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UNIQUE PROPERTIES OF SOME DISTRIBUTIONS AND THEIR APPLICATIONS

John Panaretos,.Uhiversity of Missouri - Columbia

ABSTRACT

In many practical situations bivariate
probability distributions are used whose
marginals are of the same form. Sometimes
however, in cases of a not too good fit,
one of the marginals appears to describe
the corresponding observed data - exception-
ally well while the other provides a
rather poor fit. The bivariate model then
has to be questioned. This paper suggests
ways in which characterization theorems
can be used to explain this paradox and
also guide the investigator's choice .
towards possible alternative models that
might provide a better fit.

Key words and Phrases: Poisson Distribu-
tion, Negative Binomial Distribution,
Binomial Distribution, Compounding,
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1. Introduction.

"Bivariate probability models’ are very

frequently used to describe random phenom-

ena, mainly because they provide a deeper
insight into the underlying chance
mechanism. In many of the cases where a.
bivariate model is used the conditional
distribution of one of the random vari-
ables given their sum is very informative.
In the discrete case these models -involve
the non-negative, integer-valued random
variables X, Y, Z where X = ¥ + 2 and also
the conditional distribution of Y on X. A
special class of these models includes a
situation where X and Y have the same dis-
tribution. An interesting example of a
simple model of this nature is the one
adopted by Leiter and Hamdan (L & H) in
1973, in their study of traffic accidents.
In fact they used the bivariate model

{X, ¥) to express the relationship between
the number X of ‘accidents at a certain
location during a given time interval and
the number Y of fatal accidents among the
X accidents. They assumed X to follow a
Poisson distribution with parameter A.
Then, by letting p be the probability that
an accident is fatal and by assuming that
accidents occur independently of one
another and that p is constant, they found
that Y is also Poisson {(Ap). So they
ended up with the bivariate model

£(x,y) = e M2 qu" Yogtix - y) ! (2.1

X,y =0,1,2,...5 7=
0<p<l,gq=1=-p; A->0.

In applying this model to some accident
data they found that the fit was not very
satisfactory. It is interesting however,
that the fit of the Poisson to the distri-
bution of the number Y of fatal .accidents

‘paper deals with.

“Then

was very good while the fit of the Poisson
to the distribution of the number X of
accidents was rather poor., This peculiar-
ity, which also occurs in other problems
of similar nature, is part of what this
Specxflcally, our aim
is to examine ‘whether there is any
theoretical justification or explanation of
why 'this happens. We also try to see how
theoretical knowledge can help in construct-
ing alternative models in such cases. For
this, we appeal to some characterizdtion:
theorems for discrete distributions,

In a recent paper Xekalaki and
Panaretos (1979) studied some characteriza-
tions of the Poisson and the compound -
Poisson distributions. The potential use
of these characterizations in problems like
the one we are dealing with was mentioned.
So, the present paper is a continuation of
that work in the sense that it actually
utilizes the theoretical results in this
specific practical problem.

. In the sequel, we state the charac—
terizations mentioned above. We then
concentrate our attention to the results
related to the L & H model and point out
how these characterizations can guide the
investigator to models that do not have the
deficiencies mentioned earlier. Finally,
we actually apply some Of the models to the’
data of L & H and discuss the improvement
achieved.

2. The Theoretical Results.

Theorem 1. - (Xekalaki and Panaretos (1979)).

Suppose that for the non-negative, inte-
ger-valued random variables X,Y considered
in the introduction we have that

1
P(Y = y{x = x) = I )pyqx de(p);
o o ¥ :
y= 0, ,...,%; % = 0,1’:...
i.e., that ¥| (X = x) is binomial compounded
on p by a distribution with distribution

function F{p). ( Y|(X = x) ~ b(x,p) a F(p)
Then Y is Poisson (Ap) A F(p) if and only

_if (iff) X is Poisson (1).

Theorem 2. (Xekalaki and Panaretos (1979)).
Let X,Y be random variables as in Theorem
1. Assume that the distribution of X is
determined uniquely by its factorial mo-
ments and that

.

o0
I- A*¥dG()) <= for A > 0, . x=0,1,...
0 .

