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1. Introduction 

 
Control charts are the tools of statistical process control for detecting a 

change in a process. The most known are the Shewhart control charts that where 

developed for controlling the mean and variance of the distribution our 

observations follow. Shewhart charts perform satisfactorily for detecting large 

shifts in the process. However, for small shifts they had poor results. This fact led 

Page in 1954 to construct CUSUM control chart for detecting small and moderate 

shifts in the process. 

Control charts have found great applications in industry and especially the 

ones for the normal distribution. Nevertheless, a process may not follow the 

normal distribution-it may be positive or right skewed. Morrison (1958), Joffe and 

Sichel (1968) and Kotz and Lovelace (1998) provided examples of processes 

that follow the lognormal distribution. 

Morrison (1958), Kotz and Lovelace (1998) have developed Shewhart control 

charts for the lognormal distribution. Joffe and Sichel (1968) constructed a 

control chart for testing sequentially arithmetic means from a lognormal 

population. In this paper, CUSUM procedures are developed for the lognormal 

for testing the mean and variance. In addition, a chart based on the sequential 

probability ratio test (SPRT) is illustrated.  
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2. Lognormal distribution 

 

A positive random variable X is said to be lognormally distributed with two 

parameters µ and 2σ  if Y=lnX is normally distributed with mean µ and variance 

2σ . The probability density function is  
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There are four forms of the lognormal distribution as Crow and Shimizu        

(1988) present in their book: 

(a) The two-parameter distribution Λ(µ, 2σ ) that describe positive skew data with 

a lower threshold of zero. 

(b) The three-parameter distribution Λ(τ, µ, 2σ ) that describe positive skew data 

with a lower threshold of τ. This form can be reduced to the two-parameter 

case by the transposition Y=X-τ. 

(c) The three-parameter distribution Λ(θ, µ, 2σ ) that describe negative skew data 

with an upper threshold of θ. This form can be reduced to the two-parameter 

case by the transposition Y=θ-X. 

(d) The four-parameter distribution Λ(τ, θ, µ, 2σ ) that describe skew data with 

upper and lower thresholds of θ and τ. 

 
In the following, we will deal with the two-parameter distribution. The three-

parameter may occur in practice but with the suitable transformations as it is 

shown in (b), (c) it reduces to the two-parameter one. The four-parameter is not 

likely to have applications in process control. 
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3. CUSUM Chart 

 
3.1. The general exponential family. 

 
The probability density for any member of the exponential family with a single 

parameter θ can be written as: 

{ })θ(d)y(c)θ(b)y(αexp)θ|y(f ++=  

where θ is the parameter of the distribution and Y is the random variable. The 

joint density for a random sample of Y, where Y is a member of the exponential 

family, is given by: 

f(y|θ)= 









++∑∑

==
)θ(nd)y(c)θ(b)y(αexp

n

1i
i

n

1i
i . 

Suppose we want to test whether the process has gone from an in-control 

parameter value 0θ  to an out-of-control value 1θ . We will use Wald’s sequential 

probability ratio test (SPRT) because CUSUM is a sequence of Wald sequential 

tests [Page (1954)]. Then the variables iZ  are: 

 

{ } { })θ(d)θ(d)θ(b)θ(b)Y(αlnZ 0101i)Y(f
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The CUSUM scheme is: 

( )n1nn ZD,0maxD += −  

and it gives an out-of-control signal if 

ADn > . 

Therefore the CUSUM scheme is: 

 

{ }( ))θ(d)θ(d)θ(b)θ(b)Y(αD,0maxD 0101i1nn −+−+= −  

and it signals when  

ADn > . 
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CUSUM by dividing it with this quantity and  
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( )kXC,0maxC n1nn −+= +
−

+  

 

where ( ))θ(b)θ(b/DC 01nn −=+  and the CUSUM signals if ++ > hCn  where 

( ))θ(b)θ(b/Ah 01 −=+ . If )θ(b)θ(b 01 − <0 then we rescale CUSUM by dividing it 

with this quantity and  

 

( )kXC,0minC n1nn −+= −
−

−  

 

where ( ))θ(b)θ(b/DC 01nn −=−  and the CUSUM signals if −− −< hCn  where 

( ))θ(b)θ(b/Ah 01 −=− . 

