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Abstract

We study stable behavior when players are randomly matched to play a game, and before

the game begins each player may observe how his partner behaved in a few interactions in

the past. We present a novel modeling approach and we show that strict Nash equilibria are

always stable in such environments. We apply the model to study the Prisoner’s Dilemma.

We show that if players only observe past actions, then defection is the unique stable out-

come. However, if players are able to observe past action profiles, then cooperation is also

stable. Finally, we present extensions that study endogenous observation probabilities and

the evolution of preferences.

JEL Classification: C72, C73, D01, D83. Keywords: Evolutionary stability, random

matching, indirect reciprocity, secret handshake, submodularity, image scoring.

1 Introduction

In many economic situations people are involved in short-term interactions. The lack of future

interactions between the agents limit the ability to directly punish partners who acted oppor-

tunistically, and incompleteness of contracts, non-verifiable information, court costs and other

factors restrict the effectiveness of external enforcement. Agents in such interactions may obtain

information about the partner’s behavior in a few past interactions with other opponents, and

may base their actions on this information. As a result, the behavior of agents may be influenced

by the possibility of being observed by future partners and reputation considerations.

∗Email: yuval.heller@economics.ox.ac.uk and erik.mohlin@economics.ox.ac.uk. We would like to express our
deep gratitude to Vince Crawford, Eddie Dekel, Christoph Kuzmics, Bill Sandholm, Jörgen Weibull, and Peyton
Young, and to seminar/workshop participants in Stockholm School of Economics, Bielefeld University, University
of Pittsburgh, University of Oxford, NBER theory workshop in Wisconsin-Madison, for many useful comments.
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A few examples for such interactions include booking a holiday rental, making a one-time

order from a remote trader, hiring a nanny, and visiting a tourist attraction. Partial information

about the past behavior of the partner is typically passed by word of mouth. Recently, such

information is also conveyed by online sites that provide feedback from past interactions (e.g.,

eBay and Airbnb).

Model. Agents in a large population are randomly matched into pairs and play a symmetric

one-shot game. Before playing the game, each agent may privately observe his partner’s past

behavior in k interactions. Specifically, each agent may either observe k past actions of his

partner, or k past action-profiles of his partner and her past opponents, or a non-informative

signal. The strategic behavior of an agent is described by a (stationary) policy: a mapping that

assigns a mixed action to each possible message. A distribution of policies (called, strategy)

describes the aggregate behavior: frequency of each faction in the population, and the policy that

the agents of each faction follows.

Our preliminary result (Theorem 1) characterizes when every (stationary) strategy uniquely

determines the distribution of action profiles played between each two groups in the populations

(called, outcome), and when multiple outcomes might be consistent with a single strategy. We

show that every strategy uniquely determines the outcome iff the expected number of actions

that each agent observes about his partner is less than one.1 2 Therefore, a full description

of a population state (when agents observe on average more than one action) is given by a

configuration, a pair consisting of a strategy and a consistent outcome.

Solution Concept We present two static solution concepts that capture stability in a dynamic

process of cultural learning (à la Maynard Smith & Price, 1973’s notion of ESS). We imagine

a large population in which each agent follows a policy. Occasionally a few agents receive an

opportunity to change their policy. Generally such revisions go in the direction of the currently

more successful policies (i.e. a payoff monotonic selection dynamics). However, with some small

probability the revising agents may choose an arbitrary policy (and in this case they are referred

to as mutants). We say that strategy is evolutionary stable if it satisfies three conditions: (1) it

admits a unique consistent outcome (otherwise behavior may drift between the various consistent

outcomes), (2) all policies in the support yield the same expected payoff (otherwise the more

1An example of multiple consistent outcomes is an environment in which agents play the Prisoner’s Dilemma,
each agent observes a single past action of his partner with probability one, and everyone plays the policy of
mimicking the observed action. Any outcome (i.e., any frequency of cooperation) is consistent with this strategy.

2The intuition is that the strategy can be interpreted as a mapping from the outcome in the past to the outcome
in the future, and that it is a contraction mapping iff agents observe (on average) less than one action.
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successful polices will become more frequent), and (3) following an entry of a small number of

agents who play a different strategy (called, mutants), the incumbents (strictly) outperform the

mutants in any post-entry population state. The weaker notion, weak stability, which is used in

our uniqueness result, allows multiple consistent outcomes, and only requires that the mutants

will be outperformed in at least one consistent post-entry population state.

As is common in interactions with multiple stages, evolutionary (and weak) stability is too

demanding in our setup: Typically not all feasible signals about the partner are observed on the

equilibrium path, and as a result there exist equivalent strategies that differ from the incumbent

strategy only after observing signals off the equilibrium path. This motivates us to follow Selten

(1983) and to slightly weaken our definitions by only requiring stability in a converging sequence

of perturbed games in which players rarely choose “wrong” actions (i.e., implementation errors

similar to the trembles in extensive-form perfection of Selten, 1975) or “wrong” policies (i.e..,

learning errors similar to the trembles in normal-form perfection); these trembles allow all signals

to occur with positive probability and eliminate the issue of equivalent strategies. The adapted

notions are called limit evolutionary stability and limit weak stability.

Main Results Theorem 2 shows that any symmetric strict equilibrium of the underlying game

is limit evolutionarily stable.3 4 The intuition is that a population in which everyone plays the

strict equilibrium action a∗ regardless of the observed signal is evolutionary stable: any mutant

who does not play a∗ with probability one against the incumbents is strictly outperformed if

the mutants are sufficiently rare. Mutants who always play a∗ against the incumbents, cannot

identify other mutants (because the past behavior of mutants is the same as the incumbents),

and thus must also play a∗ among themselves.

We next consider prisoner’s dilemma games in which each player decides simultaneously

whether he cooperates or defects, where defecting yields a higher payoff for the defector and

a lower payoff for the partner (see Table 2 in Section 6.1). A prisoner dilemma game is submodu-

lar (Takahashi, 2010) if the more likely a player is to cooperate, the better incentives his partner

has to defect. Theorem 3 shows that always defecting is the unique limit weakly stable strategy

in any (weakly) submodular prisoner’s dilemma game if players observe past actions (rather than

action profiles). The intuition is that in submodular games, it is always weakly better for a policy

to defect against partners that are more likely to cooperate, but this implies that mutants who

3Moreover, the stability holds for any converging sequence of perturbations (with full support) in which players
rarely make mistakes when choosing actions.

4In Section 5 we demonstrate that other refinements of Nash equilibrium are not necessarily stable. Specifically,
we show that the unique symmetric Nash equilibrium in the Hawk-Dove game (which is stable without observability,
and satisfies all the standard refinements of Nash equilibrium) is not stable for any positive level of observability.
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always defect outperform the incumbents in any post-entry population state.

The next two results show how cooperation can be sustained as a stable outcome in the Pris-

oner’s Dilemma game if either the players observe action-profiles (Theorem 4) or the underlying

game is strictly supermodular (Theorem 5). In the former case we show that even if players

observe a single action-profile, then there is a limit evolutionarily stable strategy that induces

cooperation. In this strategy, players only defect if they observe that the partner was the sole de-

fector, and cooperate otherwise. In the latter case we show that for strictly supermodular games

even if the players observe a single action, then there is a limit evolutionarily stable strategy that

induces cooperation. This strategy represents a polymorphic population in which one group in

the population plays “tit-for-tat” (i.e. defects iff observing partner’s past defect) and the other

group always cooperate. In both cases, the stability relies on the fact that if a player observes

his partner to defect in the past, then this partner is more likely to be a trembler who follows a

policy that induces a higher defection probability.

Related Literature and Contribution Robson (1990) presented the secret handshake mech-

anism that can take a population from any inefficient state (say σ∗) to an efficient state (say σ′).

According to this mechanism, a small group of mutants sends a special signal before interacting;

the incumbents are assumed to ignore this signal and always play σ∗, while the mutants usually

play σ∗, unless both players have sent the special signal, and in this case they both play σ′.

Several papers applied this mechanism, and showed that with “cheap talk” with sufficiently rich

language then stability implies efficiency (e.g., Wärneryd, 1991, Schlag, 1993, and Kim & Sobel,

1995). Theorem 2 shows that this mechanism is not effective when the observed signals are in

fact past behavior: in this case non-efficient strict equilibria are stable. As argued in Section

7.4, this also casts some doubts on the use of secret handshake arguments to show that stability

implies efficiency in the literature on the evolution of preferences (e.g., Dekel et al., 2007).

In an influential paper, Nowak & Sigmund (1998), present the mechanism of image scoring to

sustain cooperation in Prisoner Dilemma games through indirect reciprocity. In this mechanism

each player observes several past actions of the partner, and he defects iff the partner’s frequency

of defection is above some threshold (see also the recent extension in Berger & Grüne, 2014).

Our paper has two key contributions with respect to image scoring. First, Theorem 3 shows that

image scoring cannot sustain stable cooperation in submodular prisoner’s Dilemma games (this

generalizes and formalizes existing criticism of image scoring - Leimar & Hammerstein, 2001;

Panchanathan & Boyd, 2003). Second, Theorem 5 presents a novel polymorphic variant of image

scoring, and proves that it can sustain cooperation in supermodular prisoner’s dilemma games.

In a seminal work Sugden (1986) presented the mechanism of good standing (see also its
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extensions and applications in Kandori, 1992 and Ohtsuki & Iwasa, 2006). In this mechanism,

all agents are initially in good standing; an agent looses his standing by defecting against a

partner in good standing ; an individual lacking good standing can regain it by cooperating. In

this mechanism players have to asses the standing of the partner, and this assessment is very

demanding both informationally and cognitively, as it depends on long histories of play of many

players (because the reputation of one agent depends on the reputations of his past partners).

Theorem 4 presents a novel mechanism to support cooperation, in which each player only observes

a single past action profile of his partner, without requiring any higher order information.

Finally, the closest paper to ours is Takahashi (2010) that studies the stability of cooperation

when players observe the entire history of the partner’s past play. Takahashi shows that: (I)

there is a strict equilibrium that induces cooperation in the prisoner dilemma iff the game is

supermodular, and (II) there is a sequential equilibrium that induces cooperation in any prisoner

dilemma game. Our key contribution with respect to Takahashi (2010) is three-fold. First, we

develop a novel methodology that allows to study environments in which players have partial

information about the partner’s past play. Second, we show that cooperation can be sustained

as a stable outcome in supermodular games also when players observe a single past action of

the partner (rather than requiring the observation of the full history of play). Finally, we show

that only defection is stable in submodular games (and, in particular, the sequential equilibria in

Takahashi, 2010 are unstable).

Variants and Extensions. We present four variants and extensions (Section 7). The first

assumes that both signals are observed by both players. This assumption may fit better trade in

on-line sites in which the feedback on the past behavior of the agents is public. Minor adaptations

to the proofs show that all the results of the main model hold also in this setup. In addition, we

show (Theorem 6) that public signals allow to support cooperation as a stable outcome also if

players only make mistakes when choosing actions (rather than when choosing policies).

Next we discuss how to extend our results to a setup in which agents may choose non-stationary

policies that may condition their play on their own past behavior. The third extension endogenizes

the observation probability by assuming that each player chooses an effort level that determines

the probability to observe his partner’s past.

The last variant enriches the model to study the evolution of preferences. Specifically, we

assume that each agent is endowed with subjective preferences that may differ from the objective

fitness. A population state is now a triple: a distribution of subjective preferences, a policy for

each preference (which maximizes the agent’s subjective utility given his information about the

partner), and a consistent outcome. We extend our first result to this setup, and show that strict
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equilibria (including non-efficient ones) are always stable in this setup. This contradicts the main

stylized result in the existing literature on the evolution of preference that only efficient outcomes

can be stable if there is sufficient observability (where, unlike our model, agents directly observe

the partner’s matrix payoff).

Structure. Section 2 presents the model. In section 3 we define population states. Section 4

presents our solution concepts. In Section 5 we present our first result (any strict equilibrium

is stable). Section 6 focuses on the Prisoner’s Dilemma and shows the remaining main results:

only defection is stable when observing actions, while cooperation is also stable when observing

action profiles or with supermodularity. We present variants and extensions in Section 7, and we

conclude in Section 8. The formal proofs appear in the appendix.

2 Model

2.1 Underlying Game

We present a reduced form static analysis of a dynamic evolutionary process of cultural learning

in a large population of agents.5 The agents in the population are randomly matched into pairs

and play a symmetric one-shot game G. Formally, let G = (A, π) be a two-player symmetric

normal-form game, where A is a finite set of actions (|A| ≥ 2), and π : A × A → R is the payoff

function. As is standard in the evolutionary game theory literature, we interpret the payoffs as

representing “success” or “fitness”.

Let ∆ (A) denote the set of mixed actions (distributions over A), and let π be extended to

mixed actions in the usual way. We use the letter a (α) to denote a typical pure (mixed) action.

With slight abuse of notation let a ∈ A also denote the element in ∆ (A), which assigns probability

1 to a. We adopt this convention for all probability distributions throughout the paper.

Remark 1. The assumption that the underlying game G is symmetric is essentially without loss

of generality (if the game is played within a single population). As is standard in the evolutionary

literature (e.g., Selten, 1980), asymmetric contests can be symmetrized by looking at a symmetric

game in which an agent chooses an action at the ex ante stage (i.e., before being assigned to one

of the roles in the game).

