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Abstract

I evaluate the welfare effects of the 1997 merger between Boeing and McDonnell Dou-

glas in the medium-sized, wide-bodied aircraft industry. I develop an empirical model

of multi-product firms, allowing for both learning-by-doing and product innovation in a

dynamic game to quantify merger efficiency. Merger efficiency from learning-by-doing

is then disentangled from both the effects of innovation and market power. The results

show that the primary benefits from the Boeing-McDonnell Douglas merger come from

accelerated learning-by-doing. Taking account of all static and dynamic effects, net

consumer surplus is found to have increased by as much as $1.57 billion. In contrast,

a static model ignoring learning-by-doing and innovation predicts a consumer loss of

approximately $20 billion. These results show that ignoring dynamic effects can lead to

biased results and erroneous policy decisions regarding the welfare effects of proposed

mergers.
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1 Introduction

“A primary benefit of mergers to the economy is their potential to generate

significant efficiencies . . . which may result in lower prices, improved quality,

enhanced service, or new products.” (2010 U.S. Horizontal Merger Guidelines)

One of the central duties of the Federal Trade Commission (FTC) and the Antitrust

Division of the U. S. Department of Justice (DOJ) is to evaluate the potential effects of

proposed mergers between competing firms on the welfare of consumers. Mergers that would

make consumers worse off are either restructured through divestitures or challenged and

potentially blocked. In light of the size and number of companies involved in merger activity,

the potential welfare effects are significant. As reported in the most recent Hart Scott Rodino

Annual Report, there were 1,326 proposed transactions involving large companies in 2013,

with a total capitalization of $815 billion.

In evaluating a prospective merger, antitrust agencies compare pre-merger prices with

forecast of post-merger prices. To make this forecast, the agencies generally hold firms’

costs and the quality of their products fixed and estimate the likely effects of the merger on

post-merger prices. While there are some variants to this approach, for example, it may be

recognized that some products would be removed or some immediate cost reductions real-

ized, the evaluation still takes the form of a short-run analysis. The fundamental question

asked is: what will happen to consumer welfare in the short-run in response to this merger?

However, that the primary efficiencies from some mergers are realized over time and are

endogenous to firms’ decisions in the post-merger environment. Such dynamic efficiencies

can come from a reduction in cost because of learning-by-doing or altered incentives to

invest in reducing marginal cost; from better products due to investment or adoption of

new technologies; and from future entry and exit (perhaps involving additional mergers and

acquisitions). For example, the international hard drive disc (HDD) market has experienced

a series of major mergers in recent years. Maxtor was acquired by Seagate in 2006 and

Samsung’s HDD operations were acquired by Seagate in 2011. In addition, Hitachi’s HDD

operations were sold to Western Digital in 2012. The most significant impact on consumer

welfare from this altered market structure may lie not with how it affects price in the short-

run, but rather how that altered market structure may affect product cost and quality

in the long-run. Will firms have stronger or weaker incentives to invest and innovate in

that altered market structure? Effectively addressing such questions is central to a proper

evaluation of the welfare effects of these mergers.

Though dynamic efficiencies are well-recognized as potentially substantial, they have not

played a significant role in merger evaluation by antitrust authorities because of the lack

of methods for estimating these efficiencies.1 Furthermore, there has been little empirical

research on the long-run efficiency effects of such mergers. The primary objective of this

1The 2010 U.S. Horizontal Merger Guidelines indicate that dynamic efficiencies, “such as those relating
to research and development, are potentially substantial but are generally less susceptible to verification.”
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paper is to quantity the dynamic efficiencies from the Boeing-McDonnell Douglas merger.

I develop an empirical model of the medium-sized, wide-bodied aircraft industry. I use this

dynamic model to estimate the long-run efficiencies resulting from the Boeing-McDonnell

Douglas merger. Finally, I use both this dynamic model and a static model to estimate net

consumer surplus. My conclusion is that the dynamic model estimates consumer surplus

from the merger to be as much as $1.57 billion, whereas the static model predicts a consumer

surplus loss of approximately $20 billion.

The empirical model captures two common dynamic forces relevant to industry per-

formance and thus to the evaluation of a merger: learning-by-doing2 and improvements

in product quality.3 These forces are captured in a model with multi-product firms that

compete in an infinite-horizon dynamic game. In each period, a firm chooses how much

to produce (which may be a vector of quantities if it has multiple products), while taking

into account the effects of that production on current and future profit streams through the

effects on the firm’s experience. Experience is a state variable that rises as a firm’s past

output accumulates (learning), but also depreciates over time (forgetting). Learning-by-

doing is modeled by having unit production cost be a decreasing function of experience. A

firm’s production is allowed to have spillover effects with regards to experience accumulation

from that firm’s other products and also its competitors’ products. The magnitude of these

spillover effects are allowed to depend on ownership and product characteristics. In addition

to choosing how much to produce each period, a firm chooses whether to invest in improving

the quality of its products. These potential product upgrades are exogenously generated

from outside of the industry. Adoption of an upgrade causes direct cost to be incurred, as

well as an indirect cost through a setback in experience. For example, Levitt, List, and

Syverson (2013) found for the automobile industry that “introducing a new model variant

into production does cause productivity setbacks.” For this setting, firms are assumed to

behave according to a Markov Perfect Equilibrium in which they decide on production and

upgrades in each period given the state variables of firms’ experiences and product quali-

ties, as well as given the stochastic realization of market size, product characteristics, and

upgrading costs.

Before moving on to specifics relating to the aircraft industry, let us consider the possi-

ble welfare implications of a merger within this framework. A merger may hurt consumers

because reduced competition creates the incentive to restrict production and raise price;

2 Traditional industries benefiting from learning-by-doing include: aircraft, shipbuilding, semiconductors,
fuel cell vehicles, oil drilling, photovoltaics, machine tools, metal products, nuclear power plants, and chemi-
cal processing. Recent works in estimating learning-by-doing include Benkard (2000) for aircraft, Thompson
(2001) and Thompson (2007) for shipbuilding, and Gowrisankaran, Ho, and Town (2006) for surgical proce-
dures. See Besanko, Doraszelski, Kryukov, and Satterthwaite (2010) for a complete list of learning-by-doing
estimation works.

3Competition in quality improvements is important in high technology industries, such as biotechnology
and pharmaceuticals, medical instruments, aircraft, automobiles, computer hardware and software, cell
phones, and game consoles. However, there are limited intra-industry empirical studies on relationships
between quality improvements and market competition. Examples include Goettler and Gordon (2011) and
Nosko (2014) for the CPU market, and Hashmi and Biesebroeck (2013) for automobiles.
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this is the traditional market power effect. However, a merger may also generate dynamic

efficiencies in several ways through its effects on the evolution of production experience.

First, there is an immediate benefit in lowering marginal cost for products of the merged

firm because accumulated experience is shared. This is due to possible spillover of expe-

rience across products, serving to lower cost, raise output, and elevate consumer welfare.

Second, the merged firm may choose to alter its product line, for example, by shutting down

some of the products of the acquired firm. Fewer products means less variety (which makes

consumers worse off) but also more output per product, implying faster experience accumu-

lation, lower unit cost, and lower future prices (which makes consumers better off). Third,

future experience might be more effectively shared between different products within the

same firm (within-firm spillover) than between different firms (across-firm spillover), which

again will produce lower costs after the merger.

A second source of dynamic efficiency comes from altered incentives for quality im-

provements. The direction of this effect is ambiguous. After a merger, softened competition

could discourage innovation but enlarged market share may mean a bigger benefit from

a better quality product. which would stimulate incurring the fixed cost to innovate. If

quality improvements negatively impact experience and raise unit cost then this will further

complicate the evaluation. Assessing how these forces net out in terms of firm behavior and

consumer welfare will then require estimating parameters, solving the dynamic model for

equilibrium behavior, and simulating the industry path with and without a merger.

Having developed this empirical model, I then apply it to the medium-sized, wide-

bodied aircraft industry to evaluate the merger between Boeing and McDonnell Douglas.

Prior to the merger, the market was occupied by three firms, Boeing, Airbus, and McDonnell

Douglas, who were producing four products (A330, A340, B777, and MD-11) in the medium-

sized, wide-bodied aircraft market.4 Immediately after the merger, the new Boeing company

shut down production of MD-11. Manufacturing aircraft is labor-intensive and learning-by-

doing is commonly recognized as an important feature in the industry.5 The Boeing 777 was

introduced only two years before the merger, with submodels of B777 arriving soon after

the merger. Thus, by ceasing production of MD-11, Boeing hoped to achieve lower marginal

cost more rapidly for its B777. Besides learning-by-doing, innovation through upgrades is

another distinct feature of the aircraft industry. New generations of aircraft were introduced

of higher quality. This was especially so after the September 11th attacks when petroleum

prices skyrocketed and airline demand for more fuel-efficient aircraft accelerated.

To evaluate the welfare effects of the Boeing-McDonnell Douglas merger, the model is

solved for three different scenarios: (i) merger and the MD-11 is immediately shut down

(which is what actually occurred), (ii) merger with continued operation of the MD-11, and

4The merger of the two companies affects the entire aircraft industry. However, I will focus on its impact
on the medium-sized, wide-bodied aircraft industry only, which can be viewed as an isolated market from
other aircraft industries as discussed in Section 4.1.

5The aircraft industry is the market where learning-by-doing was first recognized. See Wright (1936).
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(iii) no merger. The time series for price, consumer surplus, profit, and total surplus was

computed for all scenarios. To disentangle efficiency resulting from learning-by-doing from

efficiency due to quality improvements and market power effects, I solve an additional model

that does not allow for quality improvements, as well as a third model that does not allow

for either learning-by-doing or quality improvements. The results show that the primary

benefits from the Boeing-McDonnell Douglas merger come from accelerated learning-by-

doing rather than from a higher rate of innovation. Furthermore, the dynamic efficiencies

generated by the merger are large enough to exceed the static market power effect, which is

approximately $20 billion. Taking account of all static and dynamic effects, net consumer

surplus is found to have increased by as much as $1.57 billion. These results show that

ignoring dynamic effects can lead to biased results and erroneous policy decisions regarding

the welfare effects of proposed mergers.

This paper is directly related to three lines of research: dynamic effects of a merger,

learning-by-doing in the aircraft industry and other industries, and dynamic innovations

within an industry. Gowrisankaran (1999) is one of the first papers that theoretically ex-

amined the dynamic effects of a merger. Performing numerical analysis within the Ericson-

Pakes framework (Ericson and Pakes (1995)), firms were modeled as choosing investment

to expand capacities dynamically, with endogenously generated mergers. Gowrisankaran

(1999) assumed marginal cost is fixed and common across firms. The impact of a merger on

consumer welfare was not a central issue in that paper. Chen (2009) also examined these

issues theoretically and had firms make dynamic investment decisions affecting capacity

accumulation, which impacted marginal cost over time. That analysis explored the bias

in static merger analysis when dynamic investment is ignored. Stahl (2009) estimated cost

and revenue parameters for the broadcast television industry, where costs were estimated as

residuals of firm behavior unexplained by revenues. That paper focuses on the consolidation

process itself rather than evaluating merger-generated efficiencies and thus does not solve

the dynamic oligopoly model. Benkard, Bodoh-Creed, and Lazarev (2010) evaluated the

medium- and long-run dynamic effects of airline mergers and explored the effect of mergers

on market structure rather than consumer welfare. Jeziorski (2013a) and Jeziorski (2013b)

studied merger impacts in the U.S. radio industry and took account of the markets being

two-sided. Jeziorski (2013a) compared listeners’ welfare increase from product variety with

the market power effect. Jeziorski (2013b) endogenized merger decisions and found that to-

tal cost savings from mergers outweighed the loss caused by increased market power. Nocke

and Whinston (2010) provided a new theoretical framework to model dynamic merger de-

cisions where firms’ choice variables other than merger decisions are assumed to be static.

They derived conditions whereby an antitrust authority can maximize the present value of

consumer surplus by using a myopic merger review policy. I contribute to this line of re-

search by introducing a model that focuses on the endogenous dynamics of cost and product

quality.

The empirical learning-by-doing literature encompasses a wide array of industries. This
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paper is most closely related to the pioneering research of Benkard (2000) and Benkard

(2004). Benkard (2000) introduced the concept of forgetting to explain the rise in cost for the

Lockheed L-1011, and Benkard (2004) allowed for a learning curve in a dynamic oligopoly

model with four single-product firms, estimating welfare under several counterfactual sce-

narios with a social planner and a monopoly. This paper follows this methodological path

but focuses on merger evaluation. I extend the empirical model to allow for multi-product

firms, dynamic quality improvements, and the spillover effect of learning curves. In my

model, merger efficiencies are likely to arise either through accumulation of experience due

to combining output and the spillover effect or through a higher probability of upgrading

products. Although the spillover effect of the learning curve has not been widely investigated

for the aircraft industry,6 it has been modeled and estimated for other industries, including

semiconductors (Irwin and Klenow (1994)), shipbuilding (Thornton and Thompson (2001)),

fuel cell vehicles (Schwoon (2008)), steel (Ohashi (2005)), and health care (Chandra and

Staiger (2007)). However, those papers are not targeted at evaluating mergers in the context

of a dynamic game, and none of them simultaneously estimated within-firm spillover and

across-firm spillover, which could be significant factors in calculating merger efficiencies.

With respect to the empirical literature on innovation, this paper is most closely related

to Goettler and Gordon (2011), which examines the microprocessor industry. Both Goettler

and Gordon (2011) and my work use the concept of a product’s quality relative to an outside

good whose quality is changing over time; this is a modeling device first proposed in Pakes

and McGuire (1994). One major difference of my paper from that by Goettler and Gordon

(2011) is in the modeling of quality evolution of the outside good. Goettler and Gordon

(2011) fixed the difference in quality between the industry frontier product and the outside

good. Thus, in their model, the outside good upgrades automatically when the product

with the highest quality upgrades. In contrast, I let the quality upgrade of the outside good

be exogenous and evolve stochastically. Although it is appealing to endogenize outside good

evolution in a single-product firm model as in Goettler and Gordon (2011), their method

might not be suitable for multi-product aircraft manufacturers. Aircraft upgrades involve

inventions of new patented technology that are more likely to be shared within a firm. Thus,

it is less realistic to assume that when the frontier product upgrades, the good outside the

market receives the same technology and upgrades automatically while a same-firm product

does not. In addition, Goettler and Gordon (2011) focused on dynamic demand while fixing

marginal cost for any given relative quality, while I assume static demand and concentrate

on cost structure evolution.

The remainder of the paper is organized as follows. Section 2 presents a global view of

the structural model. The data used for estimation and calibration is reviewed in Section 3.

6Benkard (2000) modeled a submodel spillover effect among submodels of an aircraft type but no cross-
product or cross-firm spillover effect and a complete within-model spillover is assumed in Benkard (2004).
The international trade literature studies knowledge-spillover in the sense of technology transfer across
countries and across industries. See Grossman and Helpman (1995) for a review of that literature and Niosi
and Zhegu (2010) for a review of the aircraft industry specifically.
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Section 4 applies the structural model to the aircraft industry. Using equilibrium strategies

solved from the dynamic model, merger evaluation is conducted in Section 5. Section 6

concludes the paper.

