightfor-
ward to check that the first break-point occurs exactly at Y = 1−p1 while the second at Y = 1−p1

ρβ .

When ρ = 0, vmin
1 ≡ p1.

Equation (18) yields another mapping from Y to vmin:

vmin
2 (Y ) , 1−

Y 2 − Y n
n+1

(

1− c
β

)

Y n
n+1 + n−1

n+1

(

p1
β − 1

) . (20)

When p1 6= β and n > 1, this function is a hyperbola with a vertical asymptote Y = n−1
n

(

1− p1
β

)

and an asymptote with a negative slope −n+1
n . When Y = 0 or Y = n

n+1

(

1− c
β

)

, vmin
2 (Y ) = 1.

Implicit differentiation of (18) yields

2Y − n

n+ 1

(

2− vmin
2 − c

β

)

+ Y
n

n+ 1

∂vmin
2

∂Y
+

n− 1

n+ 1

(

p1
β

− 1

)

∂vmin
2

∂Y
= 0

resulting in (n− 1)(p1 − β)
∂vmin

2

∂Y

∣

∣

∣

Y=0
= n(β − c).

When p1 > β and n > 1, the vertical asymptote is located to the left of Y = 0 implying

that points (0, 1) and
(

n
n+1

[

1− c
β

]

, 1
)

in the (Y, vmin)-plane belong to the same branch of the

hyperbola. In this case,
∂vmin

2

∂Y

∣

∣

∣

Y=0
> 0 and it must be true that

∂vmin

2

∂Y < 0 for all Y ≥ n
n+1

(

1− c
β

)

.

Relevant equilibrium candidates can only be on the downward-sloping segment of vmin
2 (Y ) to the

right of Y = n
n+1

(

1− c
β

)

and in the range p1 ≤ vmin ≤ 1. This case is depicted in Figure 13 (a),

where a solid curve is vmin
2 (Y ), dotted lines represent its asymptotes, and the dashed lines indicate

the lower and upper bounds on the relevant range of vmin.
When p1 < β and n > 1, the vertical asymptote is located to the right of Y = 0 implying

that points (0, 1) and
(

n
n+1

[

1− c
β

]

, 1
)

belong to different branches of the hyperbola. We have

∂vmin

2

∂Y < 0 for all Y , and the entire left branch is irrelevant since the vertical asymptote is to the

left of Y = 1− p1. Indeed,
n−1
n

(

1− p1
β

)

< 1− p1 is equivalent to np1− (n− 1)p1β < 1 which always
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(a) p1 > β (b) p1 < β

Figure 13. Possible appearance of vmin
2 (Y ) and the relevant range of vmin

holds for p1 < β. All possible equilibrium candidates are again on the downward-sloping segment

of vmin
2 (Y ) to the right of Y = n

n+1

(

1− c
β

)

and in the range p1 ≤ vmin ≤ 1. This case is illustrated

in Figure 13 (b).
When p1 = β or n = 1, the relevant part of vmin

2 (Y ) is decreasing linear: vmin
2 (Y ) = 2− c

β − n+1
n Y,

which also satisfies vmin
2

(

n
n+1

[

1− c
β

])

= 1. Thus, regardless of n and the relation between p1 and

β, the geometric structure of potential equilibrium candidates is essentially the same.
RESE 1: There are no sales in the first period at a RESE if and only if v∗ = 1. The geo-

metric structure described above implies that such an equilibrium can be realized only if vmin
1 (Y )

intersects with vmin
2 (Y ) at a point corresponding to Y ∗ = n

n+1

(

1− c
β

)

, i.e., vmin
1 (Y ∗) = 1 or

p1 − ρβ
[

1− n
n+1

(

1− c
β

)]

≥ 1 − ρβ, which is equivalent to p1 ≥ P1 = 1 − n
n+1ρ (β − c). This

necessary condition is also sufficient for RESE 1. Indeed, given that vmin
1 (Y ∗) = 1, the equilib-

rium values are in the form of RESE 1, p∗2 = β
[

1− n
n+1

(

1− c
β

)]

= nc+β
n+1 > c > s and yi = Y ∗

n

indeed delivers the best response of retailer i since Y ∗ = n
n+1

(

1− c
β

)

< 1 − c
β < 1 − s

β and

∂ri

∂yi

∣

∣

∣

yi=1− s
β
−n−1

n
Y ∗+0

= −c+ s < 0 implying, by part (1.5) of Lemma 26, that ri is pseudoconcave.

The description of RESE 1 is completed by substituting p∗2, Y
∗ and v∗ into (10):

r∗ =
Y ∗

n

[

β + nc

n+ 1
− c

]

=
1

n+ 1

(

1− c

β

)[

β + nc

n+ 1
− c

]

=
(β − c)

(n+ 1)β

β + nc− nc− c

n+ 1
=

(β − c)2

(n+ 1)2β
.

The p1-ranges in RESE 1 and 2 do not overlap because the minimal lower bound for p1 in
RESE 1, which corresponds to n → ∞, exceeds the maximal upper bound in RESE 2 (at n = 1):
1− ρ(β − c) > c

β ⇔ β(1− ρβ) > c(1− ρβ).

RESE 3: This case is characterized by Y ∗ > 1− v∗ (there are sales in the second period) and
p1 ≤ v∗ < 1 (there are sales in the first period) with v∗ = p1 only if ρ = 0. Translating this into the

geometric structure described above, necessary conditions for RESE 3 are vmin
1

(

n
n+1

(

1− c
β

))

< 1
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and vmin
2 (1 − p1) > p1. The first condition is equivalent to the negation of p1 ≥ P1, i.e., the strict

upper limit of p1-range for RESE 3. The second condition ensures that vmin
2 (Y ) intersects vmin

1 (Y )
for Y > 1− p1 and is equivalent to

1−
(1− p1)

2 − (1− p1)
n

n+1

(

1− c
β

)

(1− p1)
n

n+1 + n−1
n+1

(

p1
β − 1

) > p1,

and, since (1− p1)
n

n+1 + n−1
n+1

(

p1
β − 1

)

= 1−p1
n+1 + (n−1)p1(1−β)

(n+1)β > 0, to

(1− p1)

[

(1− p1)
n

n+ 1
+

n− 1

n+ 1

(

p1
β

− 1

)

− (1− p1) +
n

n+ 1

(

1− c

β

)]

> 0.

Collecting like terms inside [·] yields (n− 1+ β)p1 > nc which is the negation of the necessary and
sufficient condition p1 ≤ P2 of RESE 2, i.e., the strict lower limit of p1-range for RESE 3.

Given that necessary condition P2 < p1 < P1 holds and there are sales in both periods, the
candidate point for the equilibrium, by Lemma 1, satisfies

v∗ =
p1 − ρβ(1− Y ∗)

1− ρβ
(21)

and v∗ ∈ [p1, 1). Substitution for vmin = v∗ into (18) results in the following equation for Y ∗:

Y 2 − Y
n

n+ 1

(

2− p1 − ρβ(1− Y )

1− ρβ
− c

β

)

− n− 1

n+ 1

(

p1
β

− 1

)(

1− p1 − ρβ(1− Y )

1− ρβ

)

= 0,

which, after collecting the terms with Y, becomes

Y 2

(

1 +
n

n+ 1

ρβ

1− ρβ

)

(22)

−Y

[

n

n+ 1

(

2− p1 − ρβ

1− ρβ
− c

β

)

− n− 1

n+ 1

(

p1
β

− 1

)

ρβ

1− ρβ

]

− n− 1

n+ 1

(

p1
β

− 1

)(

1− p1 − ρβ

1− ρβ

)

= 0.

The coefficient in front of Y 2 is

1 +
n

n+ 1

ρβ

1− ρβ
=

n+ 1− ρβ

(n+ 1)(1− ρβ)
,

and the coefficient in front of Y is

− 1

(n+ 1)(1− ρβ)

[

n

(

2− 2ρβ − p1 + ρβ − c

β
(1− ρβ)

)

− (n− 1)

(

p1
β

− 1

)

ρβ

]

,

where the first term in the bracket [. . .] is

n
(

2− ρβ − p1 −
c

β
(1− ρβ)

)

= n(1− ρβ)
(

1− c

β

)

+ n(1− p1).

Then multiplication of (22) by β(n+1)(1−ρβ)
β(n+1−ρβ) results in

Y 2 − (β − c)n(1− ρβ) + β(1− p1)n− (p1 − β)ρβ(n− 1)

β(n+ 1− ρβ)
Y − (p1 − β)(1− p1)(n− 1)

β(n+ 1− ρβ)
= 0. (23)

By geometric structure under condition P2 < p1 < P1, the larger root of this equation does
belong to the region Y > 1− p1 and the smaller root is irrelevant.

The conditions for RESE 3 will become necessary and sufficient if (23), (21), and P2 < p1 < P1

are complemented with the conditions guaranteeing that the larger root Y ∗ of (23) is such that
Y ∗ < 1− s

β (implying p∗2 > s and included as a condition of the theorem) and either

(a) the profit ri of retailer i deviating from this RESE so that p2 = s (the total inventory is
greater than 1− s

β ) has no maximum for Y > 1− s
β , or
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(a) RESE 3 (b) RESE 1 (c) RESE 2

Figure 14. Changes in equilibrium structure from RESE 3 to RESE 1 and 2

(b) if r̃i = max ri exists for Y > 1− s
β , then the inequality r̃i < r∗ holds.

Since, by part (1.4) of Lemma 26, ri is concave for yi ≥ 1 − s
β − n−1

n Y ∗ (or, equivalently,

Y ≥ 1 − s
β ), r

i is nonincreasing for yi ≥ 1 − s
β − n−1

n Y ∗ if and only if ∂ri

∂yi

∣

∣

∣

yi=1− s
β
−n−1

n
Y ∗+0

≤ 0.

Thus, the latter condition is equivalent to (a). Using (15) with vmin = v∗, Y −i = n−1
n Y ∗ and

Y = 1 − s
β this condition can be written as −c + s + n−1

n
Y ∗

(

1−s/β
)2 (p1 − s) (1 − v∗) ≤ 0, yielding

condition (a).

If ∂ri

∂yi

∣

∣

∣

yi=1− s
β
−Y −i+0

> 0, then, since ∂ri

∂yi
becomes negative for sufficiently large Y by (15),

r̃i = max ri exists for Y > 1− s
β . Therefore, the RESE exists in this case if r∗ ≥ r̃i (condition (b)).

In order to provide the expression for r̃i, denote the maximized deviator’s inventory decision by
ỹi , argmax ri > 1

nY
∗. As a result of this deviation, the total inventory becomes Ỹ = ỹi + n−1

n Y ∗.

Then, using (15) with vmin = v∗, we obtain the following equation in Ỹ : ∂ri

∂yi

∣

∣

∣

yi=ỹi
= 0 = −(c −

s) + n−1
n

Y ∗

Ỹ 2
(p1 − s) (1− v∗) , which yields Ỹ =

√

n−1
n

Y ∗(p1−s)(1−v∗)
c−s . Substitution of Y = Ỹ and

yi = Ỹ − n−1
n Y ∗ into the equation for profit (14), results in

r̃i =

{

√

n− 1

n

Y ∗ (p1 − s) (1− v∗)

c− s
− n− 1

n
Y ∗
}

×







−(c− s) +
(p1 − s)(1− v∗)

√

n−1
n

Y ∗(p1−s)(1−v∗)
c−s







,

which, after factoring out n−1
n Y ∗ from the first curly bracket and c−s from the second one, becomes

r̃i =
n− 1

n
Y ∗ (c− s)

{
√

n

(n− 1)

(p1 − s)(1− v∗)

(c− s)Y ∗ − 1

}2

.

This expression can be also written as follows: r̃i =
{

√

(p1 − s)(1− v∗)−
√

n−1
n Y ∗ (c− s)

}2

,

which coincides with the expression for r̃i in the theorem statement.
Expression for r∗ follows immediately from (1) and Lemma 1.
We complete the proof of the main part of the theorem by a simple observation that equilibrium

characteristics are continuous on the boundaries between RESE 1 and 3 as well as RESE 2 and 3.
Figure 14, in its subplot (a), depicts a typical configuration of vmin

1 (Y ) and vmin
2 (Y ) when RESE 3
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exists, while subplots (b) and (c) depict this configuration at the points of change to RESE 1 and 2,
respectively.

RESE 3 continuously changes into RESE 1 as the intersection point of vmin
1 (Y ) and vmin

2 (Y )

representing RESE 3 moves toward the point
(

n
n+1

[

1− c
β

]

, 1
)

on vmin
2 (Y ) representing RESE 1.

The latter point is to the left of all possible candidates for RESE 3 located on vmin
2 (Y ) implying

that, in RESE 3, Y ∗ ≥ n
n+1

[

1− c
β

]

. Similarly, RESE 3 continuously changes into RESE 2 as

the intersection point of vmin
1 (Y ) and vmin

2 (Y ) moves toward vmin
1 (Y )’s break-point (1 − p1, p1)

(representing RESE 2). The continuity of r∗ follows from the continuity of the expression for ri,
given by (8), in all the parameters and continuity of v∗ and Y ∗ (using yi = 1

nY
∗).

It remains to examine the convergence under deviations from rational expectations. The geo-
metric structure of candidates for RESE 3 and 1 implies that the areas of inputs where these RESE
exist do not intersect. Suppose that (i) ᾱ = α∗ = 1, i.e., one and only one of RESE 3 or 1 can be
realized for given inputs; and (ii) consumer expectations of the second-period price deviate from
rational ones with p̄02 < p∗2, and the game is repeated with the same inputs. As shown above,
∂vmin

2

∂Y < 0, implying ∂BR
∂vmin < 0, where BR = BR[vmin(p̄2)] is a symmetric best response, given

p̄2. By Lemma 1, ∂vmin

∂p̄2
≤ 0, which leads to ∂BR

∂p̄2
≥ 0. Then p̄02 < p∗2 ⇒ BR(p̄02) ≤ BR(p∗2) =

Y ∗ < 1 − s
β , implying that the realized price p02 = β[1 − BR(p̄02)] ≥ p∗2 > s. Moreover, for any

moment of time t ∈ [0,∞), the realized (pt2) and expected (p̄t2) second-period prices are such that

pt2 ≥ p∗2 > p̄t2 if consumer expectations follow a linear adjustment process p̄t+1
2 = µpt2 + (1 − µ)p̄t2

with a sufficiently small µ. This process, using (3), can be written as p̄t+1
2 = µβ(1 − Y t) + (1 −

µ)p̄t2, where Y t = BR(p̄t2). Then
∣

∣p∗2 − p̄t+1
2

∣

∣ =
∣

∣p∗2 − µ
[

β(1−BR(p̄t2)) + p∗2 − p∗2
]

− (1− µ)p̄t2
∣

∣ =
∣

∣(1− µ)(p∗2 − p̄t2)− µβ(Y ∗ −BR(p̄t2))
∣

∣ . By the mean value theorem, there exists p̃2 ∈ (p∗2, p̄
t
2) such

that Y ∗ −BR(p̄t2) =
∂BR(p̃2)

∂p̄2
(p∗2 − p̄t2). Then, if µβ

∂BR(p̃2)
∂p̄2

≤ 2(1− µ) ⇔ µ ≤ 2/(2 + β ∂BR(p̃2)
∂p̄2

) < 1,

we have
∣

∣p∗2 − p̄t+1
2

∣

∣ ≤ (1 − µ)
∣

∣p∗2 − p̄t2
∣

∣ = (1 − µ)t
∣

∣p∗2 − p̄02
∣

∣ , which goes to zero with t → ∞ for

any p̄02 < p∗2. Since
∂vmin

∂p̄2
is restricted for any ρ ∈ [0, 1) and, by (20), ∂BR

∂vmin is restricted in the

relevant region for Y, there exists a sufficiently small µ such that µ < 2/(2 + β ∂BR(p̃2)
∂p̄2

) leading to

the convergence of the adjustment process to p∗2.