5Alternatively, the formal model may be interpreted in terms of a biological evolutionary process in which the
behavior of the agents is influenced by genetic inheritance.
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2.2 Observation Structure and Environment

We study an environment in which agents are randomly matched in each turn to play game G.

Before playing the game, each player may observe a few past actions or action profiles played by

his partner. Specifically, each player privately observes:

1. With probability p1 ∈ [0, 1]: k ≥ 1 random actions played in the past by his partner.

2. With probability p2 ∈ [0, 1 − p1]: k ≥ 1 random action profiles played in past interactions

of his partner and her opponents.

3. With the remaining probability p0 ≡ 1 − p1 − p2: a non-informative signal φ.

We refer to the tuple of parameters ω = (k, p1, p2) as the observation structure. An environment

is a pair E = (G,ω), where G is a (two-player symmetric) underlying game, and ω is the ob-

servability structure. Let M denote the set of possible signals (or messages) about the partner’s

past: M = Ak ∪ (A× A)k ∪ φ. Let m denote a typical message (i.e., an element of M).

Remark 2. The assumptions that (1) the number of observations is fixed (either 0 or k), and (2)

agents observe either only actions or only action profiles, are made only to simplify the notation.

All of the results can be extended to a setup in which the number of observations has a larger

support, and agents observe a combination of actions and action profiles..

2.3 Strategies

A policy is a mapping s : M → △ (A) that assigns a mixed action to each possible message. We

interpret sm (a) = s (m) (a) as the probability that a player who follows policy s plays action a

after observing message m. We also let a denote the policy s ≡ a that plays action a regardless

of the signal.

Let S denote the set of all policies, and let Σ ≡ △ (S) denote the set of finite support

distributions over the set of policies. An element σ ∈ Σ is called a strategy (or policy distribution).

Let σ (s) denote the probability that strategy σ assigns to policy s. Given a strategy σ ∈ Σ, let

C (σ) denote its support (i.e., the set of policies such that σ (s) > 0). We interpret a strategy

σ ∈ Σ as representing a population in which |C (σ)| policies coexist, each agent is endowed with

one of these policies according to the distribution of σ. When |C (σ)| = 1, we identify the strategy

with the unique policy in its support (i.e., σ ≡ s), in line with the convention adopted above.

Remark 3. Note that our model focuses on stationary policies in which the behavior of an agent

depends only on the signal about the partner, but agents cannot condition their behavior on their

own past play or on time. We discuss how to relax this assumption in Section 7.2.
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3 Population States

In this section we present the static notion of configuration, which we use to fully describe the

state of the population.

3.1 Outcomes

Given a finite set of policies S̃ ⊂ S, an outcome η : S̃ × S̃ → △ (A) is a mapping that assigns

to each pair of policies s, s′ ∈ S̃ a mixed action ηs (s′), which is interpreted as the mixed action

played by an agent with policy s conditional on being matched with a partner with policy s′. Let

OS̃ ≡ (△ (A))(S̃×S̃) denote the set of all outcomes defined over the set of policies S̃. The strategy

and the outcome together determine the payoffs earned by each agent in the population.

Outcome η ∈ OS̃ is pure if there exists action a ∈ A such that ηs (s′) = a for each s, s′ ∈ S̃.

We denote such a pure outcome as η ≡ a.

We present a few definitions for a given strategy σ ∈ Σ, an outcome η ∈ OC(σ), and a policy

s ∈ C (σ). Let ηs,σ ∈ △ (A) be the mixed action played by an agent with policy s when being

matched with a random partner sampled from σ. Formally, for each action a ∈ A:

ηs,σ (a) =
∑

s′∈C(σ)

σ (s′) · ηs (s′) (a) .

Let ψs,σ,η ∈ △ (A× A) be the (possibly correlated) mixed action profile that is played when an

agent with policy s is matched with a random opponent sampled from σ. Formally, for each

action profile (a, a′) ∈ A×A, where a is interpreted as the action of the agent with policy s, and

a′ is interpreted as the action of his partner:

ψs,σ,η (a, a′) =
∑

s′∈C(σ)

σ (s′) · ηs (s′) (a) · ηs′ (s) (a′) .

3.2 Consistent Outcomes

Fix an observation structure ω = (k, p1, p2). Suppose that the population is currently described

by the policy distribution σ and the outcome η. When individuals are drawn to play the game

their actions are determined by their policy and their observed signal. These action profiles induce

a new outcome fσ (η). We will require outcomes to be consistent in the sense that they generate

observations that induces the current outcome to persist. Formally, given strategy σ ∈ Σ, let

8



fσ : OC(σ) → OC(σ) be the mapping between outcomes that is induced by σ.

(fσ (η)) s (s′) (a) = p0 · s (φ) (a) + p1 ·
∑

(ai)i≤k∈Ak

∏

i≤k

ηs′,σ (ai) · s
(

(ai)i≤k

)

(a)

+p2 ·
∑

(ai,a
′
i)i≤k

∈A×A

∏

i≤k

ψs′,σ,η (ai, a
′
i) · s

(

(ai, a
′
i)i≤k

)

(a) .

An outcome η ∈ OC(σ) is consistent with strategy σ if it is a fixed point of this mapping: fσ (η) ≡ η.

The following standard lemma shows that each strategy admits consistent outcomes.

Lemma 1. For each strategy σ ∈ Σ there exists a consistent outcome η.

Proof. Observe that the space OC(σ) is a convex and compact subset of a Euclidean space, and

that the mapping fσ : OC(σ) → OC(σ) is continuous. Brouwer’s fixed-point theorem implies that

the mapping σ has a fixed point η∗, which is a consistent outcome by definition.

The following simple example shows that a strategy may admit multiple consistent outcomes.

Example 1. Assume that the underlying game has two actions A = {c, d}, and that each player

observes a single past action of his opponent with probability one (i.e., k = 1, p1 = 1, p2 = 0).

Let s̃ be the following “tit-for-tat” policy: s̃ (a) = a for each a ∈ A (i.e., an individual that follows

this policy plays the observed past action of his opponent). Note that any outcome η ∈ Os̃ is

consistent with the strategy that assigns mass 1 to policy s̃. Note that if p1 < 1 (while keeping

p2 = 0 and k = 1) then it is relatively simple to show that the unique consistent outcome is the

distribution played after observing a non-informative signal: ηs (s) (c) = s̃ (φ) (c).

3.3 Uniqueness of Consistent Outcomes

Proposition 1 characterizes which observability structures induce unique consistent outcomes;

that is, structures in which every strategy admits a unique consistent outcome. It turns out that

an observability structure induces unique consistent outcomes iff the expected number of actions

that each agent observes about his partner in each round (k · p1 + 2 · k · p2) is at most one.

Theorem 1. The following conditions are equivalent: (1) Every strategy in environment E =

((A, π) , (k, p1, p2)) admits a unique consistent outcome; and (2) k · p1 + 2 · k · p2 ≤ 1 and p1 < 1.

Proof. We begin by proving that “¬2” implies “¬1” (which is logically equivalent to proving that

“1” implies “2”). Assume that k · p1 + 2 · k · p2 > 1.6 Let a 6= a′ be different actions. Let s∗ be

6Recall that the case of k = p1 = 1 was dealt with in Example 1 with multiple consistent outcomes.
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the following policy: play a if the observed actions include a, and play a′ otherwise. Consider

the policy distribution in which all agents follow policy s∗. Consider the outcome ηx that assigns

probability 0 ≤ x ≤ 1 to action a and the remaining probability (1 − x) to action a′. Note that

outcome ηx is consistent with s∗ iff

x = Pr (observing a) = p1 ·
(

1 − (1 − x)k
)

+ p2 ·
(

1 − (1 − x)2·k
)

.

It is immediate that x = 0 always solves this equation, and thus η0 is a consistent outcome.

Next, note that when x > 0 is close to 0 the RHS can be (Taylor-)approximated by:

(p1 · k + p2 · (2 · k)) · x > 1 · x.

For x = 1 the RHS is p1 + p2 ≤ 1, so if p1 + p2 = 1 then x = 1 is also a solution and if p1 + p2 < 1

then by continuity of the RHS, there is some x ∈ (0, 1) that solves the equation. Thus there is

ηx 6= η0 that is also a consistent outcome of s∗.

In what follows, we sketch the proof of the opposite direction: “2” implies “1”, while leaving

the formal details to Appendix A.1. Let σ be an arbitrary strategy, and let η and η′ be two

outcomes. Let ρM (σ, η) ∈ ∆ (M) denote the distribution of signals (about the past actions of a

random partner) induced by strategy σ and outcome η. Observe that the distance (see Appendix

A.1 for the formal definition of the norm) between the outcomes fσ (η) and fσ (η′) is bounded by

the distance between the distributions of signals:

‖fσ (η) − fσ (η′)‖ ≤ ‖ρM (σ, η) − ρM (σ, η′)‖ .

This is because the mapping fσ can induce different outcomes only to the extent that the observed

signals were different. Next observe that the distance between the two signal distributions is

bounded by the distance between the two outcomes times the expected number of messages.

‖ρM (σ, η) − ρM (σ, η′)‖ ≤ (k · p1 + 2 · k · p2) · ‖η − η′‖ .

This is because two random observed actions are different in probability ‖η − η′‖, and the prob-

ability of k observed actions to differ in at least one action is at most k times ‖η − η′‖ (with

strict inequality if k > 1). These two inequalities imply that if k · p1 + 2 · k · p2 < 1 (or if

k · p1 + 2 · k · p2 = 1 < k) then fσ is a contraction mapping (implying unique consistent outcome):

‖fσ (η) − fσ (η′)‖ < ‖η − η′‖ .
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3.4 Configurations and Payoffs

Proposition 1 shows that a strategy fully describes a population state if and only if agents observe

on average less than one action. As we are interested in studying also the case in which agents

observe more actions, we use the notion of configuration, a pair consisting of a strategy and a

consistent outcome, to describe the state of the population. Formally:

Definition 1. A configuration (or population state) is a pair (σ, η), where σ ∈ Σ is a strategy

and η ∈ OC(σ) is a consistent outcome (i.e., fσ (η) ≡ η).

Given a configuration (σ, η) and a policy s ∈ C (σ), let πs (σ, η) be the payoff of a player who

follows policy s in population state (σ, η):

πs (σ, η) =
∑

(a,a′)∈A×A

π (a, a′) · µs,σ,η (a, a′) .

Given a strategy σ′ with a weakly smaller support than σ (C (σ′) ⊆ C (σ)), let πσ′ (σ, η) be

he payoff of a player with a policy sampled according to σ′ in population state (σ, η):

πσ′ (σ, η) =
∑

s′∈C(σ′)

σ′ (s′) · πs′ (σ, η) .

We say that configuration (σ, η) is balanced if πs (σ, η) = πs′ (σ, η) for every s, s′ ∈ C (σ). In

that case, we write the uniform payoff as π (σ, η) .

4 Solution Concepts

In this section we adapt and extend the notions of evolutionary stability (Maynard-Smith, 1974)

and limit evolutionary stability (Selten, 1983; Heller, 2014) to deal with the environments with

observable past actions. We present two main static solution concepts: a strong notion to be used

in existence results, and a weak notion to be used in uniqueness results.

4.1 Post-Entry Populations

Our static concepts are intended to capture stable behavior in a dynamic process of cultural

learning. We imagine a large population of agents. At each point in time every agent in the

population has a policy that he currently follows. Occasionally a few agents are drawn to receive

the opportunity to change their policy. Generally such revisions go in the direction of the currently

more successful policies (i.e. payoff monotonic selection dynamics). However, with some small
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probability the revising agents may choose an arbitrary policy, which may not have been present

in the population before. Such deviations from local optimality may be due to mistakes or to

conscious experimentation. We assume that these deviations are rare and involve only a small

fraction of the population, which we will refer to as mutants.

Our stability notions consider incumbents who follow strategy σ∗ until a small group of mu-

tants (with small mass ǫ > 0), who play a different strategy σ′, enter the population . Following

the entry, the distribution of policies in the population is a mixture strategy that gives weight

of 1 − ǫ to the incumbents’ strategy and weight of ǫ to the mutants’ strategy. The behavior of

the population following such an entry is assumed to converge to a consistent outcome of this

mixture strategy.

Formally, Given 0 < ǫ < 1 and two strategies σ∗, σ′ ∈ Σ with relative masses of 1 − ǫ and ǫ,

let σǫ = σσ∗,ǫ,σ′ denote the mixture strategy:

σǫ (s) = (1 − ǫ) · σ∗ (s) + ǫ · σ′ (s) for each s ∈ C (σ) ∪ C (σ′) ,

and let a post-entry configuration be any configuration consisting of the mixture strategy and a

consistent outcome: (σǫ, ηǫ).

4.2 Evolutionary Stability

In this subsection we define a strong notion of evolutionary stability, which will be used in the

existence results in the paper (after adapting it to small perturbations in Section 4.4).

A strategy is evolutionary stable if (1) it admits a unique consistent outcome, (2) all policies

yield the same payoff, and (3) and small group of mutants is outperformed in any post-entry

population. Formally:

Definition 2. The number ǭ > 0 is an invasion barrier for strategy σ∗ if for each strategy σ′ 6=

σ∗, each ǫ ∈ (0, ǭ) and each post-entry configuration (σǫ = (1 − ǫ) · σ∗ + ǫ · σ′, ηǫ) the following

inequality holds:

πσ′ (σǫ, ηǫ) < πσ∗ (σǫ, ηǫ) .