Y is Poisson (Xp)ﬁé(k)ﬁF(P)

‘ iff X is Poisson (A) A G(A).
Of these two general results we will



concentrate our attention on three spécial
cases which are of interest in our study.
First, from Theorem l we can see that if
F (p) is degenerate, thén, on the assumption
that Y| (X = x) is b(x,p), X is Poisson (\)"
iff ¥ is Poisson (Ap). So, in our dcci-
dent problem under L & H's assumptions we
can be sure that if one of the marginals
is Poisson the other has to be Poisson.
The fact that in L & H's study the Poisson
fits well one of the marginals while this
is not so with the other, implies that the
entire Poisson model has to be questioned
or that the assumption that p is constant
has to be dropped. Because of the charac~
terization there is no possibility that a
distribution other than the Poisson can be
- fitted to X while Y is Poisson and
Y| (X = x) ‘is binomial. Further, once one
of the marginals is found not to give a
good fit the bivariate model (1.1) cannot
be expected to be very efficient.

Theorems 1 and 2 sudgest two other
directions in which one can pursue this
problem in order that both marginals be of
the same form. One is to allow the para-
meter A of the Poisson distribution to be’
a random variable (indicating a differ-
ence in the accident rate from indivi-
dual to individual). The distribution
most commonly used for A.in such cases is
the gamma (k,m), i.e.,

Ak,m > 0

where T (a) is the usual gamma function.
Another alternative is to drop the

assumption that p (the probability of an

-~ accident being fatal) is constant from

. accident to accident. Instead, we can
assume that p is a random variable follow-
ing a beta distribution of type I .- :
(p. ~ beta I(a,b)). i.e.,

F(a +b)

) = Ty Bt - e
'0 <p<1, a,b > 0.

» In what follows these two models are exam-
‘'ined in detail.

3. The Negative Binomial-Binomial Model
(NB-B Model).

As a corollary of Theorem 2 we can
easxly see that if F(p) is degenerate and
G(A) is gamma (k,m) then X - Poisson (1)

A gamma (k,m) iff Y ~ Poisson (Ap) 3 gamma
(k,m). This is equivalent to saying that

X ~ negative binomial (k, 1 l) iff ¥

. v

negative binomial (k'T—I_EE)‘ (i.e., X ~

) Aff Y - NB(K,~—2—). We call

NB(k»m + T+ mp
this the NB-B model).

This characterization implies that for-
constant p, if the NB fits well the distri-

bution of Y it should also fit well the

" model will be rather. inappropriate.
.over, under this model if the fit for both

E(X),

" negative hyperqeouetrlc‘(x a,b).

.

distribution of X, otherwise the whole
More-

X and Y is good then the fit for (X,Y) with

k : % :
= y:(x(far)}(mmg l)x(m 1“1) (g)y

g=1-p kg =klk+l..k+x-1,

f(x,y)

-k()zl.‘

is expected to be satlsfactory.

To apply this model to-the data of
L & H the method of moments has been’ used.
The parameters of interest are m,p,k.. From
the above we can easily find that E(X) = km,
E(Y) = kmp and V(X} = km(1 + m).

Hence, the moment estimators of m,p. and

k are

"

N
b
L]
-
bl
L]
b

where X,Y,sx are the moment estimators of
E(Y) and V{XJ respectively.

4. 'The Negative Binomial, Negative Hyper-
geometric Model (NB=NH Model):

‘As it was mentioned in Section 2 another
alternative to the Poisson-binomial model
of L & H is to let p be a random variable
following a beta I distribution. In this
case Yl(x x) ~ bix,p) Abeta I (a,b}, i.e.,
Then from
Theorem 1 we have that if A ~ gamma(h + %,m)
then X ~ Poisson (%)} A gamma{h + %,m) iff

Y - Poissoh(lp)i gamma(h + 2.m)$beta1(h,1L

It can easily be seen that this is equiva-
lent to

X - NB(h '+ %, — JifE ¥ - NB (h i) .

(We call this the EB-NH model.)

