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Partial Independence and Finite Distributions
J. PANARETOS !

The conditional distribution pIays an lmportant role in. sta.tlstlcal mference _
mamly because it can transform a problem defined in a given sample space, to
another problem defined in a reduced s&mple space. This can happen, for example,
when we deal with a bivariate distribution f(z, y) and we find it convenient to
talk about the distribution of ¥ for a given value of X. A problem of potential
interest related to the consideration of the conditional distribution is to recover
information regarding the distribution of the conditioning random variable (r.v. ) X
once the form of the conditional distribution s{y | #) of another r.v., say Y,
on X is known. This problem becomes even more interesting when _.one moves
away from the assumption.of independence between functions of the r.v.s in-
volved to situations involving only partial mdependence I

In the case where the r.v. X is bounded and s(y | z) is of a cert&m structural
form PaNarETOS (1981) proved the following theorem :

‘Theorem 1. Let N and m be posztwe mtegers such that N >m, amcl let ko be the
integral part of (N —1)/m. (ie. ko=[(N=1)/m]. Let {2, by); n=0,1,..} be a
sequence of nom- negatwe real wvectors such thet a,>0, n=0,1,..,m; b;=0,
Cj=0,1,m+1, 2m+1, 7 , (k=1)m+1), for some. integer k, O0<k<kq For

n=0,1, .., N,put ¢,=2] a,b,_,. OOn.swler a random vector (X, Y) of non-negatwe,

T im0

mteger -valued components suck tkat P (X z)= g,,, a; =0,1,.., N with g,<lL.
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Suppose that \ ’ ’ -

P(Y=y | X:&c):ﬁ'%j,\ iuhenever 9.>0, o (1)
y=0,1,...,2; x=0,1, .. N.
If 0<k=kq, then the k relations |
P(Y=y|X=Y)=P(Y=y|X=Y+(j-1)m+1), j=1,2,..k (2)
hold iff ‘_ ‘
9 =90 c—xﬁ”‘ for some 4=0,2=0, ., .., km+1. (3)
This result was extended (PANABETOS, 1982) to the more general case where no

assumption is made about the structural form of the distribution s(y | x). In fact
the following theorem was proved.

Theorem 2. (PANARETOS, 1982). Consider a random vector (X, Y) of non-
negative, integer-valued components such that P (X=x)=g,, ©=0,1,. . N with

go<1. Denote by [a] the integral part of a and let ko= [{__] LaP(Y=y|X=2)=

=s(y | ¥), y=0, 1, ..., x with {s(y | z): y=0,1, ..., x} as distributions such that for

y=0,1, ..,m (m=z), s(y | y)=0, s (y |y+om+1)=0; 0=0,1, v k=1, fwhereul‘c’.’

is an integer, l=k=ky Let k
P(Y:y]X:Y):P(Yzy]X=Y+1)=P(Y=le=Y+m+1) 4)
=.=P(Y=y|X=Y+({E-1)m+1).
Then
Je=g0A®) 45, x=0,1, .. km+1

where Ag is a positive constant and A(x) is a function depending onlg/ on s{. | z).

However, it is interesting to observe that a similar result is valid when X is

defined on {I, I+1, ..., N} (1=0). The result can formally be presented in the form

of the following theorem

Theorem 3. Let (X, Y) be a random vector of noninegative, integer-valued compo-

nents such that P (X =x}=g,, v= L,1+1, .., N (N=1=0), with g;<1. Denote by [a]

N=
the mtegmlpartofa and let ko—[————] LetP(Y =y | X=2)=s(y|%),y=0,1,.

with {s(y | «):y=0,1,. .., 2} as distributions such that for y=0,1, .., m (m=x),
s(y 1y+0)=0, s(y|y+l+om+1)=>0; ¢=0,1,.., k—1 where k is an integer
1=k=k, Let ) ‘
P(Y=y|X=Y+)=P(Y=y | X=Y+l+([j-1)m+1) (5)
j=1,2,.,k; y=01,..,%2
Then ‘ ,
gl+u+em+1—gzly+em+1A(l Y, 0, M) ‘ (6)

N
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P(X=Y +l+1)
PX=Y+l)
a function depending only on s (. { x) and given by
A(l, , 0, m) = s{y|l+y+1) { ¢ s(ill—l-i)f’
A s(yll+y+om+1) | ALY sGT+i+1)
sim|l+1) 2 s(0]l+gm-+1)
8(0]1+1) L5 s(m|l+jm+1)

mooo8(i]l4+d) e
s 1temen) IT i)

Z/:O; 1,..,m; 0=0,1, .., k'_l.;:}‘(): a c&hsta’nt cmd A(l, v, Q,vm)

(1)

C]early for I=0 ‘theorem\3 is reduced to theorem 2.

