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ON THE RELATIONSHIP BETWEEN THE CONDITIONAL AND ‘ N
UNCONDITIONAL DISTRIBUTION OF A RANDOM VARIABLE R

'J. PANARETOS*

Trinity College, Dublin _

1. INTRODUCTION -

An interesting problem in distribution theory with many poten=
tial applications is the study of the relation between the distri-
bution of a random variable (r.v.) Y. and its conditional distri-
bution on another r.v. X (Y|X) when the form of the distribution
of X 1is known. In many cases, some form of complete or partial.
independence between Y and X~y 1is involved. This problem some-
times is referred to .as the problem of mixtures of distributions
and their identifiability in the sense studied- by Teicher {1961) .
and Blischke (1963). Skibinsky (1970) used the term‘reproducibility
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to describe the fact that when X is binomial (n,p) (X v b(n,p))
then Y is b(N,8) 4if and only if (iff) the distribution s(rin)
of Y|[(X=n) is hypergeometric. Janardan (1973) and Nevil and Kemp
(1975) showed that a similar characterization may be obtained by
replacing the binomial by a hypergeometric distribution. They-also
generalized the result to the multivariate case. Grzegorska (1977)
considered X to be Poisson and proved that Y has an inflated
Poisson distribution iff Y|X is inflated binomial. Problems
referring to the case where the distribution of X is given and
the relationship between Y and X|Y is of interest, have been
investigated by Seshadri and Patil (1964).

‘ An interesting situation arises when either the parameter
‘of the distribution of X, or the parameter of the distribution
of Y, is assumed to be a random variable with a given distri-
bution function (d.f.). An attempt in this direction was made
recently by Xekalaki and Panaretos (1979). They assumed that
Y|X 4is b(n,p) with p following a distribution with d.f.
F(p) (Y|X ™ b(n,p) AF(p)). Then, they showed that X is
Poisson (L)  1ff Y is Poisson(Ap) AF(p).

In the next section we consider the case where X is

Poisson(}). Then we establish a characteristic relation between
Y|X and Y when either of these have a m#xed form of distribu-

" tion. In Section 3 we éxamine the implications of changing our

basic assumption by allowing X to have a distribution of a

. mixed Poisson form. We discuss the problem arising and we impose
some further restrictions on the distribution of X in order to
establish a one to one correspondence between the distributions

of Y and Y|X. Finally, in Section 4 some potential applica-
tions of the results are discussed.

2. THE SIMPLE POISSON MODEL

Theorem 1. Let X,Y be two non-negative, integer-valued r.v.'s
Suppose that the distribution of X is power-series Poisson
w1th parameter ‘A and that the distribution s(r|n) of

Y| (X=n) 1is independent of A. Then Y " Poisson(Ap) AF(p) iff
Y|{X ~ b(n,p) AF(p).
Proof. Necessity follows easily. (It can also be found in the
results of Xekalaki and Panaretos, 1979, and Krishnaji, 1974.)
For sufficiency we observe that

1 . ’
P(t=r) = [ &P (lg%_ ar(p). RER ¢ b
0

On the other hand ,



CONDITIONAL AND UNCONDITIONAL DISTRIBUTION OF A RANDOM VARIABLE 381

pery = § oM A ' | L
-r) ™ z e ;-!- P(Y=r|X=n) . (2)
n=r
Hence . | |
I B"A %.‘_ s(z'n) - Io e"AP Q%)T_ dF (p). )
n=r _ ; e

This is a functional equation inf s(rin). Tﬁe‘ b(n,p) NF(p)
is a solution. This is so, because when s(rln) is b(n,p) N
F(p). the left hand-side of (3) can be written as

© /1 1 L | n-r
R ~'(n] r_n-r R N5 ) (Aq)

1 r | S

vhich in fact 1s the right hand-side of (3). We will now show
that this is the only solution. Suppose that there exists another
solution say s*(r|n). Then we would have '

' . T =A An ' . : SR v t
P(Yer) = )} e 5 s*(r|n). (&)

Hence (2) and (4) would‘imply that‘r‘
T e 5T {s*(r|n) - s(zjm)}=0. . (5)

n=r

But we are given.that s(rln) is independent of A. Thué,
n :

equating the coefficients of‘*%T in both sides of (5) we see

that s*(r|n) = s(r{n) and the theorem follows.