2 Model

This section describes the general dynamic framework that is the basis for the model to be

estimated for the aircraft industry. In describing the framework prior to putting forth the

empirical model, the intent is to give readers a global view of the decisions made by firms

and consumers and how the environment evolves. Then, in Section 4, this framework is

populated with the specific structure that will then be estimated.

The model has multi-product firms with differentiated products that compete in both

quantities and qualities. Quantity choices affect dynamic market cost structure through the

mechanism of learning-by-doing while qualities are improved through innovation decisions

to replace old generations of products with the next generation of higher quality products

(which are exogenously produced). Thus, improvements in product quality are realized by a

generation upgrade. The model is applicable to many industries for which learning-by-doing

and innovation are important, including high technology manufacturing industries such as

aircraft, computer hardware, tablet, and smart phone.

The industry is composed of I multi-product firms competing in discrete time over an

infinite horizon. Firm i ∈ I = {1, ..., I} has a product set Ji and J is the union of Ji for all

i. Size of Ji and J, denoted by Ji and J , are thus number of products in firm i and in the

industry, respectively. Exit and entry on both firm and product level are assumed away.7

However, they can be easily incorporated in the model.8 Quantity of product j from firm i

at period t is denoted as qi,j,t, or simply as qj,t when there is no need to specify to which

firm the product belongs.

In the remainder of this section I discuss modeling of the demand function and produc-

tion cost function to be used when firms are making dynamic decisions. Then, I introduce

structures on generation upgrade decisions. The section is concluded with a description of

the dynamic game.

2.1 Demand Function

Demand is determined by both the market size in quantity M , which follows an exogenous

stochastic process, and characteristics of all products in the market. Characteristics of

product j are classified into 3 categories. Xj represents all fixed characteristics of product

j. As explained in details below, Gj is the relative generation of product j, which measures

product quality and evolves following endogenous innovation decisions. Finally, ξj captures

7See section 4.5.3 for a more detailed discussion on exit and entry.
8See Doraszelski and Pakes (2007) for an example of modeling exit and entry.
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characteristics unobserved to econometricians that evolve exogenously, such as product

suitability. Let X, G and ξ denote the vectors of Xj , Gj and ξj , respectively, of all products.

I assume that consumers do not engage in intertemporal substitution. Their choices

of demand are solely based on current period product characteristics. Therefore, I assume

that when (X, G, ξ) and an industry quantity vector Q is given in a period, the inverse

demand function P = P (Q;X,G, ξ,M) is single valued and taken as given for firms.

2.2 Production Cost Function

Production cost of product j in period t, Cj,t, is a function of quantity qj,t and experience

level Ej,t. Cj,t is assumed to be increasing in qj,t and decreasing in Ej,t. Thus, experience

helps to lower production cost. Ej,t itself is a function of the experience level from last

period Ej,t−1 and the quantity vector of last period Qt−1. I introduce Ej,t so that instead

of tracking the entire product history, I can just use Ej,t as a state variable in the dynamic

game. I restrict Ej,t to be increasing in both Ej,t−1 and any qk,t−1, ∀k ∈ J. This implies

that experience accumulates over time both through direct learning from production (qj,t)

and spillover from production of other goods (qk,t, k 6= j). Forgetting is incorporated in the

model in the form of depreciation of experience Ej as
∂Ej,t

∂Ej,t−1
< 1.

2.3 Generation Upgrade

I assume that product innovation can be characterized into discrete generations, with higher

generations providing higher utility for consumers.9 For an industry with everlasting inno-

vations and infinite horizon, it is natural to believe that each product has infinitely many

generations gj ∈ {1, 2, 3, ...}. However, since the generation of each product is going to

be a state variable in the dynamic game, direct modeling of gj ∈ {1, 2, 3, ...} will explode

the state space and make it empirically intractable. Also, it is too restrictive to assume

that there is some maximal level of generation. Therefore, to deal with this dimensionality

issue, quality is measured as quality relative to an outside good, where the outside good

stochastically improves over time, and the difference in quality between a firms’ product

and the outside good is bounded. Formally, relative quality is defined as

Gj,t = gj,t − g0,t

where g0,t is the generation level of the outside good. Relative generation of all products

Gt is assumed to contain all of the information of gt that is relevant in determining the

demand function.

The model then tracks relative generations instead of absolute ones.10 This modeling

method helps to solve the dimensionality problem for industries where, given an appropriate

9See Section 4.4.1 for definition and reasoning for generation upgrades in the aircraft industry.
10Given the assumption that only relative generation matters, Gj can always be normalized by subtracting

it from its observed mean.
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definition of generation, maximum relative generation is observed to be small. One example

of such an industry is the video game console market. A generation of the game console

is commonly defined by processor word-length (number of bits), and there has been hardly

more than one generation gap between actively produced game consoles at any time in

the history of the industry.11 Note that by treating Gj as a product characteristic, the

assumption that relative generation is sufficient in determining demand is consistent with

the discrete choice model of the demand system that is widely employed in the literature.

Thus, employing relative generation creates no loss of useful information in determining

demand.

I assume that g0,t advances each period with probability pG.12 In the equilibrium, pG

determines the long-run industry innovation rate.

g0,t =

{
g0,t−1 + 1 with probability pG

g0,t−1 with probability 1− pG
(1)

Evolution of gj,t is controlled by joint upgrading decisions over all products of firm i owning

product j, denoted as Ui ∈ {0, 1}Ji . In each period, Ui is chosen to maximize total expected

value of the firm upon observing realization of a vector of random upgrading cost CG
i for

all the products firm i owns. Let uj,t ∈ {0, 1} be the indicator of product j generation

upgrading in period t as a result of joint upgrading decisions, and let cGj,t be the realized

upgrading cost for product j in period t. The impact of uj,t can be summarized by the

following equation.

uj,t =

{
1 → pays cGj,t; gj,t = gj,t−1 + 1; Ej,t = ψ(Ej,t−1)

0 → pays 0; gj,t = gj,t−1; Ej,t = Ej,t−1

(2)

where ψ(x) is a given function, with the property ψ(x) < x, ∀ x, that models setback in

experience level when upgrading a product. Thus, when product j is upgraded in period

t, its generation will increase by 1 while incurring an upgrade cost of cGj,t and a setback in

experience to ψ(Ej,t−1).

2.4 Dynamic Game

For the dynamic game, each product has three states variables: experience level Ej , rel-

ative generation Gj , and unobserved characteristics ξj . The state of the industry is then

characterized by a state profile ω = (E,G, ξ,M), where M is the overall market size. Firm

i makes joint decisions in upgrading all its products, Ui, and in quantity choices of those

products, Qi. Each period in the game can be divided into three stages as follows:

• (i) Nature Stage

11See a table of generations of game consoles in Liu (2010).
12If enough generation upgrading decisions at each state are observed, it would be better to let pG depend

on the current state of Gj for all j in order to endogenize outside good evolution.
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– Nature draws shocks on demand (M and ξ) and innovation of the outside good

(g0,t). All draws are immediately observed by all firms.

• (ii) Innovation/Upgrading Stage

– (ii.a) Firms learn their upgrading cost, which is private information.

– (ii.b) Firms simultaneously make adoption decisions (Ui). Resulting new gener-

ation levels of all products are immediately observed by all firms.

• (iii) Production and Learning Stage

– Firms compete in a simultaneous quantity competition game. Experience level

for each product is realized based on quantity choices and is revealed to all firms.

Note that experience state evolves in both stage (ii) and (iii), while generation state

changes in stage (i) and (ii). Quantity and upgrading decisions are made in different stages.

Thus, expected future values need to be constructed differently when solving for optimal

quantity and upgrading policies. To deal with these complexity, I found it very helpful to

be specific about stages for ω. Hereafter, I will denote state profile at the beginning of

Stage (ii) as ω and the state profile at the beginning of Stage (iii) as ω̃.

For Stage (ii), since firms do not observe other firms’ realized upgrading costs and

upgrading choices when making their own decisions, they have to put probabilities

Prωk = Probability of choosing Uω
k

on competitor k’s possible moves. In the following discussion on solving for Prωk , I drop

superscript ω on Ui for simplicity and all the discussions are with respect to a given state

profile ω. Denote firm i’s expected value, excluding upgrading cost, of choosing Ui as

EV Ui

i . EV Ui

i is the summation of expected values across all products firm i owns and the

expectation is over other firms upgrading probabilities Prωk . Let Ui and U
′
i be two different

vectors of choices from the set {0, 1}Ji . The vector Ui will be chosen if it gives firm i

the largest net continuation value (expected future value less upgrade cost). Thus, the

probability of choosing the vector Ui is simply given by the probability of net continuation

value with respect to Ui exceeding that with respect to any other choice vector U ′
i , i.e.

PrUi

i = Prob[(EV Ui

i − CG
i · Ui) ≥ (EV

U ′
i

i − CG′
i · U ′

i), ∀ U
′
i 6= Ui] (3)

Note that by allowing firms to have multiple products, complications arise in that I need to

solve for joint probabilities for each firm, which may have multiple solutions. Fortunately,

introducing randomness in a separable form through upgrade cost guarantees a unique

solution that can be easily solved for Equation (3). The crucial point is that given Ui,

EV Ui

i is not a function of any cj . The proof can be found in the Appendix.
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With equilibrium Prωi solved from Equation (3), I now turn to equilibrium quantity

choices. Since production affects future variable cost through its direct impact on experience

accumulation, production decisions for each period could no longer be modeled as static.

Quantities enter both the current profit function and the next period value function in the

Bellman equation. Aside from this quantity effect on future costs, the per period game is

a quantity competition with heterogeneous goods and multi-product firms. The per period

payoff (profit) function for product j is

πω̃j = pj(Q;X,G, ξ,M)qj − Cj(qj ;Ej). (4)

Let ρ denote the discount factor. Joint optimal quantity policies for firm i are solved

from:

max
qj ∀ j∈Ji



∑

j∈Ji

πω̃j + ρE[Vj(ω̃
′|ω̃, Q)]




where next period values are in prime terms. The value function for product j, denoted as

V ω̃
j , is then defined by the Bellman equation:

V ω̃
j = πω̃∗j + ρE[Vj(ω̃

′|ω̃, Q∗)] (5)

where ”∗” denotes value based on optimal quantity choices. The transition matrix for

calculating E[Vj(ω̃
′|ω̃, Q)] is left in the Appendix.

In solving the model numerically, I track Prωi for each state profile ω and qω̃j and V ω̃
j

for each state profile ω̃. Note that I utilize the differentiation of ω and ω̃ here. I find that

tracking V ω̃
j instead of V ω

j makes computation much easier.

3 Data

In order to determine whether medium-sized, wide-bodied aircraft are the primary aircrafts

on specific routes, I utilized route-level aircraft type and traffic data from the Bureau of

Transportation Statistics. I use a nested-logit discrete choice model for the demand function.

Annual fleet and deliveries data from the Airline Monitor are taken to construct quantities

for each aircraft type each year. Annual average aircraft value data for each type is provided

by Avmark and is used as plane prices. Market size is approximated by the total number

of used and new wide-bodied aircraft using data from the Airline Monitor. This choice of

approximation is based on the resale and rental market assumption discussed in Section 4.2

below. In the discrete choice model, the aircraft are heterogeneous in characteristics, and

the characteristics are collected from the official websites of Boeing and Airbus, as well as

various online sources. Characteristics include number of seats, maximum range, number

of engines, fuselage, empty operating weight, and first flight year.

Prices need to be instrumented in the demand estimation since they are likely to be cor-
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related with unobserved aircraft characteristics, which is the error term in the regression.

Assuming that observed characteristics are uncorrelated with the unobserved components,

characteristics are taken as one set of instruments. Cost shifters that are assumed to be

correlated with price but not with unobserved characteristics are taken as another set of in-

struments. Cost shifters used include present and lagged terms of U.S. manufacturing wage

rates from theBureau of Labor Statistics, and aluminium prices from IMF’s International

Financial Statistics Online Database.

Production cost estimation is decomposed into three steps. First, I estimate labor input

as a function of the production rate and experience. I utilize the data on direct man

hours incurred by Lockheed in the production of each L-1011 aircraft for labor input;13

The Jet Airliner Production List provides the first flight date of every wide-bodied aircraft

produced, which is taken as the date of production.14 Production rates and experience are

constructed using quantity data and date of production. Second, the relationship between

total variable costs and labor input is estimated also using data for the L-1011 program

taken from Benkard (2004). Third, maintenance costs of the L-1011 plants reported in

Lockheed’s annual reports are used to estimate fixed costs.

In labor input estimation, quantities are likely to be correlated with unobserved produc-

tivity. Thus, I instrument quantities using a set of cost and demand shifters that are assumed

to be correlated with quantities but not with unobserved productivity. Cost shifters are

identical to those used in demand estimation. Demand shifters include present and lagged

terms of world and regional GDP from IMF’s International Financial Statistics Online

Database and oil price data from the Energy Information Administration.

Generation upgrade-related parameters are calibrated based on data from several dif-

ference sources. Fuel efficiency data from the Airline Monitor and operating cost difference

claims reported in Boeing and Airbus newsletters are used to determine generations of air-

craft. Given the definition of generation, average time before generation upgrade can be

calculated using differences in first flight year across generations, which was obtained from

the Jet Airliner Production List. Upgrading probability is then the inverse of this average

time. Since generation is included as a characteristic in demand estimation, generation gap

is directly obtained from demand estimation. Finally, generation upgrade costs for various

aircraft models were collected from news clippings.

4 Empirical Application

In this section, I apply the model in Section 2 to the medium-sized, wide-bodied aircraft

industry. Depending on industry specifics and data availability, demand and cost functions

described in Section 2 are parameterized, and parameters in the model can be estimated

13I am grateful to C. Lanier Benkard for making this data available.
14The Jet Airliner Production List also has ownership history of all wide-bodied aircraft, which can be

used to calculate the rate of aircraft resale and rental.
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following at least two different approaches. First, parameters can be estimated directly in

the dynamic game. The common solution method is to first build a likelihood function or

moment conditions as functions of the parameters based on the data. Typical examples

of moments include average firm choices (price, investment, exit and entry, etc.) and co-

variances between a firm’s choices and a firm’s own states or rival firms’ states. Then one

solves a constrained maximization or minimization problem with respect to the likelihood

function or moment conditions by treating equilibrium conditions (Equations (3) and (5)) as

constraints. Thus, when the optimization problem is solved, optimal parameter values are

found together with the corresponding equilibrium of the dynamic game. Second, demand

and cost parameters can also be estimated separately in a first stage, and one assumes the

structures generating the estimates are unchanged in the dynamic model. The estimates are

then taken as primitives in solving for the equilibrium of the dynamic game. This latter ap-

proach is computationally less burdensome than the first approach since the dynamic game

only needs to be solved once, and there is no parameter searching in solving the dynamic

game. However, it also requires more structure assumptions as discussed above.

Data availability can be a factor determining which approach is used. When observations

are serially correlated, the entire time series of a variable, for example the price of a product,

is just one observation of its evolution, which is affected by various shocks. Thus, if there

is only one market in the industry, as in the case of the aircraft industry being studied

here, there is just one observation for each variable to construct moment conditions or the

likelihood function. This limits both credibility and the number of moment conditions that

can be constructed. Hence, for this paper, I chose the second approach to evaluate the

Boeing-McDonnell Douglas merger in the aircraft industry.15

For the rest of this section, some background information is provided regarding market

definition. Then, I present the specific empirical model of the demand and cost function for

the aircraft industry and discuss the estimated parameters. With demand and cost structure

introduced, I turn to discussions of definition and calibration of generation upgrade. I finish

this section with further analysis on applying the dynamic game to the medium-sized, wide-

bodied aircraft industry.