Proof. Following PANABETOS (1982) we first observe that the conditions im-
" posed. on s(y | x) 1mply that ¢g,=0 for all #=1I,1+1,..., N. Moreover, (5) for
Jj=1,2, .., kimplies

s(yly+l)
Day+1=Ao14y swityiD , (8)

and
sll+y+(e—1)ym+1)
gl+y+gm+1=zegl+u+(e—1)m+1 s(y|l+y+om-+1)

for all y=0,1, ..., m and all p=1, 2, ..., k—1 where Z@',’ =0, i, v k—1 are con-
stants given by : :
PX=I+Y+1) P(X=1+Y +im3+1)

\ 20=———~——P(X#Z+Y) s li:P(X=l+Y+(i—l)m+I); @:1,2,...,]6—-“1.

From (8) we get
s(yll+y) :
gl+ﬂ+9m+i:l(e)gl+ﬂs(yll+y+gm+l)’ N (9)

Q=0y1, "‘7k_1; y=0’ 1 ey M a'nd A(?)_nl

t=0

Further, from (9) we have

i sy |l+y+1) Y s |14+4) -
gl+”+9m+i_gl°(")s(yll+y+gm+1 -[0] s(@ll+i+1)’

(10)
i '
y=0,1,...,m; ¢=0,1, .., k—1.

It is easy, though; to verify that, for p=1,2,...,k—1

s(m|l+m+1) ™ s(i|l+d)
. H -

_qm
. }'(9)_}‘0}“@"1)3 (0 [T+om+1) s(m|l+om + 1) L5 s(@|l+i+1) 7

Therefore

et 8 m [11) (185 (0| L4jmit1) _ o
Ao=K""" TTIThH gs(m]l+jm+1) (11)

, ™o s(i|l+d) e

Substituting 4., in (10) from (11) concludes the proof of the theorem.
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The reason why this result is of interest is' because of its possible use in practical
applications. Before giving an example, We present two special cases that are of
interest as corollaries. Lo : Topa o

T

Corollary 1. (PANARETOS, 1981) S@ppose that

GIGZ)
P(Y=y|X;w)=—g—x—1-y—', y=2, m<N m,n, N>0 (12)

mH S

e

i.e. s(y | x) ~hypergeometric (m, x, N).

Then : .
P (Ymy | X=T)=P(Y=y | X=Y+(j-Dm+1), j=1,2 ..k (13)
with - S R f o
N -1
k":[—mT
tff
gx.—_(z;) p”qN_x; 0<p<1,g=1—p, N>0, 2=0, 1,..., N (14)

Corollary 2. Suppose that a random vector (X, Y) with nonnegative, integer-valued
components is such that G : I

ke

P (X=z, Y=y)=gultgbsylts), y=01,.w; a=0,1,.. N (15)
where g, is binomial (x; N, p). Then :

P(Y=y|X=Y)=P(Y=y | X=Y+(G-1)m+1); .. . (16)
. . N -1 ‘ '
j=0, 1, ieny ko, ko:[T] ’

iff O .
s(y»]‘-x) is hypergeometric (m, z, N).

Proof. The “if” part of the proof is a side result of corollary 1. To show the
“only if”’ part we observefrom (15) that s(y | x) is of the form a,b,_,/c,. Therefore,
from theorem 1, we have that (16) is equivalent to

om:i’l_’scorw x=0,1,2, ..., N .

This combined with the fact that g, is binomial (x; N, p) implies that

S - N a:' Nz
,ch'—(x)ﬂ (1—=)
: \
where m= -
qi+p N o :
So, the distribution ¢,/ 3] ¢,,2=0,1,..., Nis of a binomial form. But it is well-

n =20
known (see e.g. RAMACHANDRAN (1967)) that the binomial distribution is uniquely
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decomposable into two binomials with the same probability of success. This
implies that
m N N—
a,=c, ( r) 2" (1—-m)™™" and b,=cy ( nm) A (1 —m)N ™"
r=0,1,..,m; n=0,1,..,N-m
‘ : N

where ¢, and ¢, are constants such that ¢,co= 2 ¢, The result now follows easily
N n=0

if we replace a,, b, _,, ¢, to the given form a,b,_,/c, of s(y | x).

Remark. It is perhaps worth pointing out that using the results of theorems 1, 2
and 3 characterizations of tail-truncated distributions as well as doubly truncated
distributions can be obtained. (For more information concerning such distributions
the reader is referred to Jornsox and Korz (1969) pp. 26—27). To mention a few
interesting examples in this direction one can easily verify the following corol-

laries.