σ∗ has a uniform invasion barrier if there is ǭ > 0 such that ǭ is an invasion barrier for σ∗.

Definition 3. Strategy σ∗ is evolutionarily stable if it satisfies the following conditions:

1. Strategy σ∗ admits a unique consistent outcome η∗.

2. The configuration (σ∗, η∗) is balanced.
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3. Strategy σ∗ has a uniform invasion barrier.

The motivation for the first condition (unique consistent outcome) is that otherwise the be-

havior is inherently unstable as it may drift between the various consistent outcomes. The second

condition is necessary for internal stability: if the policy distribution is not balanced, then the

frequency of the agents who follow the more successful policy will increase.

The third condition is analogous to Maynard Smith & Price (1973)’s notion of evolutionary

stability in standard games (without observability).7 The motivation for this condition is that

an evolutionarily stable strategy, if adopted by the population, cannot be invaded by any alter-

native strategy that is initially rare. It is well known that evolutionarily stable strategies are

asymptotically stable (a population starting nearby eventually converges to it) in a large variety

of smooth payoff-monotonic selection dynamics that capture many plausible processes of cultural

learning (see, e.g., Taylor & Jonker (1978); Cressman (1997); Sandholm (2010)). Moreover, the

converse is also true in the sense that only evolutionary stable strategies are asymptotically stable

in all variants of the replicator dynamics regardless of which randomizations are allowed at the

individual level (Cressman, 1990).

4.3 Weak Stability

In this subsection we define a weak notion of evolutionary stability, which will be used in the

uniqueness results in the paper.

A balanced configuration is weakly stable if any sufficiently small group of mutants is outper-

formed in at least one post-entry configuration. Formally:

Definition 4. Number ǭ > 0 is a weak invasion barrier for strategy σ∗if for each ǫ ∈ (0, ǭ), and

each mutant strategy σ′ ∈ Σ, there exists a post-entry configuration (σǫ, ηǫ) such that:

πσ′ (σǫ, ηǫ) < πσ∗ (σǫ, ηǫ) .

Strategy σ∗ has a weak invasion barrier if there is ǭ > 0 that is a weak invasion barrier for σ∗.

Definition 5. Configuration (σ∗, η∗) is weakly stable if it is balanced and strategy σ∗ has a weak

invasion barrier.

Definition 5 is weaker than Definition 3 in two ways:

1. Strategy σ∗ may admit multiple consistent outcomes.

7We follow the reformulation of evolutionary stability with uniform invasion barrier a la Hofbauer et al. (1979),
see also (Weibull, 1995, Proposition 2.5).
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2. Following an entry of mutants, there might be several post-entry configurations, and we

only require the mutants to be outperformed in one of these configurations.

It is immediate that any evolutionary stable strategy (together with its unique outcome) is a

weakly stable configuration, and that both definitions coincide when we have unique consistent

outcomes (i.e., k · (p1 + 2 · p2) < 1). Moreover, when there is no observability (i.e., p1 = p2 = 0)

the definitions coincide with Maynard-Smith and Price (1973)’s notion of evolutionary stability.

4.4 Limit Evolutionary Stability

Each interaction in our environment includes two stages: (1) observing signals about the partner,

and (2) playing an action in the underlying game. As is common in interactions with multiple

stages, evolutionary stability is too demanding in our setup: Typically not all signals about the

partner are observed on the equilibrium path, and as a result there exist equivalent strategies that

induce the same behavior as the incumbent strategy and differ only following signals that are off

the equilibrium path. This motivates us to slightly weaken the notion of evolutionary stability to

require evolutionary stability only in a converging sequence of perturbed games in which players

rarely “tremble” and choose the “wrong” policy or the “wrong” action (a la Selten, 1983’s notion

of limit ESS as reformulated in Heller, 2014).

A perturbation is a mapping that assigns minimal inevitable probabilities to choose some of

the actions and some of the policies. Formally:

Definition 6. A perturbation is a tuple ζ = (ξ,S, λ) where:

1. ξ : A → R
+ is a function that assigns a non-negative number for each action such that

∑

a∈A ξ (a) < 1 . Let Sξ ⊆ S the set of policies that assign probability of at least ξ (a) to

each action a after any observed signal.

2. S ⊆ Sξ is a finite set of policies, and λ : S → R
+ is a function that assigns a non-negative

number for each policy in S such that
∑

s∈S λ (s) < 1.

Let E (ζ) denote the perturbed environment that results from perturbing an environment E

by perturbation ζ. That is, the environment E (ζ) is the same as E except that the set of feasible

strategies is limited to those that assign the minimal probabilities induced by ζ. Formally, let

the convex set of feasible strategies Σ (ζ) ⊆ Σ be defined as follows. Strategy σ ∈ Σ is included

in Σ (ζ) iff: (1) C (σ) ⊆ Sξ, and (2) For each s ∈ S, σ (s) ≥ λ (s) . That is, players tremble when

choosing actions according to ξ, and tremble when learning their policies according to (S, λ). Let

L (ζ) denote the maximal tremble of ζ = (ξ,S, λ): L (ζ) = max (maxa∈A ξ (a) ,maxs∈S λ (s)) .
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Remark 4. Note that trembles when choosing the policy are closely related to the trembles used

in the notion of normal-form perfection (Selten, 1975), while trembles when choosing actions are

equivalent to the more “common” trembles used in the definitions of extensive-form perfection

and limit ESS (Selten, 1983). See Selten (1975, Section 13) and van Damme (1987, Section

6.4) for discussing the differences between normal-form perfection in which players tremble when

choosing a strategy for the entire game (a policy in our setup), and extensive-form perfection in

which players tremble when choosing actions at information sets.

A limit evolutionarily stable strategy is the limit of evolutionarily stable strategies in a con-

verging sequence of perturbed games. Formally:

Definition 7. Sequence of configurations (σn, ηn) converge to configuration (σ∗, η∗) if:

1. For each policy s ∈ S: σn (s) → σ∗ (s).

2. For each two policies s, s′ ∈ C (σ∗): (ηn)s (s′) → η∗
s (s′).

Definition 8. Strategy σ∗ is limit evolutionarily stable if:

1. σ∗ admits a unique consistent outcome η∗, and the configuration (σ∗, η∗) is balanced.

2. There exists sequence (ζn, (σn, ηn))n∈N
such that:

(a) ζn is a sequence of perturbations converging to the unperturbed game: L (ζn) → 0.

(b) Each strategy σn is feasible in E (ζn) (i.e., σn ∈ Σ (ζn)), each pair (σn, ηn) is a config-

uration, and the sequence of configurations (σn, ηn) converges to (σ∗, η∗).

(c) There exist ǭ > 0 and n0 ∈ N such that ǭ is an invasion barrier for strategy σn (in

environment E (ζn)) for each n ≥ n0.

Finally, limit weakly stable configuration is defined as the limit of weakly stable configurations

in a converging sequence of perturbed games. Formally:

Definition 9. Configuration (σ∗, η∗) is limit weakly stable if it is balanced, and there exists ǭ > 0

and sequence (ζn, (σn, ηn))n∈N
such that:

1. ζn is a sequence of perturbations converging to the unperturbed game: L (ζn) → 0.

2. Each strategy σn is feasible in the perturbed game Γ (ζn): σn ∈ Σ (ζn), each pair (σn, ηn) is

a configuration, and the sequence of configurations (σn, ηn) converges to (σ∗, η∗).

3. There exist ǭ > 0 and n0 ∈ N such that ǭ is a weak invasion barrier for strategy σn (in

environment E (ζn)) for each n ≥ n0.
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Observe that both definitions of limit evolutionary stability and weak evolutionary stability

coincide with each other and with Heller (2014)’s notion of uniform limit ESS.8

4.5 Action-Strict Evolutionary Stability

The choice of perturbations is critical for whether it will be possible to construct post-entry

configurations that are close and at which mutants are outperformed. The above definition only

requires that there is one sequence of perturbations with the desired properties. However, in some

environments we may seek a more robust definition that requires stability with respect to a whole

class of perturbations. In some contexts it is reasonable to assume that trembles are more likely

to occur when choosing actions than when revising and choosing policies. In particular, this is

the implicit assumption in the commonly used refinements of (extensive-form) perfect equilibrium

an sequential equilibrium. We present a more robust definition for such contexts that requires

stability with respect to all perturbations in which players tremble when choosing actions, and

these trembles have full support. The definition is closely related to the notion of strict limit ESS

(Heller, 2015) and to strict perfection (Okada, 1981). Formally:

Definition 10. A perturbation ζ = (ξ,S, λ) is an action perturbation with full support if:

1. Trembles when choosing actions have full support : ξ (a) > 0 for each action a ∈ A.

2. There are no trembles when choosing policies: λ ≡ 0.

We identify an action perturbation with full support with its first component ξ.

Definition 11. Strategy σ∗ is action-strict evolutionarily stable if:

1. σ∗ admits a unique consistent outcome η∗, and the configuration (σ∗, η∗) is balanced.

2. There exists ǭ > 0 such that for each converging sequence of action perturbations with full

support (ξn)n∈N
(i.e., L (ξ) → 0 ), there exists a sequence (σn, ηn)n∈N

satisfying:

(a) Each strategy σn is feasible in the perturbed environment E (ζn): σn ∈ Σ (ζn), each

pair (σn, ηn) is a configuration, and the sequence of configurations (σn, ηn) converges

to (σ∗, η∗).

(b) There exists n0 ∈ N such that ǭ is an invasion barrier for strategy σn in environment

E (ζn) for each n ≥ n0.

8See, Heller (2014) for a discussion why there should be a uniform invasion barrier for all the σn-s, rather than
allowing invasion barriers that depend on n (as is the case in the original notion of limit ESS in Selten, 1983).
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4.6 Summary

We conclude this section by presenting in Figure 1 the logical relations between the different

notions (which are immediate). We will use the notion of action-strict evolutionary stability for

most of the existence results, and the notion of limit weak stability for the uniqueness results.

Figure 1: The Logical Relations Between the Different Solution Concepts.

5 Stability of Strict Equilibria

In this section we show that each strict Nash equilibrium (a∗, a∗) of the underlying game is stable

in a strong sense given any observation structure. Specifically, the strategy a∗ (i.e., the strategy

that assigns mass one to the policy that always plays a∗ regardless of the observed signal) is an

action-strict evolutionarily stable strategy.

The intuition is as follows. Consider a slightly perturbed environment in which players some-

times tremble when choosing actions, and all signals are observed with positive probability. Con-

sider a configuration in which all the (non-trembling) incumbents play the equilibrium action

a∗ regardless of the signal about the partner’s past. Any mutant strategy must play a different

action with positive probability against the incumbents, and thus it yields a lower payoff when

being matched against the incumbents. If the mutants are sufficiently rare, then this loss cannot

be compensated by a gain when facing other mutants. This implies that the configuration in

which everyone always plays a∗ is limit evolutionarily stable. Formally (proof is in the appendix):

Definition 12. The action a∗ is a strict (symmetric) Nash equilibrium of the underlying game

G = (A, π) if for each action a 6= a∗: π (a∗, a∗) > π (a, a∗) .

Theorem 2. If action a∗ is a strict equilibrium then the strategy a∗ is an action-strict evolution-

arily stable strategy.

An interesting question is whether Theorem 2 can be strengthened to weaker solution concepts

(of the underlying game) than strict equilibrium. The following example shows that this is

not the case: the unique symmetric Nash equilibrium of the underlying game is not stable in
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any environment with observability (p0 < 1). Note that a unique symmetric equilibrium of a

symmetric game satisfies all the standard (non-evolutionary) refinements of Nash equilibrium.

Table 1: An Example of a Hawk-Dove (Chicken) Game

d h

d 1
1

0.5
1.5

h 1.5
0.5

0
0

Example 2 (Instability of a unique symmetric Nash equilibrium). Consider the game of Hawk-

Dove (or Chicken) presented in Table 1 in which the players have two actions: d (“dove”) and h

(hawk). Each action is the strict best-reply to the other action, and α∗ = (0.5, 0.5)9 is the unique

symmetric Nash equilibrium, as well as the unique evolutionarily stable strategy of the underlying

game.10 We now show why strategy α∗ with its unique consistent outcome , η∗ ≡ α∗ is not limit

weakly stable if p0 < 1. To simplify the argument we assume that each agent may only observe

a single action (i.e., k = 1, p1 > 0 = p2), but the argument can be be extended to observation

of several actions and action profiles (and to any Hawk-dove game). Consider a mutant strategy

that assigns equal weights to three policies: (1) always play h, (2) always play d, and (3) play the

action is that the opposite of the observed message, and play each action with equal probability

if φ was observed. These mutants obtain the same payoff as incumbents when facing incumbents

(because all actions yield the same payoff against α∗), but a strictly higher payoff relative to

the incumbents when facing other mutants (because when two mutants are matched they play

the inefficient action profile (h, h) with probability of only
(

1
3

)2
+
(

1
3

)2
· 1

4
< 1

4
, while when an

incumbent and a mutant are matched they play (h, h) with probability 1
4
). This implies that the

mutants outperform the incumbents in any post-entry population (and the argument works also

for sufficiently close perturbed environments).