4.1 medium-sized, wide-bodied Aircraft as an Industry

A wide-bodied aircraft is a large jet airliner with two passenger aisles. (See Figure 1 for

interior arrangements of a typical 3-class-configuration wide-bodied aircraft.) Following the

introduction of the first wide-bodied aircraft, Boeing 747, in 1969, only four firms were

active in the industry. Of these four firms, Lockheed left the market in 1984. Nine wide-

bodied types were in production during the 1990-2010 period, yet they were not all directly

competing with each other due to differences in plane size and maximum flying range.

15For more localized industries containing many geographic markets, the former approach might be more
attractive.
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Figure 2 suggests that in terms of size and range, these nine aircraft types are clustered

into three groups: small (around 250 seats), medium (around 300 seats), and large (around

450 seats). The horizontal line in the figure marks the nautical distance between Beijing

and New York, and is used as a benchmark separating transatlantic and transpacific routes.

Differences in length of routes are continuous so this benchmark should only be viewed as a

guideline rather than a strict rule. However, we can see that, compared with small aircraft,

medium and large aircraft have longer range and are more suitable for transpacific routes.

The primary impact of the merger on market structure was the elimination of McDonnell

Douglas, whose only wide-bodied aircraft then in production was MD-11. Thus, I focus on

a sub-market of aircraft that directly competed with MD-11. That is, the medium-sized

group, which includes A330, A340, B777, and MD-11.

Other than those nine current types shown in Figure 2, Boeing introduced B787 in 2011

as a replacement of B777 and Airbus answered with A350, an upgrade of A330, that is

projected to enter the market in 2014. I treat B777 and A350 as new generation upgrades

of B777 and A330 respectively in the model. In this sense, there are more than one aircraft

model numbers (e.g. A330, A350) matching the same product in the model due to generation

upgrade. I will still call these products B777 and A330 for simplicity when there is no

ambiguity. Table 1 provides a summary of the important characteristics of the medium-

sized aircraft. MD-11 is the first product in the medium-sized sector while B777 is the

last to enter the market. Number of engines is an important characteristic because it is an

indicator of fuel efficiency. Twin-engine aircraft are generally more efficient than aircraft

with more engines.

To examine whether medium-sized aircraft can be treated as a single market, I collect

route level information and calculate the following ratio for each route:

medium-wide-ratio =
total number of flights of medium wide-bodied aircraft

total number of flights of any wide-bodied aircraft
(6)

If this ratio is close to 0, then it is a route where the medium-sized aircraft hardly

compete with other wide-bodied aircraft (small or large); if this ratio is close to 1, then it

is a route where other wide-bodied aircraft (small or large) hardly compete with medium-

sized ones. However, if this ratio is close to 0.5, then medium-sized aircraft are actively

competing with other wide-bodied aircraft on a given route. As such, a large proportion

of routes with the ratio close to either 0 or 1 would be supporting evidence for defining

medium-sized as a single market.

I observe monthly the total number of flights for each aircraft sub-model (e.g., Boeing

777-200) on any U.S. domestic and international route during the 1990-2011 period. For each

month-aircraft-route observation, I also observe number of passengers, pound of freights,

distance of routes, and total flying time. I focus on those routes with at least one flight of

medium-sized, wide-bodied aircraft and having distances longer than 1000 miles. I merge all

of the post-merger years data (1997-2011) and then only keep routes that have, on average,
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at least 50 flights of any wide-bodied aircraft per year. All these steps are intended to

help me focus on medium-sized-related routes where wide-bodied aircraft are flying in a

nontrivial frequency. I also drop all non-jet observations, although they are not expected

to fly on a route where wide-bodied aircraft are also flying anyway.

I end up with 908 routes. Checking the medium-wide-ratio, I find:

1. 61.5% of the routes withmedium−wide−ratio > 0.8 ormedium−wide−ratio < 0.2;

2. 74.0% of the routes withmedium−wide−ratio > 0.7 ormedium−wide−ratio < 0.3;

Figure 3 demonstrates the distribution of the medium-wide-ratio.16 I also repeated the

above steps with several single year data sets and found similar results.

I present some typical examples of routes and their major aircraft:

1. New York, NY – Shanghai, China: A340, 55.0%; B777, 45.0%

2. Miami, FL – Cologne/Dusseldorf, Germany: A330, 73.9%; A340, 11.5%; MD-11, 5.8%

3. Dallas, TX – Osaka, Japan: B777, 82.1%; MD-11, 17.9%

These markets are exclusively served by medium-sized, wide-bodied aircraft. In contrast,

typical routes with a medium-wide-ratio close to 0.5 are hub-to-hub domestic routes, e.g.,

Los Angeles to Chicago. Based on their product traits as reported in Figure 2 and demand

information as reported in Figure 3, the data supports treating medium-sized, wide-bodied

aircraft as a well-defined market.

4.2 Demand Function Estimation

Following Benkard (2004), I model yearly aircraft demand using a nested logit discrete

choice model. The demand system is estimated with demand data for the period 1991-

2009. A total of 12 aircraft submodels (e.g. Boeing 777-200) were observed over the period,

leading to 113 submodel-year observations. Consumer a’s utility function of aircraft j at

time t is

vajt = ϕGjt +Xjtβ − αpjt + ξjt + ζagt + (1− σ)ǫajt, (7)

where Gjt is the plane generation level measuring quality. Impact of future generations

on demand is then modeled as differences in generations times ϕ. ϕ thus represents gaps

in quality between generations. Xjt are observed characteristics including seats, maximum

range, and number of engines. pjt is the average price for aircraft j in year t. All prices

are converted into 1994 U.S. dollars. ξjt is the unobserved component affecting demand.

16The part of the density outside range [0, 1] in the figure corresponds to observations close to 0 and 1.
They are plotting bugs to be fixed. There are in fact many routes with medium − wide − ratio = 0 or 1.
The shape of the density would remain the same after fixing the bug, except that it would be a little bit
higher at 0 and 1.
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Its variation captures variations in consumer preference over brand and plane characteris-

tics. Note that although characteristics are fixed for an aircraft, preference over brand or

certain characteristics might change across time due to shocks such as aircraft accidents or

expansion of an airline, which prefers a certain aircraft type. Since evolution of ξ is affected

by these exogenous shocks, I assume generation upgrade decisions do not affect evolution

of ξ. ζagt and ǫajt are respectively the random group- and plane- specific tastes. ǫajt is

an identically and independently extreme value. I allow for two groups in the model, one

includes all new medium-sized aircraft and the other includes only the outside good, which

stands for small or large wide-bodied aircraft and all of the old wide-bodied aircraft on

lease. σ ∈ [0, 1] represents the within-group correlation of utilities.

Each year is viewed as a market, and, as in Benkard (2004), the market size M is ap-

proximated by the total number of used and new wide-bodied aircraft. This approximation

is consistent with the assumption that all old and new aircraft are re-sold or rented out

each year.17 If a used aircraft did not change ownership in a year, it is viewed as bought

by the firm who owned it. In this sense, market size or total transaction each year equals

total number of used and new aircraft.

Consumer a chooses product j ∈ {0, 1, ..., J} in period t if vajt > vakt for all k 6= j,

k ∈ {0, 1, ..., J}. 0 denotes the outside good. Then integrating over the probability of

choosing product j for all consumers gives the well-known formula for the market share of

product j, sjt =
qjt
Mt

as:

sjt =
e

ϕGjt+Xjtβ−αpjt+ξjt
(1−σ)

Dσ
gt[Σg

D
(1−σ)
gt ]

,

where

Dgt ≡
∑

j∈ group g

e
ϕGjt+Xjtβ−αpjt+ξjt

(1−σ) .

Taking the logarithm and rearranging terms results in the following equation to be estimated

using two-stage least squares (2SLS):

sshare ≡ ln(sjt)− ln(s0t) = ϕGjt +Xjtβ − αpjt + σln(sj/g,t) + ξjt, (8)

and,

s0t =
Mt −

∑J
1 qjt

Mt
.

Rearranging terms of Equation 8 gives the inverse demand function P = P (Q;X,G, ξ,M)

used in the dynamic game

pjt =
1

α

[(
ϕGjt +Xjtβ + ξjt

)
− (1− σ) ln (qjt) + ln

(
Mt −

J∑
k=1

qkt

)
− σ ln

(
J∑

k=1

qkt

)]
(9)

17Used aircraft trade and rental are very common. For example, almost every MD-11 airliner has changed
ownership or is owned by a leasing company.
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Both price and within group share ln(sj/g,t) need to be instrumented in the demand es-

timation since they are likely to be correlated with unobserved aircraft characteristics ξjt

(the error term in the regression). Used instruments include: observed plane characteris-

tics, characteristics of other planes, hourly wage in manufacturing and its lagged terms,

price of aluminum and its lagged terms, and number of other products within the same

firm. Firm dummy variables were also tried but adding them did not improve estimation.

Observed plane characteristics and characteristics of other planes are taken as instruments

with the assumption that observed characteristics are uncorrelated with the unobserved

components. Manufacturing wage and aluminum price are cost shifters for price and are

assumed to be orthogonal to ξjt. All these instruments are widely used in the literature

except for the number of other products within the same firm. Here I assume that number

of other products within the same firm is not correlated with unobserved characteristics of

a product. It is correlated with the price of a product because operating cost for an airline

(consumer) is generally lower if its fleet consists of a set of planes from the same firm. Thus,

a positive externality of products of a firm on other products in the same firm is expected.

σ is identified by covariation between the within-group market share of the plane sj/g,t and

its total market share sjt. It is also instrumented by the number of other products within

the same firm.

I also tried adding in other independent variables, including fuselage, first delivery year,

and firm dummies, but all those variables have very small and insignificant coefficients.

Besides, removing and adding them have almost no impact on estimation results.

The estimates for Equation (8) without and with the generation term G are reported

respectively in Table 2 and Table 3. Note that the dependent variable sshare equals log(
sjt
s0t

),

the percentage change of the market share ratio of product j relative to the outside good.

All parameters are significant when generation G is not included in the regression. Signs

of all estimates are as expected. Price has a significant negative influence on market share.

Within group utility correlation σ is close to 1. Together with the comparatively larger

price coefficient, it indicates high cross-product elasticities and that inside goods are closer

substitutes to each other than to the outside good. The number of engines has negative

effect since aircraft with fewer engines generally have higher fuel efficiency. All other factors

equal (including price), airlines prefer larger planes and planes with longer range.

The last column in both tables presents standard errors of data observation as indicators

of variations in the explanatory variables. Having data variation helps to determine relative

importance of characteristics. For instance, in Table 2, the coefficient on maximum range

(“range/10000”) is estimated to be 2.04, which in absolute value is approximately three

times as large as that of the number of engines. But the ratio of potential variation of the two

characteristics is approximately 2/9th. Putting the coefficient and data variation together,

the number of engines generally has a larger contribution to the differences in market

share across products than the maximum range does. For example, take the characteristics

of A330 and A340 presented in Table 1. The difference in maximum range is 0.2 ten
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thousand kilometers while the difference in the number of engines is 2, or ten times larger.

Hence, combining the information from the first and last column, the number of engines

contributes the most to market share differences among characteristics when generation G

is not included. Dominance of the number of engines is understandable since it is correlated

with fuel efficiency, which is a major factor in operating cost. This is also supported

by the observed trend of twin-engine aircraft replacing those with three or four engines

for medium-sized and small-sized wide-bodied aircraft. (With respect to the two non-twin-

engine medium-sized aircraft, MD-11 was shut down after the merger and A340 experienced

a low production rate in its life and ceased production in 2011.)

When generation G is taken into account, it explains most variations contributed by the

characteristics, rendering them insignificant. The estimate on G suggests a 12% increase in

market share ratio when generation is upgraded. As to be discussed in Section 4.4.1, gen-

eration differences represents differences in operating costs for airlines. Therefore, the fact

that generation G has the strongest impact among characteristics (considering data varia-

tion) on market share emphasizes the important role of emphasizes the important role that

airline’s operating cost concern has in determining competition in aircraft manufacturing.

4.3 Cost Function Estimation

As with many other manufacturing industries, major variations in the unit cost of assem-

bling an aircraft are attributable to variations in labor inputs (L). Thus, I model total

variable cost (TV C) as a linear function of labor inputs L. Lockheed L-1011 is the only

aircraft type that I can observe unit labor cost. I first estimate the learning curve of L-1011

and employ estimates on its total variable cost function from Benkard (2004). Benkard

found the wage rate had been quite flat and fixed it at $20/hour. Labor cost is then this

wage rate times labor inputs L. Regressing total variable cost on total labor cost gives

TV CL−1011 = 36.2 + 0.12LL−1011.

where TV CL−1011 is in 1994 dollar millions and LL−1011 is labor inputs based on L-1011

estimates and is in 1000 man-hours.

To get the cost function of other products based on that of Lockheed L-1011, I follow the

approach in the literature by assuming labor requirements per pound of aircraft is constant

across planes.18 Thus the cost function of product j can be derived from its weight ratio

to L-1011, denoted as rj . Total variable cost for product j is then calculated in the model

using

TV Cj = 36.2 + 0.12rjLj .
19

18As Benkard (2004) pointed out, although there is no empirical evidence testing whether commercial
aircraft share learning curves, literature on military production does suggest that parameters do not vary
much across production lines. Further discussion on this issue can be found in Benkard (2004).

19I also estimated rj using the first approach described in the beginning of this section for the model
without generation upgrade. Specifically, I use difference between estimated and observed average prices
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I will discuss the learning curve, Lj as a function of industry quantity vector Q and product

experience level Ej , in the next section.

Fixed cost is estimated to be $200 million per year based on Lockheed’s annual report on

L-1011. It is a strong assumption to speculate that fixed cost is the same across products,

but fixed cost has no impact on either prices or consumer surplus in a model without exit

and entry. I keep fixed cost in the model only for quantifying firms’ profits.

4.3.1 Labor Input Function

The learning curve describes the commonly observed negative relationship between accu-

mulated production and unit labor input requirements in aircraft and many other manu-

facturing industries. It is decomposed into two equations in my model: labor input as a

function of experience and experience as a function of current and past quantities. I will

discuss the labor input function in this section and the experience accumulation function

in the next one.

Following Benkard (2000), the log unit labor input requirement function for product j

produced at time t is estimated based on the following regression:

lnLj,t = lnA+ γ1lnEj,t + γ2lnSj,t + ǫj,t. (10)

where A is the intercept and S = 12
7

∑τ=t+3
τ=t−3 qτ is the line speed or production rate commonly

included in the engineering literature.20 As a summation of recent quantities, line speed

S is endogenous and needs to be instrumented. γ2 > 1 implies decreasing returns to scale

while γ2 < 1 implies increasing returns to scale. There is no clear implications of γ2

without estimation since productivity of labor depends on the level of capital in the short-

run. Dependence of L on experience level E highlights the learning-by-doing feature. The

learning, forgetting, and spillover effect on marginal cost is then modeled as the impact of

industry quantity vector Q on the evolution of experience E.

