
Munich Personal RePEc Archive

oTree - An Open-Source Platform for

Laboratory, Online, and Field

Experiments

Chen, Daniel Li and Schonger, Martin and Wickens, Chris

Center for Law and Economics, ETH Zurich

6 March 2015

Online at https://mpra.ub.uni-muenchen.de/62730/

MPRA Paper No. 62730, posted 09 Mar 2015 17:37 UTC

oTree - An Open-Source Platform for Laboratory, Online,

and Field Experiments

By DANIEL L. CHEN, MARTIN SCHONGER AND CHRIS WICKENS
∗

oTree is an open-source and online software for implementing inter-
active experiments in the laboratory, online, the field or combinations
thereof. oTree does not require installation of software on subjects’ de-
vices; it can run on any device that has a web browser, be that a desktop
computer, a tablet or a smartphone. Deployment can be internet-based
without a shared local network, or local-network-based even without
internet access. For coding, Python is used, a popular, open-source pro-
gramming language. www.oTree.org provides the source code, a library
of standard game templates and demo games which can be played by
anyone.
JEL: A20, C88 ,C90
Keywords: experimental economics, software, laboratory experiments ,
field experiments, online experiments, classroom experiments

FIGURE 1. OTREE ON DIFFERENT DEVICES AND OPERATING SYSTEMS

Experimental economics has become an established field. The paradigm is to con-

duct incentivized experiments in dedicated university computer labs using students as

subjects. In these settings Fischbacher’s z-Tree was and is the dominant software plat-

form. z-Tree allows the investigation of strategic interaction using desktop computers

∗ All authors are at the Center for Law and Economics, D-GESS, ETH Zurich, CH-8092 Zurich. For comments on the
oTree software or the paper, we thank the people at the experimental econ laboratories in Magdeburg, Hamburg and ETH
Zurich, Donja Darai, Kelly Reeve, Rok Roskar, Alexander Sandukovskiy, and Stefan Wehrli. Stefan Bucher provided
superb research assistance.

1

running the Windows operating system. According to Google Scholar, Fischbacher’s z-

Tree (1999, 2007) has been used at least 4801 times, which is a proxy for how important

a public good Fischbacher created.

In homage to z-Tree our platform is named oTree1, where the “o” stands for open-

source, online and object-oriented. Why is a new software platform even necessary?

There are many reasons, including these main three: First, experimental economics has

begun to complement laboratory experiments with field experiments. Field settings range

from sportscards shows (List and Lucking-Reiley, 2000) to primary schools (Angerer

et al., 2013) to online labor markets (Chen, 2012) to financial trade fairs (Cohn et al.,

2015). The field provides external validity and taps a subject pool other than students. It

is difficult to take a Windows-desktop networked environment to field settings. This has

required either ad hoc programming solutions and thereby hindered experiments. The

situation for field experiments is akin to what the situation for laboratory experiments

was prior to the release of z-Tree. Second, computing devices have seen a sea change

in the last years. Usage has shifted from desktop computers to phones and tablet com-

puters. Graphics and user interfaces have been revolutionized. This calls for software

that is platform-independent and deployable on these devices. Third, the programming

paradigm has shifted. It is now clear that open-source and industry-standard compatible

solutions are a better fit for many scientific needs. Experimental software should use ex-

isting industry-standards wherever possible, be extensible and compatible with plug-ins

and allow users to inspect the source code. oTree addresses these desiderata.

oTree has been used in the laboratory setting with over a thousand participants in ac-

tual experiments at laboratories in Zurich, Magdeburg, and Hamburg. Papers using data

gathered by oTree in the laboratory now include Chen and Schonger (2014a), Chen and

Schonger (2014b), Chen and Schonger (2015a) and Chen and Schonger (2015b). In

addition to the laboratory, oTree has also been used for experiments on Amazon’s Me-

chanical Turk. Thus, several new features have already been successfully demonstrated:

The flexible and easy implementation of graphical and experimental features, such as dif-

ferent background colors and randomization of graphical elements in the presentation,

has been shown to work. Second, the mobility of the setup was shown by running the

same or similar experiments across various laboratories.

oTree is open-source, licensed under an adaptation of the MIT license.2 We ask that

people cite this paper when using oTree for academic or other publications. The source

code for oTree can be downloaded for free at www.oTree.org. Contributions and im-

provements to the source code are welcome and should be submitted via GitHub.