6 Prisoner’s Dilemma

In this section we study Prisoner’s Dilemma games. Theorem 3 shows that defection is the

unique stable outcome in submodular Prisoner’s Dilemma game when players only observe actions.

9The vector (α1, ..., αn) denotes the mixed action that assigns probability αi to the i-th action.
10Recall that asymmetric equilibria cannot be played in our setup in which the agents cannot condition their

play on being the row/column player.
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The remaining results show how to support stable cooperation when observing action profiles

(Theorem 4) or when the underlying game is supermodular (Theorem 5).

6.1 Payoff Matrix and Submodularity

Table 2: Matrix Payoff of Prisoner’s Dilemma Game (g, l > 0 )

c d

c 1
1

−l
1+g

d 1+g
−l

0
0

Table 2 presents the matrix payoff of a Prisoner’s Dilemma game that depends on two positive

parameters g and l. When both players play action c (cooperate) they both get a high payoff

(normalized to one), and when they both play action d (defect) they get a low payoff (normalized

to zero). When a single player defects he obtains a payoff of 1 + g (i.e., an additional payoff of

g) while his opponent gets −l . Note that d is strictly dominant and (d, d) is the unique Nash

equilibrium (and a strict equilibrium) of the game.

Following Takahashi (2010), we say that a Prisoner’s Dilemma game is (weakly) submodular

if g ≥ l: the more likely a player is to cooperate, the better incentives his partner has to defect.

In the opposite case (g < l) we say that the game is strictly supermodular : the more likely a

player is to cooperate, the better incentives his partner has to cooperate.11

6.2 Only Defection is Stable (Observing Actions and Submodularity)

This section deals with the submodular Prisoner’s Dilemma games and observations of past

actions (rather than action profiles). Under these assumptions we obtain a sharp uniqueness

result: always defecting is the unique weakly stable strategy.12 Formally:

Theorem 3. Assume that G is a submodular Prisoner’s Dilemma game (i.e. g ≥ l), and that

p2 = 0. If (σ, η) is a limit weak evolutionarily stable configuration, then η ≡ d.

Sketch of Proof (see formal proof in Appendix A.3). Assume that (σ, η) is a limit weakly stable

configuration. The payoff of a policy in the Prisoner Dilemma can be divided into two components:

11Dixit (2003) called g ≥ l the offensive case and g < l the defensive case.
12Recall, that Theorem 2 shows that always defecting is is an action-strict evolutionary stable, which implies

limit weak stability.
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(1) direct component - defecting yields additional g (l) points if the partner cooperates (defects);

(2) indirect component - the policy’s average probability of defection determines the distribution

of actions observed by the partners, and through this, influences the partner’s probability to

defect. For each fixed average probability of defection q the submodularity of the game implies

that the optimal policy among all the policy that defect with average probability q is the one

that defects with higher probability against partners that are more likely to cooperate.

This implies that there is some optimal defection probability 0 ≤ q̂ ≤ 1, such that the policy

sq̂ that defects with average probability q̂ and is more likely to defect against partners that are

more likely to cooperate outperforms any other policy. This implies that (σ, η) can be limit

weakly stable configuration only if all non-trembling follow policy sq̂. If q̂ < 1, then mutants

who always defect would outperform the incumbents: they would achieve at least the same payoff

(relative to the incumbents) when being matched against an incumbent (as their own tendency to

defect would induce a partner following sq̂ to cooperate against them) and a higher payoff against

another mutant (because always defecting is the unique best reply to itself). This implies that

q̂ = 1 and, thus, η ≡ d.

Remark 5. Takahashi (2010) studies submodular Prisoner Dilemma games in a similar setup to

ours13 and proves that (I) they do not admit any strict equilibria; and (II) any individually rational

payoff can be supported as the a sequential equilibrium payoff. Theorem 3 shows that defection

is the unique stable outcome also when using the mild notion of weak stability. This implies

that any equilibrium that induces a different outcome than always defecting must be dynamically

unstable. Specifically, in Takahashi’s equilibria each player is indifferent between cooperating and

defecting after each observation. However, this implies that a group of mutants who always defect

would strictly outperform the incumbents (regardless of the mutant’s frequency): the mutants

achieve the same payoff (relative to the incumbents) when being matched against an incumbent,

and a higher payoff when being matched against a mutant (because always defecting is the unique

best reply to itself).

6.3 Stable Cooperation (Observing Action Profiles)

In this section, we show that cooperation can be stable when players observe action profiles

(rather than actions). Specifically, Theorem 4 shows that observation of a single action profile is

enough to sustain cooperation as a limit strong evolutionarily stable outcome.

13Takahashi’s (2010) setup differs in two aspects: (1) each agent can observe the entire history of past actions
of his partner, and (2) agents can condition their behavior on their own past play (though, they do not do so in
the characterized equilibria). We discuss the adaptation of our results to Takahashi’s framework in Section 7.2.
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Theorem 4. Assume that G is a Prisoner’s Dilemma game, the observation structure is (0, p2, 1)

and g < p2 < 1. Then there exists a limit evolutionarily stable strategy σ∗ with a unique outcome

η∗ ≡ c.

Sketch of Proof (see formal proof in Appendix A.4). Strategy σ∗ includes a single policy s∗ that

induces players to cooperate unless they observe that the opponent was the sole defector in the

past; in this case they defect. We consider a converging sequence of perturbed games in which

players who tremble by choosing, with small probability, the policy that always defects. Note

that all action profiles are observed with positive probability in these perturbed games. Moreover,

when an incumbent is observed to play (d, c), it implies that he is a “trembler” who follows policy

d and thus is going to defect in the current interaction. Thus, mutants who cooperate instead

of defecting after observing (d, c) are strictly outperformed when facing the incumbents: they

suffer an immediate loss of g, without gaining any indirect advantage from being observed to

cooperate. Next, we show that mutants who always defect are strictly outperformed. Note that

the probability that an incumbent defects when facing a mutant must be p2 times the probability

that an incumbent cooperates when facing a mutant. This is because an incumbent defects

against a mutant iff he observes (with probability p2) an action profile in which the partner (the

mutant) defected and her past opponent (who is most likely an incumbent) cooperated. This

implies that the incumbents defect with probability p2

p2+1
against the mutants. Thus the mutants’

payoff against the incumbents is given by: 1+g

p2+1
, which is strictly smaller than the incumbents’

payoff among themselves (which is equal to one) if p2 > g. This implies that if the mutants are

sufficiently rare, they are strictly outperformed.

Remark 6. The stability of cooperation in the proof above relies on a particular kind of trembles,

in which tremblers are always defecting. The construction can be adapted to many other pertur-

bations, as long as players have policy-trembles (possibly, in addition to action-trembles), such

that observing a partner being the sole defector implies that he is more likely to defect again.

This inference is strongest in the perturbation analyzed in the proof above. The inference may be

weaker with other perturbations, and would thus require higher observation probability or/and

observation of several action profiles, in order to sustain stable configuration. On the other hand,

if the perturbations only include action-trembles, then stable cooperation cannot be sustained.

In Section 7.1 we show that in a variant of the model in which the observed actions are public

signals, then cooperation can be sustained also with action-trembles. The remark also implies

(with minor adaptations) to theorem 5 below.

21



6.4 Stable Cooperation (Supermodular Prisoner’s Dilemma)

In this section, we show that cooperation can be stable when players observe actions and the un-

derlying game is supermodular. Specifically, Theorem 5 shows that observation of a single action

(with a sufficient probability) is enough to sustain cooperation as a limit strong evolutionarily

stable outcome.

Theorem 5. Assume that G is a strictly supermodular Prisoner’s Dilemma game (i.e. l > g),

the observation structure is (p1, 0, 1) and g

1+g
< p1. Then there exists a limit evolutionarily stable

strategy σ∗ with a unique outcome η∗ ≡ c.

Sketch of Proof (see formal proof in Appendix A.5). Strategy σ∗ includes two policies in its sup-

port: (1) st that plays “tit-for-tat” - defects iff observing a past defection of the partner; and (2)

sC that always cooperates.14 The frequency of policy st, 0 < q < 1, is defined such that both

polices yield the same payoff in a population in which ǫ of the agents tremble and choose by

mistake the policy of always defecting, while the non-trembling agents follow σ∗ (see the explicit

formula of this frequency as a function of l, g, p1 in the Appendix A.5). We consider a converging

sequence of perturbed games in which trembling players choose the policy that always defects.

When a player observes a past cooperation or a non-informative signal, the partner is most

likely to be a non-trembling cooperative incumbent, and cooperation against him is a strict best

reply (as the additional immediate g points obtained by defecting are outweighed by the indirect

loss induced by making future opponents more likely to defect). When observing a past defection,

the partner is more likely to be a trembling defector, and both actions are best replies against

him (as the additional immediate gain is a mixed average of g and l > g , and q has been

defined such that the future indirect loss is the exactly the same as the immediate gain). If

the population is invaded by mutants who defect (on average) with higher (lower) probability

than q when observing defection, then they are strictly outperformed: the aggregate probability

that defecting today would induce a future opponent to defect is higher (lower) in the post-entry

population relative to the pre-entry population, and as a result defecting after observing defection

yields a lower payoff than cooperating. Finally, a polymorphic group of mutants who defect with

probability q when observing defection yields a lower payoff than the incumbents because the

supermodularity of the payoffs imply that the payoff of a policy as a function of its own defection

probability after observing defection is strictly convex.

Remark. Takahashi (2010) shows that if players observe the entire past history of play of their

opponent, then they cooperation can be supported as the outcome of a strict equilibrium. Theo-

14As discussed in the formal proof in the appendix for low values of p1 ( g

1+g
< p1 ≤ l

1+2·l−g
) strategy σ∗ includes

only the “tit-for-tat” policy.
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rem 5 substantially strengthens this result by showing that that cooperation can stable also when

each player only observes a single past action of the partner (though, it requires us to slightly

weaken the solution concept from strict equilibrium to evolutionary stability).

7 Variants and Extensions

This section studies the robustness of our result in three variants and extensions of the model:

(1) public signals, (2) endogenizing the observation structure, and (3) evolution of preferences.

7.1 Public Signals

In the main model we assume that the signal about the opponent’s behavior is private. In some

applications it might be more reasonable to assume that the signals are public. In particular, if

we consider an online interaction between traders through an intermediary web site that publicly

presents feedback about the past behavior of the traders (e.g., eBay), then in such interactions

the signals about the past behavior (e.g. the trader’s feedback summary) are public. Another

setup in which public signals fit well is an environment in which a player observes the last k

actions of the partner, rather than k random past actions. In such environments, the signals are

essentially public because each player remembers his own recent history. In what follows we show

how to adapt the model to public signals, and we analyze the influence on our results.

Changes to the model Before playing the game, each player publicly observes the signals

about the opponent’s past behavior. Because both players observe both signals, we redefine M as

follows: M = M1 ×M2 =
(

φ ∪ Ak ∪ (A× A)k
)

×
(

φ ∪ Ak ∪ (A× A)k
)

, where the first component

is interpreted as the partner’s observed past behavior and the second component as the player’s

own observed past behavior. We denote a typical element of M1 as m1 (the message about the

partner’s behavior), and a typical element of M2 as m2 (the message about the player’s own

behavior). All other details of the model remain the same.

Adaptations to the results It is relatively straightforward to show that our first two main

results (Theorems 2-3) remain the same with public signals, and the proofs require only minor

adaptations. In what follows we show that we can strengthen Theorem 4 in the setup of public

signals, and obtain robust stable cooperation with respect to any sequence of action perturba-

tions with full support (unlike the case of private signals, in which the stability relies on policy

perturbations). Formally:
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Theorem 6. Assume that the underlying game is Prisoner’s Dilemma, the observation structure

is (0, p2, 1) with p2 > g, and the signals are public. Then there exists an action-strict evolutionary

stable strategy σ∗ with a unique outcome η∗ ≡ c.

Sketch of proof (formal proof is in Appendix A.6). Strategy σ∗ includes a single policy:

s∗ (m) =











d m1 = (d, c) or m2 = (d, c)

c otherwise
.

That is, the policy induces players to cooperate unless they observe that either of the players was

the sole defector in the past; in this case they defect. We consider an arbitrary converging sequence

of action perturbations with full support (i.e., players rarely tremble and play the “wrong” action

with small positive probability). Note that all action profiles are observed with positive probability

in these perturbed games. Moreover, mutants who cooperate instead of defecting after observing

(d, c) are strictly outperformed when facing the incumbents: they suffer an immediate loss of l,

without gaining any indirect advantage from being observed to cooperate (as the opponent is

going to defect with probability very close to one). The argument as to why mutants who always

defect are strictly outperformed is the same as the one given after Theorem 4. This implies that

if the mutants are sufficiently rare, they are strictly outperformed.

Remark 7. The policy s∗ is closely related to the strategy “Pavlov” (a.k.a., “win-stay, lose-

change”) in the standard repeated Prisoner’s Dilemma in which a player defects iff the players

played different actions in the previous round (see, Kraines & Kraines, 1989; Nowak & Sigmund,

1993, and Heller, 2015). “Pavlov” was used several times in the literature to support cooperation

with direct reciprocity (players interact in repeated interactions, and each player rewards his past

opponent’s behavior), but to the best of our knowledge the current paper is the first to apply it

to in a setup of indirect reciprocity (in which each pair of players meet only once).

