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Identifiability of Compound Poisson Distributions

By Evdokia Xekalaki and John Panaretos, University of Missouri'

1. Introduction

Let X, Y be two non-negative and integer-valued r. v.'s such that X=V. It i is
known (see, e.g. Wang, 1975) that if the conditional distribution of ¥ given -
‘X is binomial with parameters n, p (i.e., Y|{(X=n) is binomial (n, p),
n=0,1,2,...,0<p<1) then Y is a Poisson r.v. with parameter Ap (Poisson
(Ap)), }.>0 if and only if (iff) X is a Poisson () r.v. There has been an
extensive use of this model in various practical situations.

Accident theory is a field where this model can have potential applica-
tions. The reason lies in the form invariance of the distributions of X and ¥
‘under the binomial assumption for the distribution: of Y|(X=n). Leiter and
Hamdan’s (1973) work provides an examiple in this direction. They have
considered the random vector (X, ¥) defined as above as a madel for the
interpretation of highway accidents. In this context, X' represented the
number of highway accidents in a given locality and for a given period of
time and Y represented the number of fatal accidents among those X
accidents over the same period. However, applying the model to bivariate
accident data of this type, did not result in a satisfactory fit.

It seems reasonable, therefore, to question the model with respect to the
assumptions on the distribution of Y](X =n) or X or both. One may consider,
for instance, that either p or 4 or both are not constants. Instead, one may
regard them as being r.v.’s themselves with some distribution functions,
say F(p), 0<p<1 and G(), 0<A<+w respectively. In this case, the distri-
butions of Y|(X=n) and X will be of acompound form. In particular, the

distribution of Y}(X=n) will be binomial compounded by F(p) (binomial
(n, p)AF(p)) while that of X will by Poisson (A)AG(4). The question arises
then, whether the distribution of Y can be identified from knowledge
concerning the form of the distribution of X and vice versa. Any results in
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40  E. Xekalaki and J. Panaretos

this direction will have important implications in the area of applications as
one will not have to restrict oneself to the case of a constant p or A. The
assumption of p and A being r.v.’s with distributions of general type offers a
much more relaxed condition. Moreover, different forms of F(p) and G(1)
will lead to several alternative models.

The following sections provide some answers to the problem. Specifical-
ly, section 2 develops some theoretical results along the lines described
above while section 3 examines the consequences of these results in the
context of some applied problems.

2. The main results

Before stating the main results we list a few basic facts that will be utilized
in the course of the proofs.
Let Z, denote the descending factorial i.e.

Zy=Z(Z-1)...(Z-k+1), k=0,1,2,..;(Zyp=1).
Then,

Z is binomial (n,p) implies that the kth factorial moment (f.m.) of Z is
EZg = ng,p*.

Also
Z is Poisson (1) implies EZ ;, = Ak ‘ 1)
Then, it follows immediately that

Y|(X = n) is binomial (n, p) A F(p) implies

1
E(Yy|X = n) = ny, f p*dF(p)
0

whence

I
EY, =EX, f p*dF(p) @
0

Theorem 2.1. Suppose that for the non-negative, integer-valued r.v.’s X, Y
we have that

1
P(Y=rlX=n)=f (f)p’q""dF(p), r=0,1,..;9=1-p 3)
0

(i.e., Y|(X=n) is binomial (n, p)AF(p)). Then, Y is Poisson (Ap)AF(p) iff X is
Poisson (1). :
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Proof. The *‘if”’ part is straightforward. For the “‘only if’” part suppose that
Y is Poisson (Ap)AF(p), i.e., that

1 r
P(Y=r)=f exp(—lp)(—'lﬂ,)—dF(P), r=0,1,..
0 r.

This implies that

1] =
A r
EYy=| > exp(~1p) 2 1, dRp)

0 r=k
1
= f (Ap)Y dFp), k=1,2,... “)
0
On the other hand, because of (3) we have that relation (2) is valid.
Combining (2) and (4) we find that
EX, =4, k=1,2,.. Q)

Consequently, the f.m.’s of the distribution of the r.v. X are the same as
those corresponding to the Poisson distribution. This implies that the r.v. X
has the same moments as a Poisson variable. Since the Poisson distribution
is uniquely determined by its moments the result follows.