1This follows the tradition in the open source community of naming open source software projects after existing
software. For example, OpenOffice is named after Microsoft Office, Linux is named after Unix, and MySQL is named
after mSQL.

2The MIT license is a standard license used in the open source community; oTree licensing information is at
oTree.org/license.

2

I. Usage: Lab, online, field, and classroom

The basic experimental setup in oTree consists of (i) an experiment written within

oTree, (ii) a server computer, which can be a cloud server or a local laptop and (iii) sub-

jects’ devices with a web browser. oTree creates an experimental session on the server,

as well as links for all the participants and the experimenter. With these links, partici-

pants are sent to individualized web pages displaying the experiment and recording their

answers. The experimenter accesses the Progress Monitor, where real-time information

about the progress and entries of all participants is displayed. This architecture enables

oTree to be used in almost any experimental scenario. The software and hardware re-

quirements of the laboratory are minimal: only a connection to the server and a browser

are needed, no other software needs to be installed. It is sufficient to either have an inter-

net connection or a local area network, both are not necessary. The architecture is also

robust to failure; if, for example, there is a hardware failure on anything but the server,

the link of that participant or experimenter can be loaded immediately on another device.

Section II lists the most useful oTree features. There are many ways in which oTree

is an improvement over existing instruments, many of which might only be appreciated

in actual usage. An easy way to get a first feel for oTree is to play some games from the

library of dozens of sample games. Not only is the code for these sample games available,

but these samples are online using oTree’s demo mode. This means that anyone can play

them at any time using a web browser without any installation whatsoever. The library

of sample games can be found at http://demo.otree.org/demo/. One example of a sample

game is our implementation of Basu (1994)’s traveler’s dilemma. Via the sample game

website, go to http://demo.otree.org/demo/traveler dilemma/, which hosts the program in

demo mode. On that start page there are two start links, one for each of the two players

in that game. One can play both players using different tabs in a browser, or open the

links on different devices.

Section III elaborates on programming in oTree. Almost any graphical or design fea-

ture can be implemented (i.e., visual styles, animations, dynamic adaptation to screen

sizes, and multimedia). oTree’s user interface is based on HTML5, which is supported

in all modern browsers and is familiar to every web developer and designer. The pro-

gramming language used in oTree is Python, an easy-to-learn modern object-oriented

computer language widely used in science for analysis and modeling. Hence, many re-

searchers already possess the necessary programming skills to use oTree, and will require

little time to learn to use oTree efficiently and to implement experiments. oTree is easy to

use, and even complex experiments are reasonably easy to program by taking advantage

of the capabilities of Python.

oTree is based on the Django web application framework; oTree applications are web

applications. Once oTree is installed on a web server, applications can be played instantly

from any web browser by opening the game’s URL, and experimenters can log in to the

admin dashboard from anywhere to monitor the experiment. oTree works on any device

with a modern web browser, whether it is a desktop, tablet, or smartphone. It works on

all major operating systems, including Windows, Mac OS X, iOS, Android, and Linux.

The user interface automatically adjusts to the appropriate screen resolution, eliminating

3

the need for every application to have separate designs for desktop and mobile platforms.

oTree is built to last. The source code is highly organized and follows best practices,

allowing for easy further development and extension. Features are added sparingly and

with thought to long-term needs. It is also robust to changes in the market share of

various technologies. Some software tool sets require a particular software program to

run on the client machine, such as Windows, Java, or Flash. These tool sets risk becoming

obsolete when the market share of that platform declines. In contrast, oTree only requires

a web browser on the clients’ devices.

A. Dedicated or ad hoc laboratories

Researchers using oTree do not require dedicated experimental laboratories; they can

use existing computer laboratories or rely on tablets. Since touch input works with oTree,

tablets can be used without external keyboards, if desired. oTree can be run on low-cost

devices such as commodity tablets and mobile devices, thereby reducing hardware costs.

Several dozen tablets can be easily transported to any space able to accommodate the

participants (such as a classroom or meeting room) and be set up as a temporary lab-

oratory. Another advantage of not requiring a desktop operating system is less time

and money spent on maintenance and administration. Desktop operating systems offer

great flexibility, but they also require investments in IT tasks such as software installa-

tion (e.g., applications, drivers, anti-virus, and updates thereof) and configuration (e.g.,

security permissions and networking). In contrast, tablets and mobile operating systems

tend to require less administration, and can often run “out of the box” with minimal

configuration.

