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Abstract

The choice of the appropriate linear model before this can be used for planning and
decision making, has been the concern of many statistical workers. Most of the methods in
the literature aim at evaluating the descriptive ability of the candidate models.

In the present paper an evaluation scheme of the predictability of a linear model based
on a function of the discrepancy of the observed and the corresponding predicted values of
the dependent variable is studied. Based on this statistical function, the predictability of
a linear model is tested. Considering the ratio of such functions for two linear models, the.
predictability of these models is compared. Applications on real and simulated data are
also presented.

Key words: Linear model; Model Selection; Decision Making; Predictability; x? dis-
tribution; F ditribution.

1. Introduction
Most of the methods in the literature evaluate the descriptive ability of the
candidate models. An alternative approach is to evaluate the predictability of the
models. .

Let’s suppose that the data are taken as a time series and that data are given
until the time-point t. Then an appropriate linear model is estimated by the least
* square method. The methods that evaluate the descriptive ability of the candidate
models are based on the discrepancy between the observed and the estimated value
of the dependent variable, for all time-points t.

With respect to methods that evaluate the predictive ability of a linear model, an
alternative approach is the following. For every time-point a model is estimated by
the least square method. Then the predictability of the model is evaluated, based on
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the discrepancy of the predicted value for the t+1 time-point and the corresponding
observed value of the dependent variable.

Under some conditions, the sum of the squared discrepancies that evaluate the
predictability is x2-distributed. Based on this statistical function, one may test the
predictability of a linear model. Considering the ratio of the squared discrepancies for
two linear models, one is able to compare the predictability of two linear models. It is
proved that under some conditions this ratio is distributed according to a generalized
form of the F-distribution.(Panaretos et al. (1997))

In section 2 the methods that evaluate the predictive ability of one and two linear
models are examined. In section 3 two applications in crop-yield data are presented
as well a small simulation study. In section 4 the advantages and disadvantages of
the methods proposed are discussed.

2. The methods proposed
2.1. Estimation of Predictions

Consider the linear model :

where
Y. is an (£ x 1)vector of observations on the dependent random variable
> X, is an (4 x m)matrix of known coefficients where (¢, > m, |X;X,| # 0)
b is an (m x 1) vector of regression coefficients and
€ is an (£, x 1)vector of normal error random variables with E(e;) =0 and
V (er) = 0%I, , where I, is the (€, x £;) identity matrix. '
The prediction of the (¢ + 1)time-point is given by:

?chl= xt:—lbt 2)
where Bt is the least square estimator of b at time t given by:
~ ro -1,
b, = (xtxt) Xth (3)

and X,3, is an (1 x m)vector of values of the regressors for the (¢ + 1)time-point.
The variance of the prediction Y, {1 is then given by:

V(%n) = sxs, (xx) T XL+ @

s
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where ,
2 [Yt_x.tbt] [Yt—xtbt]
S; = (5)
[€e —m]
After the true value Y,; for the (¢ + 1)time-point has been observed, the model to
be used for predicting the value of the (¢ + 2)time-point becomes:

Yi = Xib+ e (6)

where now the matrices X, and Y1 are defined as :

X Y
o (3, v ()

with dimensions [(¢; + 1) x m] and [(¢; + 1) x 1] respectively.
The method just described is called the method of “one step-ahead prediction”
(see, e.g. Atckinson (1985)).

2.2. Testing the Predictability of a Linear model

Xekalaki and Katti (1984), used the difference between the observed and
the predicted value of the dependent variable on every time-point, to evaluate the
predictability of a linear model. Let .

Y,5, : the observed value of the dependent variable for the (¢ + 1)time-point

Y,?, : the predicted value of the dependent variable for the (¢ + 1) time-point.
Then it is known that:

~ , _1 o ,
Py -Yisa o (0, 82 (% (xix) "Xt +1)) ()

A statistical function that could be used for the evaluation of the predictive ability
of the model is the function:

1,}t-{?l - Ho—l (8)
St\/ (X (XiX0) 7 X, +1)

T4l =

where S; is given by (5).
Because of (7) and (8), holds : = 74y ~ N (0,1) 9 _
According to Brown (1975) and Kendall (1983) the above differences are indepen-

dent. So the statistical function: Y ri~exZ o (10)
t=1
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According to this statistical function we can test the hypothesis:

Hp : the model is appropriate for predictions
H, : the model presents lack of predictability

2.3. Testing the Predictability of two Linear Models.

Let A and B two linear models which are given by (1). Suppose that we have
observations for ny,ny time-points respectively and we want to choose the more ade-
quate model, that is, the one that has the greater predictability. A statistical function
appropriate for testing the hypothesis:

Hp : the two models give equivalent predictions
Ha : model A predicts better than model B or the opposite
was given by Panaretos et al. (1997) as

55 r2(4)
S ST
35 r2(B)

=1

ni n2 . ’
2. 7i(A), > r2(B) are not independent since the standardized residuals of predic-
t=1 t=1

tions come from the same response. Panaretos et al. (1997) considered the same n

number of time-points for the two models and proved that, for large n, the above
ratio is distributed according to a distribution that is a generalized form of the F-
distribution, the Correlated Gamma-Ratio distribution with p.d.f:

2n+1

[(2)= 128 g1 4 7)o (1-(1”—)22)_  0<Z<+4o0 (12)

B (k, k) Z+1

where

Z is the ratio of the squared standardized residuals of predictions

p is the correlation coefficient of the standardized residuals of predictions and

& is equal to n/2.
Using the Correlated Gamma-Ratio distribution we can test the hypothesis of the
equivalence of two linear models in giving predictions. In the following plot the p.d.f
of the Correlated Gamma Ratio distribution for =5 and different values of the cor-
relation coefficient is depicted. .
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Figure 1: P.d.f of the Correlated Gamma-Ratio distribution for £ = 5 and different values
of the correlation coeflicient.

3. Applications.
3.1. First Application.

The data of this application concern corn crop at the state of Indiana in the USA,
in the time interval 1931-1980. The crop yields for ten differerent districts (CRD) are
given and two different sets of variables have been used by the USDA to predict the
crop yield for the next years, for each of the district. We want to find out which model
is appropriate for predictions as well as which of the two models is more appropriate
for the specific district.

First we have to check if each one of the two models used, give satisfactory pre-
dictions. The p-values of the hypothesis tests for the appropriateness of each one of
the linear models for predictions, based on x2—distribution are given in table 1. (we
take into consideration only the estimations for the last 24 years).

Table 1 P — Values of the hypothesis test for the appropriateness o f

Models A and B for predictions, for the ten districts

Model A Model B

P! 3

S r2(A) | P-Value |3 r3(B) | P-Value

=1 t=1
Crd 10 | 58,8440 | 9,3 107° 92,7986 0,000
Crd 20 | 58,6818 | 98 1073 59,5954 7,310°°
Crd 30 | 24,6387 0,4256 35,3542 0,0633
Crd 40 | 69,6775 | 210° | 66,6917 | 710~
Crd 50 | 49,0058 | 1,891 103 | 51,0283 | 1,046 10~
Crd 60 | 55,9491 | 2,33 10~ | 32,7895 0,1086
Crd 70 | 39,9333 0,0217 49,0120 | 1,88 10~3
Crd 80 | 57,3969 | 1,47 104 | 52,2323 7,3 1074
Crd 90 | 61,4615 410~° 41,8104 0,01355.
Crd 100 | 46,5158 | 3,836 1073 | 73,9439 110°°
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Rejecting the null hypothesis of satisfactory predictions if p-value<0.05, we can con-
clude that only model A in Crd 30 and models B in Crd 30 and Crd 60 seem to be
adequate for predictions.

Further, we want to examine which of the two candidate models is more adequate
for predictions. The p-values of the hypothesis tests based on the Correlated Gamma-
Ratio distribution are given in table 2 (Here also we take into consideration only the
estimations for the last 24 years).

Table2 : P~ Valueso f the hypothesis test that compares the predictability
of the Models A and B for predictions, for the ten districts

P-Value | Best Model

Crd 10 | 0,0355 Model A
Crd 20 | 0,4656 | Equivalent
Crd 30 | 0,0337 | Model A
Crd 40 | 0,453 | Equivalent
Crd 50 0,45 Equivalent
|- Crd 60 | 0,0963 Model B
Crd 70 | 0275 | Equivalent
Crd 80 | 0,353 | Equivalent
Crd 90 | 0,1068 | Equivalent
Crd 100 | 0,0868 | Model A

According to the results of table 1 and 2, we can conclude that we should consider
only model A for Crd 30 and model B for Crd 60.