The adjustment process can be specified using inequalities ∂vmin

∂p̄2
≤ 0 and p̄02 < p∗2, which imply

vmin(p̄02) ≥ v∗ = vmin(p∗2). This property leads to three cases. (a) v∗ < 1 and vmin(p̄02) < 1, which
corresponds to the adjustment process above; (b) v∗ = 1 (RESE 1 is realized at p̄2 = p∗2). In
this case, all p̄t2 are such that vmin(p̄t2) = 1, i.e., retailers’ decisions do not depend on p̄t2 and the

adjustment becomes p̄t+1
2 = µp∗2+(1−µ)p̄t2. Then

∣

∣p∗2 − p̄t+1
2

∣

∣ ≤ |1− µ|t
∣

∣p∗2 − p̄02
∣

∣ , which converges

to p∗2 for any µ ∈ (0, 2) and p̄02 < p∗2. (c) v
∗ < 1 and vmin(p̄02) = 1. In this case, the initial adjustment

steps are p̄t+1
2 = µβ(1− BR|vmin=1) + (1− µ)p̄t2. Since

∂BR
∂vmin < 0, p̄t2 in this process increases faster

than for BR|vmin<1 . Then, by continuity and monotonicity of vmin in p̄2 and monotonicity of p̄t2 in

t, there exists such t̃ that the adjustment process switches to case (a) and follows it for any t ≥ t̃.

A.7. Proof of Corollary 6 (RESE 3, monopoly). For n = 1, sufficient condition (a) always

holds and (18) is
[

Y − 1 + 1
2

(

vmin + c
β

)]

Y = 0, yielding Y ∗ = 1− 1
2

(

v∗ + c
β

)

. The equation for v∗

is v∗ =
p1− 1

2
ρβ
(

v∗+ c
β

)

1−ρβ which is equivalent to v∗(2− ρβ) = 2p1 − ρc, resulting in the equilibrium v∗.

Substitution of Y ∗ into (3) leads to the expression for p∗2.

A.8. Proof of Corollary 7 (RESE 3, ρ = 0, second-period sales at loss). For β = 1 and
ρ = 0, p1-range in RESE 3 is c < p1 < 1. Thus, RESE 1 and 2 cannot be realized. By the proof

of Theorem 5, Y ∗,3 ≤ 1 − c
β is equivalent to v∗ ≥ vmin

2

(

1− c
β

)

since vmin
2 (Y ), given by (20), is
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decreasing in the relevant range of Y . Using Y = 1− c and β = 1 in (20), we get

vmin
2 (1− c) = 1−

(1− c)2 − (1− c)2 n
n+1

(1− c) n
n+1 + n−1

n+1(p1 − 1)
= 1− (1− c)2

n(p1 − c) + 1− p1
.

Thus, under conditions of the corollary, p∗2 ≥ c if and only if v∗ = p1 ≥ 1− (1−c)2

n(p1−c)+1−p1
. Rearranging

this inequality we obtain (1−c)2

n(p1−c)+1−p1
≥ 1− p1, and solving for n we get

n ≤ 1

p1 − c

(

(1− c)2

1− p1
− (1− p1)

)

=
2− c− p1
1− p1

= 2 +
p1 − c

1− p1
.

A.9. Proof of Corollary 8 (RESE 3, perfect competition). If P2 < p1 < P1 for n → ∞, the

limits v∗∞ and Y ∗
∞ of, respectively, v∗ = p1−ρβ(1−Y ∗)

1−ρβ and Y ∗ defined by (23) exist. This follows

from the geometric structure of curves vmin
1 (Y ) and vmin

2 (Y ) in the limiting case (see equations (19)
and (20) and their analysis in the proof of Theorem 5).

The violation of condition (a) in the limit of n → ∞ means that, for some ǫ > 0,

(p1 − s)(1− v∗∞)Y ∗
∞

(c− s)
(

1− s
β

)2 = 1 + 2ǫ.

There exists N such that condition (a) is violated for any n > N by at least ǫ:

n− 1

n

(p1 − s)(1− v∗)Y ∗

(c− s)
(

1− s
β

)2 ≥ 1 + ǫ. (24)

There are two cases: Y ∗
∞ > 1 − s

β and Y ∗
∞ ≤ 1 − s

β . If Y ∗
∞ > 1 − s

β , there exists N ′ such that

Y ∗ > 1− s
β for any n > N ′ implying, by condition (b) of Theorem 5, that RESE 3 does not exist

for these n, and the claim of the corollary is established. If Y ∗
∞ ≤ 1 − s

β , there exist sufficiently

small ǫ′ > 0 and N ′ such that
1− s/β

Y ∗ ≥ 1 + ǫ′√
1 + ǫ

(25)

for all n > N ′. Inequality (24) is equivalent to ∂ri

∂yi

∣

∣

∣

yi=1− s
β
−Y −i+0

> 0 (see the analysis of RESE 3

in the proof of Theorem 5) and implies that there exists r̃i, which is a unique maximum of ri for
yi > 1− s

β − Y −i. Using the proof of condition (b) in Theorem 5, we have

r̃i =
n− 1

n
Y ∗ (c− s)

{
√

n

n− 1

(p1 − s)(1− v∗)

(c− s)Y ∗ − 1

}2

.

Bounds (24) and (25) imply

n

n− 1

(p1 − s)(1− v∗)

(c− s)Y ∗ ≥
(

n

n− 1

1− s/β

Y ∗

)2

(1 + ǫ) ≥ (1 + ǫ′)2.

Then, using n−1
n ≥ 1

2 and Y ∗ ≥ 1− p1, r̃
i is bounded from below as follows:

r̃i ≥ n− 1

n
Y ∗ (c− s)

{

√

(1 + ǫ′)2 − 1
}2

≥ 1

2
(1− p1)(c− s)(ǫ′)2

for all n > max{N,N ′}. That is, r̃i is separated from zero by a positive constant for all sufficiently
large n. On the other hand, the following lemma immediately implies that limn→∞ r∗ = 0.
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Lemma 27. The equilibrium profit in RESE 3 can be expressed as

r∗ =
β

n(1− ρβ)

{

− (Y ∗)2 + Y ∗
[

2− p1 −
c

β
− ρ (p1 − c)

]

+
(p1
β

− 1
)

(1− p1)
}

. (26)

Indeed, Y ∗ is bounded, implying that the expression inside {·} is also bounded, while the coeffi-
cient in front of {·} tends to zero as n → ∞. Then there exists N ′′ ≥ max{N,N ′} such that r̃i > r∗

for all n > N ′′ and RESE 3 does not exist.

A.10. Proof of Theorem 9 (RESE with p∗2 = s). We start by identifying candidate solutions
for a symmetric equilibrium with given expectations. When p2 = s, the equilibrium is possible only
with sales in both periods, and rationality requires that vmin < 1 and ᾱ = 1.

By parts (1.4) and (2) of Lemma 26, the profit function is strictly concave when yi ≥
(

1− s
β − Y −i

)+
.

Thus, a symmetric equilibrium inventory decision is found by solving the first-order optimal-
ity condition for the best response. Since the optimum of the profit function cannot occur at
yi = 1 − s

β − Y −i by part (1.1) of Lemma 26, the candidate is found by setting the derivative of

the profit (15) (§A.4.3) to zero while, by symmetry, Y −i = n−1
n Y :

0 =
∂ri

∂yi
= −(c− s) +

Y −i

Y 2
(p1 − s)

(

1− vmin
)

= −(c− s) +
n− 1

nY
(p1 − s)

(

1− vmin
)

.

The resulting unique solution is Ŷ = n−1
n

(p1−s)(1−vmin)
c−s . Combining it with rationality of expecta-

tions, we find, by Lemma 1, that vmin = v∗ = p1−ρs
1−ρβ and Y ∗ = n−1

n
(p1−s)(1−v∗)

c−s . This is the only

candidate point for RESE with p∗2 = s. The equilibrium profit of a retailer at this point is

r∗ =
1

n
{−cY ∗ + p1(1− v∗) + s [Y ∗ − (1− v∗)]} =

1

n
{−(c− s)Y ∗ + (p1 − s)(1− v∗)} ,

which yields the expression for r∗ in the theorem.
We now analyze when the candidate point is indeed a RESE with p∗2 = s, and start by checking

that it is contained within the valid ranges p1 ≤ v∗ < 1 and Y ∗ ≥ 1− s
β , which provide necessary

conditions for RESE existence. The second condition is the domain restriction of §A.4.3. It is
equivalent to p∗2 = s and follows from either of the mutually exclusive cases (a), (b), and (c) in
the statement of the theorem. Since the equilibrium cannot result in Y ∗ = 1− s

β , by part (1.1) of

Lemma 26, the second condition is strengthened to Y ∗ > 1− s
β under which cases (a), (b) and (c)

become exhaustive. Since 1− s
β > 0 and Y ∗ is proportional to 1− v∗, the resulting strict positivity

of Y ∗ implies that v∗ < 1. Similarly to RESE 3, v∗ = p1 if ρ = 0, and it can be shown that v∗ > p1
if ρ > 0. Indeed, inequality v∗ > p1 is equivalent to p1−ρs

1−ρβ > p1 ⇔ p1 − ρs > p1 − p1ρβ ⇔ −ρs >

−p1ρβ ⇔ p1 >
s
β , which always holds in this problem.

It remains to establish that the exact conditions ensuring that Y ∗

n provides the global optimum of
the profit function are indeed provided by the mutually exclusive and exhaustive (under condition
Y ∗ > 1− s

β ) cases (a), (b), and (c).

Condition (a), i.e., n−1
n Y ∗ ≥ 1 − s

β , means, by (3), that p2 = s independently of the inventory

decisions of individual retailers. By part (2) of Lemma 26, the profit function is globally strictly
concave in this case and Y ∗

n is indeed its unique global maximum.
In case (b) of the theorem, condition (a) does not hold, which means that p2 = s may or may not

hold depending on the decisions of individual retailers. Nevertheless, the maximum of the profit
function is unique and occurs when p2 = s as long as the profit function is strictly increasing in the

interval corresponding to p2 > s. This is ensured by the condition ∂ri

∂yi

∣

∣

∣

yi=1− s
β
−Y −i−0

≥ 0 which,

by part (1.5) of Lemma 26, implies pseudoconcavity of the profit function. Using (12), the last
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condition takes the following form:

∂ri

∂yi

∣

∣

∣

∣

yi=1− s
β
−Y −i−0

= β
(

1− Y −i
)

−c+β
(

1− vmin
)

−2β

(

1− s

β
− Y −i

)

+
(p1 − β)(1− vmin)Y −i

(

1− s
β

)2 ≥ 0,

which, after collecting the terms and substituting Y −i = n−1
n Y ∗ and vmin = v∗, can be rewritten as

(

β +
(p1 − β)(1− v∗)

(

1− s
β

)2

)

n− 1

n
Y ∗ ≥ c+ βv∗ − 2s, yielding condition (b).

In case (c) of the theorem, condition (b) does not hold, i.e. ∂ri

∂yi

∣

∣

∣

yi=1− s
β
−Y −i−0

< 0. Then, there

exists a local maximum of ri without or with the sales in the second period and p2 > s. In other
words, there exists such an inventory decision ỹi of a deviating retailer that

ỹi , argmax

{

ri(yi) | yi ∈
[

max

{

0, 1− v∗ − n− 1

n
Y ∗
}

, 1− s

β
− n− 1

n
Y ∗
)}

or, denoting Ỹ , ỹi + n−1
n Y ∗, Ỹ ∈

[

max
{

1− v∗, n−1
n Y ∗} , 1− s

β

)

. Then the equilibrium with

p∗2 = s exists only if

r̃i , ri(ỹi) ≤ r∗. (27)

Consider this condition at the left boundary of the range for yi. If ỹi = 0, then r̃i = 0 and (27)

holds trivially. If ỹi = 1−v∗−n−1
n Y ∗ = (1−v∗)

[

1−
(

n−1
n

)2 p1−s
c−s

]

, then, by §A.4.1, there are no sales

in the second period and r̃i = (1− v∗)
[

1−
(

n−1
n

)2 p1−s
c−s

]

(p1 − c). After substitutions for r̃i and r∗,

and multiplication of both sides by n2

(1−v∗)(p1−c) , condition (27) becomes n2 − (n− 1)2 p1−s
c−s ≤ p1−s

p1−c ,

which always holds. Indeed, let g(n) , n2 − (n − 1)2 p1−s
c−s . Then g′(n) = 2n − 2(n − 1)p1−s

c−s =

2
[

−np1−c
c−s + p1−s

c−s

]

and g′′(n) = −2p1−c
c−s < 0. Therefore, the unique maximum of g, defined by the

condition g′(n) = 0, is nmax = p1−s
p1−c and

gmax = g(nmax) =

(

p1 − s

p1 − c

)2

−
(

p1 − s

p1 − c
− 1

)2 p1 − s

c− s
=

p1 − s

p1 − c

[

p1 − s

p1 − c
− (c− s)2

p1 − c

1

c− s

]

=
p1 − s

p1 − c
.

Finally, the RESE with p∗2 = smay also exist if there exists an internal local maximum ri(ỹi) ≤ r∗

with ỹi = Ỹ − n−1
n Y ∗ such that max

{

1− v∗, n−1
n Y ∗} < Ỹ < 1− s

β and ∂ri

∂yi

∣

∣

∣

yi=ỹi
= 0. In this case,

formula (10) from §A.4.2 yields the expression for r̃i in condition (c):

r̃i =

(

Ỹ − n− 1

n
Y ∗
)[

β
(

1− Ỹ
)

− c+ β (1− v∗) +
(p1 − β)(1− v∗)

Ỹ

]

,

where Ỹ is a zero of the profit function derivative (12), which, in this case, is

0 =
∂ri

∂yi
= β

(

1− n− 1

n
Y ∗
)

− c+ β(1− v∗)− 2β

(

Y − n− 1

n
Y ∗
)

+ (p1 − β)(1− v∗)
n− 1

n

Y ∗

Y 2
.

After multiplication by −Y 2/β this equation becomes

2Y 3 + a2Y
2 + a0 = 0, (28)
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which is equation (4) if one substitutes the coefficients

a2 ,
c

β
− (1− v∗)−

(

1 +
n− 1

n
Y ∗
)

= −(1− v∗)−
(

1− c

β

)

− n− 1

n
Y ∗ < 0,

a0 , (1− p1
β
)(1− v∗)

n− 1

n
Y ∗.

Since, by part (1.3) of Lemma 26, the profit function of the deviating retailer is pseudoconcave on
the interval (1− v∗− n−1

n Y ∗)+ ≤ yi ≤ 1− s
β − n−1

n Y ∗, equation (28) may have at most one root on

this interval.
Any cubic equation with real coefficients has at least one and up to three real roots. If neither

of the roots is relevant, it means that there is no internal maximum and the boundary maximum
cannot exceed r∗ as shown above. If there is a relevant root, a direct comparison between r∗ and
r̃i determines the existence of RESE.

Suppose that consumer expectations of the second-period price deviate from rational ones with
the initial deviation p̄02 > s and the game is repeated with the same inputs. As shown above, a

symmetric best response is BR(p̄2) =
n−1
n

(p1−s)(1−vmin(p̄2))
c−s , which is increasing in p̄2. For any inputs

where RESE 4 exists, Y ∗ = BR(s) > 1− s
β and, since p̄02 > s,BR(p̄02) > 1− s

β . Then, for any t ≥ 0,

the realized second-period price pt2 equals s if consumer expectations follow a linear adjustment

process p̄t+1
2 = µs + (1 − µ)p̄t2 with µ < 1. Under this process,

∣

∣s− p̄t+1
2

∣

∣ =
∣

∣(1− µ)(s− p̄t2)
∣

∣ =
∣

∣(1− µ)t(s− p̄02)
∣

∣ , which goes to zero with t → ∞ for any µ ∈ (0, 1) and p̄02 ∈ (s,∞).

A.11. Proof of Proposition 10 (Uniqueness of RESE). Part (a). We start by discussing
model inputs satisfying conditions of RESE 1 and 2. By Theorem 5, these conditions rule out
RESE 3 and guarantee that, for the corresponding structure, one and only one equilibrium exists.
Thus, it remains to rule out RESE 4.

RESE 4 cannot exist under the same conditions as RESE 1 because p1-lower bound P1 in RESE 1
exceeds the upper bound P4 in RESE 4: 1− n

n+1ρ(β − c) > 1− ρ(β − c) > 1− ρ(β − s) ⇔ c > s.
Moreover, RESE 4 cannot exist under the necessary and sufficient condition p1 ≤ P2 for RESE 2

since the latter is incompatible with necessary condition Y ∗ > 1− s
β for RESE 4. Indeed, consider

Y ∗ = n−1
n

p1−s
c−s (1 − v∗) for RESE 4. Condition p1 ≤ P2 implies n(c − s) ≥ (n − 1 + β)p1 − ns =

(n− 1)(p1 − s) + βp1 − s > (n− 1)(p1 − s). Since 1− v∗ ≤ 1− p1 < 1− s
β , we get Y ∗ < 1− s

β .