4.3.2 Experience Transition Function

When there is no spillover of experience across production, experience accumulation is

commonly modeled as

Ej,t+1 = δEj,t + qj,t. (11)

in the literature, where learning is reflected by the positive relation between Ej,t+1 and qt,

and forgetting is modeled as 0 < δ < 1. Thus, experience accumulates as more aircraft are

produced but also depreciates due to organizational forgetting.

as the moment condition. The estimated prices are solved from the dynamic game for each trial of rj in
searching for optimal rj . Mimimization is carried out using KNITRO solver with its global multi-start
search. I found using the weight ratio as rj is optimal and cannot be improved.

20Equation 10 can be derived from a production function with fixed capital taking the Leontief form in
labor and materials. See details in Benkard (2000).
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I further allow a spillover effect: experience may also accumulate through production

of other products. Thus, Ej,t+1 will be a function of the entire industry quantity vector

Qt. For product j, I let the contribution rate of different products on Ej,t+1 be different

in two dimensions: ownership and resemblance in aircraft characteristics. The experience

transition function becomes

Ej,t+1 = δEj,t +
J∑

j′

θj′f(Xj , Xj′ ; υ)qj′,t,
21 (12)

where

θj′ =





1 if j = j′ (i.e. on own production)

θ1 if j′ is a different submodel of j

θ2 if j′ is a different product in the same firm

θ3 if j′ is a product from another firm

(13)

measures the difference of across-firm spillover and within-firm spillover (θ3 − θ2) when

products are homogeneous in characteristics. Submodels (for θ1) are variations of a product.

For example, for product A330, there are two variations, A330-200 and A330-300, which

have slight differences in seats, range, and other characteristics.

f(Xj , Xj′ ; υ) is a product distance function. I use two characteristics: number of seats

and maximum ranges.22 Specific functional form of f(Xj , Xj′ ; υ) is then

f(Xj , Xj′ ; υ) = υ

|Xj1−X
j′1|

dX1
1 υ

|Xj2−X
j′2|

dx2
2 , (14)

where 1 stands for “number of seats” and 2 for “maximum range,” υ1, υ2 ∈ (0, 1); dx1 and

dx2 are the maximum difference set to normalize the differences into [0, 1]. Note that from

Equation (12) and (14), the larger the difference is for a given υ, the smaller the spillover

effect; υk close to 0 implies that characteristic k has a strong impact, while υk close to 1

suggests that characteristic k has little impact on the spillover rate.

By substituting Equation (12) into (10), I use a GMM method to estimate all the

learning curve parameters in these two equations based on monthly data of L-1011.23 Note

that ǫj,t represents the unobserved part of productivity and could be serially correlated.

Since productivity interacts with choice of line speed, S, and experience accumulation, E,

ǫj,t could also correlate with both E and S. Following Benkard (2000), the solution is

a GMM-HAC (Heteroskedasticity and Autocorrelation Consistent) estimator suggested by

Andrews (1991). The instrument variables are standard: demand shifters include various

21The spillover effects measured by the parameters here are net effects in the sense that increases in
quantities of other aircraft may also spur competition for experienced workers in the labor market. Thus,
the parameters represents net effects of experience spillover and labor market competition.

22I tried fuselage and some other characteristics and the results did not change significantly.
23Due to the special connections between L-1011 and McDonnell Douglas’s DC-10, I treat DC-10 as a

within firm product for L-1011 in estimation. A detailed discussion on this choice is given in the Appendix.
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world GDP measures, the price of oil, and a time trend; cost shifters consist of the world

aluminum price and the U.S. manufacturing wage rate.24 Other than time trend, all shifters

include both present and lagged variables.

Although an instrumental variable that specifically shifts quantity of each aircraft type

is not necessary for identification, it would be helpful to have instruments that affect quan-

tities of different types disproportionally. Thus, I include another two sets of instrumental

variables. First, I use GDP growth of various regions because different regions have dif-

ferent demands for various aircraft types and brands.25 Second, I use the weighted sum

of all jet accidents and incidents of a firm for the previous 18 months, with less weight on

narrow-bodied aircraft and freighters, divided by total aircraft in service in the same firm.

See Figure 4 for an example of the negative correlation of Boeing’s accidents index and

quantities produced.

Parameter estimates of the learning curve are given in the first two columns of Table 4.

Both characteristics have little impact on spillover (υ close to 1). Thus, I estimate another

learning curve without characteristics as in Equation (15), and the result is given in the

last two columns of Table 4.

Ej,t+1 = δEj,t +
J∑

j′

θj′qj′,t. (15)

Estimates are close in both cases since characteristics effects are estimated to be trivial.

I drop characteristics and use Equation (15) in the dynamic part. R2 of the estimation

is 0.92. Estimated and actual labor input of each L-1011 is plotted in Figure 5. The

estimates fit the data well, so I decided it is safe to ignore cost shock ǫj,t in the dynamic

game. All estimates are significant except for returns to scale. The exponential of the

labor cost intercept measures the unit labor requirement for the first aircraft built. As

discussed before, I will make this starting level different for different models based on their

weight ratios to L-1011. Thus, the shape of the learning curve is assumed to be the same

while levels are permitted to be different. There is a 55% labor savings when experience

doubles. This seemingly large learning rate is partly offset by a high yearly forgetting

rate at 43%(= 1 − 0.954912). Forty-three percent of experience is lost every year, making

it difficult to double experience especially when experience stock is already high. This

seemingly high forgetting rate is related to the relatively low aircraft production rate and

customized configurations for each aircraft built. In manufacturing aircraft, assembling

works repeat at a low rate and tasks are hardly ever identical. In addition, experience

measures a firm’s level of human capital rather than skills of each single worker. Thus,

24For a detailed discussion on choices of these instrumental variables, see Benkard (2000).
25Cited in a Wall Street Journal article ”Boeing Ups Forecast For Commercial Aircraft Demand Over 20

Years” published on June 16, 2011, Randy Tinseth, Vice President for marketing at Boeing Commercial
Airplanes, said, ”Economic growth, world trade and liberalization” are ”the fundamental drivers of air
travel” and correspondingly aircraft demand.
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frequent turnovers due to layoffs and promotions also imply a high forgetting rate.26 Both

the high learning rate and forgetting rate imply large benefits to produce more oneself and

to force one’s rivals to produce less. Dynamically, there will be fierce competition among

firms to reach and maintain high output and experience levels, while attempting to force

others to be stuck at low output and experience.

Submodel spillover is almost complete (θ1 = 0.9742). Given this result, along with

the fact that demand related characteristics are close among submodels, I decide not to

differentiate submodels in the dynamic game. There is almost no cross-firm spillover (θ3 =

0.0182). This is understandable since experience is believed to be mainly accumulated

through repeated practice of workers. Within-firm spillover is approximately a quarter

(θ2 = 0.2408), indicating that building four aircraft of a different type is as helpful in

experience accumulation as assembling one of the same type for a multi-product firm. Note

that the large difference between within-firm and cross-firm spillover suggests potential

benefits when firms merge and ownership structure changes if the within-firm spillover rate

does not vary much on properties beyond ownership.27

4.3.3 Discretization of Experience

With estimates given in Table 4, next period experience can be calculated using Equation

(15) for given experience and quantities of all products in a period. Experience defined in

Equation (15) is a continuous variable. To apply it as a state variable in the dynamic game,

I discretize the experience variable for each product into 7 grids:

E = {1, 10, 20, 40, 70, 110, 165} .

I use Ek to denote experience at the kth grid. (e.g., E2 = 10.) With enough grids, the

experience process can be approximated arbitrarily well. I will explore that more in Section

4.5.2.

I denote the experience level resulting from Equation (15) as E∗
j,t+1, namely,

E∗
j,t+1 = δEjt +

J∑

j′

θj′qj′

26This forgetting rate is close to the 39% forgetting rate estimated in Benkard (2000). See Benkard for
further discussion on the high forgetting rate.

27Several circumstances contribute to a large within-firm spillover effect. First, internal shifts of the
workforce are much easier than shifts across firms, and a firm may reallocate workers among different
departments to improve efficiency. Second, internal shifts help firms to avoid organizational forgetting by
keeping workforce busy assembling other models when demand for a certain model is temporarily low.
Furthermore, managerial ability and labor-cost-related production techniques usually can be shared only
within a firm, either due to firm differences or the need to keep business secrets.
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Then the experience transition process is modeled as

Ej,t+1 =





Eu
j

E∗
j,t+1−Ed

j

Eu
j −Ed

j

Ed
j 1−

E∗
j,t+1−Ed

j

Eu
j −Ed

j

(16)

Eu
j is the smallest grid in E larger than E∗

j,t+1, and Ed
j is the largest grid smaller than

E∗
j,t+1. Thus, both E

u
j and Ed

j also depend on quantity Qt.

4.4 Generation Upgrade

In this subsection, I first present how generation is defined in the wide-bodied aircraft

industry. Then I discuss employment of relative vs. absolute generation for the medium-

sized, wide-bodied aircraft industry. Calibration of related parameters are presented at the

end.

4.4.1 Generation and Generation Upgrade

Ideally, I would treat each new aircraft type as a new product and allow a specific new

vector of characteristics for it. However, it is impossible to do so as we do not observe

characteristics of products not yet introduced. Instead, I instead categorize aircraft by

generations according to some criteria. Average generation gap ϕ is estimated in Section

4.2. Note that for the purpose of quantifying the merger effect on expected future welfare

and the upgrade rate, knowing the average generation gap is sufficient.

There are many ways to define a generation of a jet airliner. Loosely speaking, a new

generation has substantial demand-side advantages attributed to more desirable character-

istics over the old generation. Empirically, one simple way is to treat each aircraft submodel

(e.g. the Airbus 330-200) as a new generation. However, differences between some types of

aircraft are quite distinctive from the differences between other types. New aircraft type and

submodels have been introduced to provide longer range, different options in size, higher

fuel efficiency, lower CO2 emission, etc. These variations create discrepancies in defining

a new generation as any new model introduced. In addition, the demand effect of some

new models are small and defining every small changes as a new generation will result in

too many possible relative generation levels that again causes the dimensionality problem.

Definition of generation needs to be applicable as well as capturing major demand effects.

The wide-bodied aircraft industry had evolved for 28 years before the merger and there

was no room left for firms to introduce new aircraft with range or plane size meeting the

market demand that is not yet covered by an existing type. Models introduced after the

1997 merger were generally driven by concern over operating cost.28 Hence, I define a new

28This is confirmed by discussions with Edmund S. Greenslet, an aircraft industry expert, and publisher
of The Airline Monitor.
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generation of aircraft family as one that provides at least 5% lower operating cost for air-

lines. In the medium-sized, wide-bodied aircraft market, introduction of Boeing 777, 787,

and Airbus A350 are treated as new generations according to this definition.29

Upgrade in generation may also involve a huge amount of one-time development cost

and the lowering of experience level due to adjustments in production procedures. Thus,

generation upgrade provides a second source of experience setback other than organizational

forgetting. As discussed above, since a product will have different characteristics when its

generation is upgraded, its experience level will be lower as workers and technicians will

not be familiar with the new specification; it takes practices to figure out new mechanisms

that suit the new generation. One such evidence is the temporary rise in labor requirement

for the introduction of Lockheed’s L-1011-500.30 Figure 6 plots labor input (in 1000 man

hours) for each L-1011 built. There were only minor changes in characteristics involved

in the introduction of the L-1011-500, which does not even qualified as a new generation

according to our definition. However, we can still see a clear cost rise for the first two L-1011-

500 aircraft produced in the figure. Following the initial rise, the -500 type required a slightly

higher labor input and the difference vanished eventually. Vanished difference suggests that

the initial cost rise for the -500 type is not due to a systematically higher cost requirement

but resulting from a temporary lowering of experience due to the introduction of new types.

The detrimental effect of innovation on experience accumulation is also supported by the

work of Levitt, List, and Syverson (2013) in the automobile industry as discussed in the

introduction. I will discuss the calibration of upgrading cost and determination of experience

setback later in this section.

4.4.2 Relative vs. Absolute Generation

A modeling obstacle of introducing generation upgrade into a dynamic game is that gener-

ation itself needs to be a state variable for each product, and it is implausible to assume

that the highest generation exists. In fact, even if I assume there is a highest generation

level, there are at least two problems. First, existence of the highest level implies that

the dynamic mechanism in generation is lost when all products reach the highest level.

Second, it is impossible to limit possible generations to a small number, which leads to a

dimensionality problem.

I choose to deal with the dimensionality problem by assuming that only relative quality

(or generation) matters in determining the individual demand function for each product.

Therefore, I can use the pace of evolution of the outside good as a benchmark, and track

only the generation difference of each product relative to the outside good.31 More precisely,

the benchmark is the average difference between the inside goods and the outside good in

29B787 and A350 are new generations of B777 and A330, respectively.
30Benkard (2000) also published the same finding.
31The idea of relative generation is originated from relative quality modeled in Pakes and McGuire (1994)

and is similar to that in Goettler and Gordon (2011). See further discussion in the introduction.
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generation. Thus, generation state G in the model is the difference from that benchmark

average difference. Because I observe no more than 2 generation lags among all inside goods

(new medium-sized, wide-bodied aircraft), I model the generation difference state variable

Gj ∈ {−1, 0, 1}, where −1 denotes one generation behind the average difference between

inside and outside goods and 1 denotes one generation ahead of it. In this sense, fixing

product and product characteristics is equivalent to assuming that the inside goods and the

outside good have the same pace of technology improvement. In modeling, this is to fix

generation difference state variables for all products at 0.

Theoretically, the outside good is a composition of any products that can be viewed

by some consumers as substitutes of the products in the market. Therefore, with respect

to the medium-sized, wide-bodied aircraft industry, the outside good could consist of old

wide-bodied aircraft for sale and new non-medium-sized, wide-bodied aircraft and even

narrow-bodied aircraft. Different components have different importance in terms of their

degree of substitutions to the inside goods.

Since production decisions on non-medium-sized, wide-bodied aircraft are also made by

Airbus and Boeing, the evolution of the outside good is partially endogenous. However, the

event of relative generation downgrade of all inside goods has broader interpretations than

the generation upgrade of the outside good. Examining Equation (9) infers that downgrade

of Gj for all inside goods is equivalent to any permanent negative shock on overall demand

that lowers prices for all products by ϕ
α . For the evolution of demand and generations in

an industry, by simply observing the evolution itself, it cannot be determined whether it is

driven by innovations in the outside good or by a permanent negative demand shock. In

fact, there is no need to make such distinctions in determining generation evolution of the

inside goods. For the medium-sized, wide-bodied aircraft industry, generation upgrade is

mainly driven by macro economic shocks (e.g., the desire for better fuel efficiency due to ris-

ing petroleum prices after the September 11th attack), increasing demand for international

travel qualities, and increased supply in related markets. For example, Chinese manufac-

turers recently entered the narrow-bodied aircraft industry. This event is equivalent to the

outside good moving to a new generation in the sense that both will permanently shift

demand away from the medium-sized, wide-bodied aircraft industry and stimulate Boeing

and Airbus to innovate for more attractive planes. All these mechanisms are exogenous

to the medium-sized, wide-bodied aircraft industry; hence, evolution of the market-wide

generation downgrade can be treated as exogenous.