The reader may observe that the para-
meters of the gamea and the beta I distri-
bution are suitably chosen so that the’
distributions of X and Y are of the same
form, a property desired for our model.
Comments similar to those made in the pre-
vious section conmecting this characteri-
zation to the actwal fit of the model to
L & H's accident data can also be made
here, Of course, if this model is good
then the only possible form for the distri-
bution of (X,Y) will be

x 2+h

£{x,y) = "é":d‘ (;E-‘;;)' (m T ].) (m 4]: l)

It can be easily seen that with the above
model

E(X) = (h +2)m, E{¥) =hm, V(X) =m(m+ 1) (h+1).

The parameters of interest are m,h,% and



their moment estimators are Table 1. Observed and fitted distribu-

s2 - % . Mo tions for the number of injury accidents
m=X __ hX,t%2X and the number of fatal accidents for the
X n mn entire study. (First entry: observed

frequencies. ' Second entry: estimated

NB~B frequencies. Third entry: estimated

) _ NB~NH frequencies. Fourth entry: estima-
We have fitted the models discussed in ted P-B.frequencies (L&H).

Sections 3 and 4 to the accident data used - Number of Fatal Accidents (Y

by L & H. These were data of accidents . ata e -AY)" .

5. . Fitting the Models to L & H's Data.

and fatal accidents which occurred in a "0 1 i TOTAL
50-mile stretch of Interstate 95 in Prince . '
Williams, Stafford and Spottsylvania : ) : 286 ;286
counties in eastern Virginia.. They were ' 0 |285.25 . . 1 285.25
collected by the Virginia State Police : 285.25 ! 285.25
from 1 January 1969 to 31 October 1970. ; 269.78 t 269.78
" The two models were fitted to the observed 198 18 ° 1216
joint distribution of the number of injury 1 | 201.82 113.69 | 215.51
accidents  and the number of corresponding 4 201.82 13.69 | 215.51
fatal accidents for the 639 days and for Number 217.85 14.78 i 232.63
each of the individual years. The fit of of 82 10 92
each model is measured by the'chi-square Injury , 83.1 ¢ 1l1.27 94.37
goodness of fit criterion. The first Acci- < 83.89 " i 9.69 -, 93.58
entry in each cell of the tables is the - .. dents 87.96. ' 12.34 ; 100.30
actual observation. The second entry is . . (X 24 .6 {30
the expected frequency under the NB~B ‘ 3 26.02  * 5.30 1o31.32
model of Section 3.. The third entry : 26.71 0 4.03 ! 30.74
represents the expected frequency with the 23.68  5.15 ! 28.83
NB-NH model of Section 4. - Finally, the ~ 13 11 14
fourth entry is the expected freguency 4 6.87 1.86 | 8.73
corresponding to the P-B model studied by o 7.21 1.28 | - 8.49
L & H. From the tables it becomes clear 4.78 1.43 | 6.21
that the NB~B and the NB-NH provide a .. .1 .0 ool
,better fit as compared to that of the P-B Jg ¢ 1.61 0.54 2.15
model of L & H. Of course this was some- ‘ i 1.73 0.35 2.08
what expected, since in the new models ! 0.89 0.36 1.25
more parameters are involved. However, ‘ S gg: 67 g; o i ggg 23
the .interesting thing comi out of this : : . . . ! .
3 e the fact tb . TOTAL: 606.61  29.04  635.65

Tstudy is perhaps the fact that a suggestion
twas given as to how finding unique proper- - '

604.96 34.06 ¢ 639.00
f@es of distributions can help in guiding } :

L

;e investigator's choice of better models. : Estimates of the parameters:
‘It should also be pointed out that the . .- NB~B model: p = 0635209 )
mdels of Sections 3 and 4 were chosen . m=.,1413161, k = 6.1018133
a 'ong the different models offered by PR )

T zorems 1 and 2 mainly because they pro- ‘ NBZNH model: m =_.1413161
’ h = .3875925, £ = 5.7142208

v: de the same form for the marginal
d. stributions of X and Y and they were used
m' fely as examples to illustrate the main VALUE OF THE CHI-SQUARE STATISTIC