B. Online

oTree experiments can be conducted online. The experimenter provides each partic-

ipant a unique start URL. These URLs contain a random alphanumeric code so even if

participants communicated with one another, the link would not allow participants to

deduce the identity of players in a particular match. There is no set limit on the number

of simultaneous participants, thus large-scale market experiments are feasible. As is the

case for websites in general, running an experiment with many users requires a server

with sufficient resources (processor, RAM, and database). To test whether hardware re-

sources are sufficient and fast enough, we recommend testing the setup with bots (see

subsection II). Since the code of experiments (though presumably not all the instructions

and payouts) needs no change between online and laboratory settings, running an exper-

iment online can complement running it in the lab. It can serve as an initial setting for

a low-cost pilot and enable authors to secure funding for a more expensive lab experi-

ment. It could also be a setting for a pre-publication replication, a practice suggested by

Gelman and Loken (2014). Besides low costs, another advantage of online experiments

is that they are more scalable in terms of participant numbers. It is even possible to run

short experiments with many participants. This is likely an advantage over using a lab

where recruitment of large numbers of participants can be challenging due to the high

4

fixed opportunity cost of reaching the laboratory site. Amazon Mechanical Turk (AMT)

is a popular platform3 for conducting online experiments, and thus oTree integrates with

the AMT payment system.

C. Field

The field provides external validity and taps a subject pool other than students. It is

difficult to take a Windows-desktop networked environment to field settings. This has

required either ad hoc programming solutions or has limited the range of field experi-

ments. If a researcher uses existing computers in the field, no administration rights are

necessary on them. In laboratory and many field settings, one will want to prevent par-

ticipants from using the provided devices for purposes other than the experiment. Thus,

it is useful to lock down the devices to a web browser kiosk mode, meaning that a user

cannot open other web pages or leave the browser without the kiosk password. Internet

Explorer, Chrome, and Firefox all have built-in kiosk modes. Even in kiosk mode, it

typically could be a problem if a user presses the browser’s reload or back button or the

keyboard shortcuts. In oTree, these user actions simply result in a redisplay of the current

page in the experiment.

oTree can be used in field settings and subjects can use their own smartphones or

tablets. Another approach is to have a rolling suitcase full of tablets. In this way,

one can set up temporary laboratories to conduct artefactual field experiments. Hen-

rich et al. (2010) cautioned that the participant pool in university laboratories is usually

“WEIRD”—Western, Educated, Industrialized, Rich, and Democratic. With oTree it be-

comes easy to set up temporary laboratories in field settings where non-student subjects

are easier to recruit.

For some research questions, it is difficult to gather enough data in a laboratory set-

ting. Behavioral experiments that go beyond existence of a treatment effect can require

hundreds to thousands of subjects. Obtaining large numbers of participants is especially

difficult and costly if the experiment is short. With oTree, a team of research assistants

can take a suitcase with 40 tablets to a high school, a corporation, a trade fair, a train

station, or an airport and recruit convenience samples of hundreds of subjects in a single

day.

Field experiments are of crucial importance to answer certain questions and can serve

as small-scale tests for policy makers (Carpenter, 2005; Gneezy and Rustichini, 2000).

Both laboratory and field experiments have their advantages and shortcomings (Levitt

and List, 2007), but field experiments can serve as bridges between laboratory data and

naturally-occurring data (Levitt and List, 2009).

D. Hybrid settings

Experiments can be run in multiple labs in different parts of the world simultaneously

and participants need not be at the same location to interact with each other. In some

3See Horton et al. (2011) and Mason and Suri (2012).

5

experiments—such as those investigating the effect of beauty on peer effects and team

work—it is necessary to show a player the face of the counterpart. To eliminate unob-

served post-game interaction, the counterpart is in a lab in a different city. For oTree,

this is no more complicated than it would be if the two players were in the same room.

E. Classroom

Many social scientists let students play games to teach them game theory and mecha-

nism design.4 oTree can make lectures more vivid by having students play games during

class and homework more playful but also more easily monitored. Dynamic graphics

(see subsection II) can be projected in the classroom enabling discussion of the game

played. The connection to the server occurs seamlessly via the internet, so students can

use the classroom wifi, mobile cell coverage, or their home ISP. Mazur (2009) suggests

to “flip the classroom”, which requires hardware- or software-based clickers. oTree can

be a software-based, free clicker, and it is easy to add functionality that goes far beyond

that of traditional clickers.