7.2 Non-Stationary Policies

The main model implicit assumes that agents can only use stationary policies that are independent

on both time and on the agent’s history (his own past actions and the actions players by his past

partners). In this section we sketch how to relax this assumption.

Changes to the model: We consider a continuum of agents who repeatedly play the prisoner’s

dilemma with varying partners in the same population. At each period t = 1, 2, ... players are

randomly matched into pairs and play the underlying game. At the first stage each player
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obtains a non-informative signal about his partner. At each of the subsequent stages, each player

privately observes either: (1) k independent draws (with replacement) of his partner’s past actions

with probability p1, (2) k independent draws (with replacement) of his partner’s (and his past

opponent) past action-profiles with probability p2, and (3) a non informative signal with the

remaining probability 1 − p1 − p2. Each player’s total payoff is a discounted sum of the stage

payoffs with a common discount factor δ ∈ (0, 1).

A private history (information set) is a tuple
(

τ, ((at, a
′
t))1≤t<τ , (mt)2≤t≤τ

)

, where τ ∈ N

denotes the period, at is the agent’s own action at past period t < τ , at′ is the past partner’s

action at period t < τ , and mt ∈ M is the signal observed about the partner at round t (mτ is

the signal observed about the current partner’s past). A (non-stationary) policy of player is a

mapping that assigns a mixed action to each private history. A strategy (or population state) is

a finite-support distribution over the set of policies. The adaptation of the remaining aspects of

the model and of the solution concepts is straightforward.

Adaptation of the results: The main drawback of this approach is the large set of policies,

which makes the uniqueness analysis intractable. We conjecture that Theorem 3 (i.e. only

defection is limit evolutionary stable when observing actions in a submodular prisoner dilemma

game) remains true in this setup, but we leave the proof for future research.

All the other results can be adapted to this setup in a relatively straightforward way:

• Theorem 2 (any strict equilibrium is evolutionary stable): The policy that plays a symmetric

strict equilibrium of the underlying stage game regardless of the history, is the unique strict

best-reply to itself in any slightly-perturbed environment with full-support action trembles,

and as a result it is an action-strict limit evolutionary stable for any discount factor.

• Theorems 4-5 (stable cooperation when either observing an action-profile or in a supermod-

ular prisoner dilemma): By minor adaptations to the proofs, one can show that there exists

δ̄ < 1, such that for each δ̄ < δ < 1, the policies in the proofs remain stable also when

non-stationary policies are allowed.

7.3 Endogenous Observability

In this subsection we extend our analysis to a setup in which the observation probabilities are

endogenously determined by the players.

Changes to the model Each individual in the population is characterized by a type which is a

pair (e, s), where e ∈ N is the effort level, and s is the policy. The fixed observation probabilities p1
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and p2 in the basic model are replaced with weakly increasing observability functions p1, p2 : N →

[0, 1), satisfying p1 (n) + p2 (n) ≤ 1 for each n. These functions have the following interpretation:

an individual who spends effort e observes k past actions (action profiles) of his opponent with

probability p1 (e) (p2 (e)). Let T = N × S be the set of all types (pairs of effort and policy),

with typical element t.15 Given type t, let e (t) (s (t)) denote its effort (policy). We redefine a

strategy to be a distribution (with a finite support) over T. The definitions of outcomes, consistent

outcomes, and configurations remain essentially the same except that the probabilities p1 and p2

are replaced with their function counterparts. Finally, the expression for the payoff of a type is

modified by subtracting the cost of the effort from the payoff, i.e.,

πt (σ, η) =
∑

(a,a′)∈A×A

π (a, a′) · µt,σ,η (a, a′) − c (e (t)) ,

where c : N → R
+ is a strictly increasing cost function. The definitions of evolutionary, weak

and limit stability remain the same (except the redefinition of strategies and the reduction of the

effort cost as described above).

Adaptations of the results Recall that Theorems 2-3 hold for all observation structures and

Theorem 4 holds if p2 > g.. It is relatively straightforward to show that these results also in this

extended setup with minor adaptations to the proofs (Theorem 4 hold if p2 (0) > g).

7.4 Evolution of Preferences

In this subsection we extend the model to analyze the evolution of subjective preferences.

Changes to the model Let Θ = [0, 1]|A|2 be the set of all feasible subjective preferences -

utility functions on A×A. A configuration with preferences is a triple consisting of a distribution

of preferences, a policy for each preference, and a consistent outcome, satisfying that each policy

is a subjective best-reply (i.e, a Bayesian Nash equilibrium given the subjective preferences).

Definition 13. A configuration with preferences is a triple (µ, Sµ, η) where:

1. µ ∈ ∆ (Θ) is a distribution (with a finite support) over the set of types.

2. Sµ = (sθ)θ∈C(µ) is a profile of policies, where each sθ is the policy of preference θ ∈ Θ.

Let OC(µ) be the set of outcomes η : C (µ) × C (µ) → ∆ (A) that describe the behavior of

each preference conditional on being matched with each other preference. The pair (µ, Sµ)

defines a dynamic mapping f(µ,Sµ) between outcomes in OC(µ) (like fσ in Section 2).

15The results are similar with with a continuum of feasible efforts.
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3. η ∈ OC(µ) is a consistent outcome with respect to (µ, Sµ) (i.e., f(µ,Sµ) (η) = η).

Let m be a signal that is observed with positive probability given outcome η. Let η(µ,Sµ,η),θ,m ∈

∆ (A) be the average mixed action of a random partner conditional on being matched with

a player with preference θ, and on that latter player observing signal m.

4. We require each policy to be a subjective best reply; that is, for each θ ∈ C (µ), each

message m (with positive probability), and each action a:

θ
(

sθ (m) , η(µ,Sµ,η),θ,m

)

≥ θ
(

a, η(µ,Sµ,η),θ,m

)

.

Given two distributions µ∗, µ′ ∈ ∆ (Θ) and ǫ > 0, let µǫ = µµ∗,ǫ,µ′ be the mixture distribution:

µǫ = (1 − ǫ)·µ∗+ǫ·µ′, and let a post-entry configuration be a configuration with preferences where

the first component is a mixture distribution. Finally, we say that the post-entry configuration

(µǫ, Sµǫ
, ηǫ) is focal with respect to (µ, Sµ, η) if the incumbents’ behavior among themselves remain

unchanged in the post-entry configuration: for each θ, θ′ ∈ C (µ), Sµǫ
(θ) = Sµ (θ) and ηθ (θ′) =

(ηǫ)θ (θ′) (see the related notion of focality and its motivation in Dekel et al., 2007). Next. we

define a strong notion of evolutionary stability, which requires the behavior in any post-entry

configuration to be focal , and any group of mutant preferences to be outperformed (weakly

outperformed if they behave the same as the incumbents, and strictly outperformed otherwise).

Definition 14. A configuration with preferences (µ∗, Sµ∗ , η∗) is evolutionary stable if it is bal-

anced, and there exists ǭ > 0 such that for each ǫ ∈ (0, ǭ), and each mutant distribution of

preferences µ′ ∈ ∆ (Θ) and each post-entry configuration (µǫ, Sµǫ
, ηǫ): (1) the post-entry con-

figuration is focal, (2) the mutants are outperformed: πµ′ (µǫ, Sµǫ
, ηǫ) ≤ πµ∗ (µǫ, Sµǫ

, ηǫ) , with a

strict inequality if the post-entry behavior is different, i.e., if µǫ induces a different aggregate

distribution over action profiles than µ∗.

Adaptation to Theorem 2 Finally, we extend Theorem 2 to this setup, and show that strict

equilibrium of the underlying game is evolutionary stable for any observation structure also in this

setup. This contradicts the main stylized result in the literature of the evolution of preferences

that only efficient outcomes may be stable if the observability probability is sufficiently high. This

is formalized as follows. Let θa denote a preference in which action a is strictly dominant.

Proposition 1. If a∗ is a strict equilibrium of the underlying game, then the configuration with

preferences (θa∗,a
∗, a∗) is evolutionary stable.

The proof is analogous to Theorem 2’s proof, and is thus omitted. We leave for future research
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the presentation of a weaker notion of stability for uniqueness results, and the extension of our

other result to the setup with preferences.

Relations with the existing literature Several papers have studied the evolution of prefer-

ences using the so-called “indirect evolutionary approach” (see, e.g., Güth & Yaari 1992; Ok &

Vega-Redondo 2001; Sethi & Somanathan 2001; Dekel et al. 2007; Heifetz et al. 2007; Herold &

Kuzmics 2009). These papers consider agents that are endowed with subjective preferences that

may differ from the material payoffs. With positive probability each agent observes the subjec-

tive preferences of the opponent, and the agents play a Bayesian-Nash equilibrium induced by

their subjective preferences and their signals. In a stable state, all incumbent preferences achieve

the same fitness payoff, and any sufficiently small group of mutants with different subjective

preferences is outperformed.

The standard argument for observing preferences is that people give signals that provide clues

as to their feeling (e.g., a blush that may reveal a lie). As discussed in Robson & Samuelson (2010,

Section 2.5), the emission of such signals and their correlation with preferences are themselves the

product of evolution, and thus it is not clear what prevents the appearance of a mimic who emits

the signal without having the associated preferences. Robson & Samuelson (2010) summarize

their discussion by suggesting that “the indirect evolutionary approach will remain incomplete

until the evolution of preferences, the evolution of signals about preferences, and the evolution of

reactions to these signals, are all analyzed within the model.”

Our model share many aspects of the existing literature, with one key difference: players ob-

serve past behavior and infer about the subjective preferences (a “revealed preferences” approach),

rather then directly observe the partner’s preferences. This key difference allows our model to

answer Robson & Samuelson (2010)’s criticism. Another issue with the existing literature is that

it assumes that two preferences that slightly differ from each other (e.g., slightly different num-

bers in the payoff matrix, without any real influence on the best-reply correspondence) induce

completely different signals. Due to this issue, many of the results in that literature crucially

depend on the influence of non-generic subjective preferences, such as agents that are completely

indifferent between all the action profiles (e.g., Dekel et al. 2007, Prop. 2). This dependency on

non-generic preferences is absent from our setup.

8 Conclusion

We study a setup in which players are randomly matched, and each player may observe signals

about the opponent’s past behavior. We present three main results: (1) strict equilibria of the
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underlying game are stable outcomes, (2) defection is the unique stable outcome in the Prisoner’s

Dilemma when players only observe past actions, and (3) cooperation can be a stable outcome if

players observe action profiles (and the stability becomes more robust if the signals are public).

Moreover, we show that our model can be extended to study endogenous observability (which

depends on the players’ efforts) and the evolution of subjective preferences.

Throughout the paper we interpreted the players as naive agents who just follow their pro-

grammed strategies. However, similar to other applications of evolutionary stability a la May-

nard Smith & Price (1973), the results are robust to the presence of sophisticated agents who

explicitly maximize their payoff. This is illustrated in the non-stationary variant (Section 7.2), in

which any limit weakly stable strategy is is a symmetric Nash equilibrium of the dynamic game.

Directions for Future Research In what follows we sketch four interesting directions for

future research. We mainly applied our model to the Prisoner’s Dilemma. It will be interesting

to apply the model to other games, and in particular, to the Hawk-Dove game, in which we

conjecture that the environment admits a stable heterogeneous population in which “committed

Hawks” and “flexible players” co-exist.

Second, our extension to subjective preferences is somewhat limited because players only

interact in single game. It seems intriguing, to study richer environments in which players are

endowed with “universal” (non-game-specific) preferences over fitness profiles, and they interact

in different games (and use the same preferences in all these games). Another interesting direction

(pursued in a companion working paper, Heller & Mohlin, 2014) is allowing agents to spend effort

in deception - influencing the signal observed by the opponent.

Third, our model assumes that players directly observe past actions of the partner. In many

economic setups, it seems more plausible that agents only observe the reports of other agents

about the past interactions of their partner (e.g., the trader’s feedback profile in eBay). A policy

in this setup should specify both the played actions, as well as the reports to other agents, and

it will be interesting to characterize stable outcomes in such setups.

Finally, some important interactions may be better modeled as asymmetric games between

separate populations (e.g., a population of consumers and a population of professional sellers

interacting in on-line trade like Amazon). It will be interesting to extend our methodology to

this setup, and to study stable outcomes in such multiple-population interactions.

Additional Related Literature A few papers study how cooperation can be supported in

the Prisoner’s Dilemma without observing the opponent’s past behavior. Ellison (1994) (extend-

ing previous results of Kandori, 1992 and Harrington Jr, 1995) shows how cooperation can be

29



supported in finite populations by “contagious” punishments (if one player defects at stage t, his

partner defects from period t+ 1, infecting another player who defects from period t+ 2 on, etc);

however, such “contagious” punishments can only work in finite populations, and if the players are

sufficiently patient with respect to the population size. Fujiwara-Greve & Okuno-Fujiwara (2009)

show how cooperation can be supported in “voluntarily separable” repeated Prisoner’s Dilemma,

in which each player can unilaterally end and start with a randomly assigned new partner with

no information flow. van Veelen et al. (2012) show how cooperation can be stable in structured

populations in which agents are more likely to interact with similar partners.