Theorem 2.2. Let X, Y be as in Theorem 2.1. In addition, assume that the
distribution of X is determined uniquely by its f.m.’s and that

f e dG(A)< = for some h>0. (6)
0

Then Y is Poisson Ap)AGQA)NF(p) iff X is Poisson ()ANG(A).
Proof. The ““if*’ part of the proof is straightforward. As far as the “‘only if”’

part is concerned, by following the argument of the proof of Theorem 2.1
we have that

i 1

EY(k)“'f Ade(/l)f p*dF(p), k=1,2,...
0 0

Therefore,

EX, = J’ A*dGR), k=1,2,... U
0

It is now known that the kth f.m. of the CPD is of the form (7). Since we
have assumed that the distribution of X is uniquely determined by its f.m.’s
and because of (6), it follows that
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ESX=EEX(k)(Sk'1) f Z“s D' 46y
k

= f SOV AGR), |s—1|<h.
0

'Thus, by the uniqueness of probability generating functions, X is Poisson
AINGQA).

Remarks
1. It can be observed that if G(4) is degenerate, Theorem 2.2 reduces to
Theorem 2.1. v

2. An interesting problem concerning Theorem 2.2 is that of relaxing the
condition that the distribution of X is uniquely determined by its f.m.’s.

3. It is clear that for different forms of F(p) and G(4) Theorems 2.1 and
2.2 provide characterizations for different forms of CPD’s. Suppose, for
instance that p~beta I (a, b) and A~gamma (a+b, m) i.e.,

_ (a+b) 41 b-1
dF(p) = ——=— 1— dp, 0<p<l
) I‘(a)[‘(b)p (1-p)”~"dp p
and
—(a+b
A6 == TEASI gL 23>0
I'(a+ b)

where a>0, b>0, m>0. Then, by Theorem 2.2 Y~negative bmomlal
(a,ml(m+1)) i.e.,

P(Y=y)= 1, =0,1,2,...
( Y) ( y m+1 m+1 Y

iff X~negative binomial (a+b, m/(m+1)).

Also, if F(p) is degenerate and 1~gamma (a, m) then, from Theorem 2.1,
Y~negative binomial (a, mp/(mp+1)) iff X-negative binomial (a, m/(m+1)).

4. Identifiability problems connecting the distributions of ¥ and Y|X when
X is known to follow a Poisson or a compound Poisson distribution are
studied in Panaretos (1981).

S. Godambe (1977) has studied necessary and sufficient conditions for
CPD’s, with the compounding distribution of an exponential type, to be
equivalently represented as Poisson sums. An interesting open problem
here’is to see how Godambe’s results can be utilized so that Theorems 2.1
and 2.2 be extended to Poisson sums.

6. The model with Y|(X=n)~binomial (n, p)AF(p) can also be viewed as
an extension of the damage model considered by Rao (1963). In this model
X represents an original observation produced by a natural process (e.g.,
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number of eggs laid by an insect). ¥|(X=n) is the damage process and ¥ is
the resulting observation. Some of the aspects regarding an extension of the
damage model have been examined in Panaretos (1979).

7. In the damage model set-up Rao (1963) observed that, with binomial
damage, Y is negative binomial iff X is negative binomial. Remark 3
indicates that this property of the damage model is preserved if one allows
the parameter p of the binomial damage process to vary according to a beta
I law.

