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Abstract

The phenomenon of high volatility in financial markets stemming from the increased
complexity of financial instruments traded, as well as the evidence of losses due to natural and
man-made catastrophes, highlight the need for sophisticated risk management practices. The
analysis concerning the statistical distribution of extreme events (e.g. stock market crashes), is
considered to be important for modern risk management. In this review paper, an introduction
to the basic results of Extreme Value Theory (EVT) is made. More specifically, the
methodological basis of EVT for quantile estimation is introduced. Moreover, EVT methods
for estimating conditional probabilities concerning tail events, given that we incur a loss.
beyond a certain threshold u, are presented. Finally, the application of the theory is
demonstrated by considering an example using equity return data.

Keywords: central limit theorem, standard extreme value distributions, quantiles, mean

excess function, Value-At-Risk, shortfall distribution; peaks over threshold-method.

1. Introduction

The presence of high volatility in financial markets and in general the huge financial costs
arising from the existence of extreme events, have resulted in the establishment of Risk
Management as a key operation in every financial institution or corporation. The banking and
insurance industry is continuously under the development of new products that will manage
financial risk. Methods such as the estimation of Value-at-Risk (VAR) and the so-called
shortfall have been introduced in the world of finance.

Given the significance of extreme events, Extreme Value Theory (EVT) yields methods
for quantifying such events and their consequences in a statistically optimal way. In general,

EVT is a subject whose motivations match the following points: a) Risk Management is
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interested in methods leading to estimation of tail probabilities concerning tail events and
quantiles of profit-loss distributions and b) Financial data exhibit fat tails.

Following this small introduction on the importance of EVT in the new risky environment

of finance, we present an outline of our review paper. Firstly, section 2 serves as an
introductory part where the relation between EVT and the Central Limit Theorem (CLT),' as
well as some main results of EVT, are presented. Secondly, in section 3 we introduce the
analysis on tail and quantile estimation. More analytically, this section starts with an
introduction on the statistical inference of the p-quantile and continues with a description of
two main graphical techniques for statistical data fitting. Moreover, a subsection is devoted on
_the VAR-measure and the “shortfall” d.f., whereas a description of the Peaks over Threshold
(POT) model and method closes section 3. Finally, section 4 presents a description of an

application of EVT on equity return data, whereas in section 5 some conclusions are drawn.

2. Basic extreme value theory

' In Embrechts, Bassi and Kafetzaki (1997), a comparison is made between the CLT and
the main results from Extreme Value Theory (EVT). The reasons for this comparison is that
CLT forms the mathematical background on which EVT is based.

More specifically, according to CLT, we suppose that X,..., X, are independent and
identically distributed (i.i.d.) random variables with distribution funcﬁon (df)F. If S,is the
sum of Xi,..., X, then the CLT solves the following problems:

» The finding of constants a,>0 and b,e R so that, for given F it holds:
(Subn)o,—2 5 G, n—se, ¢y

where: G is a non-degenerate d.f.

o The characterization of the d.f. G in (1) above.
» The solution of the domain of antraction problem or the finding of all the d.f.’s F that

satisfy (1) given a possible d.f. G and appropriate sequences (0,) and (by) (i.e. Fe D(G)).

EVT starts appearing when S, is replaced by M, = X, = max (Xi,..., X,) where M,
represents the maximum of a sequence of n (i.i.d) r.v’s. The area of study for EVT is the
limiting distribution of Mj, appropriately scaled. Related to the above is the following
theorem on the limit laws for maxima that is due to Fisher-Tippett (1928) whose result forms ;
the basis of classical extreme value theory: '

Theorem 2.1. Suppose that X,, ..., X, are i.i.d. r.v.’s with d.f. F. If there exist suitable norming
constants 0,>0 and b,e K 'so that: B

M,-b,) /o, —25G, n—> e, * (2)
where Gis a non-dégenerate d.f., then G(x) belongs to the type of one of the following three
df.’s:
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1. Gumbel: Al =expl-e™}, xe®R 3)