To use oTree in the classroom, it is easiest to use the demo mode discussed in subsec-

tion II. Regardless of whether the demo mode or the regular session mode is used, each

student is given a unique URL at the beginning of the lecture or the course. The teacher

can use the session interface to project results in the classroom, and open the progress

monitor on a different machine to privately check how students are doing.

II. Features

oTree experiments are web pages using the HTML5 standard. To make it easy to pro-

gram visually appealing experiments, oTree uses the open source web front-end frame-

work, Bootstrap. For details, see section III on programming. Since experiments are

web pages, all that is needed on participants’ and the experimenters’ devices is a web

browser. On each device, one opens a URL that is unique to the respective participant

and session.

Paper-like treatment-specific instructions: Many experimenters hand out instruc-

tions on paper, even in computer-based lab or artefactual field experiments. oTree pro-

vides instructions that have a paper-like look (Figure 2). Typically, they will be displayed

by themselves on an introductory screen, and then redisplayed at the bottom of all subse-

quent screens, a fact which should be pointed out in the last sentence of the instructions.

To minimize experimenter demand it is desirable to hide from subjects which treatment

groups and dimensions exist, which is made easier by on-screen instructions.5

AMT integration: oTree provides integration with Amazon Mechanical Turk (AMT).

oTree authenticates users visiting from the AMT service, and then sends payments to the

correct AMT account. Researchers, however, must have an employer account with AMT,

which currently requires a U.S. address and bank account.

4See for example Rubinstein (1999)’s recommendations.
5On experimenter demand and non-deceptive obfuscation see Zizzo (2010) and Bardsley et al. (2010), fn.39.

6

FIGURE 2. PARTICIPANT SCREEN

Debug info: Any application can be run so that that debug information is displayed

on the bottom of all screens (see Figure 2). The debug information consists of the ID in

group, the group, the player, the participant label, and the session code. The session

code and participant label are two randomly generated alphanumeric codes uniquely

identifying the session and participant. The ID in group identifies the role of the player

(e.g., in a principal-agent game, principals might have the ID in group 1, while agents

have 2).

Testing with bots: A bot is a an artificial player executing a pre-determined strategy.

The strategy can be pure or mixed. For example, to stress test experiments, devices, or

servers, bots can be programmed to make random but valid entries. Tests with hundreds

of bots are completed within seconds and are thus able to test if everything was pro-

grammed correctly. Sometimes programmers might also discover errors in the logic or

the economics of their game (e.g., negative payoffs that might violate lab rules or par-

ticipation constraints). Axelrod and Hamilton (1981) invited submissions of strategies

to play a computer tournament of a repeated Prisoners’ Dilemma. In oTree, such an ex-

ercise becomes easy: each submitted strategy corresponds to a particularly programmed

bot. Then bots are instantiated in the next round according to their payoffs in the pre-

vious round. A bot can also be used for communication and teaching purposes. Rather

than having a student or reader play all the players in an n-player game, n-1 bots might

7

be used, and the n-th player would be the human.

Progress Monitor: The progress monitor (Figure 3) allows the researcher to monitor

the progress of an experiment. It features a display that can be filtered and sorted, for

example by computer name or group. The experimenter can see the progress of all par-

ticipants, the current action a participant is taking, and decisions made by participants.

Updates are shown as they happen in real time and cells that change are highlighted in

yellow. Because the progress monitor is web-based, multiple collaborators can simul-

taneously open it on several devices on premises or at remote locations. The admin

dashboard is automatically generated for each experiment. Columns included are: the

participant ID (the computer number in a laboratory setting), the participant code (a short

alphabetic code uniquely identifying the participant), and the current earnings of the par-

ticipant. Figure 3 displays a principal-agent game.

FIGURE 3. PROGRESS MONITOR

Session interface: While the progress monitor exists in all oTree experiments, the

session interface is an optional feature that is convenient to have in some experiments.

In many experimental settings, in addition to an experimenter monitoring progress for

which the progress monitor is intended, an experimenter needs to receive instructions or

provide input for the experiment. The session interface can instruct an experimenter on

what to do next and show text to be read aloud. The session interface can also request

input from the experimenter at a specific point in the session. For example, in an Ellsberg

experiment, the experimenter might fill an opaque urn prior to the session; the session

interface will remind the experimenter to show the urn to the participants, and tell the

experimenter when all participants have selected their bets and instruct the experimenter

to draw a ball from the urn. It will then ask the color that was drawn, so that oTree can

calculate participants’ payoffs.