4.4.3 Generation Related Parameters

I first specify distribution of upgrading cost cGj and experience setback function ψ(E) for

applying the model to the aircraft industry. cGj is assumed to be drawn from a uniform

distribution U [Cd, Cu].32 The largest and smallest development cost of recent new aircraft

32I can also model CG as a choice variable rather than a random draw. Randomness is then introduced
through probability of success generation advance, which increases with upgrading cost. Although this
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models and submodels are chosen as Cd = 330 and Cu = 614 (in 1994 dollar millions).

The experience setback function ψ(E) is more difficult as estimating it in the first stage

requires observation of a products’s unit labor requirement and generation upgrade choices.

Experience setback in L-1011-500 provides a lower bound of setback magnitude, but I do

not have sufficient data to pin down a specific value. The strategy is to assume generation

upgrades setback experience by nG grids for the discrete experience state introduced in

Section 4.3.3. That is,

Ej,t = ψ(Ej,t−1) = min{Eg−nG , E1}, (17)

where Eg is the discretized grid that Ej lands on with g ∈ {1, 2, ..., 7}. Varying nG would

demonstrate impact of setback magnitude on firm behaviors. In the merger evaluation,

because there are not enough instances of generation upgrade observed to fully estimate the

upgrade cost, I set nG = 1.33

Finally, pG, which also represents the industry long-run innovation rate, is obtained as

the inverse of the average years across product before generation advances, which is 10.75.

Thus, pG = 1/10.75 = 0.09.

4.5 Dynamic Game Specifics

In this sub-section, I explore three issues related to the dynamic game. First, the preference

rank state variable is examined in its role to reduce the state space and lessening the

computational burden. It can be employed in a dynamic game of any industry with many

products that can be grouped into limited categories based on unobserved characteristics.

Second, I provide a test with respect to concerns on sensitivity of choices of discretization

of the state variables. I conclude this part with arguments on why exit and entry need not

to be directly modeled for the medium-sized, wide-bodied aircraft industry. Those readers

who are not interested in these issues may want to skip to Section 5.

4.5.1 State of Preference Rank

Demand estimation provides a panel data of unobserved characteristics ξ of all products.

Fluctuation in ξ represents changes in consumer taste driven by exogenous fluctuation in

various sources, such as important accidents or technological problems specific to a product

or a firm, personnel changes in important airlines, operating-cost-related macroeconomic

shocks that lead to preference of twin-engine aircraft, and the temporary spur in interna-

tional travel driven by the business cycle that makes relatively larger planes more attractive,

etc. Ideally, I would model this exogenous fluctuation in ξ by allowing ξj to be a state vari-

able for each product and then estimate its stochastic process using cell means. However,

alterative is more common in the literature, it is less attractive for the aircraft industry since larger investment
in aircraft development is realized over time and is generally related to unexpected difficulties in development
rather than higher probability of success.

33I also tried setting nG to 0 or 2 and found no significant differences in quantifying merger efficiencies.
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adding in one more state variable for each product results in the well-known “curse of di-

mensionality” problem. Figure 7 provides a histogram of percentile prediction error for the

market share ratio sshare. Predictions errors are smaller than 3 percent for most observa-

tions and smaller than 10 percent for all. This suggests that the error term ξ is marginal

in explaining variations in market share in demand estimation.34 So to save computational

power for more important aspects, I compromise by putting restrictions on joint transitions

of all ξj and introduce the preference rank state variable discussed below.

For the model of the medium-sized, wide-bodied aircraft industry, macroeconomic shocks

influencing the entire market are captured by market size state variable M ; change in

product qualities are captured by the generation upgrade decision; observed differences in

characteristics are captured by X. Suitability is not an important issue when working with

the medium-sized market instead of the entire wide-bodied market. Then, variation in ξ is

most likely driven by two other factors: variation in preference over the more fuel efficient

twin-engine types and variation in preference over firm brands. Therefore, I assume that

variation in ξj , denoted as ∆ξj , can be decomposed into two additive parts that evolve

independently, with

ξj = ξj + wT
j · κTj + wF

j · κFj , (18)

where

• ξj is mean value of time series ξj ;

• wF
j and wT

j are given weights;

• κTj is variation of preference over twin-engine types; and

• κFj is variation of preference between Boeing and Airbus products.

κTj and κFj are preference rank state variables used in the dynamic game. κTj is common

among twin-engine types and κFj takes the same value for products of the same firm. I

denote the vectors of κTj and κFj for all types and all firms as κT and κF , respectively. Thus,

the lengths of both vectors depend on the number of firms/types instead of the number of

products. For example, κT is of length 2 because I have two types: “twin-engines” and

“not-twin-engines.” The two vectors κT and κF are preference rank state variables in the

dynamic game and evolve stochastically over time.35 In the dynamic game, I allow each

vector to take on two possible values. Specifically, κT = κT1 is the vector for state where

twin-engine aircraft are relatively preferred while κT = κT0 is the vector when they are less

34The impact of ξ on quantity prediction is relatively large, but the majority of the prediction error is still
less than 15% as in Figure 8.

35Note that transition of the preference rank state variable is over the entire vector κT instead of each
element of it. This further reduces the number of state variables. The idea behind this is that demand is
determined by relative ξj among products. Thus, relative preference over firms and types captures major
information of its absolute value counterpart. Finally, note that variation of preference of product j relative
to the outside good is captured by the variation of market size M .
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attractive. Similarly, κF = κF1 when Airbus is preferred while κF = κF0 when Boeing is

preferred.

Using the panel data of unobserved characteristics ξ, the parameters (ξj , κ
T
j , κ

F
j , w

T
j , w

F
j )

and transitions of κT and κF are calibrated as follows:

1. ξj is calibrated as the mean of time series ξjt and variation in ξ is calculated as

∆ξjt = ξjt − ξj .

2. Among the four products in the model, A330 and A340 are of the same firm but only

A330 is a twin-engine. Based on Equation (18), differences in series of ∆ξA330 and

∆ξA340 come from engine-difference only. κT and its transition are calibrated as

(a) For each time t, if ∆ξA330,t ≥ ∆ξA340,t, κ
T
t = κT1. Otherwise, κTt = κT0.

(b) Using the time series of κTt from (a), its transition matrix is then estimated in

the usual way of a Markov chain.

(c) Value of κT1 is chosen as the conditional mean ((∆ξA330,∆ξA330)|∆ξA330,t ≥

∆ξA340,t).
36 The same applies to κT0.

3. κF and its transition are calibrated similarly using the time series of ∆ξA330 and

∆ξB777, both of which have two engines.37

4. wT
j and wF

j are chosen to minimize the distance between observed and calibrated

panel of ∆ξ.

Figure 9 demonstrates the fit of data for ξ calibrated from Equation 18 (labeled as

“Rank”) and for having a binary state variable for each ξj (labeled as “Cell”). The prefer-

ence rank approach is able to provide better predictions for transitions and no worse fitting

in values, while reducing the size of the state space. Parameters and transition matrices

estimated are given in Table 5.

Recall that ξ represents airline preference over brand and characteristics. Although it

is reasonable to assume that a merger does not affect airline preference over characteristics,

it certainly changes product ownership. This creates problems on how one should adjust ξj

if it were modeled as a state variable with its transition estimated based on its own time

series. However, with the introduction of the preference rank state variable, the merger’s

impact on ξj through ownership change is directly captured by κFj in Equation (18).

4.5.2 Sensitivity of Discretization

Both experience state variable E and market size state variable M are discretized. Solving

quantity choices at all state profiles can be viewed as a non-parametric approximation of the

36If there is more than one product of the same type, quantity weighted means can be used instead.
37Value of κF

MD11 is also conditional on whether Airbus or Boeing is preferred. I tried to allow preferences
rank states over three firms, but did not find much difference.
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underlying equilibrium function from state space to policy space. Then a natural question

is whether I have chosen enough number of grids so that the approximation is close to

the underlying function. Although it is impossible to test sensibility of the choice of the

number of grids by having infinitely many grids, robustness can surely be tested by, for

example, doubling the number of grids and comparing resulting policy functions. I tried

this on several model specifications and with various denser griding methods and found close

equilibrium policy functions. Hence, it is reasonable to believe that the result is robust to

the discretization method. While state space has high dimensions, demonstrating policy

function for more than three dimensions in one figure is hardly instructive. Thus, I chose

to plot one policy variable on two varying state variables while keeping other states fixed.

This led to hundreds of figures to cover the entire policy function even for very basic model

specifications.

Representative of that output, Figure 10 plots quantity of Airbus A330 as a function

of experience levels of Airbus A330 and A340, fixing experience level of Boeing 777 at the

lowest grid and market size at the highest grid.38 The blue plane is solved from the model

employed in the paper where E is discretized into 7 grids while the red plane is solved from

a model with a denser grid for E by adding a grid point between any of the seven original

grids for E, i.e.,

E
′ = {1, 4.5, 10, 15, 20, 30, 40, 55, 70, 90, 110, 137.5, 165} .

The two planes are generally close to each other, suggesting the choice of seven grids provides

a close approximation to the underlying policy function.

4.5.3 Exit and Entry in the medium-sized, wide-bodied Aircraft Industry

Entry and exit decisions of both firm and product levels are generally assumed away in the

model. The only exception is that I allow a firm to switch any of its product to a potential

entrant good by setting quantity of that product to 039 in any period and reverse the process

by setting a positive quantity in any future period. Here I elaborate on reasons why there

is no need to directly model entry and exit.

There are at least two reasons why entry on the firm level is rare in the wide-bodied

aircraft industry. First, it requires huge initial capital and a complete set of frontier tech-

nologies to start a new business. Historically, all four firms that participated in the wide-

bodied aircraft sector have been active in other sectors of the aircraft industry and are

somehow subsidized by powerful governments in their military sectors. Second, the state

38The equilibrium strategy for Figure 10 is solved from a scenario of post-merger with the MD-11 shut
down for the model without the generation upgrade feature. Figures for firm strategies with respect to all
states are available upon request.

39In the empirical model with the demand function defined based on discrete choices, optimal quantity
choices are never 0, but can be arbitrarily close to 0. In this case, I call the quantity “effectively” zero since
it only has negligible difference from an absolute 0.
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of the art technologies employed in aircraft design and manufacturing also work as entry

barriers. Third, the learning curve feature acts as an entry barrier since it implies that an

entrant cannot make any profit until after a long period. Moreover, a firm may incur a

potential huge loss if there are not sufficient sales later at the bottom of the learning curve

to reimburse pricing below marginal cost in the early stage. Business failure of Lockheed

L-1011 stands as a perfect example and a live lesson. It is also the only incidence of exit

not resulting from a merger in the industry.

No new firms have entered the wide-bodied market since shortly after the industry

spawned about 40 years ago. Given that developmental time needed is at least five years

and no entering intention has been revealed by 2012, it is safe to say that there will be no

new entrant until at least by 2017, that is, 20 years after the merger studied here. As for

exit, for the only two remaining firms, Airbus and Boeing, no evidence exists that they will

exit the market, particularly considering their important political strategic status.

Although entry and exit on the product level is not directly modeled as a firm choice

variable, I allow it in restricted format. First, a product can be switched between a potential

entrant and an active good through quantity choices as discussed above. Note that in the

model, when quantity of a product is effectively zero, it has no effect on choices of other

products or consumer surplus. This is demonstrated by the empirical results on MD-11

shortly after the merger in the scenario where MD-11 is not immediately shut down after

the merger. Second, the model is also consistent with the introduction of new aircraft as

future generations of the current types. This is because products in the model are captured

by characteristics, and their advances are captured by generation upgrade. So introduction

of a new generation model replacing the old one is viewed as a quality improvement of

a product. Hence, I feel comfortable to assume away exit and entry and instead focus on

experience and generation evolution that I believe are much more important in the dynamics

of the industry.

5 Results of Dynamic Analysis

Now that the dynamic model for the medium-size wide-bodied aircraft industry has been

setup, it can be used to address questions with regard to the impact of the Boeing-McDonnell

Douglas merger. First, I ask questions about the merger effect on consumer welfare. What

is the net effect of the merger on consumer surplus? How much efficiency comes from dy-

namic mechanisms of learning-by-doing and generation upgrade? Was the merger efficiency

primarily attributable to learning-by-doing or generation upgrade? If the dynamic mecha-

nisms were ignored and instead a traditional static model were used, how would the answers

differ? Second, I examine how the merger affects firm behaviors and market structure. How

did the merger affect experience accumulation and generation upgrade? If we had forbid

Boeing to shut down the MD-11 immediately after the merger, would Boeing have found it

profitable to keep the MD-11 in the long-run? What would have been the impact of keep-
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ing the MD-11? I address all of these questions in Section 5.1. Third, recent innovation

events suggest that the aircraft upgrade rate and magnitude are likely to be systematically

higher in the future. I thus perform comparative static analysis to examine the impact of

this possibility. Specifically, what would the net consumer welfare for the merger be if the

generation upgrade rate and magnitude were larger? Section 5.2 deals with this question.

To address these questions, I solve three types of games:

• Game A: Dynamic game with learning-by-doing and generation upgrade

• Game B: Dynamic game only with learning-by-doing

• Game C: Static game without learning-by-doing or generation upgrade40

Game A corresponds to the full model described in Section 2 while Game B and C remove

features from the full model to isolate learning-by-doing and market power effects. All

dynamic effects are assumed away in Game C, so the merger effect in it reflects only the

market power effect. The difference between Game B and C then reveals the impact of dy-

namic learning-by-doing. The influence of generation upgrade can be studied by comparing

results from Game A and B. Finally, Game C is a traditional static model, so comparing it

with Game A also reveals potential bias when ignoring dynamic mechanisms.

To evaluate merger efficiency, I solve dynamic models for three different industry sce-

narios for each of the three games:41

• Scenario (i): Boeing merged with McDonnell Douglas and immediately shut down

MD-11 (which is what actually occurred)

• Scenario (ii): Boeing kept MD-11 after the merger.42

• Scenario (iii): No merger

The effect of the merger is quantified by comparing Scenario (i) and (iii). The comparison

of Scenario (i) and (ii) examines the difference between forcing MD-11 to be shut down

immediately after the merger and letting it evolve endogenously after the merger. For each

scenario, with the solved equilibrium strategies, I compute the time series of expected values

of price, quantity, experience stock, upgrading probability, profit, consumer surplus, and

total surplus for 50 years starting from the state of 1997.43

Because Hicksian and Marshallian demand functions are identical in the nested logit

discrete choice model, consumer surplus can be obtained simply by integrating the demand

40For calculation of total discounted values, it is assumed that the same static game repeats in every
period.

41Discount factor ρ is set to 0.925.
42In this scenario, Boeing can set quantity of the MD-11 to 0 and pay the fixed cost. MD-11 then will

function as a potential entrant for Boeing that can come back in production at any time.
43All paths for different scenarios converge within 25 years. The years after reaching convergence have no

impact on comparisons across scenarios.
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function.44 Following the literature (See Small and Rosen (1981) or Trajtenberg (1989).),

the formula for consumer surplus is:

CS =
M · ln(1 + (

∑
j e

ϕGj+Xjβ−αpj+ξj
1−σ )1−σ)

α
.