0, x<0
2. Frechet: PD,.(x¥) = fora>0 (€]
exp{-x"%}, x>0
exp{—-(-x)*}, x<0
3. Weibull: ¥, (x) = for >0 6))
1, x>0

The above three d.f.’s are called standard extreme value d.f.’s and the corresponding,
1.v.’s are called standard extremal r.v.’s.
However, a one-parameter representation of the three standard cases in one family of

d.f’s is widely accepted as the standard representation and is referred to as the generalized

extreme value distribution (GEV) H ¢ {x) . Thatis :

H,(x) ={exp{——(1+§x)’1/§} ¥ f;eO; where 1+ &x>0 (6)
exp{-exp{-x}} f&=0 , i

Thus, the case & = -of' <0 corresponds to the Weibull distribution, £ = 0 to the Gumbel
distribution and & = ! >0 to the Frechet distribution. ‘
However, we can also refer to the related location-scale family He , y as GEV by

replacing the argument x above by (x-u)/y for pe R, y>0. Thus, we have:
X~—~ X —
H,(x)=H;,, (x) = exp{— 1+¢& ”)"/5}, 1+¢&

where the parameter 6 = (§, b, ¥) € RxRxR, consists of a shape parameter &, location

>0 . ()

parameter i and scale parameter .

3. Tail and Quantile Estimation
The use of extreme value theory in finance and insurance applications can be more easily
justified by the fact that it forms the methodological basis on which tail and quantile

estimation is based.

3.1. An introduction of the statistical inference of the p-quantlle
Suppose F is a d.f. of a real-valued r.v. X Given a threshold probability pe (0, 1), the p-

quantile x, is defined as:
x~=F(p) = inf{xe R: F(x) 2 0} ®)
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For the statistical inference of the p-quantile Xp we suppose that the data X, ..., X, are i.id.
with distribution function F. If we take the order statistics of the data Xj, ..., X, an obvious

estimator of the p-quantile x, fork = 1, 2,..., n is the following:

| Xpa=Fa"()= Xip, for 1-(kn) <p < I-(-1)/n, ©)
where Xy , is the kth largest observation
F.“(p) is the quantile function of the empirical d.f. F, given by:
FaX)=@{i: 1< i € nand X;<x})/n, xeR

Using the CLT we can show that for a distribution function F with continuous density f with

f(x,)#0 and k = k(n), so that n-k = np + o(n 12 ) with o(n 1ﬂ) a negligible quantity, it holds:

Xpa~ AN (X5, (P(1-D)V(nf% (xp))), (10)
which means that the estimated p-quantile is asymptotically normally distributed. The
asymptotic distribution of this estimator allows for estimation of p close to 1 given that
sufficient data are available. As a result, an important point is the choice of k = k(n).

Furthermore, using the i.i.d. condition on Xj, ..., Xy, the following confidence interval can

be obtained for i < j:
J-1
PX ,<x,<X, )=3()p""(1-p) (11)
r=i

However, exact confidence intervals can be produced for n not too large. Moreover, p has to
be such that x, lies within the range of the data so as to obtain exact confidence intervals.

For quantile estimation for p close to 1 extra (parametric) conditions on F must be
assumed and therefore our data must be statistically fitted in order to see whether these
conditions hold. Standard methods for data fitting include likelihood techniques, goodness-of-
fit procedures and Bayesian methods. Two main graphical techniques for data fitting are the
following: ;

* QQ-(or quantile) plot: This technique represents a graphical goodness-of-fit procedure.
From the QQ-plot we can get a quick assessment of the plausibility of certain distributional
model assumptions. The main use of it is when we want to test whether a sample Xj, ... , X;
comes from a certain distribution. More specifically, we take the ordered sample and we
suppose that a parametric model F(.;0) is fitted to X;, ..., X,. The next step involves the
construction of a plot from the points:

) {(Xk,n,F(_(pk'n)) . k=1,...,n}
where Xy, is the kth largest observation and (p k) @ plotting sequence which is often taken

as: py .= (n-k+1)/(n+1), or some variant of this.
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A good fit results when a straight line is observed on the plot. In other words, if a certain
distribution provides a good fit to our data, then this QQ-plot should look roughly linear.
Model deviations (like heavier tails, skewness, outliers, ...) can be easily observed by the plot.
¢ Mean-excess ﬂot:’This second graphical technique that particularly enables discrimination

in the tails, is based on the quantity e(u) known as the mean excess function (mef):
e(w)=EX-ufX>u), uz20 (12)

and its empirical counterpart given by

> (X, - )
e =2 (13)
2 I {X;>u}
where y* = max(y, 0) and I [, denotes the indiChtor function of A which means that
I, (x) = 0 for x¢ A and I,(x) =1 for xe A., where A={ X, > u}.

By plotting {(u, e, (u)):u 2 0} we can distinguish between short and long-tailed distributions.
More specifically, long-tailed d.f.’s exhibit an upwards sloping behavior, exponential-type -
d.f.’s are characterized by a constant mean excess plot, whereas the plot for short-tailed data
shows a decreasing-pattern (decreases to 0).

Given this first approach on tail and quantile estimation, its use in finance is highlighted

in the next section.

3.2. On the Value-at-Risk (VAR) measure and beyond

A definition of VAR should precede our analysis. A technical and clearly stated definition
for the VAR of a portfolio is the following: VAR is an amount of money such that a portfolio
will lose less than that amount over a specified period with a specified probability.

The VAR of a portfolio can be translated as a possible extreme loss that results from
holding the portfolio for a fixed period using as a measure of risk the volatility over the last
100 trading days (P&L-distribution). In other words, if X is a random variable representing the
portfolio losses, we are interested to calculate, for a given (small) confidence level a, the level
(0-quantile) w,, so that P(X >u,,) = 1-F(u, ) = o, assuming that we have absolute loss data.

It is obvious that for sufficiently small values of o, this quantile estimation will typically
be outside (or at the edge of) the range of available data. Consequently, extrapolation beyond
the range of the data is required. On the other hand, having determined the level u, , another

area of interest concerns the estimation of the potential losses above u,, . Therefore, we need
to estimate the conditional probability d.f., also known as the excess d.f. Fy, ®):

F,, () =PX-UpSxIX>1,), x20, (14)
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An estimate of this conditional probability will (in the case of sufficient data) involve the
losses Xy, ..., Xk-1.ns Xkn above some (large) loss Xy, 5. If our data are insufficient, a suitable

model or approximation for (14) has to be found. This approximation is the (conditional) mean
excess loss given that a loss above U, (VAR) has occurred. This quantity, which is known as

“shortfall” or “beyond VAR” within the finance industry, is given by the following equation:
elu,)=BX-u, X>u,) 15)

Given this background, the main result concerning the estimation of conditional (also
known as overshoot) probability d.f.’s (14) assuming that our losses are denoted as positive
(one-sided distribution), is presented by the following theorem:

Theorem 3.2.1. Suppose that F is a d.f. with excess distributions F ,, u>0. Then, for (e 5,

Fe MDA(H ;) if and only if there exists a positive measurable function B(u) so that:

Im ap I_“u(x)—(—}gp(u)(x) =0, where (16)

ulxp 0<x<xp-u' -

Fu(x) = 1-F,(x) isthe tal of F,
xp=sup {x€ K : F(x) < 1} is the right-endpoint of a df F,

Geg (x) is the generalized Pareto distribution (GPD) with parameters £ R,

P>0 and is defined as :

1-(1+&c/B)™*, =0
Gyl = (17
1- exp(- x/ B), éE=0
This theorem answers the crucial question of estimating beyond VAR (or shortfall). In
other words, under reasonable conditions on F, there exists a canonical clasS of d.f.’s (GP
d.f.’s) approximating the excess d.f. in (145. The so-called threshold u has to be taken large
(uTeo). Therefore, from this approximation an upper-tail estimator can be obtained.