Payments PDF: In a lab session, dozens of participants must be paid in a short amount

of time after the end of a session. To minimize waiting times for subjects, oTree auto-

matically generates a PDF with the earnings of each participant as soon as the earnings-

relevant part of a session is over (usually before an exit questionnaire).

Demo Mode: Experiments can be put online using the demo mode which creates

a web page with a static URL. Any visitor to that web page can play the game. For

example, for an Ultimatum Game, that web page would have two participant links, one

8

FIGURE 4. PAYMENTS PDF

for proposer and one for responder. Whenever someone new visits the static demo URL

of the game, a new session is instantiated meaning that new participant URLs are created.

If the game has a study-interface a new URL for that is also created. The demo mode

makes it possible to easily share a game with colleagues, referees, and other readers. For

example, we use it for our collection of sample games. Not only is the code of these

games available, but one can also play them at any time online: demo.otree.org. Using

bots, even multi-player games can be put online as supplementary, interactive material.

User input and validation: oTree supports all the standard input forms, such as radio

buttons, check boxes, drop-down menus, numerical entry, free text entry, date/currency

input, email, file upload, and image fields. To simplify usage of input forms, oTree

relies on Django, a widely used Python web application framework. Some custom form

widgets, such as Likert scales, go beyond what Django offers by default, but are included

in oTree. oTree users are not limited to what Django or oTree include, and can create

their own input forms. Figure 5 gives examples of input forms available.

If a participant does not fill out a required form or submits an invalid value, the form

is automatically re-displayed, highlighting and explaining the user’s error. The exper-

imenter can specify what answers are valid. In the case of a numeric input field, the

experimenter could, for example, specify that only numbers that are a negative odd inte-

gers between -51 and -1 should be valid. Among valid answers, there may be some that

are better or more rational than others, but the user can proceed with a chosen answer

and is not held back on that page. Validation is only intended for cases where the ex-

perimenter wants to prevent the participant from proceeding without making an answer

9

FIGURE 5. OTREE ON SMARTPHONE

satisfying some specified criteria.

Auto-advancing participants: Sometimes a single participant holds up an entire ex-

periment. The experimenter can force that participant to the next page by pressing the

auto advance button. This functionality is also useful for debugging or demonstration

purposes.

Customizable randomization and matching: Participants in a session are usually

partitioned into groups. First, there are treatment groups that allow participants play-

ing concurrently to be exposed to different experimental parameters. Second, there are

match groups, which are for experiments that involve interaction between two or more

participants (like a prisoner’s dilemma or public goods game). If a game is to be played

for multiple rounds, participants can either play with the same partners or with new part-

ners. Within a match participants may have different roles such as principal and agent.

oTree handles this by a matrix model, where each cell corresponds to a participant, and

the rows are groups, while the columns are roles.

Dynamic graphics: In many experiments it is useful to have visual content created

and updated during the experiment. In a market game, for example, participants could

be shown a graphic depicting the evolution of prices. For this purpose, oTree integrates

HighCharts, a JavaScript-based service.6 Figure 6 is a screenshot taken from round six

of a 50-round game.

Sample games: oTree includes a library of dozens of standard economics games. To

see these games and play them, go to http://demo.otree.org/demo/. Incidentally, these

games are put online using oTree’s demo mode.

Researchers can use the code of these sample games as templates for their own games.

Those who are developing completely new games are also encouraged to review the

sample games to learn about recommended coding styles.

Localization: Of course, oTree applications can be translated to multiple languages

and oTree has multiple features to ease translation and localization. A single switch

controls the language in which the application is currently displayed. This is useful in

6www.highcharts.com.

10

FIGURE 6. DYNAMIC GRAPHICS

many scenarios. For example, an experimenter can deploy the same experiment in the

U.S., Germany, and China with all participants reading in their native tongue. Or, one

can deploy an experiment in German but send English-speaking colleagues a demo link

in English and publish English screen shots in a paper reporting the experiment. oTree

is able to display monetary amounts in various currency formats (compare Figure 2).

Data export: All data in an experiment is saved to the server. Data from subsequent

sessions is appended. At any point in time the data can be downloaded in standard CSV

format using a web interface. In addition to participants’ choices and answers, the data

recorded includes the date and time a participant first accesses the experiment, time spent

on each page, the device’s IP address, and the current page of each participant or whether

he or she is finished.

