MPRA

Munich Personal RePEc Archive

On Moran’s Property of the Poisson
Distribution

Panaretos, John

1983

Online at https://mpra.ub.uni-muenchen.de/6231/
MPRA Paper No. 6231, posted 12 Dec 2007 16:20 UTC



! Blom. J- 25+ 1083+ 1 - 6976

University of Missouri, Columbia, U.8.A.
On Moran’s Property of the Poisson Distribution

JOHN PANARETOS

1. Introduction

Two interesting results encountered in the literature concermng the Poisson and
the negative binomial distributions are due to MORAN (1952) and Pariy and SES-

HADRI (1964) respectively.
Morax’s result provided a fundamental property of the Poisson dlstrlbutlon and |

can be stated as follows:
Let (X, 7) be a random vector of non-negative integer-valued components such

that
(1.1) P(Y=r,X=n)=Pg(r,n), r=0,1,...,n; n=0,1,...
where {P,; #=0,1,...}and {s(r, n) ;' r=0,1,...n)arediscrete probability distri-



70 : ~ J. PANARETOS

butions for each n=0. Suppose that ¥ and X — Y are hon-degenerate and inde-
pendent and that there exists at least one integer ¢ such that

P(Y=i)=0, P(X-Y=i)=0.

Then it follows that for every n with P,=0 the distribution {s(r, n); r=0, 1,
..., n} is binomial corresponding to n trials if and only if (iff) {P,} is a Poisson
distribution. (i.e. iff ¥ and X -- ¥ are Poisson random variables.) '

Note that, as was pointed out by SHANBHAG and PANARETOS (1979), it is essen-
tial to assume that s(r, ») is binomial with index n (something that has not been
specified in MORAN’s paper) ; otherwise the result is not valid. This is evident in the
following example. '

Let Y, Z be two non-negative integer-valued independent random variables
such that

o p if r=1
P(Y=r= {1-p if r=0
where 0 <p<1 and Z has a non-Poisson distribution {g,: n=0, 1, . . .} with every

g, positive. Then the conditional distribution of Y given that X == (where X =
=Y +Z) for every n=11is

1—o) ol
( pl)g% Coi peo
P(Y=r| X=n)={ Pt *(1=P) s
i Pgn—1

if r=1
PGu—1+(1=D) gy ~
Since this conditional distribution has the support {0, 1} it follows that it is bino-
mial (corresponding to one trial). For n =0 the conditional distributionof ¥ | X =n
is degenerate at zero and hence trivially binomial (we call this the binomial distri-
bution corresponding to zero trials).

One may observe that in the above example we have Y and Z=X — Y meeting
more than all the requirements of MORAN’s theorem. (It is evident that MoraN
(1952) does not assume his binomial distribution to be non-degenerate when the
given values of X are non-zero.) However neither Y nor Z is Poisson.

Motivated by MoRAN’s theorem PATIL and SESHADRI (1964) obtained a general
result, a special case of which provided a characterization for the negative bino-
mial distribution in the following way.

Let (X, Y) be as in MORAN’s set-up. The distribution {s(r, n) : r=0,1,...,nis
negative hypergeometric with parameters m, p iff ¥, X — Y follow negative bino-
mial distributions with parameters m, p respectively. ,

In this paper we examine the results of MorAN and PatiL and SESHADRI, in the
case where the conditional distribution s(r, #)is truncated at an arbitrary point £ —1
(k=1,2,...). In fact we attempt to answer the question as to whether Morax’s
property of the Poisson distribution and subsequently Parin and SESHADRI’S
property of the negative binomial distribution can be extended, in one form or
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another, to the case where ¥ | X is binomial truncated at k— 1 and negative hyper-
geometric truncated at k— 1, respectively. To answer these questions we will
make use of a characterization proved by Rao and RuBIN (1964), a generalization
of their result by SHANBHAG (1977), and a characterization by PANARETOS (1976).
These results will provide the necessary background for the solutions required.

In Section 2 we quote the theorems of Rao and RUBIN (1964), SHANBHAG (1977)
and PANARETOS (1976). Then in Sections 3 and 4 we derive two lemmas which
help us to show that MORAN’s theorem as well as PArIL and SESHADRI’s result
cannot be extended to the truncated case. :

2. Some Results Related to MORAN’S Characterization of the Poisson Distribution

MOB,AN s result has been extended by Rao and RusiN (1964). They have shown
that if Pg<1 and

@1 s n>=(f) PP =01, .. m

for every n with P, >0 and with p a fixed number in (0, 1) and independent of =,
then we have that

(2.2) P(Y=r)=P(Y=r|X=Y)=P(¥Y=r|X=7Y), r=0,1,..

iff {P,} is a Poisson distribution. .