For x, u 20, we have:

F(u +X)= F. (x)ITTu) ~Gepw (x)I_’(u) (18)
Flu+x) =52fa(x)£r;‘, 19

where &, are estimators of £ and B that can be obtained through various methods

N, =#{i: 1<i<n, X, >u}: the number of exceedances.
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From the estimate of F above (19) we can obtain the quantile estimator

A
A

A ) -¢
Xp =u+l (—n—(l—p)) -1 (20)
% N

3.3. Peaks Over Threshold (POT) model and method

1. POT model: The model assumes that excesses of an i.i.d. sequence over a high threshold u

u

occur at the times of a Poisson process and the corresponding excesses Over u are
independent and follow a GPD. Moreover, the model assumes that excesses and
exceedance times are independent of each other.
2. POT method: The method is described by the following steps:
Step 1. The data are X, ..., X,, and for a given threshold u, denote N the number of
exceedances of the level u.
Step 2. Set a value for u that is large enough so that the approximation (18) is valid. Here, we
have to take into account that a value of u too high results in too few exceedances and
consequently high variance estimators. On the other hand, for u too small, estimators become
biased. One method to determine the optimal value of u is to look for a u-value above which
the m.e.f. looks linear.
Step 3. Attempt to fit the GP distribution to the excesses over a level u. This process will
involve estimation of the parameters &, through estimation procedures such as the
maximum likelihood method. Following this process, a tail fit (19) and the estimator for the

quantile x P (20) can be obtained.

Step 4. Repeat step 3 for various u-values. This involves refitting a model for each u-value.

4. A Description of an Application on Equity Return Data

Embrechts, Resnick and Samorodnitsky (1997), applied some of the techniques from
EVT on daily equity return data from the automobile company BMW. The chosen period was
from January 2, 1973 until July 23, 1996. They focused on the left tail (i.e. negative daily
return values) of the d.f. F of their data. Their sample resulted in n = 2770 observations.

They first constructed the mean excess plot that showed an increasing behavior from u
equal to 0.02 and above, clearly indicating fat (even Pareto type) tails. Using the maximum
likelihood method, they estimated & and B as a function of u and k (the number of
exceedances of u). For example, the estimate of the shape parameter € was found to have a
value of 0.223 that corresponds to a Pareto tail with value 1/ § = 4.484. From these estimates,

using (19), an estimate of the (conditional) excess d.f. Fu (x) can be plotted. More specifically,
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they plotted the GPD-fit to the shifted d.f. Fu (x-u), x 2 u, on log-scale. From this plot, one can
find the conditional probability of high excesses given that we have an exceedance of u=0.02.
They also wanted to estimate the tail of the unconditional d.f. F(u) which yields
information on the frequency with which a given high level u is exceeded. Therefore, using
the parameter estimates corresponding to u=0.02, ‘the tail-fit for F(u) (as in (19)) on doubly -
logarithmic scale was plotted. In general, though they extended the GPD-fit to the left of
u=0.02, only the range above this u-value is relevant. The fitting method is only designed for
the tail. Below u (where typically data are abundant) one can use a smooth version of the
empirical d.f. From this last plot, quantile estimates were deduced, together with 95% |

confidence intervals (c.i.’s). For example, the estimate for the 99.9% quantile Xo.999 (or Ua=

Uo.o1) was found to be 0.081. The 95% c.i. for X099 was found to range between 0.070 and
0.101.
5. Conclusion

In this review we attempted to summarise the most basic areas of EVT by presenting the
mathematical analysis behind it. We also examined how EVT can be used in order to answer

questions dealing with extreme cases within the finance industry.
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