Corollary 3. Suppose that X is a random variable defined on {0, 1, ..., N}. Then
condition (13) is necessary and sufficient for g, =0, 1, ..., N o be
i) tail-truncated Po1ssox (given that s(y | x) is binomial)
ii) tail-truncated negative binomial (given that s(y | x) 8 negative hypergeomelric)
iii) tail-truncated binomial (given that sy | x) is hypergeometric)

Corollary 4. Suppose that X is a random variable defined on {l, I+1, ..., N}
(I, N=0, N=1). Then condition (5) with k=Fky is necessary and sufficient for
g =1, 1+1, ..., N to be \

i) doubly-truncated PoIssoN (given that s(y | ®) is binomial)
ii) doubly-truncated negative binomial (given that s(y | %) is hypergeometric)
iii) doubly-truncated binomial (given that s(y | x) is hypergeometric) ‘

A Possible Application

A potential application of the results discussed in this paper is illustrated by the
following example. Consider a population consisting of N individuals inoculated .
against a disease. Denote by X the number of individuals attacked by the disease
even though inoculated. Assume that m individuals (out of V) have been attacked
in the past by the disease, and let ¥ be the number of individuals out of X attacked
for a second time. (Clearly ¥ =X). The distribution of Y and its relation to the
distribution of X is obviously of interest. The consideration of the conditional
distribution of Y given X might then help. Under the circumstances, it does not
seem unreasonable to assume that for a given sample of n people attacked (out of
N) the distribution of Y given X =z is hypergeometric (m, =, N). Since the
binomial distribution is reproducible with respect to hypergeometric sampling
(see SKIBINSKY (1970)), testing for a binomial form for Y is equivalent to testing

26 statistics, Vol. 15, No. 3
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for a binomial distribution for X. Further, because of our findings this is equi-
valent to testing the validity of condition (13). Moreover, the number of relations
one has to check depends on the magnitude of m in relation to N. If for example

N -1
we have a situation with m > 5 it is evident from the theorem that we have to

test only one condition (namely P(Y=y|X=Y)=P(¥Y=y|X=Y+1) to be
able to say whether X follows a binomial distribution or not. On the other hand,
if we have reasons to believe that the tail of the distribution of X can be ignored
(and this may well be the case since the probabilities of the values of X will tend
to be negligible as n approaches N) we can appeal to the results involving tail-
truncated dlstrlbutlons
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Zusammenfassung

Es ist bekannt, dal die bloSe Kenntnis der bedingten Verteilung zweier zufilliger Variablen

‘nicht ausreicht, um die Randverteilungen eindeutig zu spezifizieren. Dazu sind gewisse
Zusatzinformationen notwendig. Diese werden {blicher Weise vorausgesetzt in Gestalt
der Unabhéngigkeit von Funktionen der beiden betrachteten zufilligen Variablen.
Panargeros (1981) fithrte eine Methode zur Herleitung der Randverteilungen basierend
auf der Kenntnis der bedingten Verteilung und einer Annahme iiber die partielle Un-
abhéngigkeit ein. Es wird eine Erweiterung dieses Ergebnisses dargestellt, das sich auf ge-
stutzte Verteilungen bezieht. Basierend auf der eindeutigen Zerlegung des Binomial-
gesetzes wird eine interessante Bigenschaft der hypergeometrischen Verteilung enthiillt.
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Pesiome

Nspecrro, 4ro sHAHKE TOJbHKO YCIOBHBIX pacHpeNeleHHAX ABYX CAyqaliHEIX BeIUYHH He
XBaTaeT UTo0H CHeNUPUUUPOBATE, QYHKUHNM MAPIMHANBLHOrO pacmpeledenus. Hexoropas
momonuUTeNbHAA MHPOpMauuAa HeoOxoguma. OOBYHO 5T2 MHQOPMANUA. HAXOZUTCH B He-
KOTOPOM dopMe He3aBRCHMOCTH (yHKIMIT ABYX COTyYaiHEIX BeTHYNH.

IaEAPETOC (1981) BBOIMI METOJ BHUMCISHNA MAPTUHATILHOTO PACHpefeleHus, Ro'ropm'?t
TOA3YeTCA TOAbKO 3HAHWEM YCJAOBHEX PACHpeNedeHUAX I HOKOTOPOM NPETNONOKEeHUEM O
JaCTHYHOM HesaBucnMoeT. B gannoit pabore gaeTca paciiupene 3Toro pesyIbTara Ha KIiIacce
YCedeHHHX PpaciupefeneHnn. OTEPHBAETCA MHTEPECCHOE CBOMCTBO I'HIEPreoMeTPHYEcKOro

pacupeneleHHd ¢ NOMOINIO PA3J0KeHnda 6MHOMMAILHOTO 3aKOHA.
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