Data auto-documentation: oTree auto-generates human-readable documentation from

the application’s code. It gives the name and data type (e.g., positive integer, string) of all

variables. If the variable can take a list of specific value, the documentation will print that

list showing both the internal name and the displayed name that the participant sees. As

most programmers comment in their code, oTree intelligently extracts these comments

and adds them to the documentation.

Open source: Sonnenburg et al. (2007) have argued that in scientific applications,

the source code should be available for inspection and available free of charge to enable

replication and extension. Janssen et al. (2014) point out that that binary software cannot

be checked by people other than the software authors. Lerner and Tirole (2005) argue

that open-source software will grow strongly, and that academic economists could both

learn and benefit from the model. Thus oTree is open source, meaning that the source

code is freely available and anyone can add to it subject to our open-source license terms

(http://www.otree.org/license). To develop oTree, we use GitHub, a web service familiar

to most programmers which hosts many open-source projects and offers source code

management and distributed revision control. Researchers can also use the oTree space

on GitHub to deposit their applications in addition to doing so at journal archives. This

11

enables future researchers to find numerous programs and build on them. Each time

an experiment is run, the server records what version of the code was used to run the

experiment. Every version of oTree is archived, and a programmer can revert to an old

version using the Git version control system.

III. Technology and programming

This section gives an overview of the oTree architecture and programming. For details,

and to get started, consult the website, oTree.org, download the source code that comes

with dozens of sample games, and consult the wiki at oTree.org/wiki. oTree’s program-

ming model follows the Model-View-Controller approach as discussed in Leff and Ray-

field (2001) for the specific case of web applications. The controller resides in the core

of oTree. Each oTree application consists of a models.py file, a views.py file and several

html-templates—one for each screen. The models.py file defines the players, variables,

and their data types; defines the validation logic; and specifies the arithmetic operations

to be performed. The view is given by the views.py file and the html-templates. The

views.py file defines the sequence of pages a participant sees, references the templates to

be used, and which variables are inserted into the templates.

A. Skills required to program in oTree

oTree is based on Python, a widely used programming language that is available as

open-source software from the Python Software Foundation. Python is often the first

language taught in introductory computer sciences courses.7 Learning Python might be

a good investment for empirical and experimental researchers as it is useful not only for

oTree, but for many tasks such as automatic data extraction and web-scraping. oTree is

designed to be simple and to be accessible to people with basic programming experience.

Researchers who prefer to hire a programmer for oTree, rather than code themselves,

should hire someone who knows Python. For best results, the programmer should also be

familiar with Django, which is the most popular Python-based web development frame-

work. A programmer familiar with Python and Django can be productive in oTree almost

immediately and program his/her first experiment within hours.

B. Hardware requirements

The only requirement on participants’ computers is a web browser capable of HTML5.

Anything that works in HTML5 can be included in oTree, for example hyperlinks, dialog

boxes, tables, images, audio, and video. Video recording is still experimental in HTML5.

JavaScript, Java, and Flash are supported by oTree, but programmers should be aware of

the limitations operating systems impose (e.g., Flash does not run on iOS devices). A

good recommendation for oTree experiments—and for any website—is to use JavaScript

if necessary, but not Java or Flash. Computer requirements for the server depend on

7http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-
top-us-universities/fulltext

12

the number of participants and the experiment; often a standard laptop will suffice. If

reliable internet is available, the easiest solution is often to rent a server in the cloud.

Such servers can be rented flexibly for a short time. This makes particularly good sense

if the experiment is run online or has high demands in terms of graphics. Prior to an

experimental session, it is advisable to test the server using bots; use more bots than the

maximum number of subjects planned for the session to be on the safe side.

C. Front-end

Since working directly with HTML5 for the user interface can be cumbersome, oTree

uses a free, standard front-end framework for websites called Bootstrap.8 Bootstrap

originates from Twitter, a private corporation, but has since been released as open source

and become ubiquitous. Thus, oTree users benefit from the continuous development of

Bootstrap independently of any updates to oTree itself. All standard HTML5 elements

can be beautifully and easily implemented in oTree thanks to Bootstrap. But, perhaps

most importantly, Bootstrap intelligently scales the layout of a website including buttons,

tables, alerts, error messages, and menus to different screen and device sizes. By default,

oTree has a neutral layout but experimenters can change the style by using cascading

style sheets (CSS).