Rosenthal (1979) presented an early model in which players in a population are randomly

matched, and each player can observe his opponent’s last action (See also Okuno-Fujiwara &

Postlewaite, 1995). A few papers constructed models in which players may observe the partner’s

planned action (rather than past action): Robson (1994) presented a model in which each player

has small probability to observe his partner’s planned action and revise his own action; Solan

& Yariv (2004) dealt with a setup in which one of the players can spend effort and observe his

opponent’s action before playing.

A Proofs

A.1 Proof of Theorem 1 (“2” Implies “1”)

In this section we present the formal proof “2” implies “1” in Prop. 1. That is, we assume that

k · p1 + 2 · k · p2 ≤ 1 and p1 < 1 and show that every strategy in E admits a unique consistent

outcome. Let σ be a strategy, and let η, η′ ∈ Oc(σ) be two consistent outcomes. In order to

shorten the notation in this section, we omit the subscript σ in the remainder of the proof. In

what follows we show that f (i.e. fσ) is a contraction mapping (which implies that η = η′).

A.1.1 Notation and Definitions

We need to introduce some additional notation for this proof. Define ηk : C (σ) → △
(

Ak
)

as a

mapping that assigns for each policy s the probability distribution over k-tuples of actions that

a player observes conditional on being matched with an opponent with policy s. Formally:

ηk (s)
(

(ai)i≤k

)

:= ηk
s

(

(ai)i≤k

)

=
∏

i≤k

(ηs (ai)) =
∏

i≤k





∑

s′∈C(σ)

σ (s′) · ηs (s′) (ai)



 .
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Similarly, define ψk
σ,η : C (σ) → △

(

(A× A)k
)

as a mapping that assigns for each policy s the

probability distribution over k-tuples of action-profiles (i.e. probability to each k-tuple (ai, a
′
i)i≤k)

that a player observes conditional on being matched with an opponent with policy s. Formally:

ψk
s,η

(

(ai, a
′
i)i≤k

)

=
∏

i≤k

(ψs,η (ai, a
′
i)) =

∏

i≤k





∑

s′∈C(σ)

σ (s′) · ηs (s′) (ai) · ηs′ (s) (a′
i)



 .

Define η′k and ψ′k
η (s) in an analogous way. Note that η1

s ≡ ηs,σ and ψ1
s ≡ ψs,σ,η, where the

notions in the right hand side are as defined in Section 3.1.

We measure distance between finite support probability distributions with the L1-norm as fol-

lows: let X be a finite set and ∆ (X) the set of probability distributions on X. Given two

probability distributions ξ, ξ′ ∈ ∆ (X), their distance is defined as the sum of the absolute differ-

ences in the weights they assign to the different elements of X:

‖ξ − ξ′‖1 =
∑

x∈X

|ξ (x) − ξ′ (x)| .

For example,
∥

∥

∥ηk
s − η′k

s

∥

∥

∥

1
=

∑

(ai)i≤k∈Ak

∣

∣

∣ηk
s

(

(ai)i≤k

)

− η′k
s

(

(ai)i≤k

)∣

∣

∣ , and

∥

∥

∥ψk
s,η − ψk

s,η′

∥

∥

∥

1
=

∑

(ai,a
′
i)i≤k

∈A×A

∣

∣

∣ψk
s,η

(

(ai, a
′
i)i≤k

)

− ψk
s,η′

(

(ai, a
′
i)i≤k

)∣

∣

∣ .

We measure distance between sets of finite support probability distributions with the same support

with the help of the L∞-norm. For any two sets of distributions γ, γ′ ⊆ ∆ (X), we define

‖γ − γ′‖∞ = max
ξ∈γ,ξ′∈γ′

‖ξ − ξ′‖1 .

For example,
∥

∥

∥ηk − η′k
∥

∥

∥

∞
= max

s∈C(σ)

∥

∥

∥ηk
s − η′k

s

∥

∥

∥

1
, and

∥

∥

∥ψk
η − ψk

η′

∥

∥

∥

∞
= max

s′∈C(σ)

∥

∥

∥ψk
s,η − ψk

s,η′

∥

∥

∥

1
.

Finally, we also use the L∞-norm to measure the distance between ηs and η′
s (since ηs can be

interpreted as representing the set {ηs (s′)}s′∈c(σ)):

‖ηs − η′
s‖∞ = max

s′∈C(σ)
‖ηs (s′) − η′

s (s′)‖1 ,

and we use two notions of norms ‖‖∞,∞ and ‖‖∞,1 to measure distances between η and η′:

‖η − η′‖∞,∞ = max
s∈C(σ)

‖ηs − η′
s‖∞ , ‖η − η′‖∞,1 = max

s∈C(σ)
‖ηs − η′

s‖1 .
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Observe that ‖ηs − η′
s‖1 ≤ ‖ηs − η′

s‖∞ and ‖η − η′‖∞,1 ≤ ‖η − η′‖∞,∞.

A.1.2 Bounding the Distance Between Observed Action Profiles

We begin by showing that the distance between the distributions of an observed action profile is

at most twice the distance between the distributions of an observed action.

‖ψs,η − ψs,η′‖1 =
∑

(a,a′)∈A2

|ψs,η (a, a′) − ψs,η′ (a, a′)|

=
∑

(a,a′)∈A2

∣

∣

∣

∣

∣

∣

∑

s′∈C(σ)

σ (s′) · (ηs (s′) (a) · ηs′ (s) (a′) − η′
s (s′) (a) · η′

s′ (s) (a′))

∣

∣

∣

∣

∣

∣

≤
∑

(a,a′)∈A2

∑

s′∈C(σ)

σ (s′) |(ηs (s′) (a) · ηs′ (s) (a′) − η′
s (s′) (a) · η′

s′ (s) (a′))|

=
∑

s′∈C(σ)

σ (s′) ·
∑

(a,a′)∈A2

|(ηs (s′) (a) · ηs′ (s) (a′) − η′
s (s′) (a) · η′

s′ (s) (a′))|

=
∑

s′∈C(σ)

σ (s′) ·
∑

(a,a′)

|(ηs (s′) (a) · (ηs′ (s) (a′) − η′
s′ (s) (a′)) + η′

s′ (s) (a′) (ηs (s′) (a) − η′
s′ (s′) (a)))|

<
∑

s′∈C(σ)

σ (s′) ·
∑

(a,a′)

(ηs (s′) (a) · |ηs′ (s) (a′) − η′
s′ (s) (a′)| + η′

s′ (s) (a′) · |ηs (s′) (a) − η′
s′ (s′) (a)|)

=
∑

s′∈C(σ)

σ (s′) ·
∑

a′∈A

|ηs′ (s) (a′) − η′
s′ (s) (a′)| +

∑

a∈A

|ηs (s′) (a) − η′
s′ (s′) (a)|

=
∑

s′∈C(σ)

σ (s′) · (‖ηs′ (s) − η′
s′ (s)‖1 + ‖ηs (s′) − η′

s′ (s′)‖1) ≤
∑

s′∈C(σ)

σ (s′)

· (‖ηs′ − η′
s′‖∞ + ‖ηs − η′

s‖∞) ≤
∑

s′∈C(σ)

σ (s′) ·
(

‖η − η′‖∞,∞ + ‖η − η′‖∞,∞

)

= 2 · ‖η − η′‖∞,∞ .

The second inequality is strict because the elements inside the “||” in the l.h.s. of the strict

inequality include both positive and negative elements.

A.1.3 Bounding the Distance Between Observed Tuples

Let k ≥ 2. Next we show that the distance between the distribution of tuples of k observations is

at most k times the distance between a single observed action. This is done as follows:

∥

∥

∥ηk
s − η′k

s

∥

∥

∥

1
=

∑

(ai)i≤k∈Ak

∣

∣

∣ηk
s

(

(ai)i≤k

)

− η′k
s

(

(ai)i≤k

)∣

∣

∣

=
∑

(ai)i≤k∈Ak

∣

∣

∣

∣

∣

∣

∏

i≤k

ηs (ai) −
∏

i≤k

η′
s (ai)

∣

∣

∣

∣

∣

∣
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=
∑

(ai)i≤k∈Ak

∣

∣

∣

∣

∣

∣

∑

i≤k

(ηs (ai) − η′
s (ai)) ·

∏

j>i

ηs (aj) ·
∏

j<i

η′
s (aj)

∣

∣

∣

∣

∣

∣

<
∑

(ai)i≤k∈Ak

∑

i≤k



|ηs (ai) − η′
s (ai)| ·

∏

j>i

ηs (aj) ·
∏

j<i

η′
s (aj)





=
∑

i≤k







∑

a∈A

|ηs (a) − η′
s (a)| ·







∑

(aj)
j>i

∈An−i

∏

j>i

ηs (aj)





 ·







∑

(aj)
j<i

∈Ai−1

∏

j<i

η′
s (aj)













=
∑

i≤k

(

∑

a∈A

|ηs (a) − η′
s (a)| · 1 · 1

)

= k ·
∑

a∈A

|ηs (a) − η′
s (a)|

= k· ‖ηs − η′
s‖1 ≤ k · ‖η − η′‖∞,1 ≤ k · ‖η − η′‖∞,∞ .

The first equality is due to the independence of different observations. The third equality is

implied by the fact the sum in the third row includes many elements that cancel out (appearing

once with a positive sign and once with a negative sign), and the only elements that do not cancel

out are those appearing in the second row. The inequality is strict because the set of numbers

inside the “||” in the l.h.s. of the inequality include both positive and negative elements. The

first equality on the penultimate row holds because each sum adds the probabilities of disjoint

and exhausting events.

An analogous argument yields the same result for observed tuples of action profiles:

∥

∥

∥ψk
s,η − ψk

s,η′

∥

∥

∥

1
< k · ‖ψs,η − ψs,η′‖1 ≤ k · 2 · ‖η − η′‖∞,∞ ,

with a strict inequality if k > 1.

A.1.4 Showing that f (η) is a Contraction Mapping

We bound the distance between (f (η))s (s′) and (f (η′))s (s′) as follows.

‖(f (η))s (s′) − (f (η′))s (s′)‖
1

=
∑

a∈A

|(f (η)) s (s′) (a) − (f (η′)) s (s′) (a)|

=
∑

a∈A

∣

∣

∣

∣

∣

∣

∣

p1 ·
∑

(ai)i≤k∈Ak

[

∏

i≤k ηs′ (ai) · s
(

(ai)i≤k

)

(a) −
∏

i≤k η
′
s′ (ai) · s

(

(ai)i≤k

)

(a)
]

+ p2·
∑

(ai,a
′
i)i≤k

[(

∏

ψs′,η (ai, a
′
i) · s

(

(ai, a
′
i)i≤k

)

(a) −
∏

i≤k ψs′,η′ (ai, a
′
i) · s

(

(ai, a
′
i)i≤k

)

(a)
)]

∣

∣

∣

∣

∣

∣

∣

=
∑

a∈A

∣

∣

∣

∣

∣

∣

∣

p1
∑

(ai)i≤k∈Ak s
(

(ai)i≤k

)

(a) ·
[

∏

i≤k ηs′ (ai) −
∏

i≤k η
′
s′ (ai)

]

+p2 ·
∑

(ai,a
′
i)i≤k

s
(

(ai, a
′
i)i≤k

)

(a) ·
[(

∏

ψs′,η (ai, a
′
i) −

∏

i≤k ψs′,η′ (ai, a
′
i)
)]

∣

∣

∣

∣

∣

∣

∣
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≤
∑

a∈A

∣

∣

∣

∣

∣

∣

∣

p1

∑

(ai)i≤k∈Ak

s
(

(ai)i≤k

)

(a) ·





∏

i≤k

ηs′ (ai) −
∏

i≤k

η′
s′ (ai)





∣

∣

∣

∣

∣

∣

∣

+
∑

a∈A

∣

∣

∣

∣

∣

∣

∣

∣

p2

∑

(ai,a
′
i)i≤k

∈(A×A)k

s
(

(ai, a
′
i)i≤k

)

·





∏

ψs′,η (ai, a
′
i) (a) −

∏

i≤k

ψs′,η′ (ai, a
′
i)





∣

∣

∣

∣

∣

∣

∣

∣

≤
∑

a∈A

∑

(ai)i≤k∈Ak

s
(

(ai)i≤k

)

(a) ·

∣

∣

∣

∣

∣

∣

p1 ·
∏

i≤k

ηs′ (ai) − p1 ·
∏

i≤k

η′
s′ (ai)

∣

∣

∣

∣

∣

∣

+
∑

a∈A

∑

(ai,a
′
i)i≤k

∈(A×A)k

s
(

(ai, a
′
i)i≤k

)

(a) ·

∣

∣

∣

∣

∣

∣

p2

∏

ψs′,η (ai, a
′
i) − p2

∏

i≤k

ψs′,η′ (ai, a
′
i)

∣

∣

∣

∣

∣

∣

=
∑

(ai)i≤k

p1 ·

∣

∣

∣

∣

∣

∣

∏

i≤k

ηs′ (ai) − p1

∏

i≤k

η′
s′ (ai)

∣

∣

∣

∣

∣

∣

+
∑

(ai,a
′
i)i≤k

p2 ·

∣

∣

∣

∣

∣

∣

∏

i≤k

ψs′,η (ai, a
′
i) − p2

∏

i≤k

ψs′,η′ (ai, a
′
i)

∣

∣

∣

∣

∣

∣

= p1 ·
∥

∥

∥ηk
s′ − η′k

s′

∥

∥

∥

1
+ p2 ·

∥

∥

∥ψk
s′,η − ψk

s′,η′

∥

∥

∥

1
≤ p1 · k · ‖η − η′‖∞,∞ + p2 · k · 2 ‖η − η′‖∞,∞

= (p1 · k + 2 · p2 · k) · ‖η − η′‖∞,∞ ≤ ‖η − η′‖∞,∞ .