As a result of Theorem 1 we can see that if F(p) 1is degen-
erate then Y is Poisson iff Y|X is binomial. Other interest-
ing cases can also be derived for different forms of F(p). For
example, if F(p) is beta(a,b) we can easily see that Y|X is
b(a,p) A beta(a,b) (negative hypergeometric) iff Y follows the
Gurland distribution with p.g.f. lFl{a; at+b; A(t-1)}. Here
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1Fl(a; b; t) denotes the confluent hypergeometric function given
by | ' :

b-a-1

I'(b’ f tu a- -1 (1=u)

1F1(85 25 ) = T3 (b-a)

du.

This distribution was first studied by Gurland (1958) in connec-
tion with larvae survivors in a field. Another corollary of
Theorem 1 results if F(p) " gamma(a,b) truncated to the right
at the point 1. In this case Y|X is b(n,p) /\ gamma(a,b)
truncated to the right at the point 1 4iff Y follows a distri-

 bution with a p.g,f. proporticnal to (a, atl; K(t-l)--O

This distribution was suggested by Kemp (1968) as a model in
collective risk theory. Kemp argued that for insurance applica-
tions it is more realistic to assume limited risk having the form
of a tail-truncated gamma distribution.

Note. The sufficfent parts of the above corollaries have already
been mentioned in Panaretosr(l979).

3. THE HIXED POISSON HDDEL ‘

Let us now turn to the situation where X is Poisson(A)/\ _
Fl(k) It can be seen easily that if Y|X ~ b(n,p),ﬂ\F (p) then

Y ~ Poisson(ip) /\Fl(l) /\.Fz(p). However, in this case there

' does not exist a one-to-one correspondence between the distribu-
tions of Y -and YIX. In other words, the fact that
Y~ Poisson(lp)'f\F (A)/\F (p) does not imply that the only

formof Y|X is b(n,p) /\F (p) In fact, if we assume that
Y Poisson(kp)J/\F (X)/\F (p) we can see, using the argument

employed in Theorem 1, that the distribution of YIX must
satisfy the equation

P(Yer) = Z {[ e L dF (x)}s(rln) " (6)
0

nﬂr

Clearly the b(a,p) /\Fz(p) for s(r[n)‘ is a solution. It can’

be proved, however, that it is not unique. Suppose that s*(r|n)

is a second solution. Then we would have
[- -]

{ Z e‘“" A {s(rln) - s*(r}n)}dp ) =0 - wm

0 n=r _
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But this does not necessarily imply that
] e A %‘5 {s(z|n) - s*(z|n)} = 0
n=r : :

i.e., that s(r|n) = s*(zr|n).  Consider for example the case
where s*(r|n) ~is defined as
| S(I'ln) . . - n - k-'-l, .Hyz,r. .‘
g*(r|n) = . '

szln) -, , ©*= 0,1,4'7-,k.
Then (7) is equivalent to

n B . L

[ ] i ar=o0
fe.,to § c _E =0 T ®
vhere £ = [ e S5 dR (0.

Since we can find c . # 0 for which (8) holds we come to the

b ]

conclusion that there exist solutions of '(6) other than the
b(n,p) /\Fz(p). Hence, to obtain a one~to—-one correspondence

petween Y and Y|X (when X Poisson()) /\‘Fl(l) and
ﬁx ~ b(n,p) /\Fz(p)) we have to impose some restrictions on the -
structure of Fl(k). A possible way of doing thi’s is stated and
proved in the following theorem. s

Theorem 2.  Suppose that the distribution of the r.v. X is
Poisson(A) A Fl(A) where Fl()\) is _absolutely continuous with

density

T eV
fl(l‘e) e ‘p(e)
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where X € (a,b) and ¢(A), ¥(8), & > 0. Assume that the distri-
bution s(rln)&‘of le is independent of ©.  Then the distribu-

tion of Y is mixed Poisson of the form Poisson(Ap) A Fl(k) A Fz(p)
1ff s(rin) is b(n,p) A Fy(p). ' '

Proof. The 'if' part is straightforward. To show that the
b(n,p) A Fz(p) is the only possible form for s(r|n) satisfying

the above property, let us assume that there exists another such
form say, s*(r|n).. Then we would have

‘Io efaA zr e"* %T~$%%% {s(x|n) - s*(r|n)}dA = O,

vwhich implies that - i

© n . ‘
I Ao isixln) - s*(xlm)} = 0 for Ae (a,b)
n=r ‘ :

i.e. that s*(r|n) = s(rin). This establishes the result.