Part (b). It remains to show that, when conditions of RESE 1 or 2 do not hold, condition (b.2)
guarantees the existence of RESE 3 and non-existence of RESE 4. Indeed, (b.2) implies that
RESE 4 total equilibrium supply violates a necessary condition Y ∗ > 1 − s

β for RESE 4 because

v∗ ≥ p1 and we have Y ∗ = n−1
n · p1−s

c−s (1− v∗) ≤ 1− s
β .

Finally, for the existence of RESE 3, we show that (b.2) implies Y ∗ < 1 − s
β and condition (a)

of Theorem 5. Indeed, as long as Y ∗ < 1 − s
β and since v∗ ≥ p1, the LHS of (a) is smaller than

the LHS of (b.2). We show that Y ∗ < 1 − s
β by demonstrating that 1 − s

β exceeds the larger root

of (23) under condition (b.2). Recall, from the proof of Theorem 5, that (23) is obtained as a
characterization of the intersection point (Y ∗, v∗) of functions vmin

1 (Y ) and vmin
2 (Y ) in the range of

Y ≥ n
n+1

(

1− c
β

)

where vmin
2 (Y ) is decreasing (see Figure 14(a)). Since the smallest possible value



QUANTITY COMPETITION WITH STRATEGIC CONSUMERS 39

of vmin
1 (Y ) is p1, Y

∗ < 1− s
β holds as long as vmin

2

(

1− s
β

)

< p1, i.e.,

1−

(

1− s
β

)2
−
(

1− s
β

)

n
n+1

(

1− c
β

)

n
n+1

(

1− s
β

)

+ n−1
n+1

(

p1
β − 1

) = 1−
1

n+1

(

1− s
β

)2
+
(

1− s
β

)

n
n+1

c−s
β

1
n+1

(

1− s
β

)

+ n−1
n+1

p1−s
β

< p1, or

(n− 1)(1− p1)
p1 − s

β
+ (1− p1)

(

1− s

β

)

−
(

1− s

β

)2
< n

(

1− s

β

)c− s

β
.

The latter is implied by (b.2) since 1− p1 < 1− s
β .

A.12. Proof of Proposition 11 (Switches between RESE). The p1-bounds in the claim of
the proposition satisfy the following chain of inequalities for all valid model inputs: c

β ≤ 1−β+c <

1 − ρ(β − c) < 1 − n
n+1ρ(β − c) ≤ 1 − 1

2ρ(β − c). The value 1 − β + c provides the exact lower

bound on p1-values corresponding to RESE 1 over all n ≥ 1 and ρ ∈ [0, 1), while c
β provides the

exact upper bound on p1 corresponding to RESE 2. Thus, p1 corresponding to RESE 1 for some
model inputs cannot result in RESE 2 under any other inputs and vice versa. Consider each of the
possible p1-ranges.

Part (1): By Theorem 5, if p1 ≤ c
β and n = 1, the RESE is realized in the form 2 and not form

3. The necessary and sufficient condition for RESE 2 can be rewritten as p1n − p1(1 − β) ≤ nc

or, equivalently, n ≤ n2 = p1(1−β)
p1−c . For n > n2, RESE 2 cannot exist and p1 falls into the range

of RESE 3 (and, as argued above, cannot fall into the range of RESE 1). That is, as the level
of competition increases, the equilibrium with no sales in the second period (RESE 2) becomes
impossible and is replaced by the equilibrium with sales in both periods (RESE 3).

Part (4): When p1 > c
β , we have n2 < 1, i.e. even a monopolist cannot realize RESE 2. If, in

addition to this condition, p1 < 1− β + c, only RESE 3 is possible.
Part (2): Since the RESE 3 upper bound on p1 is decreasing in n, RESE 3 may exist only if

p1 < 1− 1
2ρ(β − c) (P1 for n = 1). RESE 3 p1-bounds imply the following bounds on n :

n2 < n <

{

n1 =
1−p1

p1−1+ρ(β−c) if p1 > 1− ρ(β − c),

∞ otherwise.

That is, as n increases, RESE 3 becomes impossible if p1 > 1−ρ(β− c) and is replaced by RESE 1.
Part (3) of this proposition can be shown in the same way, using the boundary on p1 between

RESE 1 and 3 as a function of ρ.

A.13. Proof of Proposition 12 (Monotonicity of Y ∗, v∗, and nr∗). Monotonicity of v∗ and
Y ∗. By Theorem 5, v∗ is constant in n and ρ for RESE 1 and 2; Y ∗ is increasing in n and constant
in ρ for RESE 1 and constant in n and ρ for RESE 2. By continuity of v∗ and Y ∗, it remains to
show the correspondent monotonicity of these values for RESE 3.

Monotonicity of v∗ and Y ∗ in ρ. Recall that, for RESE 3, Y ∗ and v∗ satisfy (18) for Y ∗. The
derivative of this equation in ρ is

2Y ∗∂Y
∗

∂ρ
− ∂Y ∗

∂ρ

n

n+ 1

(

2− v∗ − c

β

)

+
n

n+ 1
Y ∗∂v

∗

∂ρ
+

n− 1

n+ 1

(

p1
β

− 1

)

∂v∗

∂ρ
= 0,

which can be written as

∂Y ∗

∂ρ

[

2Y ∗ − n

n+ 1

(

2− v∗ − c

β

)]

= −∂v∗

∂ρ

1

n+ 1

[

nY ∗ + (n− 1)

(

p1
β

− 1

)]

. (29)
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Since Y ∗ > 1− p1 (by Lemma 4), and p1
β ≥ p1, the lower bound for the square bracket in the RHS

is n(1− p1) + (n− 1) (p1 − 1) = 1− p1 > 0. The square bracket in the LHS of (29) is also positive:

2Y ∗ − n

n+ 1

(

2− v∗ − c

β

)

> 0 (30)

because Y ∗ > 1− p1 ≥ 1− v∗ ≥ n
n+1(1− v∗) and n

n+1

(

1− c
β

)

is a lower bound for Y ∗ in RESE 3

(by Theorem 5).
For RESE 3, Y ∗ and v∗ satisfy (21), which can be written as (1− ρβ)v∗ − ρβY ∗ = p1 − ρβ with

the following derivative in ρ : (1 − ρβ)∂v
∗

∂ρ − ρβ ∂Y ∗

∂ρ = β(v∗ + Y ∗ − 1), where the RHS is positive

since v∗ ≥ p1 and Y ∗ > 1− p1. The combination of the last equation with (29) results in the linear
system in ∂v∗

∂ρ and ∂Y ∗

∂ρ with positive ai and bi :

a2
∂v∗

∂ρ
= −a1

∂Y ∗

∂ρ
,

b2
∂v∗

∂ρ
= b1

∂Y ∗

∂ρ
+ b0.

The first equation describes a straight line with zero intercept and negative slope. The second

straight line goes through the points
(

∂Y ∗

∂ρ , ∂v
∗

∂ρ

)

= (0, b0) and
(

∂Y ∗

∂ρ , ∂v
∗

∂ρ

)

= (− b0
b1
, 0) with a positive

slope. A unique intersection of these lines belongs to the area where ∂v∗

∂ρ > 0 and ∂Y ∗

∂ρ < 0.

Monotonicity of v∗ and Y ∗ in n. Denote z , n
n+1 , which implies n−1

n+1 = 2z−1. Since z increases

in n, monotonicity of v∗ and Y ∗ in z is equivalent to monotonicity in n. Equation (18) for Y ∗ can

be written as (Y ∗)2 − Y ∗z
(

2− v∗ − c
β

)

− (2z − 1)
(

p1
β − 1

)

(1− v∗) = 0 with the derivative in z

2Y ∗∂Y
∗

∂z
− ∂Y ∗

∂z
z
(

2− v∗ − c

β

)

− Y ∗
(

2− v∗ − c

β

)

+ Y ∗z
∂v∗

∂z

− 2
(p1
β

− 1
)

(1− v∗) + (2z − 1)
(p1
β

− 1
)∂v∗

∂z
= 0.

After collecting the terms with ∂v∗

∂z and ∂Y ∗

∂z , this equation becomes

∂Y ∗

∂z

[

2Y ∗ − z
(

2− v∗ − c

β

)]

+
∂v∗

∂z

[

Y ∗z + (2z − 1)
(p1
β

− 1
)]

= Y ∗
(

2− v∗ − c

β

)

+ 2
(p1
β

− 1
)

(1− v∗). (31)

The first square bracket in the LHS is positive by (30). The second square bracket in the LHS is
also positive since it is positive for p1 ≥ β, and, for p1 < β, it is bounded from below as follows:

Y ∗ n

n+ 1
+

n− 1

n+ 1

(p1
β

− 1
)

>
n
[

Y ∗ −
(

1− p1
β

)]

n+ 1
>

n[Y ∗ − (1− p1)]

n+ 1
> 0.

The RHS of (31) is positive since it is linear in v∗, positive at v∗ = 1, and positive at v∗ = p1 :

Y ∗
(

2− p1 −
c

β

)

+ 2

(

p1
β

− 1

)

(1− p1)

≥ (1− p1)

[

2− p1 −
c

β
+ 2

p1
β

− 2

]

= (1− p1)

[

p1
β

− p1 +
p1 − c

β

]

> 0.

The derivative of (21) in z is
∂v∗

∂z
=

ρβ

1− ρβ

∂Y ∗

∂z
. (32)
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If ρ > 0, then ∂v∗

∂z and ∂Y ∗

∂z satisfy the following system with positive ai and bi :

a1
∂Y ∗

∂z
= a2

∂v∗

∂z
,

b1
∂Y ∗

∂z
+ b2

∂v∗

∂z
= b0.

The first equation describes a straight line with zero intercept and positive slope. The second
straight line goes through the points on the axes

(

∂Y ∗

∂z , ∂v
∗

∂z

)

= ( b0b1 , 0) and
(

∂Y ∗

∂z , ∂v
∗

∂z

)

= (0, b0b2)

with a negative slope. A unique intersection of these lines belongs to the area where ∂v∗

∂z > 0 and
∂Y ∗

∂z > 0.

If ρ = 0, (32) becomes ∂v∗

∂z = 0 yielding the solution
(

∂Y ∗

∂z , ∂v
∗

∂z

)

= ( b0b1 , 0).
Monotonicity of nr∗ in n. By Theorem 5, nr∗ is constant in n for RESE 2 and monotoni-

cally decreasing for RESE 1. By global continuity of nr∗, it remains to show the correspondent
monotonicity of nr∗ for RESE 3.

By the alternative expression (26) for RESE 3 profit (Lemma 27),

nr∗ =
β

1− ρβ

{

− (Y ∗)2 + Y ∗
[

2− p1 −
c

β
− ρ (p1 − c)

]

+

(

p1
β

− 1

)

(1− p1)

}

.

Denote F , 1−ρβ
β nr∗. Then

∂F

∂n
= −2Y ∗∂Y

∗

∂n
+

∂Y ∗

∂n

[

2− p1 −
c

β
− ρ (p1 − c)

]

=
∂Y ∗

∂n

[

2− p1 −
c

β
− ρ (p1 − c)− 2Y ∗

]

. (33)

As shown above, Y ∗ is monotonically increasing in n for RESE 3. Therefore, nr∗ is monotonically
decreasing if and only if the square bracket in the last expression is negative. Consider two cases:
p1 ≤ c

β and p1 >
c
β .

Suppose p1 ≤ c
β . By Lemma 4, Y ∗ > 1−p1 in RESE 3, and, therefore, 2−p1− c

β−ρ(p1−c)−2Y ∗ <

p1 − c
β − ρ(p1 − c) ≤ 0.

For p1 > c
β (p1-lower bound for RESE 3 in a monopoly), by monotonicity of Y ∗ in n, the

RESE 3 value of Y ∗ for any n is bounded from below by the RESE 3 total supply in a monopoly:

Y ∗ ≥ 1− 1
2

(

c
β + 2p1−ρc

2−ρβ

)

. Therefore,

2− p1 −
c

β
− ρ(p1 − c)− 2Y ∗ ≤ −p1 − ρ(p1 − c) +

2p1 − ρc

2− ρβ
=

p1ρβ − ρ(p1 − c)(2− ρβ)− ρc

2− ρβ

=
ρ(p1β − p1(2− ρβ) + c(1− ρβ))

2− ρβ
<

ρ(p1β − p1(2− ρβ) + p1β(1− ρβ))

2− ρβ
= ρp1(β − 1) ≤ 0.

Thus, the square bracket in (33) is always negative and nr∗ is monotonically decreasing in n.
Monotonicity of nr∗ in ρ. By Theorem 5, nr∗ does not depend on ρ for RESE 1 and 2 since

there is no intertemporal effect in these cases.

By (10) with yi = Y ∗

n , total profit is nr∗ = β
[

Y ∗ − (Y ∗)2
]

− cY ∗+βY ∗(1−v∗)+(p1−β)(1−v∗)

with the derivative

∂[nr∗]

∂ρ
= β(1− 2Y ∗)

∂Y ∗

∂ρ
− c

∂Y ∗

∂ρ
+ β(1− v∗)

∂Y ∗

∂ρ
− βY ∗∂v

∗

∂ρ
− (p1 − β)

∂v∗

∂ρ

= −β
∂Y ∗

∂ρ

[

2Y ∗ − 2 +
c

β
+ v∗

]

− ∂v∗

∂ρ
[p1 − β(1− Y ∗)] . (34)

For n = 1, the first square bracket is zero (by Corollary 6), implying ∂[nr∗]
∂ρ < 0 since p1 > p∗2 and

∂v∗

∂ρ > 0 (by part (2) of this proposition).
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For n > 1, let R =
[

2Y ∗ − 2 + c
β + v∗

]

/
[

2Y ∗ − n
n+1

(

2− v∗ − c
β

)]

∈ [0, 1) and consider (29)

multiplied through by
[

2Y ∗ − 2 + c
β + v∗

]

, which yields

−∂Y ∗

∂ρ

[

2Y ∗ − 2 +
c

β
+ v∗

]

=
∂v∗

∂ρ

R

n+ 1

[

nY ∗ + (n− 1)

(

p1
β

− 1

)]

.

Since nY ∗ + (n − 1)
(

p1
β − 1

)

≥ 0 (because Y ∗ ≥ 1 − p1 by Lemma 4) and 0 ≤ R < 1, we can

upper-bound the first term in (34) to obtain

∂[nr∗]

∂ρ
< β

∂v∗

∂ρ

[

n

n+ 1
Y ∗ +

n− 1

n+ 1

(

p1
β

− 1

)

− Y ∗ −
(

p1
β

− 1

)]

=
β

n+ 1

∂v∗

∂ρ

[

−Y ∗ − 2

(

p1
β

− 1

)]

=
2

n+ 1

∂v∗

∂ρ

[

p∗2 + β

2
− p1

]

.

Since p∗2 = β(1 − Y ∗) and Y ∗ ≥ n
n+1

(

1− c
β

)

in RESE 3 by Theorem 5, ∂[nr∗]
∂ρ < 0 holds when

β − n
2(n+1)(β − c) ≤ p1 which yields the condition of the proposition.

A.14. Proof of Corollary 13 (σ2 in ρ). The second-period surplus σ2 = ρ(βv− p∗2) is monotoni-
cally non-decreasing in n because p∗2 = β(1−Y ∗) is non-increasing in n by part (1) or Proposition 12.

The derivative ∂σ2

∂ρ = βv − p∗2 − ρ
∂p∗

2

∂ρ is an increasing linear function of v that is zero at v0 =

1
β

(

p∗2 + ρ
∂p∗

2

∂ρ

)

. For RESE 1, v0 < v∗ = 1 since p∗2 < βp1 < 1, by part (1) of Lemma 4, and
∂p∗

2

∂ρ = 0.

Minimum valuation of a consumer who purchases in the second period is vmin
2 , p∗

2

β = max
{

s
β , 1− Y

}

.

For this consumer, ∂σ2

∂ρ

∣

∣

∣

v=vmin

2

= −ρ
∂p∗

2

∂ρ , which is nonpositive for RESE 3. Thus, v0 ≥ vmin
2 . Sim-

ilarly, we show that v0 < v∗ because, when ρ = 0, we have ∂σ2

∂ρ

∣

∣

∣

v=v∗
= βp1 − p∗2 > 0, and, when

ρ > 0, we know, by Proposition 12, that ∂v∗

∂ρ > 0 implying ∂σ2

∂ρ

∣

∣

∣

v=v∗
> 0.