Degrees of

pg'nt. There may be other models that B

al io describe well the problem in guestion. Model " XZ Freedom(v) P(X3> x2)
Re ark: It is worth pointing out that for. . NB-B | 8.4969 7 : 0.30
ou :models the assumption made in Theorem NB-NH 8.1064 -7 0.34
2 1at the distribution of X is determined P~B(Ls&H) [19.1187] 8» 0.02%
un' guely by its factorial moments is redun=- . . i

da t. 'This is so, because the negative ) :

biiomial distribution is indeed uniquely - *Leiter and Randan {1973) used 10 degrees of

determined by its factorial moments. freedom instead of the correct 8. As a result
. : the p-value of their test was given-as 0.04.



Table 2. Observed and fitted distribu-

tions for the number of injury accidents

and the number of fatal "accidents for
1969. (Entries as in table 1).

‘Number of Fatal Accidents (Y) .

0 1 TOTAL
154 154
o | 153.94 153.94
153.94 153.94
144.81 | 144.81
107 17 119
1 | 109.03 8.42 1 117.45
109.03 8.42 | 117.45
Number 118.25 9.13 ! 127.38
 of a3 3 T
Injury , | 45.33 7.00 1. 52.33
Acci- 45.84 5.96 . .51.80
dents 48.28 7.74 ’ 56.02
(Xy 15 3 19
5| 12 3.3¢ | 17.76
14.88 2.51 ¢ 17.39
13.14 3.29 | 16.93
7 0 R
. 3.89 1.20 | 5.09
4.12 0.81 |  4.93
2.68 0.93 | 3.61
1 0 —1
s 0.93 0.36 |  1.29
. 1.02 0.22 1.24
0.51 0.24 | 0.75
377 72 T34y
327.54  |20.32 | 347.86
TOTAL | 328.83 [17.92 | 346.75
327.67 - |21.33 | 349.0

Estimates of the parameters:
: NB-B model: p = 0,0716612,
S m= 0.1529634, R = 5.7507616

NB-NH model: m = (.1529634,
fi = 0.4121067, £ = 5.3386549
VALUE OF THE CHI-SQUARE STATISTIC

2 Degrees of
Model X l

Freedom(v) IP( )(3,3_ xz)

NB-B '6.0390 7 0.54
NB-NH 5.6931 7 0.58

P-B(L&H) | 12.5399 8* 0.14*

#*See comment at the_end of table 1
(L&H: 10 d.1.; B(xyo 2 12.5399) 2 0.25).

Table ‘3. Observed and fitted distribu-

tions for the number of injury accidengs
and the number of fatal accidents for =

1970 (Entries as in table 1).

‘Number of Fatal Accidents (Y)

0 1 | Toran
§ 132 132
of 131.47. 131.47
131.47 131.47
125.02 125,02
51 97
1| 8270 5.22 97.92
.70 - | 's. 97.92 .
Number 99.59 5:61 | 105.20
: 35 1
Andury | 37072 4.24 41.96
Ael- 38.00 3.68 41.68
P -39.66 | .59 44.25
5 3 1T
: 3] 12.60. | 1.96 13.56
11.84 1.51 13.35
10.53 1.88 12.41
3 I 7
4 2.99 0.67 3.66
311 0.47 3.58
2.48 0.64 3.12
777 13 350
1276.48 12.09 | 288.57
TOTAL 127712 10.88 | 288.00
277.28 12,72 | 290

Estimates of the parameters:
NB=B. Model: p = 0,0532787,
m = 0.1297294, k = 6.4856475

NBzNH model: m = §.1297294,

h = 0.3455468, £ = 6.1401007

VALUE OF THE CHI-SQUARE STATISTIC
Degrees of

Model l x2 Freedom(v) P (xs > XZ)

NB-B | 3.9800 5 0.56

NB-NH 4.3395 5 0.50

P-B(L&H) | 6.6696 6* 0,37*

*See ‘Comments at the emd of table 1.

(145: 8 a.f£.; P(xg > 6.6696) = 0.55). R
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