Note that the CS formula above does not account for consumer benefits from absolute

generation upgrades. This is not a problem for the merger evaluation as those benefits will

cancel out when comparing the merger scenario with the no-merger scenario. In addition,

consumers’ preferences on product qualities also evolve over time. Thus, CS can be viewed

as consumer surplus adjusted for demand evolution, with a rate assumed to be the same as

the industrial innovation rate pG.

One-time cost synergy of the merger is modeled as an experience stock transfer from

MD-11 to Boeing 777 with a transfer rate τ . The merger is also likely to have fixed cost

synergies, although these cannot be estimated with only one observed merger in the aircraft

industry. However, fixed cost synergies do not affect price or consumer surplus. Formally,

experience transfer follows the equations:

EPost−Merger
B777 = EPre−Merger

B777 + τEPre−Merger
MD11 ;

EPost−Merger
MD11 = EPre−Merger

MD11 + τEPre−Merger
B777 .

With τ = 0, no experience stock is transferred; with τ = 1 all experience stocks are

transferred. Under the scenario where MD-11 is kept after the merger, the above equations

assume that experience stocks are symmetrically transferred between MD-11 and Boeing

777. Asymmetric transfer rates can be easily incorporated in the model if necessary.

Since experience transfer is essentially a one-time experience spillover across products

when product ownership changes, a potential benchmark for τ is the estimated difference

between the within-firm spillover rate and the cross-firm spillover rate, i.e., θ2 − θ3. How-

ever, there is not enough evidence to conclude such a relationship since the underlying

mechanisms of one-time sharing might be different from experience sharing each period.

For example, building an aircraft involves thousands of tasks and different firms might ex-

cel in different tasks. A merger then helps sharing advantages in different tasks that might

give a larger boost in cost reduction than common experience spillover by having workers

perform similar tasks on different planes. I then choose to compute the welfare effect for

all τ ∈ {0, 0.01, 0.02, ..., 1} to evaluate the effect of the experience transfer rate.

In the rest of this section, I discuss the impact of the Boeing-McDonnell Douglas merger

on consumer welfare and market structure (Section 5.1). In light of the recent spur in

innovation for low operating cost aircraft in the 2010s, I then perform a comparative static

analysis on the impact of innovation rate and magnitude on merger efficiency (Section 5.2).

44Change in CS is a compensation variation, and CS tends to be overestimated in a logit-based model.
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The comparative static also serves as a sensitivity check for quantified merger efficiency

with respect to generation upgrade parameters.

5.1 Merger Evaluation

Tables 6-845 present total discounted surpluses and profits for the three scenarios for game

A, B, and C, respectively. For games A and B that have learning-by-doing, the merger

scenarios are further categorized into two cases: no experience transfer (τ = 0) and complete

experience transfer (τ = 1).

Larger experience transfer helps Boeing to lower its marginal cost. Thus, when τ in-

creases from 0 to 1, both Boeing and the consumers should be better off. However, when

Boeing has a large cost advantage under τ = 1, Airbus products’ might making less profits.

These intuitions are confirmed comparing columns for τ = 0 with those for τ = 1 in Tables

6 and 7. When there are dynamic efficiencies (Tables 6 and 7), the merger lowers consumer

surplus when τ = 0 but raises it when τ = 1. When there is no dynamic efficiency, Table

8 suggests that the merger is detrimental to consumer welfare. Finally, comparing results

between Scenario (i) and (ii) in all three tables implies that consumers are always better

off when MD-11 is kept after the merger. However, keeping MD-11 lowers Boeing’s total

profit.

Analyzing Tables 6-8 leads to the following property with respect to the merger.

Property 1 (The Welfare Effect Property). With complete transfer of experience,

the merger increases consumer surplus by $1.57 billion while the static equilibrium model

predicts a $22.53 billion loss. Merger efficiency mainly comes from learning-by-doing. The

presence of generation upgrade raises net merger efficiency at a smaller τ but reduces it at

a larger τ . The merger has no impact on long-run consumer welfare.

The last 2 columns of Table 6 indicate that the merger effect on consumer surplus is $1.57

billion when experience transfer is complete and $-1.78 billion when there is no experience

transfer. The entire relationship between the net consumer surplus and experience transfer

rate τ is demonstrated in Figure 11. Values of surpluses, prices, and profits for this and all

subsequent figures are in millions of 1994 dollars. The horizontal line in the figure marks

zero consumer effect for the merger. The solid and dashed curves plots net consumer surplus

for Game A and B, respectively. The solid curve for Game A increase with τ and crosses

the horizontal line at around τ = 0.2, inferring that the merger is beneficial to consumers as

long as there is at least a 20% transfer rate. Note that the break-even spillover rate τ = 0.2

is smaller than the difference between the within-firm spillover and the cross-firm spillover

(θ2 − θ3 ≈ 0.22, see Table 4.).

45Negative profits arise in the tables for products that are effectively not active in production. The discrete
choice model of the demand function leads to a production level close to, rather than equal to, 0, when a
product should be shut down. Since I do not allow exit, the resulting profit is close to total discounted fixed
cost. It does not affect estimations of prices or consumer surplus.
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The last column of Table 8 shows that abstracting away dynamic efficiencies, the pure

market power effect leads to a consumer loss as large as $22.53 billion. Since net consumer

surplus in the full model (Game A) is the difference between merger efficiency and the market

power effect, a large market power effect implies that absolute efficiency from learning-

by-doing and generation upgrade is also large. In addition, Game C corresponds to the

traditional static analysis. The large difference in consumer surplus between Table 6 and

Table 8 suggests that ignoring dynamic effects can lead to seriously biased results and

erroneous conclusions with regard to the welfare impact of the merger.

Comparing the two curves in Figure 11 and the last two columns in Tables 6 and 7

suggests that the presence of generation upgrade raises net merger efficiency at a smaller

τ but reduces it at larger τ . On the one hand, by shutting down MD-11, productions are

concentrated on other products with higher quality after the merger. This channel of merger

efficiency is not captured for the model without generation upgrade (Game B). From this

prospective, adding generation upgrade to the model increases consumer surplus after the

merger. On the other hand, when experience is higher, quantity is also higher, inferring a

larger loss for a given unit cost rise. Since experience is higher with the merger, loss from

experience setback due to generation upgrade is then larger with the merger. In this sense,

generation upgrade erodes merger benefits from learning-by-doing. Modeling generation

upgrade thus leads to two opposite forces on merger efficiency. When there is no experience

transfer, experience is low and the setback effect on it is minimum. Thus, the effect of

concentration on the higher quality product dominates, and net consumer surplus is larger

for the model with generation upgrade (Game A) at τ = 0. As experience transfer rate

τ increases, the experience setback effect becomes more and more important. At τ = 1,

the results suggest that experience setback effect dominates and the presence of generation

upgrade lowers merger efficiency. Finally, differences in net consumer surplus between Game

B and Game C (approximately $20 billion) is much larger than that between Game A and

Game B (approximately $2 billion). Thus, the primary efficiency comes from the difference

between Game B and Game C, that is, the effect of learning-by-doing rather than generation

upgrade.

Figure 12 reports the evolution of expected consumer welfare since 1997 for each scenario.

The merger has only an intermediate influence on consumer welfare; per period consumer

surpluses are the same in the long-run for all scenarios. This is because MD-11 is not in

production and market structures converge to the same steady state for all scenarios in the

long-run. However, two things needs to be clarified regarding absence of the long-run effect.

First, it does not render the dynamic analysis futile. In the absence of the intermediate

dynamic efficiency, a static model leads to misleading conclusions on consumer welfare.

Second, the long-run effect result here is specific to the Boeing-McDonnell Douglas merger,

and is particularly due to the inferiority of MD-11. In general, long-run effect is likely to

emerge for a different merger in a dynamic analysis. I will discuss more on this in the next

property.
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Property 2 (The Market Structure Effect Property). Only A330 and B777 are

actively in production in the long-run in all scenarios. For the first several years after the

merger, the merger accelerates experience accumulation but has no clear implication on the

innovation rate. The merger has no impact on long-run firm behavior.

Figures 13-16 and 17-20 report the evolution of expected quantity and experience re-

spectively since 1997 for each scenario for the four products A330, A340, B777, and MD-11.

Recall that experience is simply accumulated quantities through the mechanism of learn-

ing, forgetting and spillover. The first observation that can be made from the four quantity

figures is that only A330 and B777 are in production in the long-run.46 The results suggest

A340 and MD-11 are less favored by airlines than A330 and B777 are, and their market

shares were gradually eroded by competitors. Learning-by-doing reinforces disadvantages

of A340 and MD-11. On the one hand, low production rates of A340 and MD-11 are not

enough to cover organizational forgetting in experience, leading to rising marginal cost.

On the other hand, the competitive products, A330 and B777, are able to achieve lower

marginal cost through learning because of the added production due to the merger. En-

larged differences in marginal cost eventually drive out A340 and MD-11. This result is

consistent with the reality where MD-11 was shut down immediately after the merger and

A340 phased out in 2011. Exit of A340 comes early in the model because the model predic-

tion provides expected path while the reality path is just one realization possibly affected

by several positive shocks.47 The mechanism of learning and forgetting favors concentrated

production from the prospect of reaching and maintaining high experience levels. If product

distances are not large enough, it is not profitable to keep two similar products in one firm.

Now turn back to the figures reporting experience. For τ = 0, experience levels of A330,

A340, and B777 are slightly higher for a few years if the merger took place. However, the

merger benefit of experience accumulation is small since production of MD-11 is low and

quickly approaches 0 even without the merger. (See Figure 16.) This explains why learning-

by-doing is not large enough to cover the market power effect if τ = 0. However, for τ = 1,

B777 would enjoy an intermediate marginal cost advantage if the merger took place. Cost

advantage of B777 would be so large that it would lower quantities and experience levels

of Airbus products. In the long-run, MD-11 would not be in production whether there was

a merger or not. In addition, Boeing’s cost advantage is not large enough to discourage

Airbus from catching up. Thus, all scenarios, with or without merger, converge to the same

steady state in the long-run.

Figures 21-24 demonstrates path of upgrade probabilities. A340 and MD-11 are not

produced in the long-run, so there is no upgrade on them. Long-run upgrade rates for A330

and B777 are equal to the outside good upgrade rate as inherited in the model; firms only

46Experience stock of A340 and MD-11 (when merged into Boeing) are not 0 because of experience spillover
defined in Equation (15). They have no impact on market evolution as long as they are not in production.

47Recall the discussion in the beginning of Section 4 on the time series being one observation in a dynamic
model.
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upgrade to maintain optimal generation levels in the long-run. Figure 23 indicates that for

the first 5-6 years after the merger, upgrade of B777 is more likely to take place earlier

for the merger scenario with complete experience transfer than for the no-merger scenario.

This is probably because Boeing would have a cost advantage high enough right after the

merger that a little setback in experience in exchange for a higher quality is profitable.

Generally speaking, the effect of the merger on generation upgrade is ambiguous. After the

merger, softened competition could discourage innovation but enlarged market share may

mean a bigger benefit from a better quality product, which would stimulate incurring the

fixed cost to innovate. In addition, generation upgrade negatively impacts experience and

raises unit cost, which further complicates the impact of the merger on upgrade decisions.

Property 3 (The MD-11 Property). With the merger, consumers are worse off with

immediate shutdown of MD-11 (Scenario (i)) compared to continuing production of MD-11

(Scenario (ii)). However, total profits of the merged firm would be lower and would need to

be subsidized to keep MD-11. In addition, with the merger, MD-11 is phased out faster.

Recall that the learning effect is potentially beneficial for the merger, either through

concentrating learning on fewer products and reaching the bottom of learning curve faster

in the scenario where MD-11 was shut down immediately after the merger, or through

within-firm spillover when MD-11 is kept after the merger. Thus, keeping MD-11 after the

merger might benefit consumers by enjoying experience spillover while avoiding reduced

number of products. Comparing consumer surplus and product profits for Scenarios (i) and

(ii) in Tables 6 and 7 shows that keeping MD-11 leads to a higher consumer surplus but

lower profits for Boeing and Airbus. Theoretically, keeping MD-11 might also be beneficial

for Boeing if there were sufficiently large spillover effects and significant differences in char-

acteristics between MD-11 and Boeing 777. However, the results suggests that Boeing’s

total profit would be lower because it would incur fixed costs from MD-11 that could not

be fully covered by revenues from MD-11. Airbus’s profit would also be lower because it

would face more competition. Thus, if a policy maker wanted to keep MD-11 for consumers’

benefit, Boeing would need to be subsidized.

In Figure 16, quantity curves for the merger scenarios are lower than the curve for the

no-merger scenario for the first 6-7 years after the merger. Namely, MD-11 would phase

out faster if it was merged into Boeing. On the one hand, MD-11 receives more experience

spillover after the merger. On the other hand, Boeing needs to internalize business stealing

of the more promising B777 from production of MD-11. The result shown in Figure 16

indicates that business stealing concerns dominated and Boeing found it more profitable to

concentrate on production of Boeing 777.

5.2 Comparative Statics

The 2010s is witnessing a boom of generation upgrades in the entire aircraft industry. For

the medium-sized, wide-bodied market, Boeing 787 was introduced to replace 777 in 2011
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and Airbus responded with the new A350, which is projected to take over A330’s market

in 2014. Boeing 787 and Airbus A350 are expected to save much more operating cost

than previous innovations.48 This suggests that estimated industrial innovation rate pG

and, more importantly, estimated generation quality gap ϕ based on past data might be

too conservative. In fact, estimated ϕ is only 12% as shown in Table 3, which implies that

upgrading to the next generation only increases a product’s market share by 12% relative to

the outside good. In contrast, industry experts predict that the new Boeing 787 and Airbus

A350 will eventually drive out old generation models, indicating a much larger percentage

change in market share ratio. Thus, I vary pG and ϕ in all dynamic game scenarios to

evaluate their impact on estimated merger efficiency. I find that:

Property 4 (The Innovation Property). Higher innovation rate or larger generation

gap increases merger efficiency for all τ . Net merger efficiency is increasing in both the

innovation rate pG and generation gap ϕ.

I call the dynamic model using parameter values estimated from Section 4 the “base

model.” Comparative static analysis is then performed by varying one or more parameters

of the base model and resolving the dynamic game. Figure 25 compares merger efficiency

(∆CS) across different values for the transfer rate τ in the base model, with merger efficiency

in a model with doubled pG and merger efficiency in a model with doubled ϕ. When pG is

doubled, consumers benefit more from the merger but not by much, and a smaller experience

transfer rate shall be enough for the learning-by-doing effect to offset the market power effect

(∆CS = 0). It is probably because higher pG implies more frequent generation upgrades and

setbacks in experience, favoring a more concentrated market that accumulates experience

faster. Furthermore, a doubled ϕ generates larger consumer benefit than the doubled pG

does. When MD-11 was active, it was not upgraded to a new generation because it was

expected to stop production in the long-run. Therefore, production of MD-11 leads to lower

consumer surplus under the no-merger scenario. A larger generation quality gap ϕ magnifies

the loss from MD-11 production, indicating higher consumer welfare for the merger scenario.

Figure 26 plots the net merger consumer surplus ∆CS at τ = 1 as a function of ϕ for pG and

doubled pG. ∆CS is found to be increasing in both in pG and ϕ. Thus, if the magnitude

or rate of innovation is larger in the future, the merger would be more consumer beneficial.