D. Simple code

oTree’s code is remarkably simple as it builds on Python. Compared to z-Tree, oTree is

less specifically tailored to some experiments but arguably more general. In z-Tree, users

spend considerable time and effort implementing solutions to problems that have now

become easy using modern programming languages. To give an idea of the simplicity

of oTree, consider the standard experimental requirement of playing a random subset of

rounds in a game with many rounds, the code for this is shown in figure 7.9

i f s e l f . s u b s e s s i o n . round number == C o n s t a n t s . n u m b e r o f r o u n d s :

r a n d o m p l a y e r s = random . sample (s e l f . m e i n a l l r o u n d s () , 3)

s e l f . p a y o f f = sum ([p . t h e o r e t i c a l p a y o f f f o r p i n r a n d o m p l a y e r s])

FIGURE 7. OTREE CODE

E. Programming assistance

oTree works with standard code editors such as PyCharm.10 A code editor makes

programming easier by providing live error checking, syntax highlighting, interactive

8www.getbootstrap.com.
9To solve this problem in z-Tree one needs a list of traversal algorithms resulting in about 25 lines of code, compare

Bausch (2012).
10PyCharm has a free license for classroom use.

13

debugging (to test the effect of each line of code), and code reorganization functionalities

(such as the ability to easily rename a variable). oTree integrates with the auto-complete

functionality of PyCharm. Suggestions of variable names are presented as code is typed.

If oTree encounters an error during execution, an error page pinpointing the source of

the error is shown.

F. Collaborative development

oTree is developed using Git, a source-code versioning system. This encourages good

backup and versioning practices, and allows developers to synchronize files across com-

puters, develop collaboratively, manage separate branches, and merge synchronization

conflicts. We invite other researchers to join us on GitHub, but this is not a requirement

for using oTree.

IV. Conclusion

oTree is an open-source, online, and object-oriented software platform for implement-

ing social science experiments in the laboratory, online, in the field, or combinations

thereof. oTree is operating-system independent and deployable on any device that has

a web browser, including tablets and smartphones. The server can be an ordinary lap-

top. Once oTree is installed on that one machine, no further installation is necessary on

participants’ computers and experiments can be started instantly from any web browser

by opening the game’s URL. Experimenters can log in to the web-based progress mon-

itor to monitor the experiment. This flexibility allows for substantial cost savings in

laboratory hardware and maintenance, and also makes it easier for researchers to re-

cruit large numbers or particular kinds of subjects in ad hoc laboratory or field settings.

Using a single software for both online and lab experiments makes life easier for re-

searchers. Researchers with limited funds can first run their experiment online (where

participation fees are measured in cents or single digits) and then—armed with the data

and results—either raise more funds or decide to abandon the project as unpromising.

Running the same experiment in both online and lab settings also tests for the robustness

of results and may support the external validity of results. oTree enables a quick and

easy replication of research results at low cost. We hope that oTree will indirectly con-

tribute to fostering transparency and replication in the experimental social sciences. The

demo mode allows any researcher, referee, or student to understand any experiment eas-

ily by simply playing the game in a browser. Furthermore, the demo mode can be used

to quickly run and demonstrate games in the classroom. oTree is based on a sequence of

pages, each containing an optional form for the participant to fill out and submit. This

interactive model does not suit every use case. It is not real-time, in the sense that the

user interface does not respond within milliseconds to actions from other participants,

ConG (Pettit et al., 2014) would be more suitable here. Scientific advances are often

driven by the availability of new and cheaper scientific instruments—oTree aims to be

such an instrument.

14

REFERENCES

ANGERER, S., D. GLÄTZLE-RÜTZLER, P. LERGETPORER, AND M. SUTTER (2013):

“Childrens Cooperation and Discrimination in a Bilingual Province,” Working Paper.

AXELROD, R. AND W. HAMILTON (1981): “The evolution of cooperation,” Science,

211, 1390–1396.

BARDSLEY, N., R. CUBITT, G. LOOMES, P. MOFFATT, C. STARMER, AND R. SUG-

DEN (2010): Experimental economics: Rethinking the rules, Princeton University

Press.

BASU, K. (1994): “The Traveler’s Dilemma: Paradoxes of Rationality in Game Theory,”

The American Economic Review, 84, 391–395.

BAUSCH, A. W. (2012): “Introduction to z-Tree: Day 3,”

https://files.nyu.edu/awb257/public/slides/Bausch-ztreeslides3.pdf.

CARPENTER, J. P. (2005): “Endogenous Social Preferences,” Review of Radical Politi-

cal Economics, 37, 63–84.

