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. m'rnonuc'rlon

Let X be a positive, integer-valued random varlable (x.v.)
with P(X=n) = By M= 1,2,.0.0 + Let Y(r[n) denote the probability
that the value n of the r.v. X is increased by a generating process’
to the value r. If Y denotes the resulting r.v., then °
P(Y==r) . x g Y(rln), r=1 z,...
n=1 ‘ ‘ S
where y(r|n) = P(Y=er=n) In the sequel, we will refer to the y
triplet {X,Y,y(r n)} as the génerating model.
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In its mathematical form the generating model can be consid-
ered as a mixture of the distribution y(r|n) over n where the mix-
ing distribution is g, with r > n. Models of similar type have
been‘studied before. Thomas (1949), for example, studied.the numf
ber of plants in a quadrané under the assumption that plants appeér
in clusters within the quadrant. Her "generating model" however |
was a generalization (random sum) of distribufions rather thdan a -~
mixture. '

Situations where the generating model is applicable arise véry
often in practice. For example, in stochastic abundance models and
especially in partitioning a random sample of individuals from a
certain populafion into species. Suppose that we first classify
the individuals according to the size of the gFOué each species
forms. Then X is.the size of the group (X > 0) and Y is the
total number of individuals in our sample.b Alternatively, X may
represent the number of groups observed (X > 0) and Y the number of
individuals in the sample. (For various models and details seé
Engen (1978, 1979)). ' f

In operational research problems, part1cularly in the study
of a certain class of inventory control problems the generating
model can also be considered. X can be decfined as the number of
demands placed per unit time (X > 0) and Y as the total number of
items requested per unlt time (Williamson and Bretherton (1964))

In the context of acc1dent theory X may represent the num-
ber of fatal accidents and Y the number of fatalities. Alter-
natively, X may be the number of injury accidents in a given ‘
locality within a certain period of time and Y the number of
resulting injuries. (For a similar problem see Panaretos (1981)).

In the next section we study a special case of this modél by
assuming that the genmerating mechanism y(r|n) is known. In par-
ticular, we consider the "generation" to be effected thfough a
Pascal distribution (not an unreasonable choice for the generating
process, as this ensures that Y=2X). We also consider X to follow
the logarithmic series distribution (LSD), a dlsttibution with a
wide range of applicatlons (see Johnson and Kotz (1969)). We then
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derive the form of the unconditioﬁal distribution of Y and also
that of the distributign of Y given that X=Y (i.e., given that we
sample only observations when we know that no'generation has taken
place). We also establish a relationship between these two distri-
butions. ~

In sectiqn'S‘we point out the similaritics andxdifferences
‘'of the generating model to the well-known in the literature
damage model {Rao (1965}). Finally, in section 4 an examplé is
given where the Tesults are illustrated and theii implications

are discussed.

2. THE LSD-PASCAL GENERATING MODEL.

Before giving the results we introduce some notation.
We say that X follows the LSD (a) if

Ei s
P(X=n) = d %T" n=1,2,...; a<1l1 (2.1)

and d = -1/log(l - a).
We will also say that the conditional distribution of_
Y| (X=n) is Pascal (n,p) if

ZP(Y=r|X=n) = (i:i) p"q" " . (2.2)

r=mn,n+l, . 3n =1,2,...;0<p<l;q=1-p
Theorem l.~_For the generating model {X,Y,y(r|n)} considered in

the introduction, suppose that X~ LSD (a) as in (2.1) and
y(r|n) is Pascal (n,p) as in (2.2). Then

(i),‘Yf~weighted LSD (q)
(11) Y] (x=Y) ~ LSD (ap).

Moreover, Y and Y[(X=Y) are related in the following way.
K P(Y=r)w = kP(Y=r|X=1) {(wD)" - 1) ' (2.3)
r=1,2,...

where w is a weight function (w = %f) and kl,k2 are normalizing

constants (k1 = «1/log(l - ap), kz =d = ;l/log(l - a)).
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Notc. Condition (2.3) implics that the distribution of Y weighted
by w' is the same as the distribution of YI(X=Y) weightcd by
(w+1)r - 1. (For a comprchcnsive'aécount of weighted distribu-
tions and their‘applications the reader is referred to the work

of Patil and Rao (1977).

Proof of theorem 1. Because of the nature of the generating
model we have ' '
{r-1)! hi

P(Y=r) ICSYHECEDH P q

i

™M

r .
Ey(rlmg = & d i’n—

n=1 n=1

T ! o !
%{(ap-l-q)r—qr} -a L {(f‘-’aﬁ F 1)1, r=1,2,... . (2.8)

i

r .
Hence, Y ~weighted LSD (q) with weight {(%F5+ 1) - {}.