 

3.2. CUSUM schemes for the lognormal distribution 

 

3.2.1. σ known 

 

Let σ be fixed and known. The above density function is written in the form of 

the exponential family of distributions as follows: 
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Then α(x)=lnx, b(µ)=
2σ

µ
, d(µ)= 

2σ2

µ− . Therefore 
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The CUSUM scheme for the mean when 01 µµ >  will be: 
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The scheme signals when ++ > hCn  where +h  is chosen to give a specified ARL. 

 The CUSUM scheme for the mean when 01 µµ <  will be: 

0C0 =−  

)kXlnC,0min(C nn1n −+= −−
+  

−k =
2

µµ 01+  

The scheme signals when −− −< hCn . 

 

3.2.2. µ known 

 

Let µ be fixed and known. The density function of the lognormal is written in 

the form of the exponential family of distributions as follows: 
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The CUSUM scheme for the variance when 01 σσ >  will be: 
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If one looks at the CUSUM schemes for the variance, he will notice that it is 

affected by changes in µ as well as by changes in σ. However, we monitor µ 

separately, therefore we are able to distinguish changes in the CUSUM chart for 

the variance caused by µ. 

 

3.3. A general result 

 
In the lognormal CUSUM for monitoring σ, I have shown that the lognormal is 

a member of the exponential family with parameters α(x)= ( )2µxln − , b(σ)=
2σ2

1− , 

d(σ)=-lnσ. Let Z= ( )2µxln − . Then the distribution of Z is: 
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3.3.1. Monitoring 2σ  in the lognormal CUSUM 

 

It is known that if Y~Γ(α,β) and Z=aY then Z~Γ(α,aβ). Therefore 

2σ
1 α(x)~ ( )2,Γ

2
1 . If we want to monitor 2σ  we just have to monitor for a scale 

change of the gamma distribution from β to +β . Hawkins and Olwell (1998) have 

constructed CUSUM schemes for the gamma distribution. 

 

3.3.2. Monitoring σ in the lognormal CUSUM 

 

From the definition of the lognormal distribution, it is known that  

lnx~N(µ, 2σ ) and as a result )1,0(Ν~σ
µxln −

. Hence monitoring σ is just the case 

of monitoring for σ in the standard normal distribution. Hawkins and Olwell (1998) 

have also constructed CUSUM schemes for the normal distribution. 

 

3.4. Wald’s sequential probability ratio test (SPRT) 

 

CUSUM control charts, as Johnson (1961) pointed out, are roughly equivalent 

to the sequential probability ratio test (SPRT). SPRT, as it will be shown in the 

sequel, leads to an acceptance plan. This acceptance plan has been used for 

determining the in and out-of-control limits in CUSUM procedures. 

Suppose that we take a sample of m values mx ,...,2x ,1x , successively, from 

a population f(x,θ ). Consider two hypotheses about θ , 0θθ:0Η =  and 

1θθ:1Η = . The ratio of the probabilities of the sample is: 
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We select two numbers A and B, which are related to the desired α  and β  errors 

in a way we will explain later. The sequential test is set up as follows: 

 

         as long as B< mL <A we continue sampling 

at the first i that mL ≥A we accept 1Η  

at the first i that mL ≤B we accept 0Η  

 

An equivalent way for computation is to use the logarithm of mL . Then, the 

inequality becomes: 

 

logB <∑
=

m

1i

)1θ ,ix(flog -∑
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)0θ ,ix(flog < logA 

 

This family of tests is referred to as sequential probability-ratio tests. 