The analysis here also provides a sensitivity check of the consumer welfare effect of the

merger with respect to innovation rate pG and generation gap ϕ. In Figure 25, the difference

between ∆CS curve of the base model and that of the “doubled pG” model is relatively

small while net consumer surplus at τ = 1 for the “doubled ϕ” model is more than three

times larger than that for the base model. Thus, merger efficiency calculated in this paper

48With the first 13 B787 delivered, its launch customer All Nippon Airways said the airplane is 21%
better on fuel consumption than old models. Boeing had also claimed its 787-8 to have approximately 15%
lower operating cost than A330-200, while Airbus predicted A350-1000 will have 25% lower fuel burn than
B777-300ER.
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would be too conservative if one were to believe that generation gaps should be much larger

in the future.

6 Summary

In summarizing this paper’s contribution, I will first describe the innovation in terms of

model and methods and then describe the policy contribution with respect to evaluating

the Boeing-McDonnell Douglas merger.

A dynamic oligopoly model is constructed that allows for multi-product firms, learning-

by-doing and endogenous quality improvements. Allowing for both the evolution of cost

and product quality is, to my knowledge, new to the literature on dynamic oligopoly mod-

els. Having two product-specific dynamic states (experience and generation) that evolve at

multiple and different stages creates complexity in solving the dynamic model. I find that

it is helpful to distinguish state profiles at different stages. Joint probabilistic upgrading

decisions for a multi-product firm could be very complicated, and I deal with this by intro-

ducing randomness in a separable term (upgrading cost) that guarantees a unique analytical

solution with given expected future values.

To reduce computational burdens, I also introduced a preference rank state variable

to replace the unobserved characteristics state variable for each product. The preference

rank state variable is applicable to any dynamic oligopoly models, including those without

learning-by-doing or innovation features. Since its size does not depend on number of

products, the preference rank state variable is most powerful in reducing size of state space

for dynamic games with many products where variations in unobserved characteristics are

primarily induced by preference shocks over certain attributes of the products, for example,

ownership.

As described, the model is applicable to many industries for which learning-by-doing and

quality innovation are relevant. However, the primary purpose of the model was to evaluate

the Boeing-McDonnell Douglas merger in the medium-size wide-bodied aircraft industry. I

find that with complete experience transfer, the merger increases consumer surplus by $1.57

billion. Consumers are better off as long as there is at least a 20% experience transfer rate

after the merger. Learning-by-doing is the major source of merger efficiency and is large

enough to cover the detrimental market power effect of approximately $20 billion. The

merger’s impacts on both consumer welfare and market structure are intermediate; it only

accelerates experience accumulation towards the steady state and there is no-merger effect

in the long-run. Comparative statics suggest that if future generation gaps were to be larger,

merger efficiency would be even greater. Differences in net consumer surplus between the

dynamic model and a static model suggest potential caveats in traditional static analysis

in antitrust practices.

While the primary purpose of the model was to empirically investigate the aircraft

manufacturing industry, the model is applicable to many industries for which learning-by-
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doing and quality innovation are relevant. For example, the model can be modified to

examine the potential impact of the recently turned-down takeover of Seagate by Western

Digital in the hard disc drive industry. More generally, the model and methods developed

here may prove useful for gaining an improved empirical assessment of the significance of

dynamic efficiencies from mergers.
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A Appendix

A.1 Treating MD-11 as a Within Firm Product for L-1011

There are 5 aircraft with 11 submodels that have overlaps in production life with Lockheed

L-1011. To estimate Equation (12), I need to observe different families of aircraft within the

Lockheed corporation. However, L-1011 is the only wide-bodied commercial aircraft that

Lockheed had ever produced. Hence, I make a further assumption that DC-10 of McDon-

nell Douglas can be treated as a within-firm product for Lockheed L-1011.49 Seemingly a

strong assumption, using an outside product as an inside product tends to under-estimate

the within firm spillover effect, which would lead to conservative estimate of merger effi-

ciency. However, the under-estimation problem could be (partially) relieved considering the

following arguments. First, L-1011 and DC-10 are probably the pair of most similar aircraft

in the entire history of wide-bodied aircraft industry. Both aircraft are fitted with three

high-bypass turbofan engines, seat around 300 passengers, and have about the same fuse-

lage diameter and exactly the same wingspan. They are also very similar in many detailed

aspects that could not all be covered by the product difference function in Equation (12).

Hence, with respect to similarity, DC-10 should have the highest spillover on L-1011, off-

setting part of the under-estimation. Second, DC-10 was put into production about a year

before L-1011 and stayed in lead during their whole production histories. Combining with

the similarities, this implies that Lockheed would enjoy a followers advantage in production

techniques and benefit more than average cases in experience sharing from the production of

DC-10. Third and probably the most important reasoning, the plants for producing L-1011

and DC-10 both sat in the Los Angeles area while the plants of Boeing and Airbus were

far away in Seattle and Europe, respectively. Lockheed’s plant was in Burbank, California

while Douglas manufactured in Long Beach, California. The two cities are on the opposite

side of Los Angeles City with about 30 miles between them. Producing together in the

Los Angeles County since the 1920’s implies an unique close connection between workers of

the two companies. When there are layoffs and other mobilities, work force can easily shift

from one firm to the other. Experience can be shared in the unions or even in the bars.

Since within-firm spillover mainly comes from workforce shifts and experience sharing, the

spillover effect between the two plants should be closer to the level of within-firm spillovers.

A.2 Alternative Modeling of Experience Transition

50

49An alternative choice is to use Lockheed’s military aircraft C-5A Galaxy produced during the period
of 1968-1973. C-5A Galaxy has the same number of engines and very similar plane size, range, and other
characteristics as Boeing 747. Problems in using C-5A lie in the differences between military and commercial
aircraft. For example, C-5A Galaxy does not have a corresponding number of seats characteristic as it is an
airlift. In addition, C-5A had shorter overlapping production periods with L-1011 than DC-10 did.

50I am greatly indebt to C. Lanier Benkard for suggesting this alternative modeling idea.
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The expected value function and therefore the right hand side of the Bellman equation

(Equation (5)) is not continuously differentiable in quantities according to the numerical

transition rule in Equation (16). This non-differentiability makes it hard to solve for optimal

quantities in numerical computation. Here I propose an alternative modeling of experience

transition to smooth the expected value function.

The problem of non-differentiability comes from the part that Equation (16) restricts

transitions to closest lower and upper bounds/grids only while next period experience could

span the entire space for theoretical experience transition (Equation (12)). To overcome

this problem, a first thought is to add in a random shock to the process as

Et+1 = Ek = argmin|
(
E∗

t+1 + ε
)
− Ek|. (A-1)

Thus, the discrete experience state Et+1 is chosen by using E∗
t+1 plus a random normal draw

ǫ and then rounding to the nearest grid. For example, if ǫ ∼ N (0, σ) , then no matter what

Et and qt are,
(
E∗

t+1 + ǫ
)
could be any real number and Et+1 has positive probability going

to any grid. This solves the non-differentiability problem but creates incorrect expectation

as expectation of Et+1 would then not be equal to E∗
t+1. To fix this problem, I turn to a

mixture of Equation (16) and Equation (A-1). The mixture is accomplished in two steps.

First, I define Ẽ as

Ẽ = E∗(q) + ν, (A-2)

where ν ∼ f (ν), with E (ν) = 0 and CDF F (ν) . Then I replace E∗
t+1 with Ẽ in Equation

(16). It is easy to see that
∑

k Pr
(
Ek

)
V k is continuously differentiable under this alternative

transition rule. I then show that expectation of Et+1 equals E∗
t+1. Let N be the number of

grids for E. Then,

Pr
(
E1

)
= Pr

(
E = E1|Ẽ < E1

)
Pr

(
Ẽ < E1

)
(A-3)

+Pr
(
E = E1|E1 < Ẽ < E2

)
Pr

(
E1 < Ẽ < E2

)

= 1 · F
(
E1 − E∗

)
+

∫ E2−E∗

E1−E∗

(
1−

E∗ + ν − E1

E2 − E1

)
f (ν) dν

Similarly, for k = 2, 3, ..., (N − 1)

Pr
(
Ek

)
= Pr

(
E = Ek|Ek−1 < Ẽ < Ek

)
Pr

(
Ek−1 < Ẽ < Ek

)
(A-4)

+Pr
(
E = Ek|Ek < Ẽ < Ek+1

)
Pr

(
Ek < Ẽ < Ek+1

)

=

∫ Ek−E∗

Ek−1−E∗

(
E∗ + ν − Ek−1

Ek − Ek−1

)
f (ν) dν +

∫ Ek+1−E∗

Ek−E∗

(
1−

E∗ + ν − Ek

Ek+1 − Ek

)
f (ν) dν
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and

Pr
(
EN

)
= Pr

(
E = EN |Ẽ > EN

)
Pr

(
Ẽ > EN

)
(A-5)

+Pr
(
E = EN |EN−1 < Ẽ < EN

)
Pr

(
EN−1 < Ẽ < EN

)

= 1 ·
(
1− F

(
EN − E∗

))
+

∫ EN−E∗

EN−1−E∗

(
E∗ + ν − EN−1

EN − EN−1

)
f (ν) dν

Then

∑
k

Pr
(
Ek

)
Ek (A-6)

= E1 · F
(
E1 − E∗

)
+ EN ·

(
1− F

(
EN − E∗

))

+
N−1∑
k=1

Ek

∫ Ek+1−E∗

Ek−E∗

1 · f (ν) dν +

∫ EN−E∗

E1−E∗

(E∗ + ν) · f (ν) dν

−
N−1∑
k=1

Ek

∫ Ek+1−E∗

Ek−E∗

1 · f (ν) dν

= E1 · F
(
E1 − E∗

)
+ EN ·

(
1− F

(
EN − E∗

))

+E∗ ·
[
F
(
EN − E∗

)
− F

(
E1 − E∗

)]
+

∫ EN−E∗

E1−E∗

ν · f (ν) dν

=
(
E1 − E∗

)
· F

(
E1 − E∗

)
+
(
EN − E∗

)
·
(
1− F

(
EN − E∗

))

+E∗ +

∫ EN−E∗

E1−E∗

ν · f (ν) dν

= E∗ +

∫ E1−E∗

−∞

(
E1 − E∗ − ν

)
f (ν) dν +

∫ ∞

EN−E∗

(
EN − E∗ − ν

)
f (ν) dν

6= E∗

where the last equation used the fact E (ν) = 0.

However, note that if I restrict the domain of ν to be
(
E1 − E∗, EN − E∗

)
, then

∫ EN−E∗

E1−E∗

ν · f (ν) dν = E (ν) = 0; (A-7)

F
(
E1 − E∗

)
= 0;

F
(
EN − E∗

)
= 1;

E∗ ·

∫ EN−E∗

E1−E∗

f (ν) dν = E∗ · 1 = E∗. (A-8)

Hence,
∑
k

Pr
(
Ek

)
Ek = E∗.

Note that with Equation (12), next period experience is bounded below by δEt−1 but

not so under this alternative transition. This problem could be fixed by defining lower
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bound of next period E to be δEt−1. However, this will further complicates the function

form to achieve correct expectation.

There are several problems with this alternative modeling though. First, it introduces

non-negligible computational burden by employing a more complicated function form. Sec-

ond, it might create too much variation of experience evolution than the data does. under

this alternative transition rule, it is possible for experience to jump from the lowest state to

the highest state even when q = 0 (or from the highest state to the lowest state even when

q is very large). This would cause problems for some simulation paths. However, it won’t

be a problem for expected discounted CS since probability of such events will be very small.

A.3 Proof on Uniqueness of Pr
Ui

i for Given EV
Ui

i

In Equation (3), EV Ui

i is not a function of any cj for given Ui. Hence, the difference between

EV Ui

i and EV
U ′
i

i is monotonic in one or more cj . For given CG
i , EV Ui

i − CG
i is simply a

vector of 2Ji numbers and we can always find the largest number. Thus, CG
i divides the

Ji-dimension Euclidean space [Cd, Cu]Ji into 2Ji areas in a unique way51. PrUi

i then is

unique and equals the proportion of areas of the Euclidean space [Cd, Cu]Ji .52

I give an example on finding the unique solution of upgrade probabilities for a two-

product firm below. Models with firms that have more than 2 products can be solved

similarly. In the example, for subscript ij, i and j denotes product 1 and 2 of the firm,

respectively. i (or j) equals 1 (or 0) if product i (or j) is upgraded (not upgraded). There

are four possible choices for the firm:

U11, U10, U01, U00.

The problem can be summarized as solving

P11, P10, P01, P00,

for given continuation values

EV11, EV10, EV01, EV00.

The net value from each choice is then:

V11 = EV11 − c1 − c2;

V10 = EV10 − c1;

V01 = EV01 − c2;

V00 = EV00.

51Strictly speaking, there might be less than 2Ji areas since some Ui might be so undesirable that it is
never chosen for any cj ∈ [Cd, Cu]Ji

52Note that the upgrade probabilities Pr
Ui

i are continuous but generally not differentiable (at boundaries
between cases) in EV

Ui

i .
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Comparing Vij defines the following six lines in the c1-c2 plane that marks the boundaries

between Vij .

L1: EV00 − EV10 + c1 = 0 (vertical)

L2: EV01 − EV11 + c1 = 0 (vertical)

L3: EV00 − EV01 + c2 = 0 (horizontal)

L4: EV10 − EV11 + c2 = 0 (horizontal)

L5: EV10 − EV01 + c2 − c1 = 0 (45◦)

L6: EV00 − EV11 + c1 + c2 = 0 (−45◦)

It is important to notice that the six boundary lines satisfy the following relationship:

L1 + L4 = L6

L2 + L3 = L6

L4 − L2 = L5

L3 − L1 = L5

In addition, upgrade choices are indicated in the c1-c2 plane by areas defined by the six

boundary lines as follows:

U11 : left of L2, under L4, under L6;

U10 : left of L1, above L4, above L5;

U01 : right of L2, under L3, under L5;

U00 : right of L1, above L3, above L6.

Specific divisions of the c1-c2 plane can be divided into two major cases, with EV00+EV11−

EV01−EV10 ≥ 0 and EV00+EV11−EV01−EV10 < 0 demonstrated, respectively, in Figure

27 and 28.