A.15. Proof of Corollary 14 (Q2 increases with ρ). Recall that for a RESE, Q2 = Y ∗−(1−v∗),
yielding ∂Q2

∂ρ = ∂Y ∗

∂ρ + ∂v∗

∂ρ , which, using (29), is

∂Q2

∂ρ
=



−
n

n+1Y
∗ + n−1

n+1

(

p1
β − 1

)

2Y ∗ − n
n+1

(

2− v∗ − c
β

) + 1





∂v∗

∂ρ
or

∂Q2

∂ρ
=

n+2
n+1Y

∗ − n
n+1

(

2− v∗ − c
β

)

− n−1
n+1

(

p1
β − 1

)

2Y ∗ − n
n+1

(

2− v∗ − c
β

) · ∂v
∗

∂ρ
. (35)

Since, by Proposition 12, ∂v∗

∂ρ > 0 and, by (30), the denominator of the fraction in the RHS of (35)

is positive, the sign of ∂Q2

∂ρ coincides with the sign of the numerator.

For part (1), use n = 1 and the corresponding Y ∗ = 1− 1
2

(

v∗ + c
β

)

(Corollary 6) in the numerator

to get 3
2Y

∗ −
(

1− 1
2

(

v∗ + c
β

))

= 1
2Y

∗ > 0.

For part (2), ρ = 0 implies v∗ = p1, and the numerator becomes Y ∗ − 1+ p1 +
c
β − p1

β as n → ∞.

In this case, p1-range for RESE 3 is c < p1 < 1, and as p1 → 1, the total supply, given by the larger
root of (23), approaches Y ∗ = 1− c

β implying that the numerator approaches 1− 1
β < 0.
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A.16. Proof of Proposition 15 (boundary-value gain in RESE 3). For β = 1, necessary

condition (5) of RESE 4 becomes ρ < 1−p1
1−s and cannot hold as ρ → 1 since p1 > s. Thus, RESE 4

does not exist. RESE 2 does not exist because its p1-range is empty.
Part (1) is immediate by part (3) of Proposition 11, because, as ρ increases from 0 to 1, the switch

to RESE 1 occurs at ρ1 = n+1
n

1−p1
1−c < 1 if 1−p1

1−c < n
n+1 or, equivalently, if n > n̄. The resulting

equilibrium characteristics are obtained by substituting β = 1 in the description of RESE 1. It is
immediate to check that the resulting limit of p∗2 is below p1.

Part (2). When n < n̄, the switch from RESE 3 to RESE 1 does not occur for any ρ < 1. Total
supply Y ∗, which is given by a larger root of (23), is continuous in ρ near ρ = 1. We can write (23)
for β = ρ = 1 as

Y 2 −
(

(1− p1) +
(1− p1)(n− 1)

n

)

Y + (1− p1)×
(1− p1)(n− 1)

n

=

(

Y − (1− p1)(n− 1)

n

)

(Y − (1− p1)) = 0,

resulting in roots (1−p1)(n−1)
n and 1− p1. Thus, Y ∗|ρ→1 = 1− p1 and p∗2|ρ→1 = (1− Y ∗)|ρ→1 = p1.

The necessary condition Y ∗ < 1− s
β = 1−s of RESE 3 in Theorem 5 is satisfied for all ρ sufficiently

close to 1 since p1 > s.
The limit of v∗ is found using

Lemma 28. In RESE 3 with β = 1, we have limρ→1
∂Y ∗

∂ρ

∣

∣

∣

β=1
= n(c− p1).

By (21) with β = 1, we have v∗ = p1−ρ(1−Y ∗)
1−ρ for all ρ ∈ [0, 1). Then

lim
ρ→1

v∗ =
p1 − p1
1− 1

=
0

0
= lim

ρ→1

∂ [p1 − ρ(1− Y ∗)] /∂ρ

∂(1− ρ)/∂ρ
= − lim

ρ→1

[

−(1− Y ∗) + ρ
∂Y ∗

∂ρ

]

= lim
ρ→1

[

1− Y ∗ − ρ
∂Y ∗

∂ρ

]

= p1 + n(p1 − c) (from Lemma 28 and Y ∗|ρ→1 = 1− p1).

Using the limiting values of Y ∗ and v∗ in a strict version of condition (a) for RESE 3 existence,
we obtain the sufficient existence condition of the form (6). Indeed, by continuity, condition (a) is
satisfied for all ρ sufficiently close to one.

Using the expression for r∗, the limit of the total profit is

nr∗|ρ→1 = lim
ρ→1

[(p1 − c)(1− v∗) + (p∗2 − c)(Y ∗ − 1 + v∗)] = lim
ρ→1

[(p1 − p∗2)(1− v∗) + (p∗2 − c)Y ∗]

= (p1 − p1)(1− v∗|ρ→1) + (p1 − c)(1− p1) = (p1 − c)(1− p1).

To complete the proof of part (2), consider when (p1 − c)(1 − p1) ≥ n(1−c)2

(n+1)2
. With a change of

variables x = 1−p1
1−c , this relation can be represented as (1− c)2(1− x)x ≥ n(1−c)2

(n+1)2
, or, equivalently,

as (1 − x)x ≥ n
(n+1)2

resulting in 1
n+1 ≤ x ≤ n

n+1 . This range does not intersect with a feasible

range of x for part (2) which is given by n
n+1 < x < 1 (resulting from n < n̄). Thus, for part (2),

(p1 − c)(1− p1) <
n(1−c)2

(n+1)2
.

Part (3) is immediate since n = n̄ implies that the limits in parts (1) and (2) are equal.

Part (4) follows from Corollary 7 for n = n̄ = 1−p1
p1−c . In this case, the condition of the corollary

becomes 1
n + 2 < n, which, after solving for positive integer n, yields n ≥ 3. Moreover, when

n = n̄ = 1−p1
p1−c and ρ = 0, the RESE is of the form 3 because RESE 2 is impossible with β = 1 and

the switch to RESE 1 occurs only in the limit of ρ → 1. We also have Y ∗|ρ=0 > Y ∗|ρ→1 = 1 − p1
because the total supply is (strictly) decreasing in ρ, and p∗2|ρ=0 < c by Corollary 7. Thus, for ρ = 0,
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the total first period profit is (p1 − c)(1− v∗|ρ=0) = (p1 − c)(1− p1), which is exactly the same as
the total profit for ρ → 1, while the second-period total profit is (p∗2 − c)(Y ∗ − 1 + v∗|ρ=0) < 0.

A.17. Analysis of Example 16. Observing that (p1 − s)(1− p1) ≤ 1
4(1− s)2 and using relation

1−p1 = n̄(p1−c), we can strengthen (6) to (n−1)(n̄−n)
n

p1−c
4(c−s) < 1. For RESE 3, the range of n is [1, n̄).

As a function of n, fraction (n−1)(n̄−n)
n attains its maximum of (

√
n̄− 1)2 in this range at n =

√
n̄

leading to an even stronger version of the condition, i.e., (
√
n̄ − 1)2 (p1−c)

4(c−s) =
(
√
1−p1−

√
p1−c)

2

4(c−s) < 1.

The LHS of this inequality decreases in p1 > c and it surely holds if it holds at p1 = c, i.e., if
1−c

4(c−s) < 1 or c > 1+4s
5 . Thus, (6) holds for all p1 and 1 ≤ n < n̄ if c > 1+4s

5 , e.g., if s = 0 and

c > 0.2.

A.18. Proof of Proposition 17 (monotonicity in RESE 4). Part (1). v∗,4 = p1−ρs
1−ρβ , which is

constant in n and increasing in ρ since ∂v∗

∂ρ = −s(1−ρβ)+β(p1−ρs)
(1−ρβ)2

= βp1−s
(1−ρβ)2

> 0.

Parts (2) and (3) follow directly from part (1) and the formulas for Y ∗ and r∗, given by Theorem 9.

A.19. Proof of Proposition 18 (Y ∗ > 1−c). Part 1. By Theorem 5, Y ∗,1 = n
n+1

(

1− c
β

)

, which

is maximal at β = 1, and Y ∗,1∣
∣

β=1
= n

n+1 (1− c) < 1− c. Hence, Y ∗,1 < 1− c for any parameters

where RESE 1 exists.
Part 2. By Theorem 9, Y ∗,4 = n−1

n
p1−s
c−s (1 − v∗), which, given other parameters fixed, goes to

infinity when c approaches s. The condition Y ∗,4 ≥ 1−c, using 1−v∗ = 1−p1−ρ(β−s)
1−ρβ , can be written

as c − s ≤ n−1
n

p1−s
1−c

1−p1−ρ(β−s)
1−ρβ . Since Y ∗,4 is a concave quadratic function in p1, its maximum in

p1, Ȳ
∗,4, can be found from the condition ∂Y ∗,4

∂p1
= 0 = n−1

n(1−ρβ)(c−s) [1− p1 − ρ(β − s)− (p1 − s)] ,

yielding p̄1 =
1
2 [1−ρ(β−s)+s] = P4+s

2 . Since P4 = 1−ρ(β−s) = 2p̄1−s, we have 1− v∗|p1=p̄1
= p̄1−s

1−ρβ

and Ȳ ∗,4 = (n−1)(p̄1−s)2

n(1−ρβ)(c−s) . Price p̄1 can be in the p1-range of RESE 4 since p̄1 is always below P4 —

the p1-upper bound (P4 > s), and p̄1 can be greater than P2, which, by Proposition 10, is p1-lower
bound in RESE 4. Indeed, p̄1 > P2 holds for any n ≥ 2 if it holds for n = 2 since P2 decreases in
n. For n = 2, inequality p̄1 > P2 can be written as (P4+ s)(1+β) > 4c, which holds for sufficiently
small c.

Part 3. By Corollary 6, Y ∗,3 = 1 − 1
2

(

v∗ + c
β

)

if n = 1. Then Y ∗,3 < 1 − c is equivalent to

c < 1
2

(

v∗ + c
β

)

, which holds for any β ∈ (c, 1] since v∗ ≥ p1 > c.

By Proposition 12, Y ∗,3 is maximized at n → ∞. By continuity of Y ∗ at the boundaries, Y ∗,3 →
1− c when p1 → P2|n→∞ = c. We will show that there are feasible inputs such that ∂Y ∗,3

∂p1
> 0. For

example, for n → ∞ and ρ = 0, equation (23) for Y is Y 2−
[

1− c
β + 1− p1

]

Y −
(

p1
β − 1

)

(1−p1) =

0. Derivative w.r.t. p1 results in 2Y ∂Y
∂p1

+Y −
[

1− c
β + 1− p1

]

∂Y
∂p1

− 1
β (1−p1)+

(

p1
β − 1

)

= 0, which,

for p1 → c, becomes ∂Y
∂p1

[2(1− c)− 1 + c
β − (1− c)] = 1

β [1− c− c(1− β)] yielding ∂Y
∂p1

= 1−c
c(1−β) − 1.

The RHS is positive since 1− c > c(1− β).

A.20. Proof of Proposition 19 (discount). The proof is similar to the corresponding parts of
the proofs of Theorems 5 and 9. The expressions for Y ∗ result from the symmetric best responses
with ri = (p1 − c)qi + λ(p2 − c)(yi − qi), yi = Y

n , and Y −i = n−1
n Y.

For RESE 1, qi = 0 and, using p2 = β(1 − Y ), ∂r
i

∂yi
= 0 = λ

[

β(1− Y )− c− β Y
n

]

, yielding Y =

n
n+1

(

1− c
β

)

that does not depend on λ. For RESE 2, the result is obvious since ri = (p1−c)yi does
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not depend on λ. For RESE 4 with v∗ = p1−ρs
1−ρβ and ri = (p1− c)(1−v∗)y

i

Y −λ(c− s)yi
(

1− 1−v∗

Y

)

=

yi
{

1−v∗

Y [p1 − c+ λ(c− s)]− λ(c− s)
}

, the equation for Y is

∂ri

∂yi
= 0 =

1− v∗

Y
[p1 − c+ λ(c− s)]− λ(c− s)− yi

1− v∗

Y 2
[p1 − c+ λ(c− s)]

=
n− 1

n

1− v∗

Y
[p1 − c+ λ(c− s)]− λ(c− s).

This equation yields a unique Y ∗,4
λ = n−1

n (1 − v∗)
[

p1−c
λ(c−s) + 1

]

, which decreases in λ and ∂2ri

∂(yi)2
=

−2n−1
n

1−v∗

Y 2 [p1 − c+ λ(c− s)] < 0. If λ = (1 + δ)−1, the relative change in Y ∗ is

Y ∗,4
λ − Y ∗,4

Y ∗,4 =

[

p1 − c

λ(c− s)
+ 1− p1 − s

c− s

]

c− s

p1 − s
=

p1 − c+ λ(c− p1)

λ(p1 − s)
=

(p1 − c)(1− λ)

(p1 − s)λ
=

p1 − c

p1 − s
δ.

For RESE 3, we have

ri = (p1 − c)(1− v∗)
yi

Y
+ λ(p2 − c)yi

(

1− 1− v∗

Y

)

= yi
{

λ[β(1− Y )− c] + λβ(1− v∗) +
1− v∗

Y
[p1 − c(1− λ)− λβ]

}

,

and Y ∗ results from the first-order optimality condition

∂ri

∂yi
= 0 = λβ(1− Y )− λc+ λβ(1− v∗)

+
(1− v∗)

Y
[p1 − c(1− λ)− λβ] +

Y

n

{

−λβ − (1− v∗)

Y 2
[p1 − c(1− λ)− λβ]

}

= −Y λβ

(

1 +
1

n

)

− λc+ λβ(2− v∗) +
n− 1

n

1− v∗

Y
[p1 − c− λ(β − c)] (36)

as well as the equation v∗ = p1−ρβ(1−Y )
1−ρβ that links valuation threshold to the rational second-period

expectations. The remainder of the proof will formally show that Y ∗ is decreasing in λ. The
geometric idea behind the proof is provided by a generalized version of the curve vmin

2 (Y ) in (20)
that gives valuation threshold for the corresponding stationary point of the profit. Solving (36) for
v∗, we obtain

v∗ = 1−
Y 2 − Y n

n+1

(

1− c
β

)

Y n
n+1 + n−1

n+1

(

p1−c
λβ − 1 + c

β

) . (37)

The generalized vmin
2 (Y ) given by the right-hand side shifts down as λ increases. Thus, the inter-

section point of vmin
2 (Y ) and vmin

1 (Y ) (illustrated in Figure 14(a)) shifts to the left as λ increases.
Since the abscissa of the intersection point is Y ∗, the claim hold in RESE 3 based on this geometric
structure.

Formally, (36) multiplied by −Y n
λβ(n+1) , becomes

Y 2 − Y
n

n+ 1

(

2− v∗ − c

β

)

− n− 1

n+ 1
(1− v∗)

[

p1 − c

λβ
−
(

1− c

β

)]

= 0,

implying that, for n = 1, Y does not depend on λ. Substitution for 1− v∗ = 1−p1−ρβY
1−ρβ yields

Y 2 − Y
n

n+ 1

(

1− p1 − ρβY

1− ρβ
+ 1− c

β

)

− n− 1

n+ 1

1− p1 − ρβY

1− ρβ

[

p1 − c

λβ
−
(

1− c

β

)]

= 0.
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The coefficient in front of Y 2 is 1 + n
n+1

ρβ
1−ρβ = n+1−ρβ

(n+1)(1−ρβ) , and the one in front of Y is

− 1

(n+ 1)(1− ρβ)

{

n[1− p1 +

(

1− c

β

)

(1− ρβ)]− (n− 1)ρβ

[

p1 − c

λβ
−
(

1− c

β

)]}

.

Multiplying the last equation by (n+1)(1−ρβ)
n+1−ρβ > 0 and denoting λ̃ , p1−c

λ − (β − c) , we obtain

Y 2 − (β − c)n(1− ρβ) + β(1− p1)n− ρβ(n− 1)λ̃

β(n+ 1− ρβ)
Y − (1− p1)(n− 1)

β(n+ 1− ρβ)
λ̃ = 0. (38)

The derivative of (38) w.r.t. λ̃ is

2Y
∂Y

∂λ̃
+Y

ρβ(n− 1)

β(n+ 1− ρβ)
− (β − c)n(1− ρβ) + β(1− p1)n− ρβ(n− 1)λ̃

β(n+ 1− ρβ)

∂Y

∂λ̃
− (1− p1)(n− 1)

β(n+ 1− ρβ)
= 0.