Using an argument from the renewal theory SmanNBHAG (1977) extended Rao
and RUBIN’s result to a very general situation. Roughly speaking, he has shown
that if Py<1 and

ab,_,

(2.3)" s(r,n)=—"-", r=0,1,...,n

Cn

for every n with P,>0 (where a,,>0 for all n=0, b,, b, >0 and b,=0,n=2, and ¢,
is the convolution of g, , b,), then (2.2) is valid iff '

P PO 9 n=1,2, ... forsome #=0.
cn Co !
(Note that Rao and Rusin’s result follows a special case of this.)

An interesting by-product of SHANBHAG’s result is that, if (2.3) is satisfied, con-
dition (2.2) implies that ¥ and X — Y are independent. One may also observe that
(2.1) is of the form (2.3) and hence MORrAN’s result confirms that of Rao and Ru-
BIN’s. In addition, as was pointed out by PANARETOS (1976), the negative hyper-
geometric distribution is also of the form (2.3) and hence PATIL and SESHADRI'S
result is also confirmed. In the same paper PaANArRETOS provided a method for
characterizing truncated distributions as follows.
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Theorem 2.1. Suppose that s(r, ») is of the form.
G"rbn—r

(2.4) s(r,n)=———, r=0,1,...,n; n=kk+1,...

Cy

with a,>0 for =k, b, c, as previously, P;<1, and X taking values =k only. In
this case the condition

(2.5) P(Y=r|Y=k)=P(Y=r|X=Y), r=kk+1,...
is valid iff

P, P,
Oy G

(2.6) § % n=k k+1,... forsome §=0.
This latter result provided the basis for the following characterizations based on
truncated forms of s(r, n).

Corollary 2.1. Suppose that the distribution s(r, n) is binomial truncated at
k—1ie.

n
C)p@”” r=k, k+1,...,n
n=%k, k+1,...

i(q:) p"" O0<p=<1, g=1-p

r=k '

Then condition (2.5) holds iff

(2.7) P(Y=r|X=n)=

L ) o
e (r)”.“” " for some A, >0
r=k
T n=k, k+1,...
n! > — MA+p)=p
n:.—]gn!

(2.8) P(X=n)=

i.e., iff the r.v. X has the distribution of a convolution of a Poisson (x) with a
Poisson (1) truncated at £— 1.

Corollary 2.2. Suppose that the distribution s(r, n) is negative hypergeometric

truncated at k—1, i.e.,
(m+r—1) (Q+7L—’I‘—-1) ‘
. P(Y=r|X=n)= d kil r=k, k+1,...; r=n.
(2-9) % (m-i-r—l) (g—|—n-r—~1)
= r n—r

- Then condition (2.5) holds iff the distribution P, is the convolution of a negative
binomial (p, m) and a truneated at k— 1 negative binomial (p, ¢) i.e., iff

\ » —1\ fo+n—r—1
- (e
@10) PX=m)="t) T ner
- [m+r—1\ ,
Z( )q

r=k r

n=k, k+1,...
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3. The Truncated Case of MoraN’s Result

The corrected version of MorAN’S result has been stated in Section 1. It is now
interesting to see whether the result remains valid if one considers the binomial
distribution truncated at k— 1 as the distribution of ¥ | X. To do this one may
observe first that the truncated binomial distribution is not the only distribution
of the form (2.4) for which the result of Corollary 3.1 is valid. This is shown in the
following lemma.

Lemma 3.1. Let us assume that P, corresponds to the dlstrlbutlon glven by

by
(2.8) and s(r, n) is of the form & Lor=k k+1,...

Cn

Then, condition (2.5) does not imply umquely that the distribution of ¥ | X is
truncated binomial.

Proof. From Theorem 2.1 we know that condition (2.5) is equivalent to
n=%k, k+1,...; forsome ¥=0.

which in our particular case implies that

2 (n
B0
i~ i HMHE p=k, k41, ...

It can now be checked that ¢, will be of the form (3 1) if the sequences a,, b, have
the following forms

ZT

(3.1) Cn="Cp

£3 2) {our% r=k, k+1,...; A=0; o a constant; ZO_—J/’&
. a,r: r! R
0 r=0,1,..., k-1
‘u%
3.3 b = 0 o n=0,1,...; =>0; o @ constant; 0= /9.
" n! ' # Ho= /Y .