For the above models, we also estimated the coefficients RZdj to evaluate the de-
scriptive ability of the models. According to Rf‘h- all models A and B describe the
given data in a very satisfactory way since all Rfd]. are greater than 0.9. Comparing
these results with those of table 1 we notice that, in most cases, the models that
describe the data well do not forecast well.

3.2. Second Application.

The method of testing the predictability of one and two linear models was applied
to another set of real data used by Drapper and Smith (1981, p.407). The data refer
to corn crop yields at the state of Iowa in the USA, in the time interval 1930-1962.
The true crop-yield for every year was given and nine variables were used as possible
predictors of the crop yield.
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Firstly, we applied the classical backward elimination procedure and for the models
risen we estimated the Y r# statistic. The classical backward elimination procedure
ives the model with variables {1,2,6,9} as the better one (RZ2;=0.68) while the
" 72 statistic gives the model with variables {1,2,3,4,5,6,8,9} as the model with the
est predictability which is also statistically equivalent with the one with variables
1,2,3,4,5,6,9}. So one may choose the latter because it is simpler.

We may notice that the statistics of the two procedures give different models as
he most appropriate. :

{n Alternative Backward Procedure

\n alternative method is to apply the Backward elimination procedure using the
tatistic Y 77 as a criterion for eliminating variables. That is :

‘We estimate the statistic 3 r7 for the full model.

‘We estimate the statistic }_ 72 for all the models that arise by eliminating one pre-
lictor. :

‘We consider the model that presents the smallest statistic Y r? (say, the one that
rises from the eliminaton of X;).

‘We test statistically if this model is appropriate for predictions according to x?2- dis-
ribution as well as whether this one provides better predictability than all the other
onsidering also the full model, according to Correlated Gamma-Ratio distribution.
If the model that presents the smallest statistic is better than all the others we
inally eliminate variable X;, as “variable that reduces the predictive ability of the
nodel” and we continue the procedure.

If the tests indicate an “inappropriate model for predictions”, or conclude equiva-
ence, we stop the procedure.

A disadvantage of the method is that it stops quite quickly, retaining many vari-
ibles in the model. Applying the above method to the Iowa data, we eliminated the
yredictors as follows: 7, 9(*), 4, 3, 8, 2, 6, 5 (from the second stage on, we continue
he procedure, without testing statistically).

3.3. A Simulation Study

The algorithm for generating a Correlated Gama-Ratio variable amounts to the
ollowing steps:

*Generate a sample of n observations (X;,Y;) on the vector (X,Y) that is distrib-

1ted according to the N([ g } , [ ; i’ ])distribution.
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*Compute Ry = EX? and Ry = Zn: Y? and obtain Z=Ryx / Ry.

i=1 i=1
Simulating 150 samples for di:‘ferent values of x and correlation coefficient we
rejected the null hypothesis of the equivalence of the models in 17 cases.

4. Discussion.

In the present paper we studied methods that test the predictive ability of one
linear model as well as methods that compare the predictive ability of two competing
linear models based on the x% and the Correlated Gamma-Ratio distribution.

Comparison of these methods with those that evaluate the descriptive ability of
one and two linear models indicates that the first are more appropriate for data that
come from a time-series. Besides, the methods described here take into consideration ‘
all the linear models that arise in every time-point while the other methods just the
model containing all the observations.

The Correlated Gamma-Ratio test presents some advantages compared with the
other model selection procedures. We do not have to know the functional form of the
competing linear models. On the other hand it is appropriate for both nested and
non-nested or overlapping linear models.

According to the results of the applications, a drawback of the use of the Corre-
lated Gamma Ratio test is that it frequently results in equivalence of the predictive
ability of the compared linear models.

Many statisticians believe that if a model describes well the data then it also pre-
dicts well. The results of the applications of this paper do not support this view. Our
results indicate that a model that fits well the data may not predict well. Besides it
seems that a parsimonious model is most likely to give correct predictions and that
an ovefitted model does not predict well.
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