Multiplication by β(n+ 1− ρβ) yields

∂Y

∂λ̃

{

2Y β(n+ 1− ρβ)− (β − c)n(1− ρβ)− β(1− p1)n+ ρβ(n− 1)λ̃
}

= (n− 1)(1− p1 − ρβY ).

The RHS is zero for n = 1 and, by part (3) of Lemma 4, positive for n > 1. It remains to show that

{·} > 0 for any n ≥ 1, implying ∂Y
∂λ ≡ 0 for n = 1, and ∂Y

∂λ < 0 for n > 1 because λ̃ decreases in λ.

Since λ̃ is minimal at λ = 1, it can be shown that, for any λ ∈ (0, 1], Y is increasing in n. The proof

is identical to the corresponding part of the proof of Proposition 12 with the substitution of λ̃/β for

(p1/β − 1) . Then {·} ≥ β
{

2(n+ 1− ρβ) Y |n=1 − (1− c
β )n(1− ρβ)− (1− p1)n+ ρ(n− 1)(p1 − β)

}

=

β
{

n[2 Y |n=1 − (1− c
β )(1− ρβ)− (1− p1) + ρ(p1 − β)] + 2(1− ρβ) Y |n=1 − ρ(p1 − β)

}

, where the

square bracket [·] = 2 Y |n=1 − (1 − c
β ) − (1 − p1) + ρ(p1 − c). Since Y |n=1 does not depend on λ,

we can rewrite, by Corollary 6, the bracket [·] as follows: [·] = 2 − c
β − 2p1−ρc

2−ρβ − 1 + c
β − 1 + p1 +

ρ(p1 − c) = 1
2−ρβ

[

ρc− p1ρβ + 2ρ(p1 − c)− ρ2β(p1 − c)
]

= ρ
2−ρβ [(p1 − c)(1− ρβ) + p1(1− β)] ≥

0 with strict inequality for ρ > 0. Therefore, the bracket {·} is positive if it is positive for

n = 1. {·}|n=1 = ρ
2−ρβ [(p1 − c)(1− ρβ) + p1(1− β)] + (1 − ρβ)

[

2− c
β − 2p1−ρc

2−ρβ

]

− ρ(p1 − β) =

ρ
2−ρβ [p1(2− ρβ)− p1β]+(1−ρβ)

[

2− c
β − 2p1

2−ρβ

]

−ρ(p1−β) = (1−ρβ)
[

2− c
β − 2p1

2−ρβ

]

− ρp1β
2−ρβ +ρβ,

where ρβ − ρβp1
2−ρβ > ρβ 1−ρβ

2−ρβ , which leads to {·}|n=1 > 1−ρβ
2−ρβ

{

ρβ + 2
(

2− c
β − p1

)

− 2ρβ + ρc
}

=

1−ρβ
2−ρβ

{

2
(

2− c
β − p1

)

− ρ(β − c)
}

. Since for n = 1, p1 < 1 − 1
2ρ(β − c), the last bracket {·} >

2
[

1− c
β + 1

2ρ(β − c)
]

− ρ(β − c) = 2
(

1− c
β

)

> 0.

A.21. Proof of Proposition 20 (RESE stability). RESE 1,3, and 4, for n ≥ 2, represent
a non-degenerate game between retailers that can be reformulated as a one-period game with
retailer i’s payoff πi(yi, Y −i) = yiP (yi, Y −i) − Ci(y

i), where Ci(y
i) = cyi. For RESE 1 and 3, by

(10), P (yi, Y −i) = β(1 − Y ) + β(1 − v∗) + (p1−β)(1−v∗)
Y , and for RESE 4, by (14), P (yi, Y −i) =

s+ (p1−s)(1−v∗)
Y . By Theorem 3 in al Nowaihi and Levine (1985), a Cournot equilibrium Y ∗ is locally

asymptotically stable if the following assumptions hold:
(A1) The equilibrium point Y ∗ exists and unique in an open neighborhood of Y ∗ and

(

yi
)∗

>
0, i ∈ I — holds by the condition of the proposition and part (2) of Lemma 4.

(A2) P and Ci, i ∈ I are twice continuously differentiable functions in an open neighborhood of
Y ∗ — holds for RESE 1,3, and 4.

(A3) ∂2πi/∂
(

yi
)2

< 0 at Y ∗ for each i ∈ I — holds for RESE 1,3, and 4 by Lemma 26.
(H1) P ′ < C ′′

i at Y ∗ for each i ∈ I — holds since C ′′
i ≡ 0 and P ′ < 0 for RESE 1,3, and 4.
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(H2) P ′ + yiP ′′ ≤ 0 at Y ∗ for each i ∈ I — holds strictly for RESE 1,3, and 4. Namely, for

RESE 1 and 3, this inequality is −β − (p1−β)(1−v∗)
Y 2 + 2yi (p1−β)(1−v∗)

Y 3 ≤ 0, where the LHS at Y ∗ is

−β − (p1−β)(1−v∗)

(Y ∗)2
+ 2Y ∗

n
(p1−β)(1−v∗)

(Y ∗)3
= −β − (p1−β)(1−v∗)

(Y ∗)2

(

1− 2
n

)

< 0 for any n ≥ 2. For RESE 4,

the proof is similar.

A.22. Proof of Lemma 21 (total surplus). By the definition of vmin, the total consumer surplus
in the first period is

Σ1 =

∫ 1

vmin

(v − p1)dv =

(

v2

2
− p1v

)∣

∣

∣

∣

1

vmin

=
1

2
− p1 −

(

vmin
)2

2
+ p1v

min

=
1

2

[

1−
(

vmin
)2
]

− p1(1− vmin) = (1− vmin)

[

1

2
(1 + vmin)− p1

]

.

The total surplus in the second period is

Σ2 =

∫ βvmin

p2

(ṽ−p2)
dṽ

β
=

1

β

(

ṽ2

2
− p2ṽ

)
∣

∣

∣

∣

βvmin

p2

=
1

β

(

βvmin − p2
)

(

βvmin + p2
2

− p2

)

=

(

βvmin − p2
)2

2β
.

Hence, Σ∗ = Σ1 +Σ2 = (1− vmin)
[

1
2(1 + vmin)− p1

]

+
(βvmin−p2)

2

2β , with vmin = v∗ for a RESE.

A.23. Proof of Proposition 22 (Monotonicity of surplus and welfare). 1. Monotonicity of

Σ∗ in n. By Lemma 21, the derivatives ∂Σ1

∂n and ∂Σ2

∂n are

∂Σ1

∂n
=

1

2

∂v∗

∂n
(1− v∗)− ∂v∗

∂n

(

1

2
(1 + v∗)− p1

)

= −∂v∗

∂n
(v∗ − p1);

∂Σ2

∂n
=

1

β
(βv∗ − p∗2)

(

β
∂v∗

∂n
− ∂p∗2

∂n

)

=
∂v∗

∂n
(βv∗ − p∗2)−

∂p∗2
∂n

(

v∗ − p∗2
β

)

.

For a RESE, ∂Σ1

∂n ≤ 0 since ∂v∗

∂n ≥ 0 (Proposition 12) and v∗ ≥ p1; and
∂Σ2

∂n ≥ 0 since, by Lemma

4, βv∗ ≥ βp1 > p∗2 and
∂p∗

2

∂n ≤ 0 since, by (3), p∗2 = s ∨ [β(1− Y ∗)] and, by Propositions 12 and 17,
∂Y ∗

∂n ≥ 0.

Using the expressions for ∂Σ1

∂n and ∂Σ2

∂n , we can write

∂Σ∗

∂n
=

∂v∗

∂n
[βv∗ − p∗2 − (v∗ − p1)]−

∂p∗2
∂n

(

v∗ − p∗2
β

)

. (39)

By the definition of v∗, the surpluses of a consumer with valuation v = v∗ are equal in both
periods: σ1|v=v∗ = v∗ − p1 = σ2|v=v∗ = ρ(βv∗ − p∗2). Therefore, since ρ < 1, the square bracket in

(39) is positive. Then, since ∂v∗

∂n ≥ 0 and
∂p∗

2

∂n ≤ 0, equation (39) yields ∂Σ∗

∂n ≥ 0 for a RESE. By

Theorems 5, 9, and Proposition 12, Σ∗ is constant in n for RESE 2 and 4 (∂v
∗

∂n =
∂p∗

2

∂n = 0) and

monotonically increasing for RESE 1 (∂v
∗

∂n = 0,
∂p∗

2

∂n < 0 ) and 3 (∂v
∗

∂n > 0,
∂p∗

2

∂n < 0).
Monotonicity of Σ∗ in ρ. By Theorem 5, Σ∗ does not depend on ρ for RESE 1 and 2 (no

intertemporal effects). In general, using the same approach as for ∂Σ∗

∂n , we can write for a RESE
∂Σ1

∂ρ = −∂v∗

∂ρ (v
∗−p1) ≤ 0, ∂Σ2

∂ρ = ∂v∗

∂ρ (βv
∗−p∗2)−

∂p∗
2

∂ρ

(

v∗ − p∗
2

β

)

. Due to the side effect of increasing

ρ (
∂p∗

2

∂ρ ≥ 0), it is not obvious that ∂Σ2

∂ρ ≥ 0. The derivative of total surplus is

∂Σ∗

∂ρ
=

∂v∗

∂ρ
[βv∗ − p∗2 − (v∗ − p1)]−

∂p∗2
∂ρ

(

v∗ − p∗2
β

)

. (40)

For RESE 4, we have
∂p∗

2

∂ρ = 0 and, by Proposition 17, ∂v∗

∂ρ > 0 yielding ∂Σ∗

∂ρ > 0.
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2. Monotonicity of W ∗. Recall that for RESE 1, v∗ = 1 and p∗2 = 1
n+1(β + nc), yielding, by

Lemma 21, Σ∗ = 1
2β

(

β − 1
n+1(β + nc)

)2
= 1

2β

(

n
n+1(β − c)

)2
and

W ∗ = Σ∗ + nr∗ =

(

n2

(n+ 1)2
+

2n

(n+ 1)2

)

(β − c)2

2β
=

(n+ 1)2 − 1

(n+ 1)2
(β − c)2

2β
,

which is increasing in n and constant in ρ.
For RESE 2, v∗ = p1,Σ2 = 0 (no second period), Σ∗ = 1

2(1− p1)
2, and

W ∗ = Σ∗ + nr∗ =
1

2
(1− p1)

2 + (p1 − c)(1− p1) =
1

2
(1− p1)(1 + p1 − 2c),

which is constant in both n and ρ.
For RESE 4, v∗ = p1−ρs

1−ρβ , p∗2 = s, yielding Σ∗ that is constant in n. Then, W ∗ = Σ∗ + nr∗ =

Σ∗ + p1−s
n (1− v∗) is monotonically decreasing in n.

By Lemma 21, ∂Σ∗

∂ρ can be written as follows:

∂Σ∗

∂ρ
=

∂Σ∗

∂v∗
∂v∗

∂ρ
=

∂

∂v∗

[

1

2
(1− (v∗)2)− p1(1− v∗) +

(βv∗ − s)2

2β

]

∂v∗

∂ρ
= [−v∗ + p1 + βv∗ − s]

∂v∗

∂ρ
.

Then ∂W ∗

∂ρ = ∂v∗

∂ρ

[

−v∗ + p1 + βv∗ − s− p1−s
n

]

. Since ∂v∗,4

∂ρ > 0, the sign of ∂W ∗

∂ρ coincides with the

sign of [·], which can be written as [·] = v∗(β−1)+ n−1
n (p1−s). Hence, using v∗ = p1−ρs

1−ρβ , inequality
∂W ∗

∂ρ R 0 is equivalent to (p1 − ρs)(β − 1) + n−1
n (p1 − s)(1 − ρβ) R 0. After collecting the terms

with ρ, the latter inequality becomes n−1
n (p1 − s)− p1(1− β) R ρ

(

n−1
n (p1 − s)β − (1− β)s

)

or as

p1β − s− 1
n(p1 − s) R

(

p1β − s− β
n(p1 − s)

)

ρ, which, since p1β > s, can be written as

1− 1

n

p1 − s

p1β − s
R
(

1− β

n

p1 − s

p1β − s

)

ρ. (41)

Consider two cases. If 1 > 1
n

p1−s
p1β−s , then 1 > β

n
p1−s
p1β−s and (41) is equivalent to ρ+ R ρ, where ρ+

is defined in part (2.2). If 1 ≤ 1
n

p1−s
p1β−s , then “>” in (41) cannot hold for any ρ ∈ (0, 1), but “≤”

holds for all ρ ∈ [0, 1). Thus, in the latter case, we can define ρ+ as 0.

A.24. Proof of Corollary 23 (RESE 3, non-monotonicity of the total surplus in ρ). Proof
is immediate from the following lemma:

Lemma 29. If β = 1, given that RESE is unique,

(1) for ρ → 1 and n < n̄ = 1−p1
p1−c ,

∂Σ∗

∂ρ = −n2(p1 − c)2 < 0;

(2) for ρ = 0,
(2.1) ∂Σ∗

∂ρ = 1
8(p1 − c) > 0 for n = 1; and

(2.2) ∂Σ∗

∂ρ = Y ∗−(1−p1)
Y ∗+(1−p1)

Y ∗ [Y ∗ − (1− c)] > 0 for n = ∞, where Y ∗ is the larger root of the

equation

Y 2 − Y (1− p1 + 1− c) + (1− p1)
2 = 0. (42)

Proof: By (40) with β = 1, the derivative ∂Σ∗

∂ρ is

∂Σ∗

∂ρ

∣

∣

∣

∣

β=1

=
∂v∗

∂ρ
[p1 − p∗2]−

∂p∗2
∂ρ

(v∗ − p∗2) . (43)
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Part (1): By part (2) of Proposition 15, RESE 3 is realized if ρ → 1 and n < n̄. Then p∗2 → p1
and, if we show that ∂v∗

∂ρ < ∞, equation (43) will become

∂Σ∗

∂ρ

∣

∣

∣

∣

β=1

= −∂p∗2
∂ρ

(v∗ − p1) , (44)

requiring the expressions for limρ→1 v
∗|β=1 and limρ→1

∂p∗
2

∂ρ

∣

∣

∣

β=1
. By (29),

∂v∗

∂ρ
= −∂Y ∗

∂ρ
·

2Y ∗ − n
n+1

(

2− v∗ − c
β

)

1
n+1

[

nY ∗ + (n− 1)
(

p1
β − 1

)] , (45)

which, after substituting β = 1, limρ→1
∂Y ∗

∂ρ

∣

∣

∣

β=1
= −n(p1 − c) (by Lemma 28), canceling 1

n+1 , and

considering the limit as ρ → 1, becomes limρ→1
∂v∗

∂ρ

∣

∣

∣

β=1
= n(p1−c)·limρ→1

2Y ∗(n+1)−n(2−v∗−c)
nY ∗−(n−1)(1−p1)

∣

∣

∣

β=1
.

Using limρ→1 Y
∗|β=1 = 1− p1, we see that the denominator tends to 1− p1. Thus, limρ→1

∂v∗

∂ρ

∣

∣

∣

β=1

is finite for any n < n̄. Using (44) and limρ→1 v
∗ = p1 + n(p1 − c) (Proposition 15), we get

lim
ρ→1

∂Σ∗

∂ρ

∣

∣

∣

∣

β=1

= lim
ρ→1

[

−∂p∗2
∂ρ

(p1 + n(p1 − c)− p1)

]

= lim
ρ→1

[

−∂p∗2
∂ρ

n(p1 − c)

]

= n(p1 − c) lim
ρ→1

∂Y ∗

∂ρ
= −n2(p1 − c)2.