Moreover, the penultimate inequality is strict if either (i) k > 1 or (ii) p2 > 0. The last

inequality is strict if (iii) p1 · k+ 2 · p2 · k < 1. Observe, that at least one of the inequalities (i-iii)

must hold if k · p1 + 2 · k · p2 ≤ 1 and p1 < 1. Thus, we obtain the following strict inequality:

‖f (η) − f (η′)‖ ∞,∞ ≤ max
s,s′∈C(σ)

‖(fσ (η))s (s′) − (fσ (η′))s (s′)‖
1
< ‖η − η′‖∞,∞ ,

which implies that f is a contraction mapping and η = η′.

A.2 Proof of Theorem 2 (Strict Equilibrium is Evolutionarily Stable)

Proof. Assume that a∗ is a strict equilibrium of G. We have to show that strategy σ∗ ≡ a∗ is

an action-strict evolutionary stable. Observe first that σ∗ admits a unique consistent outcome

η∗ ≡ a∗, and that the configuration (a∗, a∗) is balanced. This shows part (i) in Definition 11 of

action-strict evolutionary stability.

Let (ξn)n∈N
be a converging sequence of full support action perturbations (i.e., lim n→∞M (ξn) →

0). We construct a sequence of configurations (σn, ηn)n∈N
as follows: for each n, let σn be the

strategy that puts all probability on the policy sn, i.e. σn ≡ sn, defined by

sn (·) (a) =











ξn (a) if a 6= a∗

1 −
∑

a′ 6=a∗ ξn (a′) if a = a∗
.
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That is, the policy chooses a∗ with the maximal allowed probability regardless of the signal about

the opponent. Since actions are independent of signals there is a unique outcome ηn that is

consistent with σn. Observe that L (ζn) → 0, each σn is feasible in E (ξn), and the sequence of

configurations (sn, ηn) converge to (a∗, a∗). Thus we are left to show part 2(C) of Definition 11.

That is, we have to show that ∃ǭ, n0 > 0 such that ǭ is an invasion barrier for σn for each n ≥ n0.

We will need a few pieces of notation. Let l (a∗) > 0 be the minimal loss from playing a

different action against a∗, and let g (a∗) ≥ 0 be the maximal gain that can be achieved by

playing a different action profile:

l (a∗) = min
a 6=a∗

(π (a∗, a∗) − π (a, a∗)) , g (a∗) = max
(a,a′)∈A×A

(π (a, a′) − π (a∗, a∗)) .

We have:

ψn ≡ ψsn,σn,ηn
(a, a′) =



























ξn (a) · ξn (a′) if a, a′ 6= a∗

(

1 −
∑

a′′ 6=a∗ ξn (a′′)
)2

if a = a′ = a∗.
(

1 −
∑

a′′ 6=a∗ ξn (a′′)
)

· ξn (a′) if a = a∗ 6= a′

Pick a sufficiently small ǭ < 1 such that:

(1 − ǭ) · 0.5 · l (a∗) −
ǭ · g (a∗) · (k + 1)

1 − 2 · k · ǭ
> 0. (1)

Pick anyǫ ∈ (0, ǭ). Let σ′ ∈ Σ (ζn) be a mutant strategy and let (σǫ, η̃) be a post-entry

configuration (with respect to the pre-entry strategy sn . It remains to show that the incumbents

outperform the mutants. Let q0 be the probability that an incumbent plays an action different

from a∗ at each round:

q0 = 1 −
∑

a′′ 6=a∗

ξn (a′′) .

Let ql be the probability that a mutant plays a 6= a∗ when being matched with an incumbent:

ql = 1 −
∑

s′∈C(σ′)

σ′ (s′) · (η̃n)s′,σn
(a∗) .

Note that for each signal m the strategy sn is the unique strategy that minimizes the probability of

playing a 6= a∗ after observing m. The fact that all signals are observed with positive probability

(because the perturbation has full support) implies that q0 < ql. Let qg ∈ [0, 1] be the probability
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that a mutant plays action a 6= a∗ when being matched against a mutant.

qg = 1 −
∑

s′∈C(σ′)

σ′ (s′) · (η̃n)s′,σ′ (a∗) .

The consistency of outcome η̃ with the strategy σǫ implies an upper bound on qg as follows.

Consider a mutant player (he) that is matched with a mutant partner (she). The partner can

be distinguished from an incumbent only to the extent that the induced distribution of observed

signals differ from the incumbents’ distribution. That is, the L1-distance between the mixed action

played against an incumbent and the one played against a mutant is bounded by the L1-distance

between their induced distribution of signals. In each match, she plays a different action (than an

incumbent) with probability of at most qg −q0 when being matched with a mutant partner (which

happens with probability ǫ), and with probability of at most ql − q0 when being matched with

an incumbent partner (which happens with probability 1 − ǫ). When observing a match of the

opponent with a mutant partner, the player may observe a different (non-incumbent) behavior also

due to the action of the partner, which may play differently than the incumbents with probability

of at most qg − q0. Thus, a bound on the L1-distance between the distribution of signals induces

by a mutant opponent and an incumbent opponent is : k · (ǫ · 2 · (qg − q0) + (1 − ǫ) · (ql − q0)) .

This yields the following upper bound on qg:

qg − q0 ≤ k · (ǫ · 2 · (qg − q0) + (1 − ǫ) · (ql − q0)) + (ql − q0) ⇔

(qg − q0) · (1 − k · ǫ · 2) ≤ (k · (1 − ǫ) · (ql − q0)) + (ql − q0) ⇒

(qg − q0) · (1 − k · ǫ · 2) ≤ (k + 1) · (ql − q0) ⇔ (qg − q0) ≤ k+1
1−2·k·ǫ

· (ql − q0)

For a sufficiently large n0 the trembles are sufficiently small such that, for each n ≥ n0 a mutant

yields a loss of at least l(a∗)
2

when playing differently than the incumbents against an incumbent.

Thus the difference between the incumbent’s payoff and the mutant’s payoff is at least:

πsn
(σsn,ǫ,σ′ , η̃) − πσ′ (σǫ,σ′ , η̃) ≥ (1 − ǫ) · 0.5 · l (a∗) · (ql − q0) − ǫ · g (a∗) ·

k + 1

1 − 2 · k · ǫ
· (ql − q0)

=

(

(1 − ǫ) · 0.5 · l (a∗) −
ǫ · g (a∗) · (k + 1)

1 − 2 · k · ǫ

)

· (ql − q0) ≥

=

(

(1 − ǭ) · 0.5 · l (a∗) −
ǭ · g (a∗) · (k + 1)

1 − 2 · k · ǭ

)

· (ql − q0) > 0,

where the last inequality is due to (1). This implies that the mutants are outperformed, for each

n ≥ n0. This completes the proof that strategy a∗ is action-strict evolutionarily stable.
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A.3 Proof of Theorem 3 (Only Defection is Stable)

Proof. Let G be a Prisoner’s Dilemma game with g ≥ l, let E = (G, (p1, 0, k)) an environment in

which only actions are observed, and let (σ∗, η∗) be a limit weakly stable configuration. We show

that η ≡ d.

Let ǭ > 0, let ζn = (ξn,Sn, λn) → 0 be a converging sequence of perturbations, and let

(σn, ηn)n∈N → (σ∗, η∗) be a converging sequence of configurations such that ǭ is a weak invasion

barrier for each σn ∈ Σ (ζn) in E (ζn). Given s ∈ C (σ), let qs = ηs,σ (d) denote its average

probability of defection. We write q ∈ Proj (C (σ)) if q = q (s) and s ∈ C (σ).

We define a few conditional probabilities that relate the observed signal m and the expected

defection probability of the partner.

Definition 15. Given message m ∈ M = φ ∪ {c, d}k, strategy σ ∈ Σ, policy s ∈ C (σ) and

probability q ∈ Proj (C (σ)), let:

1. Pr (m|q) be the probability that a player observes signal m conditional on the partner

defecting on average with probability q:

Pr (m|q) =











1 − p1 if m = φ

k!
(d(m))!·(k−d(m))!

· qd(m) · (1 − q)c(m) otherwise
.

2. Pr (m) be the probability of observing signal m when being matched with a random partner:

Pr (m) =











1 − p1 if m = φ

∑

s∈C(σ) σ (s) · Pr (m|qs) otherwise
.

3. Pr (s|m) be the probability that a random partner has policy s conditional on observing

signal m:

Pr (s|m) =











σ (s) if m = φ

σ(s)·Pr(m|qs)
Pr(m)

otherwise
.

4. qm (s) be the expected probability that a random partner defects conditional on that the

player follows policy s and observes signal m about his partner:

qm (s) =
∑

s′∈C(σ)

Pr (s′|m) ·
∑

m′∈M

Pr (m′|qs) · s′ (m′) (d) .
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Observe that the RHS depends in the policy s only through its dependency on its average defection

probability qs, and so will denote this expected probability by qm (qs).

We say that a policy is pro-defectors if it is less likely to defect against partners who are more

likely to defect. Formally:

Definition 16. Policy s ∈ C (σ)is pro-defectors given configuration (σ, η) if for each m,m′ ∈ M

q (m, qs) ≥ q (m′, qs) ⇒ sm (d) ≤ sm′ (d) .

Using the above notations we can characterize the payoff of each policy s in (σ, η) as follows:

πs (σ, η) =
∑

m∈M

Pr (m) · (sm (c) · ((1 − qm (s)) − l · qm (s)) + sm (d) · (1 + g) · (1 − qm (s)))

=
∑

m∈M

Pr (m) · ((1 − sm (d)) · ((1 − qm (s)) − l · qm (s)) + sm (d) · (1 + g) · (1 − qm (s)))

=
∑

m∈M

Pr (m) · ((1 − (1 + l) · qm (s)) + sm (d) · ((g · (1 − qm (s)) + l · qm (s))))

=
∑

m∈M

Pr (m) · ((1 − (1 + l) · qm (qs)) + sm (d) · ((g · (1 − qm (qs)) + l · qm (qs)))) . (2)

Fix n ∈ N and 0 < ǫ < ǭ. For each ξn (d) ≤ q̂ ≤ 1 − ξn (c), let σq̂ ∈ Σ (ζn) be the strategy that

assigns maximal mass to a pro-defector policy sq̂ (i.e., σq̂ (sq̂) = 1−
∑

s∈S λn (s)) that defects with

aggregate probability q̂ in each post-entry configuration (σǫ = (1 − ǫ) · σ∗ + ǫ · σq̂, ηǫ). Observe

that policy sq̂ outperforms any policy with the same average probability of defection. That is,

if s ∈ C (σǫ) and q (s) = q̂, then πσǫ,ηǫ
(sq̂) ≥ πσǫ,ηǫ

(s) due to (2) because both policies induce

the same distribution of partner behavior, while policy sα,µ defects when it is optimally to do so;

i.e., it defects when it the partner is more likely to cooperate (and in these cases defection yields

additional g fitness points), while it cooperates when the partner is more likely to defect (and in

these cases defection yields only additional l ≤ g fitness points).

By standard continuity and compactness arguments, there exists some ξn (d) ≤ q̂n ≤ 1−ξn (c),

which induces the optimal average defection probability, and for which πσǫ,ηǫ
(sq̂n

) ≥ πσǫ,ηǫ
(s) for

every s ∈ C (σǫ). This implies that πσǫ,ηǫ
(σq̂n

) ≥ πσǫ,ηǫ
(σn), which contradicts ǭ being a weak

invasion barrier for σn, unless σn = σq̂n
. If q̂n = 1 − ξn (c), then the limit as n converges to ∞

must be σ∗ ≡ d. If q̂n < 1−ξn (c), then all the non-trembling incumbents use the same policy, and

they all defect with a lower probability when they observe a signal that implies that the partner

is more likely to be a trembler who defects more often (and less likely to be a trembler who effects

less often). If the share of trembling incumbents is sufficiently small, then m = (d, ..., d) is such

a signal. However, this yields a contradiction to ǭ being a weak invasion barrier for σn because a
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mutant strategy that assigns the maximal mass 1−
∑

s∈S λn (s) to the policy that defects with the

maximal probability 1 − ξn (c) outperform the incumbents in any post-entry configuration.

A.4 Proof of Theorem 4 (Stable Cooperation if g < p2 < 1)

Let strategy σ∗ assign mass one to the following policy s∗:

s∗ (m) =











d if m = (d, c)

c otherwise
.

That is, the policy induces players to cooperate in all cases except when they observed that the

opponent was the sole defector in the past; in this case they defect. Note that this strategy

admits η∗ ≡ c as a consistent outcome (and the configuration (s∗, c) is balanced). Moreover, this

is the unique consistent outcome. Assume to the contrary, there is another consistent outcome

in which each agent defects with probability 0 < α. This implies that each agent observes (d, c)

with probability α · (1 − α) < α, and thus play d with probability smaller than α and we get a

contradiction. This shows part (1) of Definition 8 of limit evolutionary stability.