CHEN, D. AND M. SCHONGER (2014a): “Social Preferences or Sacred Values? Theory

and Evidence of Deontological Motivations,” Working paper, ETH Zurich.

——— (2015a): “Testing Axiomatizations of Ambiguity Aversion,” Working paper,

ETH Zurich.

CHEN, D. L. (2012): “Markets and Morality: How Does Competition Affect Moral

Judgment,” Working paper, Duke University School of Law.

CHEN, D. L. AND M. SCHONGER (2014b): “A Theory of Experiments: Invariance of

Equilibrium to the Strategy Method and Implications for Social Preferences,” Working

paper, ETH Zurich, Mimeo.

——— (2015b): “Ambiguity Aversion without Asymmetric Information,” Working pa-

per, ETH Zurich.

COHN, A., J. ENGELMANN, E. FEHR, AND M. MARÉCHAL (2015): “Evidence for

Countercyclical Risk Aversion: An Experiment with Financial Professionals,” Ameri-

can Economic Review, 105, 860–885.

FISCHBACHER, U. (1999): Z-Tree-Zurich Toolbox for Readymade Economic Experi-

ments: Experimenter’s Manual, Citeseer.

——— (2007): “z-Tree: Zurich toolbox for ready-made economic experiments,” Exper-

imental Economics, 10, 171–178.

GELMAN, A. AND E. LOKEN (2014): “The Statistical Crisis in Science,” American

Scientist, 102, 460.

15

GNEEZY, U. AND A. RUSTICHINI (2000): “A Fine Is a Price,” The Journal of Legal

Studies, 29, 1–17.

HENRICH, J., S. J. HEINE, AND A. NORENZAYAN (2010): “The Weirdest People in

the World?” Behavioral and Brain Sciences, 33, 61–83.

HORTON, J. J., D. G. RAND, AND R. J. ZECKHAUSER (2011): “The Online Labora-

tory: Conducting Experiments in a Real Labor Market,” Experimental Economics, 14,

399–425.

JANSSEN, M. A., A. LEE, T. WARING, AND D. GALAFASSI (2014): “Experimental

Platforms for Behavioral Experiments on Social-Ecological Systems,” Ecology and

Society, 19.

LEFF, A. AND J. T. RAYFIELD (2001): “Web-Application Development Using the Mod-

el/View/Controller Design Pattern,” in Proceedings of the 5th IEEE International Con-

ference on Enterprise Distributed Object Computing, Washington, DC, USA: IEEE

Computer Society, EDOC ’01, 118–127.

LERNER, J. AND J. TIROLE (2005): “The Economics of Technology Sharing: Open

Source and Beyond,” Journal of Economic Perspectives, 19, 99–120.

LEVITT, S. AND J. LIST (2007): “What Do Laboratory Experiments Tell Us About the

Real World?” The Journal of Economic Perspectives, 21, 153–174.

LEVITT, S. D. AND J. A. LIST (2009): “Field Experiments in Economics: The Past, the

Present, and the Future,” European Economic Review, 53, 1–18.

LIST, J. A. AND D. LUCKING-REILEY (2000): “Demand Reduction in Multi-Unit Auc-

tions: Evidence from a Sportscard Field Experiment,” The American Economic Re-

view, 90, 961–972.

MASON, W. AND S. SURI (2012): “Conducting Behavioral Research on Amazon’s Me-

chanical Turk,” Behavior Research Methods, 44, 1–23.

MAZUR, E. (2009): “Farewell, Lecture?” Science, 323, 50–51.

PETTIT, J., D. FRIEDMAN, C. KEPHART, AND R. OPREA (2014): “Software for con-

tinuous game experiments,” Experimental Economics, 17, 631–648.

RUBINSTEIN, A. (1999): “Experience from a Course in Game Theory: Pre- and Post-

class Problem Sets as a Didactic Device,” Games and Economic Behavior, 28, 155–

170.

SONNENBURG, S., M. L. BRAUN, C. S. ONG, S. BENGIO, L. BOTTOU, G. HOLMES,

Y. LECUNN, K.-R. MULLER, F. PEREIRA, C. E. RASMUSSEN, G. RATSCH,

B. SCHOLKOPF, A. SMOLA, P. VINCENT, J. WESTON, AND R. C. WILLIAMSON

(2007): “The need for open source software in machine learning,” Journal of Machine

Learning Research, 8, 2443–2466.

16

ZIZZO, D. (2010): “Experimenter demand effects in economic experiments,” Experi-

mental Economics, 13, 75–98.

17