Part (2): Equation (43) with ρ = 0 (implying v∗ = p1) is

∂Σ∗

∂ρ

∣

∣

∣

∣

β=1

= (p1 − p∗2)

[

∂v∗

∂ρ
− ∂p∗2

∂ρ

]

= [Y ∗ − (1− p1)]

[

∂v∗

∂ρ
+

∂Y ∗

∂ρ

]

. (46)

The derivative of (21) in ρ (with β = 1) results in

∂v∗

∂ρ
=

1

(1− ρ)2

[

−
(

p∗2 + ρ
∂p∗2
∂ρ

)

(1− ρ) + (p1 − ρp∗2)

]

=
1

(1− ρ)2

[

p1 − p∗2 + ρ(1− ρ)
∂p∗2
∂ρ

]

,

which, for ρ = 0, given p∗2 = 1− Y ∗, is ∂v∗

∂ρ

∣

∣

∣

ρ=0
= Y ∗ − (1− p1). By (45) with β = 1 and ρ = 0,

∂Y ∗

∂ρ
= −∂v∗

∂ρ
· nY ∗ − (n− 1) (1− p1)

2Y ∗(n+ 1)− n (1− p1 + 1− c)
,

and (46) becomes

∂Σ∗

∂ρ

∣

∣

∣

∣

β=1

= [Y ∗ − (1− p1)]
2

[

1− nY ∗ − (n− 1) (1− p1)

2Y ∗(n+ 1)− n (1− p1 + 1− c)

]

. (47)

Part (2.1): For n = 1, Corollary 6 with β = 1 and ρ = 0 yields Y ∗ = 1− 1
2 (c+ p1) and (47) is

∂Σ∗

∂ρ
=

[

1

2
(p1 − c)

]2 [

1− Y ∗

2Y ∗ − [2− (p1 + c)] + 2Y ∗

]

=
1

8
(p1 − c)2.

Part (2.2): After collecting the terms with n and passing to the limit as n → ∞, (47) becomes

lim
n→∞

∂Σ∗

∂ρ

∣

∣

∣

∣

β=1

= [Y ∗ − (1− p1)]
2

[

1− Y ∗ − (1− p1)

2Y ∗ − (1− p1 + 1− c)

]

=
[Y ∗ − (1− p1)]

2 [Y ∗ − (1− c)]

2Y ∗ − (1− p1 + 1− c)
,
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where (by (23) with β = 1, ρ = 0, and n → ∞) Y ∗ is the larger root of (42), which implies that

Y ∗ − (1− p1 + 1− c) = − (1−p1)2

Y ∗
and

lim
n→∞

∂Σ∗

∂ρ

∣

∣

∣

∣

β=1

= [Y ∗ − (1− p1)]
2 Y ∗ − (1− c)

Y ∗ − (1−p1)2

Y ∗

yielding the result of part (2.2). Note also, that by Corollary 7, for n = ∞, the second period is

never profitable (Y ∗ > 1− c
β ⇔ p∗2 < c) implying that for ρ = 0, limn→∞

∂Σ∗

∂ρ

∣

∣

∣

β=1
> 0.

A.25. Proof of Corollary 24 (Non-monotonicity of W ∗ in n). By the definition of W ∗,
∂W ∗

∂n = ∂Σ∗

∂n + ∂[nr∗]
∂n . Then, using (39) for ∂Σ∗

∂n , (33) for ∂[nr∗]
∂n , and equalities ∂v∗

∂n = ρβ
1−ρβ

∂Y ∗

∂n (by

(21)) and
∂p∗

2

∂n = −β ∂Y ∗

∂n , we get

∂W ∗

∂n
=

∂Y ∗

∂n

β

1− ρβ

{

ρ [βv∗ − p∗2 − (v∗ − p1)]+(βv∗−p∗2)

(

1

β
− ρ

)

+2−p1−
c

β
−ρ(p1−c)−2Y ∗

}

.

Since, by Proposition 12, ∂Y ∗

∂n > 0 for RESE 3, the sign of ∂W ∗

∂n coincides with the sign of the curly

bracket in the RHS, i.e., ∂W ∗

∂n R 0 is equivalent to

ρ [βv∗ − p∗2 − (v∗ − p1)] + (βv∗ − p∗2)

(

1

β
− ρ

)

+ 2− p1 −
c

β
− ρ(p1 − c)− 2Y ∗ R 0,

which, after canceling like terms and, by (3), substitution Y ∗ = 1−p∗
2

β , becomes
p∗
2
−c
β +[v∗ − p1 − ρ(v∗ − c)] R

0. Then, using v∗ =
p1−ρp∗

2

1−ρβ , the inequality for nW (dependence of p∗2 on nW is omitted) becomes

p∗2 R c+ β
{

p1−ρp∗
2

1−ρβ (ρ− 1)− ρc+ p1

}

. Collecting the terms with p∗2, we obtain

p∗2

[

1− (1− ρ)ρβ

1− ρβ

]

R c(1− ρβ) + p1β

[

1− 1− ρ

1− ρβ

]

⇔ p∗2 R c
(1− ρβ)2

1− 2ρβ + ρ2β
+ p1

ρβ(1− β)

1− 2ρβ + ρ2β
,

which yields the main claim (7). The RHS of (7) equals c if ρ = 0 or β = 1. For other values of ρ

and β, the comparison of the RHS with c yields c (1−ρβ)2

1−2ρβ+ρ2β
+ p1

ρβ(1−β)
1−2ρβ+ρ2β

> c ⇔ p1ρβ(1 − β) >

c
[

1− 2ρβ + ρ2β − (1− 2ρβ + ρ2β2)
]

⇔ p1ρβ(1−β) > cρ2β(1−β) ⇔ p1 > ρc, which always holds.

A.26. Proofs of auxiliary statements.

A.26.1. Proof of Lemma 26 (properties of the profit). Part (1.1) can be shown by direct substitution
of yi = 1− s

β − Y −i (which is strictly positive by the condition of part (1)) into the expressions for
∂ri

∂yi
defined by (12) and (15):

∂ri

∂yi

∣

∣

∣

∣

yi=1− s
β
−Y −i−0

= β
(

1− Y −i
)

− c+ β
(

1− vmin
)

− 2β
(

1− s

β
− Y −i

)

+ Y −i (p1 − β)(1− vmin)
(

1− s
β

)2

= −c− βvmin + 2s+ Y −i

(

β +
(p1 − β)(1− vmin)

(

1− s
β

)2

)

,

∂ri

∂yi

∣

∣

∣

∣

yi=1− s
β
−Y −i+0

= −c+ s+ Y −i (p1 − s)
(

1− vmin
)

(

1− s
β

)2 .

These expressions imply that part (1.1) holds if and only if

s− βvmin + Y −i

(

β +
(p1 − β)(1− vmin)

(

1− s
β

)2

)

< Y −i (p1 − s)
(

1− vmin
)

(

1− s
β

)2 ,
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which is equivalent to

s− βvmin < Y −i

[

(β − s)
(

1− vmin
)

(

1− s
β

)2 − β

]

= Y −i

[

β(1− vmin)

1− s
β

− β

]

=
Y −i(s− βvmin)

1− s
β

,

which holds because s < βvmin and, by condition of part (1), Y −i < 1− s/β.
Since ri is continuous, i.e. ri

(

1 − s
β − Y −i − 0

)

= ri
(

1 − s
β − Y −i + 0

)

, and we can show part

(1.2) using either (10) or (14). From (14), ri
(

1− s
β − Y −i

)

is

(

1− s

β
− Y −i

)

[

s− c+
(p1 − s)

(

1− vmin
)

1− s
β

]

=
(

1− s

β
− Y −i

)

(c− s)

[

(p1 − s)
(

1− vmin
)

(

1− s
β

)

(c− s)
− 1

]

,

which yields the result of part (1.2).

For part (1.3), rewrite the second derivative (13) of ri as ∂2ri

∂(yi)2
= − 2

Y 3

[

βY 3 + (p1 − β)(1− vmin)Y −i
]

.

Since Y ≥ 0, the RHS of this equation is negative (ri is strictly concave) if and only if βY 3 +(p1 −
β)(1 − vmin)Y > 0. Equality Y = 1 − vmin holds only at the left boundary of the domain of the
profit function. For all other points in the domain Y > 1− vmin ≥ 0 and we have

βY 3 + (p1 − β)(1− vmin)Y > β(1− vmin)2Y + (p1 − β)(1− vmin)Y

= [β(1− vmin) + p1 − β](1− vmin)Y = [p1 − βvmin](1− vmin)Y ≥ 0

if p1 ≥ βvmin (a sufficient condition for strict concavity of ri).

Suppose p1 < βvmin. Although ri may be non-concave in this case, ∂2ri

∂(yi)2
= −2β

[

1+(p1β −1)(1−

vmin)Y
−i

Y 3

]

is monotonically decreasing in yi. Therefore, if ri has an inflection point, this point is

unique and corresponds to the total supply level Ỹ such that Ỹ 3 = (1− p1
β )(1− vmin)Y −i.

Consider an extension r̃i of ri in the form (10) to the domain yi ≥ (1− vmin − Y −i)+. In terms
of the total supply, this domain is equivalent to Y ≥ (1 − vmin) ∨ Y −i. We will prove that r̃i is
pseudoconcave implying the claim of part (1.3) for the case of p1 < βvmin.

Equation (10), divided through by yi, implies that r̃i = 0 if and only if yi = 0 or β (1− Y )− c+

β
(

1− vmin
)

+ (p1−β)(1−vmin)
Y = 0. After multiplying by −Y/β, this equation becomes

Y 2 −
(

2− c

β
− vmin

)

Y +
(

1− p1
β

)

(1− vmin) = 0. (48)

Its properties are explored in the following lemma.

Lemma 30. For any feasible values of c, s, vmin, and p1 < β, the real roots Y1,2 of equation (48)

exist and satisfy the conditions: 0 ≤ Y1 ≤ 1− vmin < Y2 ≤ 2−
(

c
β + vmin

)

with Y1 = 1− vmin only

if vmin = 1.

By Lemma 30, the roots Y1,2 of (48) always exist and 0 ≤ Y1 ≤ 1 − vmin < Y2, where Y1 <
1 − vmin unless vmin = 1. Using these roots, we can express r̃i as the following function of Y :

r̃i = − β
Y (Y − Y −i)(Y − Y1)(Y − Y2). Moreover, by (48), Y1Y2 =

(

1 − p1
β

)

(1 − vmin), and the

inflection point has the form Ỹ 3 = Y1Y2Y
−i, i.e., Ỹ is the geometric mean of Y1, Y2, and Y −i.

Since the second derivative is decreasing, r̃i is strictly concave to the right of Ỹ − Y −i.
There are three possible locations of Y −i relative to Y1 < Y2. First, if Y

−i ≥ Y2, then 1− vmin <
Y −i, Ỹ < Y −i, and r̃i is nonpositive and strictly concave for all yi ≥ (1 − vmin − Y −i)+. In this
case, the claim of part (1.3) holds.

Second, if Y −i ≤ Y1, then Y −i ≤ 1 − vmin, Ỹ < Y2, r̃
i is nonnegative for (1 − vmin − Y −i)+ ≤

yi ≤ Y2−Y −i and nonpositive for yi ≥ Y2−Y −i. Since r̃i is concave for yi ≥ Ỹ −Y −i and changes
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its sign from positive to negative at Y2−Y −i ≥ Ỹ −Y −i, it is also decreasing for all yi ≥ Y2−Y −i.
However, when 1− vmin < Ỹ , r̃i is convex in the interval [1− vmin − Y −i, Ỹ − Y −i].

Third, if Y1 < Y −i < Y2, it is still true that Ỹ < Y2, r̃
i is nonnegative for (1 − vmin − Y −i)+ ≤

yi ≤ Y2 − Y −i, and nonpositive, decreasing and strictly concave for yi ≥ Y2 − Y −i. It is also true
that, when (1− vmin) ∨ Y −i < Ỹ , r̃i is convex in the interval [(1− vmin − Y −i)+, Ỹ − Y −i].

We combine the cases two and three by observing that in both of them r̃i is nonnegative for
[(1−vmin−Y −i)+, Y2−Y −i] and decreasing as well as concave for yi ≥ Y2−Y −i. Thus, there is no
local minimum for yi ≥ Y2 − Y −i. We complete the proof of part (1.3) using the following lemma.

Lemma 31. If r̃i has an internal (local) minimum (yi)min, then r̃i((yi)min) < 0.

Lemma 31 implies that r̃i has no local minimum in the interval ((1 − vmin − Y −i)+, Y2 − Y −i).
Thus, r̃i has no internal minima in its entire domain, is strictly increasing when it is convex and,
therefore, is pseudoconcave.

Parts (1.4) and (2) follow directly from (15).

Part (1.5) immediately follows from parts (1.3) and (1.4). Indeed, condition ∂ri

∂yi

∣

∣

∣

yi=1− s
β
−Y −i+0

≤

0 implies that ri is decreasing for yi ≥ 1− s
β − Y −i (by concavity on this interval). Combining this

observation with pseudoconcavity for yi ≤ 1 − s
β − Y −i, we obtain pseudoconcavity for the entire

domain. Similarly, ∂ri

∂yi

∣

∣

∣

yi=1− s
β
−Y −i−0

≥ 0 implies that ri is strictly increasing for yi ≤ 1− s
β −Y −i,

again, leading to pseudoconcavity for the entire domain.

A.26.2. Proof of Lemma 27. The equilibrium profit, using (10) with yi = Y ∗

n and the expression for

vmin = v∗, is r∗ = Y ∗

n

[

β (1− Y ∗)− c+
(

β + p1−β
Y ∗

)(

1− p1−ρβ(1−Y ∗)
1−ρβ

) ]

. After factoring out β
n(1−ρβ)

and collecting the terms with different powers of Y ∗, we obtain (26).

A.26.3. Proof of Lemma 28. The expression for limρ→1
∂Y ∗

∂ρ at β = 1 can be found by the implicit

differentiation in (23). For brevity, we omit explicit notation indicating β = 1 throughout the proof.

Denote b1(ρ) , (1−c)n(1−ρ)+(1−p1)n−(p1−1)ρ(n−1)
n+1−ρ and differentiate (23) with respect to ρ to obtain

2Y ∗ ∂Y ∗

∂ρ − ∂Y ∗

∂ρ b1(ρ)− Y ∗ ∂b1(ρ)
∂ρ + ∂

∂ρ

[

(1−p1)2(n−1)
n+1−ρ

]

= 0 and

∂Y ∗

∂ρ
[2Y ∗ − b1(ρ)] = Y ∗∂b1(ρ)

∂ρ
− (1− p1)

2(n− 1)

(n+ 1− ρ)2
, (49)

The limits are limρ→1 b1(ρ) = (1−p1)n+(1−p1)(n−1)
n = 2(1 − p1) − 1−p1

n , resulting in limρ→1[2Y
∗ −

b1(ρ)] = 1−p1
n , and for ∂b1(ρ)

∂ρ = [−(1−c)n+(1−p1)(n−1)](n+1−ρ)+(1−c)n(1−ρ)+(1−p1)n+(1−p1)ρ(n−1)

(n+1−ρ)2
, it is

limρ→1
∂b1(ρ)
∂ρ = 1

n2 {[−(1− c)n+ (1− p1)(n− 1)]n+ (1− p1)n+ (1− p1)(n− 1)} = 1
n2

{

(1− p1)(n− 1)− (p1 − c)

The limit of the RHS of (49) is 1−p1
n2

{

(1− p1)(n− 1)− (p1 − c)n2
}

− (1−p1)2(n−1)
n2 = −(1−p1)(p1−c).

Then, from (49), we obtain the claim of the lemma.

A.26.4. Proof of Lemma 30 (the roots of ri(Y ) = 0). The discriminant of (48) is D =
(

2 − c
β −

vmin
)2

−4
(

1− p1
β

)

(1−vmin) ≥
(

2− c
β −vmin

)2
−4
(

1− c
β

)

(1−vmin) =
(

vmin− c
β

)2
≥ 0, where the

first inequality is strict unless vmin = 1 because p1 > c, while the second inequality is strict unless

vmin = c
β . Therefore, D > 0, the real roots given by Y1,2 = 1

2

(

2− c
β − vmin ±

√
D
)

always exist,

and Y1 < Y2. Since p1 < β, we have 4
(

1− p1
β

)

(1− vmin) ≥ 0 and Y1,2 ∈
(

0, 2− c
β − vmin

)

.

If vmin = 1, the roots are Y1 = 0, Y2 = 1− c
β , and the claim of the lemma holds.
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If vmin < 1, then D >
(

vmin − c
β

)2
, and an upper bound on Y1 is Y1 < 1 − 1

2

(

c
β + vmin

)

−
1
2

∣

∣

∣
vmin − c

β

∣

∣

∣
= 1 − max

{

c
β , v

min
}

≤ 1 − vmin, which, in turn, is a lower bound on Y2 : Y2 >

1− 1
2

(

c
β + vmin

)

+ 1
2

∣

∣

∣
vmin − c

β

∣

∣

∣
= 1−min

{

c
β , v

min
}

≥ 1− vmin.