For each n ∈ N, let ζn =
(

ξn ≡ 0,Sn ≡ {d} , λn = 1
n

)

n
. This is the perturbation in which: (1)

there are no trembles when choosing actions (ξn ≡ 0) , (2) each agent tremble with probability

λn = 1
n

and follows (by mistake) the policy that always defects. Observe that limn→∞ L (ζn) → 0.

Let σn ∈ Σ (ζn) be the strategy that assigns maximal mass to s∗ in E (ζn), and let ηn be the

unique consistent outcome induced by σn:

σn (s) =



























1
n

if s = d

1 − 1
n

if s = s∗ ,

0 otherwise

ηn,s (s′) (d) =



























1 if s ≡ d

0 if s = s′ = s∗

qn ≡ p2

1+ n−1

n
p2

if s = s∗ and s′ ≡ d

.

Note that (σn, ηn) → (σ∗, η∗). The unique consistent outcome ηn is derived as follows :

1. (ηn)s∗ (s∗) (d) = 0 because the policy s∗ never induces an observation of (d, c), and thus,

when players with policy s∗ face each other they always cooperate.

2. Let qn be the probability that policy s∗ defects when facing policy d; observe that qn must

be equal to p2 times the probability that policy d plays (d, c). This latter probability is

equal to the probability of being matched with policy s∗ (i.e., n−1
n

) times the probability

that policy s∗ cooperates when facing policy d (i.e., 1 − qn). Thus qn is the unique solution
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to the equation:

qn = p2 ·
n− 1

n
· (1 − qn) ⇒ qn =

n−1
n

· p2

1 + n−1
n
p2

.

We are left to show that there exist ǭ > 0 and n0 ∈ N such that ǭ is an invasion barrier for σn in

E (ζn) for each n ≥ n0. Note that all action profiles are observed with positive probability when

the population follows the configuration (σn, ηn). The strategy of the mutants can differ from the

incumbents strategy in one (or more) of the following ways:

1. Cooperation after observing (d, c). Consider a mutant strategy in which the non-trembling

mutants cooperate with positive probability after observing (d, c). Note that players observe

(d, c) only when being matched with the trembling policy d that always defects. Thus,

cooperating with positive probability yields a strict loss of g, when cooperating against

policy d without providing any gain, and the mutants are strictly outperformed.

2. Defection after observing (c, d) or (c, c). Consider a mutant strategy in which the non-

trembling mutants defect with positive probability after observing (c, d) or (c, c). Note

that with probability of 1 − O (ǫ) such observations occur when being matched with (non-

trembling) incumbents. Each such defection against the incumbents yields a gain of g (the

direct gain at the current interaction) and a loss of at least 1 · p > g (the indirect loss

from the fact that this behavior is observed by an incumbent in a future interaction, and it

induces him to defect). Thus, such mutants are strictly outperformed.

3. Defection after observing (d, d). Consider a mutant strategy in which the non-trembling

mutants defect with positive probability after observing (d, d). If the mutants are sufficiently

rare, most observations of (d, d) are obtained when the past interaction was between the

trembling policy d and a non-trembling incumbent policy s∗,16 and the opponent can have

either of these policies with equal probability. If the opponent has policy d , then defection

yields a gain of g. If it has policy s∗, then defection yields a net loss of 1: a direct gain

of g from the current interaction, and a loss of approximately (1 + g) · p>p>g due the

probability that a future incumbent observes the current action profile of (d, c). Thus, if

g < 1 the mutants are strictly outperformed.

Similarly, one can show that mutants who combine two or more of these differences are outper-

formed as well. This proves implies that s∗ is limit evolutionarily stable.

16Note, that this is true also when the share of mutants ǫ is larger than the set of the trembling policy:
1

n
< ǫ << 1. Minor adaptations to the arguments in the calculation of qn above show that in the unique post-

entry consistent outcome, the mutants probability of defection is O
(

1

n

)

, and thus observation of (d, d) that involves
a mutant is ǫ times less likely than observation of (d, d) between the incumbents.
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A.5 Proof of Theorem (Stable Cooperation with Supermodularity)

Let q∗be defined as follows:

q∗ = min

(

1,
l

(1 + 2 · l − g) · p1

)

.

Note that q∗ < 1 iff p1 >
l

1+2·l−g
. Let σ∗ be the strategy that assigns mass q∗ to the “tit-for-tat”

policy st and the remaining mass to the policy c that always cooperate:

σ∗ (s) =











q∗ s = st

1 − q∗ s ≡ c
, st (m) =











d if m = d

c otherwise
.

It is immediate that the strategy admits η∗ ≡ c as the unique consistent outcome, and that the

configuration (σ∗, η∗) is balanced.

For each n ∈ N, let ζn =
(

ξn ≡ 0,Sn ≡ {d} , λn = 1
n

)

n
be the perturbation in which: (1) there

are no trembles when choosing actions (ξn ≡ 0) , (2) each agent trembles with probability λn = 1
n

and follows (by mistake) the policy that always defects. Observe that limn→∞ L (ζn) → 0. Let

σn ∈ Σ (ζn) be the strategy that assigns mass qn to the “tit-for-tat” policy st and the remaining

(non-trembling) mass to the policy c, where 0 < qn < 1 will be defined below.

σn (s) =



























1
n

s ≡ d

qn s = st

qc := 1 − qn − 1
n

s = sc

, st (m) =











d if m = d

c otherwise
.

Let ηn be the unique consistent outcome induced by σn :

ηn,s (s′) (d) =











































1 s ≡ d

0 s ≡ c

µn ≡
p2

1

n·(1−p1·qn)
if s = s′ = st

p1 if s = st and s′ ≡ d

. (3)

The value of µn is the the unique solution to the following equation:

µn = p1 ·
(

1

n
· p1 + qn · µn

)

,

where the RHS is equal to the probability of observing the partner’s action (p1) multiplied by the
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probability that a random past action of an st partner is defect: with probability 1
n

the partner’s

past opponent was a trembler and in this cast the partner defects with probability p1, and with

probability qn the partner’s past opponent was following st and in this case the partner defects

with probability µn. Observe that µn converges to zero as n → ∞.

The expected payoff of policy st (the LHS) and is the same as the expected payoff of policy c

(the RHS) in the configuration (σ∗, η∗) iff:

qc · 1 + qn ·
(

µn · (1 − µn) · (1 + g − l) + (1 − µn)2 · 1
)

−
1

n
· (1 − p1) · l =

n− 1

n
· 1 −

1

n
· l ⇔

qn ·
(

µn · (1 − µn) · (1 + g − l) + (1 − µn)2
)

= qt · 1 −
1

n
· l · p1 ⇔

qn ·
(

2 · µn − µ2
n − µn · (1 − µn) · (1 + g − l)

)

=
1

n
· l · p1.

When n is sufficiently large the LHS can be approximated by:

qn·
(

2 · µn − µ2
n − µn · (1 − µn) · (1 + g − l)

)

≈ qn·(2 · µn − µn · (1 + g − l)) = qn·(µn · (1 + l − g)) .

Substituting µn from (3) yields:

qn ·
p2

1 · (1 + l − g)

n · (1 − p1 · qn)
≈

1

n
· l · p1 ⇔ qn · p1 · (1 + l − g) ≈ 1 − p1 · qn ⇔ qn ≈

1

p1 · (2 + l − g)
.

This implies that:

1. If p1 <
l

1+2·l−g
, then st always strictly outperforms c. Moreover, if g

1+g
< p1 and qc = 0, then

st (the LHS - the payoff of stagainst itself) strictly outperforms d (the RHS - the payoff of

policy d against st) when n → ∞ and the configuration consists almost entirely of st:

1 > (1 − p1) · (1 + g) .

This implies that for a sufficiently large n, the strategy σn is an ESS in E (ζn) because it

assigns the maximal mass the policy st, which is the unique strict best-reply to itself.

2. If p1 >
l

1+2·l−g
, then for a sufficiently large n there exists a unique frequency 0 ≤ qn < 1

that balances the payoffs of st and c, and the limit of these frequencies converges to q∗ as

n → ∞. We conclude the proof by showing that strategy σn is an ESS in E (ζn) for a

sufficiently large n:
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(a) The supermodularity of the game implies that agents have larger incentives to defect

against partners who are more likely to defect. The fact that σ∗ is balanced implies

that agents are indifferent between cooperating and defecting after observing a de-

fection, when facing the configuration (σn, ηn). This implies that after observing a

non-informative signal or cooperation (which implies that the partner is more likely to

cooperate again relative to the cooperation likelihood after observing defection), de-

fection is the unique strict best reply against (σn, ηn). This implies that mutants who

defect after observing a non-informative signal or cooperation are strictly outperformed

if they are sufficiently rare.

(b) Observe that policy c yields a higher expected payoff (relative to st) when facing st

and a lower expected payoff when facing policy d. This implies that a small group of

mutants that assigns larger (smaller) mass to policy st than q∗ is strictly outperformed

in any post-entry configuration: the mutants achieve the same payoff against the

incumbents (due to the balancedness of (σn, ηn)) but the incumbents yields a higher

payoff (relative to the mutants) when facing mutants.

(c) Due to the supermodularity of the payoffs, a monomorphic group of mutants (except

the tremblers) who defect with probability q∗ after observing defection is strictly out-

performed by the incumbents: The polymorphic group of incumbents has the same

aggregate probability of defection as the mutants, but the incumbents have stronger

correlation between the defections of the player and his partner (st incumbents are

more likely to defect against each other, while c incumbents never defect against each

other), and the supermodularity implies that such additional correlation yields strictly

higher payoffs (as the incentives to defect are larger if the partner is more likely to

defect as well).

This shows that strategy σn is an ESS in E (ζn) for a sufficiently large n (and in all the cases

above, the invasion barrier can be shown to be independent of n), which implies that σ∗ is limit

evolutionary stable.

Similarly, one can show that mutants who combine two or more of these differences are out-

performed as well. This proves implies that σ∗ is limit evolutionarily stable.
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A.6 Proof of Theorem 6 (Robust Cooperation with Public Signals)

Proof. Let (ξn)n∈N
be any converging sequence of full-support action perturbations (i.e.,

limn→∞ L (ζn)→ 0). For each n, let sn be the following policy:

sn (m1,m2) (d) =











1 − ξn (c) if m1 = (d, c) or m2 = (d, c)

ξn (d) otherwise
.

That is, the policy chooses d with the maximal allowed probability if either of the players was the

sole defector in the past, and chooses c with the maximal allowed probability otherwise. Note, that

each strategy sn admits a unique outcome ηn in which all players play (c, c) with probability of

1−O (L (ξn)). Observe that in the perturbed configurations converge to a balanced configuration

in which everyone cooperates with probability one:

s∗ (d) = lim
n→∞

sn (·) (d) =











1 if m1 = (d, c) or m2 = (d, c)

0 otherwise
, and η∗= lim

n→∞
ηn (·) ≡c,

and that η∗ is the unique outcome of strategy s∗. We have to show that that ∃ǭ > 0 and n0 ∈ N

such that ǭ is an invasion barrier for σn in E (ξn) for each n ≥ n0. Let ǭ << p−g2, independently

of n. Let σ′ ∈ Σ (ζn) be a mutant strategy and let (σsn,ǫ,σ′ , η̃) be a post-entry configuration (with

respect to the pre-entry configuration (sn, ηn)). Note that when two incumbents meet each other

they play (c, c) with probability of 1 −O (L (ξn) + ǫ). This observation can be used to show that

for each mixture strategy σsn,ǫ,σ′ there exists a unique post entry consistent outcome η̃.

In order to complete the proof we have to show the mutants are strictly outperformed. For

brevity, we do not present full details of the arguments and the explicit construction of η̃, which

are similar to the constructions of unique post-entry configurations in Theorem 4 and related

arguments in previous proofs.

The Mutants’ strategy can differ from the incumbents’ strategy in the following ways:

1. Cooperation after observing (d, c) (by either player). Consider a mutant strategy in which

the non-trembling mutants cooperate with positive probability after observing (d, c). With

high probability (1-O (ǫ)), the opponent is an incumbent, and in cooperation yields a strictly

lower payoff: an incumbent is going to defect with high probability after observing (d, c),

and thus cooperation against him yields with high probability an immediate loss of l without

any indirect gain from observations by future opponents. Thus, cooperating with positive

probability after observing (d, c) yields a strict loss if the mutants are sufficiently rare.
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2. Defection with after observing m1,m2 6= (d, c). Consider a mutant strategy in which the

non-trembling mutants defect with positive probability after observing a signal in which

both m1,m2 6= (d, c). With high probability, the opponent is an incumbent and he is going

to cooperate. In this case, defection yields an immediate gain of g, and an indirect loss

of at least one utility point when the action profile (d, c) is being observed by a future

incumbent opponent (which happens with probability p2). Thus, the indirect loss is larger

than the direct gain if g < p2, and in this case the mutants yields a strict loss (when they

are sufficiently rare).

Similarly, one can show that mutants who combine both differences are outperformed as well.

This implies that σn (s) is a strong evolutionarily stable configuration in the perturbed game

Γ (ζn), which implies that s∗ is limit evolutionarily stable.
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