8. Going back to the accident situation examined by Leiter & Hamdan
(1973) one may notice, from their numerical results, that the Poisson
distribution fits the observed distribution of Y partricularly well. However,
this is not the case as far as the distribution of X is concerned; the
agreement between observed and Poisson expected frequencies is rather
poor. This signals the need for examining, among other possibilities, the
question as to whether the situation can be better ¢xplained by any of the
models studied in this paper. ‘

3. Discussion

The CPD which results from compounding the Poisson by a gamma distri-
bution seems to have been first adopted in connection with applications to
accident theory by Greenwood & Woods (1919). The underlying assump-
tion ‘was that the accident experience of each individual was Poisson with
mean value A varying from individual to individual in the gamma law. This
led to the introduction of the concept of accident proneness. The results of
Theorem 2.1 and 2.2 may be of some interest in this direction of accident
theory, especially in connection with actuarial studies. In this context, X
may denote the number of incurred accidents and Y can be the number of
reported accidents. Here, one is justified to assume that each accident is
reported with probability p which varies from accident to accident. (Social,
legal or financial pressures may encourage one to underreport one’s acci-
dents). Consequently, the model with Y|{(X=n) following a compound bi-
nomial distribution might be appropriate. In this case, let the distribution of
p be known and assume that there is evidence to suggest that Y is com-
pound Poisson distributed. Then, by Theorems 2.1 and 2.2, the distribution
of X will also be a compound Poisson and hence, one would be justified in
suspecting the presence of accident proneness. Moreover, determining the
exact form of the unknown distribution of X will be equivalent to identify-
ing the form of the compounding process in the observable distribution of
Y. :

Let us now consider the results of Theorems 2.1 and 2.2 in relation to
another distribution applicable to accident theory, namely the univariate
generalized Waring distribution with parameters a, 8, 0>0 (UGWD (a, 8;
0)) and probability function given by
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0p _ By 1
= =, r=0,1,2,..., ag=T(a+B)T(a).
(a+0)g, (a+B+o), r!’ @ p

(For more details concerning the structure and applications of this distribu-
tion see Irwin (1975), Xekalaki (1981).)
One may observe that if Y|(X=n) ~ negative hypergeometric (n;m, N)

ie.,if
—m) ( -N +m>
r n—r

)

n
and X~UGWD (a, N;g) then Y~UGWD (a, m;p).

In the case N=m+1 the converse is also true i.e., on the assumption that
Y|(X=n) ~ negative hypergeometric (n;m, m+1) and ¥ ~ UGWD (a, m;Q)

then X ~ UGWD (a, m+1;0).
To prove this note that

= m+r-1 m+n
q,-an( ; )/( ; ) r=0,1,2,...,

n=r

PY=rX=n)= ( r=0,1,2,...,n, N>m>0

where ¢,=P(Y=r) and pP»=P(X=n). This is a functional equation in p,,.
Since ¥ ~ UGWD (a, m;p), a solution for pn is the UGWD (a, m+1; ).
The uniqueness follows if one observes that

E(Pn—l’i‘i)/ (m:"> =0, r=0,1,2,...

where p} is another solution. If H, denotes the left hand side of this
equation, it follows that H,—H,.,=0,r=0,1,2,...1i.e., pr=p} r=0,1,2,...

Taking now into account the fact that the negative hypergeometric
(n;m, N) can be viewed as binomial (n,p) A beta I (m, N-m) and the
UGWD (a, 8;0) as negative binomial @B, c/(1+c) A beta II (a, o) (see e.g.
Xekalaki (1981)), where beta II (a, 0) is the distribution with density func-
tion '

=_Ila;"_9)_ a-1 ~(a+p)
Jx) &) TE) X (1+x) @ x>0

the above result can equivalently be stated as follows:

If Y|(X=n) ~ binomial (n, P)AF(p) then Y ~ Poisson AP)AGR)AF(p) iff
X ~ Poisson () AG(1) where F(p) and G (4) are the distribution functions of
the standard power function (beta I (m, 1)) and gamma (m+1, c)/c\ beta I1
(a, @) laws respectively.
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However, this result cannot be thought of as a special case of Theorem
2.2 as the UGWD is not uniquely determined by its f.m.’s. By contrast, the
assumption that the distribution of X is uniquely determined by its f.m.’s is
redundant in the case of the negative binomial distribution of Remark 3.
Combining these two facts together with the fact that both the UGWD and
the negative binomial distribution arise very often in the context of accident
theory makes this assumption rather strong and hence, any results along the
lines suggested by Remark 2 will be very interesting.
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