A.26.5. Proof of Lemma 31. Function r̃i, its first and second derivatives are given, respectively,
by (9), (11) and (13). If an internal local minimum of r̃i exists, it must satisfy the necessary
second-order optimality conditions

∂r̃i

∂yi

∣

∣

∣

∣

yi=(yi)
min

= 0, and (50)

∂2r̃i

∂ (yi)2

∣

∣

∣

∣

∣

yi=(yi)
min

≥ 0. (51)

Using condition (50) and the expression for the first derivative of r̃i, we obtain

β (1− Y )− c+ [p1 − β (1− Y )]
1− vmin

Y
= −

(

yi
)

min
β

[

−1 +
1− vmin

Y
−
(

p1
β

− (1− Y )

)

1− vmin

Y 2

]

=
(

yi
)

min
β

[

1 +

(

p1
β

− 1

)

1− vmin

Y 2

]

(52)

Since the LHS of (52) multiplied by yi matches the expression for r̃i, it follows that

r̃i
∣

∣

yi=(yi)min

=
(

yi
)2

min
β

[

1 +

(

p1
β

− 1

)

1− vmin

Y 2

]

. (53)

Condition (51) and the expression for the second derivative of r̃i imply that, at yi =
(

yi
)

min
,
(

p1
β −

1
)

(1−vmin) ≤ − Y 3

Y −i . Combining this inequality with (53), we obtain r̃i
∣

∣

yi=(yi)min

≤
(

yi
)2

min
β
[

1− Y
Y −i

]

<

0, which is strict because, here, we consider only yi > 0.

Appendix B. First-period demand: general case

This section provides the derivation of the functional form of the first-period demand (2) and
examines the robustness of the main results, obtained for γ = 1, with respect to variations in γ.

B.1. Model specification. Retailer i demand can be expressed as di(yi,y−i) = Dmi(yi,y−i),
where D is the total demand, mi(yi,y−i) — the market share of retailer i, and y−i — the vector
of inventories of the others. Since, by the assumptions of §3.1, attractions ai(yi) are identical:
ai(yi) = a(yi), i ∈ I, and for a non-trivial problem some of yi are positive, attraction vector a of all
ai, i ∈ I satisfies four conditions required for the market share theorem (Bell D.E., Keeney R.L.,
Little J.D.C. (1975). A market share theorem. Journal of Marketing Research, 12(2), 136-141):
(A1) a is nonnegative and nonzero: aj ≥ 0, j ∈ I, and there exists ai > 0; (A2) zero attraction
leads to zero market share; (A3) any two retailers with equal attraction have equal market share:
ai(yi) = aj(yj) ⇒ mi(yi,y−i) = mj(yj ,y−j); and (A4) the market sharemi of any retailer decreases
on the same amount ∆i if the attraction aj of any other retailer j is increased by a fixed amount
(∆i does not depend on j 6= i). Then, by the market share theorem applied to this symmetric case,
mi has the following functional form:

mi(yi,y−i) =
a(yi)

∑

j∈I a(y
j)
. (54)
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Using (54), the homogeneity of mi (follows, by Assumption 1, from the homogeneity of di and D),
and the continuity of a(y) (Assumption 3), Lemma 2 specifies the functional form of attraction:
a(y) = a(1)(y)γ . By choosing the scale of attraction so that a(1) = 1, we obtain functional form
(2) for demand di.

A feasible range for γ results from the observation that retailer i can choose yi either not to enter
the market: yi = 0 = a(0) = di(0,y−i), to sell only in the first period: yi = y̆i , di(y̆i,y−i), or in
both: yi > di(yi,y−i) ≥ y̆i (the last inequality is strict when di is strictly increasing in yi). These
properties hold if di is concave in yi. In extreme cases, di, as a function of yi, can be a straight
line with a slope less than one (γ = 1) if yi ≥ y̆i or, as an opposite case, a constant if all yi are
positive and any changes in yi are not supported by the correspondent changes in market efforts
or consumers completely ignore these efforts (γ = 0).

In this model, γ is the inventory elasticity of attraction: Ey(a) , ∂a
∂y

y
a = γ(y)γ−1 y

(y)γ = γ, or the

inventory elasticity of the first-period demand, normalized by the market share of other retailers:

Eyi(d
i) ,

∂di

∂yi
yi

di
= D







γ
(

yi
)γ−1

∑

j∈I (y
j)γ

−
(

yi
)γ

γ
(

yi
)γ−1

(

∑

j∈I (y
j)γ
)2







yi

(yi)γ D

∑

j∈I

(

yj
)γ

= γ
[

1−mi
]

= γ

∑

j 6=i

(

yj
)γ

∑

j∈I (y
j)γ

,

where
∑

j 6=i

(

yj
)γ

/
∑

j∈I
(

yj
)γ

is the market share of other retailers.
The following results use some supplementary material, provided in §B.3.

B.2. Changes in RESE structure with γ. This section shows the effect of changing γ on the
main results of this paper. For γ = 1, the structure of RESE coincides with the one described in
Theorems 5 and 9. This structure continuously changes with γ by continuity of demand (2). In
particular, changes in γ lead to the following effects.

I. RESE 1 does not depend on γ because this RESE, by the same argument as in the proof of
Theorem 5, exists only when the first-period demand is zero (vmin = 1) due to a combination of
relatively high p1, the difference β− c, the level of competition n, and strategic behavior ρ; namely,
when p1 ≥ P1 = 1− n

n+1ρ(β − c).
II. The area of RESE 2 is decreasing in γ, which follows from a necessary condition of existence

of RESE 2 that requires the profit of a deviator from Y ∗,2 = 1 − p1 be not increasing in yi :
∂ri

∂yi

∣

∣

∣

yi=
1−p1

n
+0

≤ 0. This inequality (§B.3.1) is equivalent to p1 ≤ nc
γ(n−1)+β[n(1−γ)+γ] , P2(γ). This

bound decreases in γ from P2(0) =
c
β to P2(1) =

nc
n−1+β coinciding with P2 given in Theorem 5.

III. The area of RESE 3 is (a) increasing in γ along the boundary with RESE 2 and (b) decreasing
along the boundary with RESE 4. Part (a) follows from the p1-range for RESE 3: P2(γ) < p1 < P1,
which results from the same geometric argument as in the proof of Theorem 5 because Y ∗,3(γ) is
still a larger root of a quadratic equation with coefficients depending on γ (equation (61)). Part
(b), for γ = 0, follows from the lack of incentive for the retailers to deviate to salvage, which is

expressed in ∂ri

∂yi

∣

∣

∣

Y≥1− s
β

= s− c < 0 (§B.3.1), i.e., a sufficient condition, corresponding to condition

(a) in part RESE 3 of Theorem 5 always holds. The intuition is that, for γ = 0, retailers share
evenly the first-period demand regardless of the inventories. Therefore, any increase in inventory
does not increase the first-period market share, and possible second-period sales below cost only
reduce total two-period profit. For 0 < γ < 1, part (b) is checked numerically and illustrated in
Figure 15 for γ ∈ {0, 0.4, 1}.

IV. The area of RESE 4 is increasing in γ. §B.3.1 provides a unique

Y ∗,4(γ) =
n− 1

n

p1 − s

c− s
γ(1− v∗,4), (55)
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where v∗,4 = p1−ρs
1−ρβ . This expression for Y ∗,4(γ) implies a sufficient condition of RESE 4 existence,

namely, n−1
n Y ∗,4(γ) ≥ 1− s

β (salvaging is forced on retailers), which is

γ ≥ γ̄ ,
(

1− s

β

)(

n

n− 1

)2 c− s

p1 − s

1− ρβ

1− p1 − ρ(β − s)
,

where γ̄ can be sufficiently small for any feasible p1, ρ, β, and s if c is sufficiently close to s, i.e.,
RESE 4 can exist for small γ but does not exist for γ = 0 (Figure 15). On the other hand, inequality
Y ∗,4 < 1− s

β , combined with (55), gives a sufficient condition of RESE 4 non-existence. Since Y ∗,4

is increasing in n and decreasing in ρ (v∗,4 is increasing in ρ), RESE 4 does not exist for given
γ and any n and ρ if Y ∗,4 < 1 − s

β for ρ = 0 and n → ∞, which is p1−s
c−s γ(1 − p1) < 1 − s

β or

γ < γ , (1−s/β)(c−s)
(p1−s)(1−p1)

.

The scatterplots in Figure 15 were constructed by checking p1-boundaries for RESE 1 and 2, and,
for RESE 3 and 4, using the direct comparison of equilibrium profits with the profit of a potential
deviator, according to the definition of RESE.

Since the first-period demand (2) is continuous and monotonic in γ, the case γ = 0 for RESE 3 is
of a special interest as opposing to γ = 1. Although, a complete independence of market share from
inventory may be an idealization for many practical settings, this case illustrates the robustness
of the results of this paper and shows the direction and amplitude of the changes with respect to
variations in the demand patterns. This assumption about first-period market share was used, e.g.,
in Liu and van Ryzin (2008), §4.4.

Proposition 32. For γ = 0, a unique RESE 3 with v∗ = p1+n(p1−ρc)
1+n(1−ρβ) , p∗2 = c + βp1−c

1+n(1−ρβ) , Y
∗ =

1−p1+n
(

1− c
β

)

(1−ρβ)

1+n(1−ρβ) , and r∗ = 1
n [(p1 − c)(1 − v∗) + (p∗2 − c) (Y ∗ − 1 + v∗)] exists if and only if

c
β < p1 < P1; no other equilibria exist in this area. Moreover,

(1) p∗2 → c+ 0 with n → ∞ for any p1 ∈
(

c
β , P1

)

or with p1 → c
β + 0 for any n ≥ 1;

(2) v∗, p∗2, Y
∗, and r∗ are continuous at the boundaries; monotonicity of v∗, Y ∗ in n and ρ, and

nr∗ in n, stated in Proposition 12 for γ = 1 hold;

(3) nr∗ is decreasing in ρ if and only if either n = 1 or p1 ≥ c+ 2n(β−c)
(n+1)2

for any n > 1;

(4) nr∗ attains minimum in ρ at ρ0 , (n+1)2(p1−c)−2n(βp1−c)
βn(n+1)(p1−c) for any n ∈ (1, n0), where n0 ,

β−p1+
√

(β−c)(β+c−2p1)

p1−c > 2, if and only if p1 <
5c+4β

9 ;

(5) when β = 1, nr∗|ρ→1 < nr∗|ρ=0 for any RESE 3 inputs; the minimum possible value of

ρ0 = n2+1
n(n+1) is ρ̄0 = ρ0

∣

∣

n=2
= ρ0

∣

∣

n=3
= 5

6 .

Proposition 32 shows that, for γ = 0,
(i) RESE exists for all feasible model inputs since RESE 3 boundaries ( cβ < p1 < P1) complement

the boundaries of RESE 1 and 2;
(ii) the second-period price is always above the cost for n < ∞;
(iii) a closed-form necessary and sufficient condition shows when nr∗ is decreasing in ρ;
(iv) there exist closed-form expressions for ρ0, the unique minimum of nr∗ in ρ (part 4), and for

n0, the upper boundary of n-range where nr∗ is non-monotonic in ρ;
(v) there is no effect of “boundary-value gain” (part 5); this result supports the conclusion,

formulated in the discussion of Proposition 15, that under this effect, the maximum level of strategic
behavior prevents the second-period sales at loss under competitive pressure (n ≥ 3). As shown in
part 1, the second-period sales are always profitable for γ = 0 because retailers have no incentive
to compete for the first-period market by increasing inventories.
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Figure 15. The (ρ, p1)-scatterplots of the areas where a particular RESE exists for
n = 10, c = 0.1, s = 0.05, and given γ and β
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(a) γ = 0.5 (b) γ = 0

Figure 16. The total profit for RESE 3 with c = 0.45, s = 0.05, p1 = 0.5, β = 1

Thus, when the inventory elasticity of attraction γ decreases, the “boundary-value gain” in ρ
becomes weaker (Figures 4 and 16 a) and disappears at γ = 0 (Figure 16 b); the “discontinuous
gain” in ρ caused by the switch from RESE 4 to RESE 3 emerges at lower ρ (Figures 5 b and 15)
and disappears at γ = 0 due to non-existence of RESE 4; the “continuous gain” in ρ (Figure 4)
exists even for γ = 0. The last effect becomes less pronounced because decreasing γ weakens the
first-period inventory competition and decreases the correspondent second-period losses. The point
of minimum profit, ρ0, decreases in γ (Figures 4 and 16).

B.3. Appendix B supplement .

B.3.1. Profit function, its properties and inventory decisions .
Retailer i has no sales in the second period. In this case, the general formula (1) for profit becomes
ri = (p1 − c)yi, which yields a unique profit-maximizing inventory yi = y̆i = di. Unlike γ = 1,
other retailers may have sales in the second period, implying that, in general, ᾱ 6= 0 and vmin ≥ p1.
Using (2) with yj = Y ∗

n , j 6= i and D = 1 − vmin, y̆i is a root of a non-linear equation: yi =
(1−vmin)(yi)

γ

(n−1)(Y ∗/n)γ+(yi)γ
. After dividing by yi, which eliminates the extraneous root yi = 0, this equation

can be written as (n−1)
(

Y ∗

n

)γ
+
(

yi
)γ

= (1−vmin)
(

yi
)γ−1

or (n−1)
(

Y ∗

n

)γ
=
(

yi
)γ−1

(1−vmin−yi),

which, for n = 1, yields y̆i = 1− vmin for any γ ∈ [0, 1]. When n > 1, this equation can be written
as

(

yi
)1−γ

=
1

n− 1

( n

Y ∗

)γ
(1− vmin − yi), (56)

which, for γ = 1, yields y̆i = 1− vmin − n−1
n Y ∗. For γ < 1, this equation has a unique positive root

since the LHS is zero at yi = 0 and increasing in yi, and the RHS is a decreasing linear function

in yi, which is positive at yi = 0. For γ = 0, equation (56) results in y̆i = 1−vmin

n , which is the

maximum y̆i in γ by the following lemma.

Lemma 33. The solution of (56), y̆i, is decreasing in γ if y̆i < Y ∗

n .

Proof Equation (56) can be written as exp
[

(1− γ) ln(y̆i)
]

= exp
[

γ ln
(

n
Y ∗

)] 1−vmin−y̆i

n−1 . The de-

rivative of this equation in γ is
(

y̆i
)1−γ

[

1−γ
y̆i

∂y̆i

∂γ − ln(y̆i)
]

= ln
(

n
Y ∗

)

1
n−1

(

n
Y ∗

)γ
(1 − vmin − y̆i) −

1
n−1

(

n
Y ∗

)γ ∂y̆i

∂γ , which can be written as ∂y̆i

∂γ

[

1
n−1

(

n
Y ∗

)γ
+ (1− γ)

(

y̆i
)−γ
]

= ln
(

n
Y ∗

)

1
n−1

(

n
Y ∗

)γ
(1−

vmin − y̆i) + ln(y̆i)
(

y̆i
)1−γ

, where the bracket [·] in the LHS is positive and the RHS, by (56),

becomes
(

y̆i
)1−γ [

ln(y̆i)− ln
(

Y ∗

n

)]

, which is negative, leading to ∂y̆i

∂γ < 0�
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Retailer i has sales in the second period, p2 > s. Profit (1) with qi, given by Lemma 3, becomes
ri = p1d

i + p2(y
i − di)− cyi, which, with yj = Y ∗

n , j 6= i, vmin = v∗, and di from (2), can be written
as

ri =
[

p1 − p2(y
i)
] (1− v∗)

(

yi
)γ

(n− 1)
(

Y ∗

n

)γ
+ (yi)γ

+
[

p2(y
i)− c

]

yi (57)

where, by (3), p2(y
i) = β

[

1− n−1
n Y ∗ − yi

]

. The derivative, after simplifications, is

∂ri

∂yi
=

β(1− v∗)
(

yi
)γ

(n− 1)
(

Y ∗

n

)γ
+ (yi)γ

+ [p1 − p2]
(1− v∗)γ

(

yi
)γ−1

(n− 1)
(

Y ∗

n

)γ

[

(n− 1)
(

Y ∗

n

)γ
+ (yi)γ

]2

−2βyi + β

(

1− n− 1

n
Y ∗
)

− c. (58)

When v∗ = 1, RESE takes the same form of RESE 1 as for γ = 1 (Theorem 5) because the
first-period demand is zero.