For different forms of fl(l) and Fz(p) characterizations

can be obtained for various distributions. For example, assume -
that fl(A) is gamma(6,p) 1i.e., that ‘

_A
1 B ye-1

e

£,(0) = p,0 >0

and Fz(p) is degenerate. Then on the assumption that X "=
negative binnmialCI%E , P) we have that Y|X ~ b(n,p) iff
Y ~ negative binomialfif;g', p). This indicates that in

Skibinsky's terminology, the negative binomial distribution is
" reproducible with respect to sampling with replacement. '

4. SOME POSSIBLE APPLICATIONS

It is known that characteristic properties of distributions -
in general, apart from their mathematical interest, can be useful
in applied statistics. The main reason lies in the fact that
these properties are unique for the characterized distribution.
This fact can guide the choice of assumptions that one has to
impose in a given problem or enable him to reduce a complicated
problem to an equivalent but possibly simpler one.
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The characterizations of the two previous sections in parti-
cular can be useful when the r.v. X describing the phenomenon
under investigation is of either a Poisson or a mixed Poisson
form. They can also offer help when a mixed binomial distribution
is appropriate for the conditional r.v. le that may be involved.
Both situations arise very often in practice especially when
sampling takes place over an extended area or period of time; data
derived in this way do not always conform to the simple Poisson
or simple binomial type. This implies that the parameter of the
assumed distribution varies according to some probability law.

In most of the cases concerned with the binomial parameter p
this law is reasonably assumed to be beta(a,b). On this assump-
tion a potential application of Theorem 1 may arise in the
following situation. ‘

Assume that the distribution of the number X of cars
passing through a junction with traffic lights in a given period
of time is Poisson(A) distributed. - Let the number of cars out
of n which pass while the red light is on be binomially
distributed with parameter p. Assume that p is not constant.
Instead, take it as a random variable associated with the drivers
tendency to commit an offense. If the beta(a,b) model is suitable
for the distribution of p, we have that the number of cars out
of n passing when the red light is on will have the binomial-
beta distribution. Consequently, according to Theorem 1 the dis-
tribution of the number Y of cars passing against a red light
is Poisson{Ap) ;} beta(a,b). In fact, Theorem 1 provides more
information. It tells us that if we have reasons to believe that
"Y 4s Poisson(Ap) ~F(p), then the only possible form for the
distribution of cars out of n passing against the red light
(i.e., for the distribution of Y[X) is b(m,p) NF(p). More-
over, if Y 1is simple Poisson with parameter u < A we have
that YIX A binomial(n,p) where p = u/A.

A number of other cases in which the mixed binomial model
was shown to be appropriate can be viewed in a similar way in the
1ight of the results of Sections 2 and 3 (see for example
Chatfield and Goodhart's (1970) work where they adopted the beta-
binomial distribution for the description of consumer purchasing
behavior). s

Applications of mixed Poisson distributions, on the other
hand, go as far back as 1920 when Greenwood and Yule used the
Poisson /A gamma distribution to describe accident data. More
recently, other workers (e.g. Froggatt et al., 1969; Ashford,
1972) used the same model to examine problems concerning patient
contacts with the doctor (GP). In the first place, the patient
contacts were regarded as events in a Poisson process with para-
meter A characteristic of the individual patient. Then it 1is
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argued that A represents the "proneness" of the patient to
illness and a skew distribution of a gamma form is suggested for
A in a population of patients., Thus, for a given individual
the number of.contacts X ‘with the GP in a given time 1ntervn1
has a Poisson A gamma distribution. If we now further assume
that each contacting patient is referred to a comsultant with
probability p (p fixed): our corollary of Theorem 2 indicates -
a one-to-one correspondence between the distribution of the
number Y of visits to the consultant (negative binomial) and.
the distribution of the number of visits to the consultant given
the total number X of contacts with the GP (binomial)., If
however, either the negative binomial does not seem appropriate
for Y or the binomial does not explain well the distribution of
Y|X this might signal the need for considering a variable p.

- A reasonable explanation for this is that p may vary from
patient to patient depending on the seriousness of his illness.

‘The above examples are only a collection of possible cases
where the results of Sections 2 and 3 can be of some use.  Clearly
-one can find similar situvations for other forms of Fl(l) and

‘ Fz(p).

Fipally, it should be pointed out that another major area
that the results fit, is that of the damage model introduced by
Rao (1963). Here X 1is the original observation produced by
some natural process, Y|X is the destructive process and Y is the
observed (undamaged) part of X. Clearly, this model can be:
looked into in the light of our results.}m
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