

On a Testing Procedure for Model Selection

Panaretos, John and Psarakis, Stelios

1991

Online at https://mpra.ub.uni-muenchen.de/6260/MPRA Paper No. 6260, posted 13 Dec 2007 07:14 UTC

ON A TESTING PROCEDURE FOR MODEL SELECTION

J.Panaretos and S.Psarakis University of Patras, Greece

ABSTRACT

In this paper a forecasting model selection scheme is considered which amounts to testing the predictive behaviour of a model by adopting Xekalaki and Katti's (1984) idea of assigning to its performance a score for each of a series of time points. The score reflects how close to, or how far from, the predictive value the observed actual value is. A statistical test is proposed for comparing the forecasting performances of two models.

Selecting the best of two competing models

Consider two linear models A and B of the form

 $Y_t = X_t(M) \beta_H + e_t(M)$

where Y is an 1×1 vector of observations on the dependent random variable, $X_{\epsilon}(M)$ is an $1 \times m$ matrix of known coefficients $(1 \ge m_{\rm M}, |X_{\epsilon}(M)X_{\epsilon}(M)| \ne 0)$, $\beta_{\rm M}$ is an mx1 vector of regression coefficients and e (M) is an 1×1 vector of normal error random variables with $E(e_{\epsilon}(M))=0$ and $V(e_{\epsilon}(M))=\sigma^2_{\rm M}$ $I_{\epsilon}(\sigma^2_{\rm M})$. Here I_{ϵ} is the 1×1 identity matrix and M indexess the model (i.e. M=A or M=B). Therefore, a prediction for the value of the dependent random variable for time t+1 will be given by the statistic $\hat{Y}^0_{\epsilon+1}(M) \cdot \hat{X}^0_{\epsilon+1}(M) \cdot \hat{\beta}_{\epsilon}(M)$, where $\hat{\beta}_{\epsilon}(M) \cdot is$ the least squares estimator of $\beta_{\rm M}$ at time t, $X^0_{\epsilon+1}(M)$ is a $1 \times m_{\rm M}$ vector at time t+1. Let $Y^0_{\epsilon+1}(M) \cdot \hat{\beta}_{\epsilon}(M) \cdot \hat{\beta}_{\epsilon}(M)$ be the observed value of the dependent random variable at time t+1. Then

$$\hat{Y}_{t+1}^{0}(M)-Y_{t+1}^{0}=e_{t+1}(M) \text{ will follow the } N(0,\sigma_{M}^{2}) \qquad (1)$$

and so $|\hat{Y}^0_{t+1}(M) - Y^0_{t+1}| = |e_{t+1}(M)|$ will follow the folded normal distribution with mean $\mu_f(M) = \sqrt{\frac{2}{\pi}} \sigma_M$ and variance $\sigma_f^2(M) = \sigma_M^2(1-2/\pi)$ (Leone et.al. 1961). In other words

$$E(|e_{i}(A)|) = \sqrt{2/\pi} \sigma_{A} \quad \text{and} \quad (2)$$

$$E(|e_{i}(B)|) = \sqrt{2/\pi} \sigma_{B}.$$

Suppose that we score, the performance of model M by

|e (M)|. Then, our selection will be based on the model with the minimum score. A natural choice of hypotheses to test could be:

H₀:
$$E(|e_{i}(A)|) = E(|e_{i}(B)|)$$

H₁: $E(|e_{i}(A)|) < E(|e_{i}(B)|)$ (3)

Because of (2) this is equivalent to

$$H_0: \sigma_A^2 = \sigma_B^2$$

$$H_1: \sigma_A^2 < \sigma_B^2$$
(4)

Here we must note that $(\sigma_A^2 - \sigma_B^2)(1 - \frac{2}{\pi}).$ (5) Set $R_{\downarrow} = |e_{\downarrow}(A)| + |e_{\downarrow}(B)|$ and $R_{\downarrow} = |e_{\downarrow}(A)| - |e_{\downarrow}(B)|$ Then, because of (5) the set of hypotheses (4), is equivalent to

$$H_0: Cov(R_{t_+}, R_{t_-})=0$$
 $H_1: Cov(R_{t_+}, R_{t_-})<0$

or to

$$^{\circ}_{0}$$
 $^{\circ}_{R}$ $^{\circ}_{t+}$ $^{\circ}_{t-}$ $^{\circ}_{1}$ $^{\circ}_{R}$ $^{\circ}_{R}$ $^{\circ}_{R}$

The obvious choice of a test statistic would be

$$R = \frac{\left[\frac{\sum R_{t} R_{t}}{n} - \frac{1}{R_{t} R_{t}}\right]}{\sqrt{\sum \left(R_{t} - \overline{R}_{t}\right)^{2} \sum \left(R_{t} - \overline{R}_{t}\right)^{2}}}$$

Then, under H the asymptotic distribution of \sqrt{n} R is normal with mean zero and variance $Var(R_t, R_t) / Var(R_t)Var(R_t)$ (Lehmann (1986)). So, values of \sqrt{n} R in the left tail of the normal distribution will call for rejection of H₀, thus indicating that model A performs better than model B.

References

Lehmann, E. L. (1986). "Testing Statistical Hypotheses".
J. Wiley and Sons.

Leone, F.C. Nelson, L.S. and Nottigham, R.B. (1961). "The Folded Normal Distribution". Technometrics, 3(4), 543-550. Xekalaki E. and Katti, S.K. (1984). "A Technique for Evaluating Forecasting models". Biom. J., 26, 173-184.