However, (3.2) and (3.3) are not the only forms that a,, b, can have respectively in
order that their convolution be of the same form as (3.1). Take for example the
following sequences.

z( )isvi-=

(3.4) a = r=k,k+1,...; A=AB, po=u/d
' r3 ! :
n=k .
U r=0,1,...,k—1
, P
(8.5) br=e "% n=0,1,...; po=uld

n!
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i.e., take a,, to be the convolution of a Poisson with a truncated Poisson and b, to be
Poisson. It is clear that the convolution of a, and b, {a,}*{b,} is given by (3.1)
since
{a,}*{b,} ~ (Poisson * truncated Poisson) * Poisson

~ (Poisson * Poisgon) * truncated Poisson

~Poisson * truncated Poisson.
This means that we can find a pair of sequences, other than (3.2), (3.3), whose
convolution is of the form (3.1). So, the decomposition of (3.1) is not unique, and
hence the truncated binomial is not the only distribution of the form (2.4) satis-
fying condition (2.5). This completes the proof of the lemma.

Our problém can now be stated in the form of the following theorem.

Theorem 3.1. Let (X, Y) be a random vector of integer-valued components with
X =Y =k such that

PY=r,X=n)=P,s(r,n), r=kk+1,...,n;, n=k k+1,...

where {P,:n=Fk, k+1,...} and {s(r,n):r=Fk, k+1, ..., n} are discrete probﬁ
ability distributions for each n=%. Suppose that ¥ and X — ¥ are nondegenerate
and independent with P(Y =i)=0, P (X —Y =j)=0 for at least one integer i >k
and one integer j=>0. Then, the condition that Y is Poisson truncated at £ — 1 and
X — Y is Poisson, is necessary but not sufficient for the distribution s(r, n) to be
binomial truncated at k— 1.

Proof. Evidently the “necessary’” part is a side result of the previous lemma.
As for the “sufficient” part we have already seen in Corollary 2.1 that if s(r, n) is
truncated binomial, condition (2.5) implies that X is the convolution of a Poisson
with a truncated Poisson. But, as was shown in Lemma 3.1, if condition (2.5)
holds then the truncated Poisson for ¥ and the Poisson for X — ¥ are not the only
distributions for which X is Poisson convoluted with a truncated Poisson.

Since (2.4) and (2.5) imply that ¥ and X — Y are independent the argument is
established.

4. The Truncated Case of PATIL and SESHADRI'S Result

Lemma 4.1. Suppose that the distribution P, is the convolution of a negative
binomial and a truncated negative binomial at k£ — 1 as in (2.10). Let us also assume
that the conditional distribution of Y | X is of the form (2.4). Then condition (2.5)
does not imply uniquely that the distribution of ¥ | X is negative hypergeometric
truncated at £—1.

Proof. The proof is similar to that of Lemma 3.1. We can arrive at it again by
making use of the fact that, under the assumptions made, Theorem 2.1 can be

P
applied. Hence, condition (2.5) is valid iff c¢,=c, 17: 79“”%’“ which, for P, as
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in (2.10), will eventually become

(4.1) |
< -1 —r_
3 éc (m+: )(HZ_: 1) (¢/9)" (1—q/9)° |
Cn:Ekarbn—-r: . m+r—1 : : n=k’ k_l,
zk( ) @

for some 0<g/8<1 and a,, b, probability distributions.

Tt is evident that if @, is negative binomial truncated at k— 1 and b, is negative
binomial, (4.1) is satisfied. However, this is not the only solution. For, consider for
example

L(m+i-1\ fo+r—i—1} .
| ?,c( i )( r—i )pﬂ% r=k k=1,...
(4.2) @, = S (m+i—1Y Q0=49/%, Po=1—4q
i=k
0 r=0,1,...,k—1

(i.e. a, is the convolution of a truncated at k—1 negative binomial distribution
and a negative binomial distribution), and

, +n—1
(43) bn=(g " ) pgqg n=0,1,...; Qqu/ﬁ’ Po=1—q

(i.e., b, is a negative binomial distribution).
Then
{cn} = {a,}*{b,} ~ (negative binomial * truncated negative binomial)
* negative binomial
~ (negative binomial * negative binomial)
, * truncated negative binomial
~negative binomial * truncated negative binomial
Clearly {c,} is of the same form as {c¢,} in (4.1). However, the distribution a,b,,_,/cn,
with a,, b,, ¢, given by (4.2), (4.3) and (4.1), respectively, is not truncated negative
hypergeometric. Hence, the lemma is proved.
The question now, concerning the extension of PATIL and SESHADRI's result to
the truncated case, is answered in the following theorem.

Theorem 4.1. Suppose that Y, X are as in Theorem 3.1. Then the condition that
the distribution of Y is negative binomial truncated at k—1 and the distribution
of X — Y is negative binomial is necessary but not sufficient for the distribution
s(r, n) to be negative hypergeometric truncated at k—1.

Proof. This is obtained by using an argument identical to the one employed

in Theorem 3.1 and by making use of Lemma 4.1.
Hence it was shown that MoRAN’s result, as well as PATIL and SESHADRI’S
result, does not remain valid when the distribution s(r, ») is truncated at k—1.
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