If iz =log{ })0θ ,ix(f/)1θ ,ix(f  then sampling terminates when  

 

Αlogiz ≥∑  

or 

Βlogiz ≤∑  

 

The iz ’s are independent random variables with variance, say, 2σ >0. Obviously 

∑
=

m

1i
iz  has a variance m 2σ . As m increases the dispersion becomes greater and 

the probability that a value of ∑ iz  will remain within the limits logB and logA 

tends to zero. The mean z  tends to a normal distribution with mean 2σ /m and 

therefore the probability that it falls between (logB)/m and (logA)/m tends to zero. 

Consider a sample for which mL  lies between A and B for the first n-1 trials 

and then mL ≥A at the nth trial, so we accept 1Η  (and reject 0Η ). By definition, 

the probability of getting such a sample is at least A times as large under 1Η  as 
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under 0Η . The probability of accepting 1Η  when 0Η  is true is α  and that of 

accepting 1Η  when 1Η  is true is 1-β . Therefore: 

 

1-β ≥Aα  

or 

A
α
β1−≤ .                                                      (3.4.1) 

 

Similarly, we see that when we accept 0Η  
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Wald (1947) showed that for all practical purposes the above inequalities hold as 

equalities. Thus: 
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kind for the limits a and b are 'α  and 'β . Then, from (3.4.1): 
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Furthermore 
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βα'β'α +≤+ .                                                  (3.4.5) 

 

In practice α and β are small. From (3.4.3) and (3.4.4) we see that the amount 

that α’ can exceed α or β’ exceed β is negligible. In addition, from relation (3.4.5) 

we see that either α’≤α or β’≤β. Therefore the use of α and β in place of Α and Β 

can only increase one of the errors and only by a very small amount. 

 

3.4.1. Application of the SPRT to the CUSUM for the lognormal distribution 

 

Based on the theory of Wald we will derive a CUSUM scheme for the 

parameter µ of the lognormal distribution. Define 0L  and 1L  to be the likelihood 

functions of the random sample under 0Η  and 1Η , respectively, and let the 

likelihood ratio 01 LL be denoted by Λ. That is: 
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and Λ is 
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We assumed that σ is known which is reasonable if control charts have been 

used to monitor the process for a period. Define A and B as follows: 
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We accept the lot if Λ≤Β. We reject the lot if Λ≥A. If B<Λ<A we continue 

sampling. After some calculations, we conclude that 

 

(a) Accept the lot if Y≥ 1Y =nS+ 1h  

(b) Reject the lot if Y≤ 2Y =nS+ 2h  

(c) Continue to sample if 2Y <Y< 1Y  
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In the above three cases 1h  and 2h  are parallel lines referred as acceptance and 

rejection lines respectively. The results were developed for the case of 1µ > 0µ  

meaning that 1µ  is an upper specification limit. In the same way, we can derive 

results for the case 1µ < 0µ . 

 

4. ARL performance 

  

Control charts are usually evaluated using the average run length (ARL). ARL 

is the average number of samples until signal. A computer program was written 

for the computation of the ARL based on the theory of Brook and Evans (1972). 

In this program the values of k and h are provided and we receive the value of 

the ARL. In the following several results of the program are presented and also 

the effect of the decision interval h is illustrated. The symbols µ and σ are the 

parameters of the lognormal distribution. 
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µ=1 σ=0,6 

K h ARL 

11 5 632.6 

11 4 449.8 

11 3 316.1 

10.5 5 532.3 

10.5 4 376.6 

10.5 3 263.1 

µ=0 σ=1 

K h ARL 

11 5 358.5 

11 4 294.8 

11 3 240.2 

 

5. Conclusion 

 

In this paper, a new CUSUM control chart for the lognormal distribution is 

presented. The close relationship of the CUSUM and the SPRT is also shown in 

detail. Various versions of the new chart for monitoring σ are illustrated. Finally,  

a computer program for comparing different control charts using average run 

length (ARL) is provided. 
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