On the other hand,

. T
gyl ap)
P(Y=r|X=Y) = — = 9
pgyaly ozl
i=1 i=1 '

Therefore Y|(X=Y) followé the LSD (ap).

It can be seen now that (2.3) is an immediate cdnsequehce of
(2.4) and (2.5).

We will now show that a relationship of the type of (2. 3)
leads to the LSD as the distribution of X.

Theorem 2. Suppose that in the generating model {X,Y,Y(rln}}.
we have that Y(rln) is Pascal (n,p), p fixed and independent
of n, as in (2.2) with p > 1/2. Let the distribution of Y be '
the same as the distribution of Y|(X=Y) weighted byl(2ri ii |
i.e., ‘ ' ' - '

P(Y=r) = cP(Y=r|X=¥)(2* - 1) r=1,2,... (2.6) |

)

where ¢ is the normalizing coanstant. Then X~LSb (a), a = q/p
Proof. It can be observed that (2.6) with P(Y=r|X=n) as given by
(2.2) uniquely determines the distribution of X. Since (2.6) is
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a special case of (2.3) (foxr w= 1) and because the LSD satisfies

(2.3), as scen in theorem (1), the result follows.

3. GENERATING MODEL AND DAMAGE MODLL.

In this section we discuss the analogy of the generating
model . introduced in this paper to the celebrated damage modelA
of Rao (1965). In the damage model the non-negative integer-
"valued r.v. X is subjected to a destructive process. If s(r|n)
denotes the probability'that the value n of the r.v. X is reduced

to the value r and if Y denotes the resulting r.v., then

P(Y=r) = L P(X=n) s(rln), r=0,1,2,...
n=r
Rao pointed out that when X ~Poisson {A) and s(rln) binomial
(n,p) with p flxed and independent of n, Y and YI(X Y) are both

Poisson (Ap) i.e.,
P(Y=r) = P(Y=r|X=Y}, r = 0,1,2,... (3.1)

Rao and Rubln (1964) showed that (3.1) is a property enjoyed
only by the P01sson distribution for X and thus derived a char-
acterization of the Poisson distribution. Many variants.and ex-
tensions of this result have since appeared in the literature, the
most recent and general of which is due to Panaretos (1979) .

The main difference beéween the two models lies in the
fact that our condition (2.3) refers to the distribution of
the larger of the two variables while the Rao-Rubin condition
(3. 1) refers to the distribution of the smaller of the two
variables.

We should perhaps, point out that we have used the notion
of weighted distributions in a somewhat differcent context than
Patil and Rao. Their observed distribution is the actual dis-
tribution weighted by some function of a weight. Here, the
observed distribution is weighted to yield the actual d1stribu—
tion.
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4. AN APPLICATION

In this section we suggest a possible interpretation hnd
applicatién of the previous results in terms of the generdting-
model. ‘

The LSD has been extensively used in the literature: becauéé
of its simplicity, in a wide variety of cases. Boswell and Patil
(1971) mentioned some of its applications. More recently, Wani
(1978) made an interesting study of the LSD in connection with
species abundance ﬁodels. In fact he used the LSD to describe the
distribution of speccies abundaince in the pnpulntlon and showed
that, under certain assumptions, the LSD is also the distribution
of species abundance in the sample. Our earller results enable
us to start with the distribution of species abundance in the
sample and make inference about the species abundance in the popu-
lation,

For our purposes let X denote the nqmber of individuals
contributed to the sample by a species and Y denote the number
of individuals contributed to the population by the same species.
Then y(r|n) will be the probability that there are r individuals
of a particular species in the population given that we found n ,.
of them in the sample. It is well known that X can reasonably be
assumed to follow the LSD (see, for example, Engen (1979)). If.
the individuals enter the sample independently of each other, the
Pascal distribution (n,p) is not an unreasonable choice for Y(rln) ‘
(since tr has to be greater than or equal to n, a restriction sat-
isfied by the Pascal distribution as given by (2.2)). Our Fésultg
suggest that if the above assumptions are valid we can determine
the distribution of the number of individuals Y contributed to
the population by a species. This will be weighted 1ogarithmic
(1-p). Further, suppose that we are only interested in species
for which all of the individuals in the population are inledéd
in the sample. {This may happen in the case of rare species.)
Then we would be talking about the distribution of YI(X=Y).

According to the results of section 2 this distribution can also
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be thoupht of as a logarithmic distribution. Further, relation
(2.3) shows that one can specify the distribution of Y from

information on the distribution of Y[(X=Y) andrvice versda.
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