When ᾱ = 0 and v∗ = p1 (no second-period sales), the necessary condition of RESE 2 existence,

namely, ∂ri

∂yi

∣

∣

∣

yi=
1−p1

n
+0

≤ 0, using formula (58) with v∗ = p1, becomes β 1−p1
n + p1(1 − β)γ n−1

n −

2β 1−p1
n +β−c−β n−1

n (1−p1) ≤ 0, which, multiplied by n, can be written as p1 [(1− β)γ(n− 1) + nβ] ≤
nc or p1 ≤ nc

γ(n−1)+β[n(1−γ)+γ] = P2(γ).

When ᾱ = 1 and p1 ≤ v∗ < 1, a candidate for RESE 3 results from two conditions: v∗ = v∗(Y ∗)

and ∂ri

∂yi

∣

∣

∣

yi=Y ∗

n

= 0, which, using Lemma 1 and (58), are v∗ = p1−ρβ(1−Y ∗)
1−ρβ and

β
1− v∗

n
+ [p1 − β(1− Y ∗)]

(1− v∗)γ(n− 1)

nY ∗ + β

(

1− n+ 1

n
Y ∗
)

− c = 0. (59)

After multiplication by − nY ∗

β(n+1) and collection of terms with Y ∗, this equation becomes

(Y ∗)2 − Y ∗ n

n+ 1

[

1− v∗

n
(1 + γ(n− 1)) + 1− c

β

]

− n− 1

n+ 1
γ

(

p1
β

− 1

)

(1− v∗) = 0, (60)

which, for γ = 1, coincides with (18). Substitution for 1− v∗ = 1−p1−ρβY ∗

1−ρβ and collection of terms

with Y ∗ leads to (Y ∗)2 a2 + Y ∗a1 + a0 = 0, where a2 =
nρβ(γ−1)+n+1−γρβ

(n+1)(1−ρβ) > 0,

a1 = −
[1 + γ(n− 1)](1− p1) + n

(

1− c
β

)

(1− ρβ)− (n− 1)γ
(

p1
β − 1

)

ρβ

(n+ 1)(1− ρβ)
, and

a0 = −n− 1

n+ 1
γ

(

p1
β

− 1

)

1− p1
1− ρβ

.

After division by a2, the last quadratic equation becomes

(Y ∗)2 − (β − c)n(1− ρβ) + β[1 + γ(n− 1)](1− p1)− γ (p1 − β) ρβ(n− 1)

β [nρβ(γ − 1) + n+ 1− γρβ]
Y ∗

− γ (p1 − β) (1− p1)(n− 1)

β [nρβ(γ − 1) + n+ 1− γρβ]
= 0, (61)

which, for γ = 1, coincides with (23). The equilibrium inventory is the larger root of this equation

since, multiplying (61) by −a2
β(n+1)

n < 0, we obtain the original equation (59) with substituted
v∗(Y ∗) and multiplied by Y ∗ > 0. The LHS of this resulting equation is a quadratic function with

a negative coefficient in front of (Y ∗)2 , i.e., the LHS decreases in Y ∗ at the larger root, which
corresponds to the maximum of profit.
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Retailer i has sales in the second period, p2 = s. By (57) with p2 = s,

ri = (p1 − s)
(1− v∗)

(

yi
)γ

(n− 1)
(

Y ∗

n

)γ
+ (yi)γ

+ (s− c)yi and (62)

∂ri

∂yi
= (p1 − s)

(1− v∗)γ
(

yi
)γ−1

(n− 1)
(

Y ∗

n

)γ

[

(n− 1)
(

Y ∗

n

)γ
+ (yi)γ

]2 + s− c. (63)

Profit (62) is concave in yi since
(

yi
)γ

is concave, function Az
B+z is concave in z for any positive

z,A, and B (first term of ri) and (s− c)yi is concave.

A candidate for RESE 4 results from conditions: ∂ri

∂yi

∣

∣

∣

yi=Y ∗

n

= 0 and v∗,4 = p1−ρs
1−ρβ . The latter

implies the same p1-upper bound as for γ = 1. Namely, v∗,4 < 1 (there are sales in the first period) is

equivalent to p1 < P4 , 1−ρ(β−s). The former yields Y ∗,4 : (p1−s) (1−v∗)γ(n−1)(Y ∗/n)2γ−1

n2(Y ∗/n)2γ
+s−c = 0,

which, multiplied by Y ∗n
p1−s , gives

c−s
p1−sY

∗n = (1− v∗)γ(n− 1) or Y ∗,4(γ) in the form of (55).

B.3.2. Proof of Proposition 32. For γ = 0, equation (61) becomes Y ∗
[

Y ∗ − β(1−p1)+(β−c)n(1−ρβ)
β[1+n(1−ρβ)]

]

=

0 yielding a unique Y ∗ > 0. Substitution of 1 − Y ∗ = p1+n(1−ρβ)c/β
1+n(1−ρβ) into p∗2 = β(1 − Y ∗) and

v∗ =
p1−ρp∗

2

1−ρβ results in the corresponding expressions.

Condition v∗ < 1 (there are sales in the first period) is p1 + n(p1 − ρc) < 1 + n(1 − ρβ) or
p1(n+ 1) < 1 + n[1− ρ(β − c)] yielding p1 < P1 — the boundary with RESE 1. Condition v∗ ≥ p1
is p1 + n(p1 − ρc) ≥ p1 + np1(1 − ρβ) or ρc ≤ p1ρβ, which holds for ρ = 0. For ρ > 0, it becomes
p1 ≥ c

β .

RESE 3 exists if and only if any retailer i has no incentive to deviate neither to (i) sales in
both periods with p2 = s nor to (ii) sales only in the first period. Part (i) holds since, by (63),
∂ri

∂yi

∣

∣

∣

γ=0
= s − c < 0 for any yi leading to p2 = s. Part (ii) is equivalent to ∂ri

∂yi

∣

∣

∣

yi= 1−v∗

n

> 0,

which, by (58) with γ = 0, is −2β 1−v∗

n + β 1−v∗

n + β
(

1− n−1
n Y ∗) > c. Multiplication by n

β leads to

n (1− c/β)− (n− 1)Y ∗ > 1− v∗, and, after the substitutions of Y ∗ and

1− v∗ =
1− p1 + n[1− p1 − ρ(β − c)]

1 + n(1− ρβ)
, (64)

the last inequality, multiplied by 1+n(1−ρβ) > 0, becomes n(1−c/β)+n2(1−c/β)(1−ρβ)− (n−
1)(1−p1)−n(n−1)(1−c/β)(1−ρβ) > 1−p1+n[1−p1−ρ(β−c)] or n(1−c/β)+n(1−c/β)(1−ρβ) >
2n(1−p1)−nρβ(1−c/β), which, after simplifications, yields p1 >

c
β = P2(0). This inequality implies

that v∗ = p1 only if ρ = 0. Since the p1-boundaries of RESE 3 are the negations of the boundaries
of RESE 1 and RESE 2, and, for γ = 0, RESE 4 does not exist, no other equilibria exist in the
area c

β < p1 < P1.

Continuity of Y ∗, v∗, p∗2, and r∗ can be shown directly by substitution of the boundaries to the

correspondent formulas. For example, Y ∗,3∣
∣

p1=c/β
= 1−c/β+n(1−c/β)(1−ρβ)

1+n(1−ρβ) = 1−c/β = 1−p1 = Y ∗,2.

Monotonicity of v∗, Y ∗, and p∗2.
∂v∗

∂n = (p1−ρc)[1+n(1−ρβ)]−(1−ρβ)[p1+n(p1−ρc)]
[1+n(1−ρβ)]2

where the numerator

is ρ(p1β − c) ≥ 0, so ∂v∗

∂n = 0 only if ρ = 0.
∂v∗

∂ρ = 1
[1+n(1−ρβ)]2

{−nc[1 + n(1− ρβ)] + nβ[p1 + n(p1 − ρc)]} , where {·} = (βp1− c)(n+1) > 0

for any RESE 3 inputs.
∂Y ∗

∂n = 1
[1+n(1−ρβ)]2

{(1− c/β) (1− ρβ)[1 + n(1− ρβ)]− (1− ρβ)[1− p1 + n (1− c/β) (1− ρβ)]} ,
where {·} = p1 − c/β > 0.
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∂Y ∗

∂ρ = 1
[1+n(1−ρβ)]2

{n (1− c/β) (−β)[1 + n(1− ρβ)] + nβ[1− p1 + n (1− c/β) (1− ρβ)]} , where
1
nβ{·} = −(p1 − c/β) < 0.

The results for Y ∗ imply that p∗2 = β(1− Y ∗) is decreasing in n and increasing in ρ.
Monotonicity of nr∗ in n. By (57) with γ = 0,

nr∗ = (p1 − p∗2)(1− v∗) + (p∗2 − c)Y ∗. (65)

Then ∂(nr∗)
∂n = −∂p∗

2

∂n (1− v∗)− ∂v∗

∂n (p1 − p∗2) +
∂Y ∗

∂n (p∗2 − c) +
∂p∗

2

∂n Y ∗. Substitutions for
∂p∗

2

∂n = −β ∂Y ∗

∂n

and ∂v∗

∂n = ρβ
1−ρβ

∂Y ∗

∂n lead to ∂(nr∗)
∂n = ∂Y ∗

∂n

{

β(1− v∗)− ρβ
1−ρβ (p1 − p∗2) + p∗2 − c− βY ∗

}

. Using (64)

and

p1 − p∗2 =
p1(1− β) + n(1− ρβ)(p1 − c)

1 + n(1− ρβ)
, (66)

p∗2 − c =
βp1 − c

1 + n(1− ρβ)
, (67)

the bracket {·}, multiplied by [1 + n(1− ρβ)], becomes

β(1− p1) + nβ

[

1− p1 − ρβ

(

1− c

β

)]

− ρβ

1− ρβ
[p1(1− β) + n(1− ρβ)(p1 − c)]

+βp1 − c− β(1− p1)− βn

(

1− c

β

)

(1− ρβ)

= nβ

[

c

β
− p1 − ρ(p1 − c)

]

+ βp1 − c− ρβp1(1− β)

1− ρβ
,

which is decreasing in n. For n = 1, this expression is −ρβ(p1 − c)− ρβp1(1−β)
1−ρβ ≤ 0. Therefore, nr∗

is decreasing in n for any n ≥ 1 since ∂(nr∗)
∂n = 0 only for n = 1 and ρ = 0.

The conditions of monotonicity of nr∗ in ρ. Using (65), ∂(nr∗)
∂ρ = −∂p∗

2

∂ρ (1− v∗)− ∂v∗

∂ρ (p1 − p∗2) +

∂Y ∗

∂ρ (p∗2−c)+
∂p∗

2

∂ρ Y
∗, which, using

∂p∗
2

∂ρ = −β ∂Y ∗

∂ρ , can be written as ∂(nr∗)
∂ρ =

∂p∗
2

∂ρ

[

2Y ∗ + c
β − 2 + v∗

]

−
∂v∗

∂ρ [p1 − β(1− Y ∗)] . The first bracket [·] is zero for n = 1 because, by (60) for γ = 0 and n = 1,

Y ∗ = 1
2

(

2− v∗ − c
β

)

, whereas the second bracket [·] > 0. Therefore, for n = 1, ∂(nr∗)
∂ρ < 0.

For n > 1 and γ = 0, equation (60) yields Y ∗ = 1−v∗

n+1 + n
n+1

(

1− c
β

)

, which can be written as

1− Y ∗ =
1

n+ 1

(

v∗ + n
c

β

)

or p∗2 =
βv∗ + nc

n+ 1
. (68)

Since
∂p∗

2

∂ρ = β
n+1

∂v∗

∂ρ ,
∂(nr∗)
∂ρ = ∂v∗

∂ρ
1

n+1

{

β
[

2Y ∗ + c
β − 2 + v∗

]

− (n+ 1) [p1 − β(1− Y ∗)]
}

, which

means that ∂(nr∗)
∂ρ ≤ 0 is equivalent to {·} ≤ 0 or p1 ≥ β(1 − Y ∗) + 1

n+1 [c+ βv∗ − 2β(1− Y ∗)] =

p∗2 +
c+βv∗−2p∗

2

n+1 or, using (68),

p1 ≥ c+ 2
βv∗ − p∗2
n+ 1

⇔ p1 ≥ c+
2n

n+ 1
(p∗2 − c). (69)

The last inequality always holds for n = 1 and never holds when ρβ → 1 (leading to p∗2 → p1) and
n > 1 since (n+ 1)(p1 − c) < 2n(p1 − c) for any n > 1.

Condition (69) is only sufficient for monotonicity of nr∗,3 under RESE 3 because violation of
this condition may take place outside the area of RESE 3 inputs, and inside this area, nr∗,3 can
be monotonic. Namely, by part 3 of Proposition 11, which holds for γ = 0, RESE 3 exists only for
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ρ < ρ1 = n+1
n

1−p1
β−c , where ρ1 can be less than one for large n. In order to take into account this

bound, condition (69) can be written in terms of inputs using (67):

p1 ≥ c+
2n

n+ 1

βp1 − c

1 + n(1− ρβ)
. (70)

The RHS of this inequality is increasing in ρ; therefore, given other inputs fixed, ∂(nr∗)
∂ρ < 0 for all

ρ under RESE 3 if and only if (70) holds for ρ = ρ1. With this ρ, condition (70) becomes

p1 ≥ c+
2n

n+ 1

(βp1 − c)(β − c)

(1 + n)[β − c− β(1− p1)]
⇔ p1 ≥ c+

2n

(n+ 1)2
(β − c). (71)

The RHS of (71) decreases in n to c with n → ∞. Therefore, there exists n0 such that ∂(nr∗)
∂ρ < 0

for any n ≥ n0. On the other hand, since ∂(nr∗)
∂ρ < 0 for n = 1 and (71) is necessary and sufficient

for ∂(nr∗)
∂ρ < 0, nr∗ attains minimum (since the RHS of 70 increases in ρ) for any n ∈ (1, n0), where

n0 > 2 if and only if (71) does not hold at least for n = 2, i.e., p1 < c+ 4
9(β − c) = 5c+4β

9 .

n0 can be found, e.g., from the negation of (71) bearing in mind that non-monotonicity holds
for n < n0, where n0 is the larger root of the equation, corresponding to (p1 − c)(n2 + 2n + 1) <

2n(β− c). The equation is n2− 2nβ−p1
p1−c +1 = 0, where β−p1

p1−c > 0 since p1 ∈ (c, β). The discriminant

D = 4

[

(

β−p1
p1−c

)2
− 1

]

> 0 because β − p1 > p1 − c is equivalent to p1 < β+c
2 , where the RHS is

greater than 5c+4β
9 . Then the larger root is n0 =

β−p1+
√

(β−p1)2−(p1−c)2

p1−c =
β−p1+

√
(β−c)(β+c−2p1)

p1−c .

The expression for ρ0 can be found from (70) when it holds as an equality: (p1−c)[1+n(1−ρβ)] =
2n
n+1(βp1 − c) ⇔ 1− ρβ = 2

n+1
βp1−c
p1−c − 1

n ⇔ ρ0 = 1
β

[

1 + 1
n − 2

n+1
βp1−c
p1−c

]

, yielding

ρ0 =
(n+ 1)2(p1 − c)− 2n(βp1 − c)

βn(n+ 1)(p1 − c)
. (72)

When β = 1, nr∗,3, using (65) and the expressions (66), (64), and (67), is

nr∗,3
∣

∣

β=1
=

1

[1 + n(1− ρ)]2
{

n(1− ρ)(p1 − c)(1− p1) + n2(1− ρ)(p1 − c)[1− p1 − ρ(1− c)]

+(1− p1)(p1 − c) + n(1− ρ)(p1 − c)(1− c)} ,

lim
ρ→1

nr∗,3
∣

∣

β=1
= (1− p1)(p1 − c) < nr∗,3

∣

∣

β=1
ρ=0

=
1

(1 + n)2
{

n(p1 − c)(1− p1) + n2(p1 − c)(1− p1)

+(1− p1)(p1 − c) + n(p1 − c)(1− c)± n(p1 − c)(1− p1)}

= (1− p1)(p1 − c) +
n(p1 − c)2

(1 + n)2
.

Formula ρ0
∣

∣

β=1
= n2+1

n(n+1) results from (72) with β = 1. Minimum of ρ0 in n can be found from

∂ρ0

∂n = 0 = 2n2(n+1)−(2n+1)(n2+1)
n2(n+1)2

, which is equivalent to n2−2n−1 = 0 with the roots n1,2 = 1±
√
2.

The relevant root is n2 = 1 +
√
2; direct calculation yields ρ0

∣

∣

n=2
= 5

6 = 10
12 = ρ0

∣

∣

n=3
.