Finally, note that Cd and Cu define a square box,
[
Cd, Cu

]
×

[
Cd, Cu

]
, in the c1-c2

plane. The upgrade probabilities Pij then equal their corresponding percentage of areas

within the square box
[
Cd, Cu

]
×
[
Cd, Cu

]
. Specifically, depending on the size of the square

box and its relative position to the six boundary lines, the division of the square box can be

categorized into the following 24 cases. The upgrade probabilities Pij are solved according

to the following formulas in each case:

• For EV00 + EV11 − EV01 − EV10 ≥ 0

– Case I(i)

∗ Condition:

Cd > EV11 − EV10;

Cu ≤ EV10 − EV00
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∗ Probability:

P10 = 1

– Case I(ii)

∗ Condition:

Cd > EV11 − EV10;

Cd ≤ EV10 − EV00 < Cu

∗ Probability:

P10 =
EV10 − EV00 − Cd

Cu − Cd
;P00 = 1− P10

– Case I(iii)

∗ Condition:

EV00 − EV11 + 2Cd ≥ 0;

EV10 − EV00 < Cd;

EV01 − EV00 < Cd

∗ Probability:

P00 = 1

– Case I(iv)

∗ Condition:

Cd ≤ EV11 − EV10 < Cu;

Cu ≤ EV10 − EV00

∗ Probability:

P11 =
EV11 − EV10 − Cd

Cu − Cd
;P10 = 1− P11

– Case I(v)

∗ Condition:

Cd ≤ EV10 − EV00 < Cu;

Cd ≤ EV11 − EV10 < Cu;
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∗ Probability:

P10 =
EV10 − EV00 − Cd

Cu − Cd
·
Cu − (EV11 − EV10)

Cu − Cd

S11 =
EV10 − EV00 − Cd

Cu − Cd
·
EV11 − EV10 − Cd

Cu − Cd

S00 =
Cu − (EV10 − EV00)

Cu − Cd
·
Cu − (EV11 − EV10)

Cu − Cd

Sjoint = 1− P10 − S11 − S00

if,

EV00 − EV11 + Cu + Cd ≥ 0

Sjoint 11 =

(
EV11 − EV10 − Cd

)2

2 (Cu − Cd)
2

P11 = S11 + Sjoint 11

P00 = S00 + Sjoint − Sjoint 11

eles if,

EV00 − EV11 + Cu + Cd < 0

Sjoint 00 =
(EV10 − EV00 − Cu)2

2 (Cu − Cd)
2

P11 = S11 + Sjoint − Sjoint 00

P00 = S00 + Sjoint 00

– Case I(vi)

∗ Condition:

EV00 − EV11 + 2Cu < 0;

EV11 − EV10 ≥ Cu;

EV11 − EV01 ≥ Cu

∗ Probability:

P11 = 1

– Case I(vii)
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∗ Condition:

Cd > EV10 − EV00;

Cd > EV01 − EV00;

Cu ≤ EV11 − EV01;

Cu ≤ EV11 − EV10

∗ Probability:

P11 =
(EV11−EV00−2Cd)

2

2(Cu−Cd)
2 ;P00 = 1− P11 if EV00 − EV11 + Cd + Cu ≥ 0

P00 =
(2Cu−EV11+EV00)

2

2(Cu−Cd)
2 ;P11 = 1− P00 otherwise

– Case I(viii)

∗ Condition:

Cd ≤ EV11 − EV01 < Cu;

Cd ≤ EV01 − EV00 < Cu

∗ Probability:

P01 =
EV01 − EV00 − Cd

Cu − Cd
·
Cu − (EV11 − EV01)

Cu − Cd

S11 =
EV01 − EV00 − Cd

Cu − Cd
·
EV11 − EV01 − Cd

Cu − Cd

S00 =
Cu − (EV01 − EV00)

Cu − Cd
·
Cu − (EV11 − EV01)

Cu − Cd

Sjoint = 1− P01 − S11 − S00

if,

EV00 − EV11 + Cd + Cu ≥ 0

Sjoint 11 =

(
EV11 − EV01 − Cd

)2

2 (Cu − Cd)
2

P11 = S11 + Sjoint 11

P00 = S00 + Sjoint − Sjoint 11

eles if,

EV00 − EV11 + Cd + Cu < 0
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Sjoint 00 =
(EV01 − EV00 − Cu)2

2 (Cu − Cd)
2

P11 = S11 + Sjoint − Sjoint 00

P00 = S00 + Sjoint 00

– Case I(ix)

∗ Condition:

Cd > EV11 − EV01;

Cd ≤ EV01 − EV00 < Cu

∗ Probability:

P01 =
EV01 − EV00 − Cd

Cu − Cd
;P00 = 1− P01

– Case I(x)

∗ Condition:

Cd ≤ EV11 − EV01 < Cu;

Cu ≤ EV01 − EV00

∗ Probability:

P11 =
EV11 − EV01 − Cd

Cu − Cd
;P01 = 1− P11

– Case I(xi)

∗ Condition:

Cd > EV11 − EV01;

Cu ≤ EV01 − EV00

∗ Probability:

P01 = 1

– Case I(xii)

∗ Condition:

EV11 − EV10 < Cu

EV01 − EV00 ≥ Cd

EV11 − EV01 < Cu

EV10 − EV00 ≥ Cd
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∗ Probability:

P01 =
EV10 − EV00 − Cd

Cu − Cd
·
Cu − (EV11 − EV10)

Cu − Cd

P10 =
EV01 − EV00 − Cd

Cu − Cd
·
Cu − (EV11 − EV01)

Cu − Cd

S11 =
EV11 − EV01 − Cd

Cu − Cd
·
EV11 − EV10 − Cd

Cu − Cd

S00 =
Cu − (EV01 − EV00)

Cu − Cd
·
Cu − (EV10 − EV00)

Cu − Cd

Sjoint = P10 + P01 + S11 + S00 − 1

then

P11 = S11 −
1

2
Sjoint

P00 = S00 −
1

2
Sjoint

• For EV00 + EV11 − EV01 − EV10 < 0,

– Case II(i)

∗ Condition:

Cd > EV10 − EV00;

Cd > EV01 − EV00

∗ Probability:

P00 = 1

– Case II(ii)

∗ Condition:

Cd > EV01 − EV00;

Cd ≤ EV10 − EV00 < Cu

∗ Probability:

P10 =
EV10 − EV00 − Cd

Cu − Cd
;P00 = 1− P10

– Case II(iii)
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∗ Condition:

EV10 − EV01 + Cd − Cu ≥ 0;

EV10 − EV00 ≥ Cu;

EV11 − EV10 < Cd

∗ Probability:

P10 = 1

– Case II(iv)

∗ Condition:

Cd ≤ EV01 − EV00 < Cu;

Cd > EV10 − EV00

∗ Probability:

P01 =
EV01 − EV00 − Cd

Cu − Cd
;P00 = 1− P01

– Case II(v)

∗ Condition:

Cd ≤ EV10 − EV00 < Cu;

Cd ≤ EV01 − EV00 < Cu

∗ Probability:

P00 =
Cu − (EV10 − EV00)

Cu − Cd
·
Cu − (EV01 − EV00)

Cu − Cd

S10 =
EV10 − EV00 − Cd

Cu − Cd
·
Cu − (EV01 − EV00)

Cu − Cd

S01 =
Cu − (EV10 − EV00)

Cu − Cd
·
EV01 − EV00 − Cd

Cu − Cd

Sjoint = 1− P00 − S10 − S01

if,

EV10 − EV01 + Cd − Cd = EV10 − EV01 ≥ 0

Sjoint 01 =

(
EV01 − EV00 − Cd

)2

2 (Cu − Cd)
2

P01 = S01 + Sjoint 01

P10 = S10 + Sjoint − Sjoint 01
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eles if,

EV10 − EV01 + Cd − Cd = EV10 − EV01 < 0

Sjoint 10 =

(
EV10 − EV00 − Cd

)2

2 (Cu − Cd)
2

P01 = S01 + Sjoint − Sjoint 10

P10 = S10 + Sjoint 10

– Case II(vi)

∗ Condition:

EV10 − EV01 + Cu − Cd < 0;

EV01 − EV00 ≥ Cu;

EV11 − EV01 < Cd

∗ Probability:

P01 = 1

– Case II(vii)

∗ Condition:

Cd > EV11 − EV01;

Cd > EV11 − EV10;

Cu ≤ EV10 − EV00;

Cu ≤ EV01 − EV00

∗ Probability:

P01 =
(Cu−(EV10−EV01)−Cd)

2

2(Cu−Cd)
2 ;P10 = 1− P01 if EV10 − EV01 ≥ 0

P10 =
(Cu+(EV10−EV01)−Cd)

2

2(Cu−Cd)
2 ;P01 = 1− P10 otherwise

– Case II(viii)

∗ Condition:

Cd ≤ EV11 − EV01 < Cu;

Cd ≤ EV11 − EV10 < Cu
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∗ Probability:

P11 =
EV11 − EV10 − Cd

Cu − Cd
·
EV11 − EV01 − Cd

Cu − Cd

S10 =
EV11 − EV01 − Cd

Cu − Cd
·
Cu − (EV11 − EV10)

Cu − Cd

S01 =
Cu − (EV11 − EV01)

Cu − Cd
·
EV11 − EV10 − Cd

Cu − Cd

Sjoint = 1− P11 − S10 − S01

if,

EV10 − EV01 + Cu − Cu = EV10 − EV01 ≥ 0

Sjoint 01 =
(EV11 − EV01 − Cu)2

2 (Cu − Cd)
2

P01 = S01 + Sjoint 01

P10 = S10 + Sjoint − Sjoint 01

eles if,

EV10 − EV01 + Cu − Cu = EV10 − EV01 < 0

Sjoint 10 =
(EV11 − EV10 − Cu)2

2 (Cu − Cd)
2

P01 = S01 + Sjoint − Sjoint 10

P10 = S10 + Sjoint 10

– Case II(ix)

∗ Condition:

Cu ≤ EV11 − EV01;

Cd ≤ EV11 − EV10 < Cu

∗ Probability:

P11 =
EV11 − EV10 − Cd

Cu − Cd
;P10 = 1− P11

– Case II(x)

∗ Condition:

Cu ≤ EV11 − EV10;

Cd ≤ EV11 − EV01 < Cu
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∗ Probability:

P11 =
EV11 − EV01 − Cd

Cu − Cd
;P01 = 1− P11

– Case II(xi)

∗ Condition:

Cu ≤ EV11 − EV10;

Cu ≤ EV11 − EV01

∗ Probability:

P11 = 1

– Case II(xii)

∗ Condition:

EV10 − EV00 < Cu

EV11 − EV10 ≥ Cd

EV01 − EV00 < Cu

EV11 − EV01 ≥ Cd

∗ Probability:

P11 =
EV11 − EV01 − Cd

Cu − Cd
·
EV11 − EV10 − Cd

Cu − Cd

P00 =
Cu − (EV10 − EV00)

Cu − Cd
·
Cu − (EV01 − EV00)

Cu − Cd

S10 =
EV10 − EV00 − Cd

Cu − Cd
·
Cu − (EV11 − EV10)

Cu − Cd

S01 =
Cu − (EV11 − EV01)

Cu − Cd
·
EV01 − EV00 − Cd

Cu − Cd

Sjoint = P11 + P00 + S10 + S01 − 1

then

P10 = S10 −
1

2
Sjoint

P01 = S01 −
1

2
Sjoint

A.4 Expected Value Function and State Transition

First I describe the state transition with experience state variables only. In this case, define

ηj (h; qj) =

(
E∗

j,t+1 (qj)− Ej,d (qj)

Ej,u (qj)− Ej,d (qj)

)h(
1−

E∗
j,t+1 (qj)− Ej,d (qj)

Ej,u (qj)− Ej,d (qj)

)1−h
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where h is either 0 or 1. Then,

EVj (
−→q ) = EVj

(
E′

)
= EVj

(
E

′

j ;E
′

−j

)
(A-9)

= ηj (1)Vj

(
Eu;E

[
E

′

−j (
−→q )

])
+ ηj (0)Vj

(
Ed;E

[
E

′

−j (
−→q )

])

=
∑

h1=0,1

...
∑

hk=0,1

...
∑

hJ=0,1

(∏
k

ηk (hk)

)
Vj (E1,h1 , ...Ek,hk

, ...EJ,hJ
)

where experience state transition Pr (E′|E,Q) is simply

Pr
(
E′|E,Q

)
=

∑
h1=0,1

...
∑

hk=0,1

...
∑

hJ=0,1

(∏
k

ηk (hk)

)

Then I add in market size state variable Mt. Note that given Qt and Et, Et+1 does not

depend on Mt or Mt+1, i.e.

Pr
(
E′,M ′|E,M,Q

)
= Pr

(
E′|E,Q

)
· Pr

(
M ′|M

)

Then

EVj =
∑
M ′

∑
E′

Vj
(
E′,M ′

)
· Pr

(
E′,M ′|E,M,Q

)
(A-10)

=
∑
M ′

[∑
E′

Vj
(
E′,M ′

)
Pr

(
E′|E,Q

)]
· Pr

(
M ′|M

)

=
∑
M ′

EVM ′

j · Pr
(
M ′|M

)

where EVM ′

j is just EVj in Equation A-9.

Similar as the market size state variable, the feature that preference rank state variables(
κT , κF

)
evolves separately from other state variables make computation easier. Since

Pr
(
E′,M ′, κT ′, κF ′|E,M, κT , κF , Q

)
= Pr

(
E′|E,Q

)
·Pr

(
M ′|M

)
·Pr

(
κT ′|κT

)
·Pr

(
κF ′|κF

)

then

EVj =
∑
κF ′

∑
κT ′

∑
M ′

∑
E′

Vj
(
E′,M ′, κT ′, κF ′

)
· Pr

(
E′,M ′, κT ′, κF ′|E,M, κT , κF , Q

)
(A-11)

=
∑
κF ′

∑
κT ′

{∑
M ′

[∑
E′

Vj
(
E′,M ′

)
Pr

(
E′|E,Q

)]
· Pr

(
M ′|M

)}
· Pr

(
κT ′|κT

)
· Pr

(
κF ′|κF

)

=
∑
κF ′

∑
κT ′

{∑
M ′

EVM ′

j · Pr
(
M ′|M

)}
· Pr

(
κT ′|κT

)
· Pr

(
κF ′|κF

)

=
∑
κF ′

∑
κT ′

EV κF ′,κT ′

j · Pr
(
κT ′|κT

)
· Pr

(
κF ′|κF

)

where EV κF ′,κT ′

j is just EVj in Equation A-10.
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Finally, I add in generation difference state variables. I need to compute

Pr
(
ω̃′|ω̃

)
= Pr

(
ω̃′|ω′

)
· Pr

(
ω′|ω′

)
.

Since (M,κT , κF ) evolve exogenously, I only need to specify transitions of E and G. Note

that Gω is only updated in Stage (i) and (ii) governed by Equation (1) and (2). Transition

of G does not depend on transition of E but not the other way around. For given ω̃, denote

Gdown and Gstay as the states of G at the beginning of Stage (ii) in the next period when

the event Outside Good Generation Upgrade took place and otherwise, respectively. For

product j and given PrUi

i , let Prdown
j , Prstayj and Prupj denote probability of generation

difference Gj of product j after Stage (ii) in the next period decreases, remains the same

and increases, respectively. Then,

Prdown
j = pG · (Pr

uj

i |Gdown) + (1− pG) · (Pr
uj

i |Gstay)

Prstayj = (1− pG) · (Pr
uj

i |Gdown)

Prupj = pG · (Pr
uj

i |Gstay).

The above equations describe the transition of G part of Pr
(
ω̃′|ω′

)
.53 Given Prdown

j ,

the transition of Ej part is simply

E′
j =





Eu
j downgrade by nG with prob. Prdown

j · ηj(1)

Ed
j downgrade by nG with prob. Prdown

j · ηj(0)

Eu
j with prob. (1− Prdown

j ) · ηj(1)

Ed
j with prob. (1− Prdown

j ) · ηj(0)

53I omit special cases of hitting the smallest and largest grids of E and G in notations here for simplicity.
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Table 1: Aircraft Characteristics

Characteristics A330 A340 B777 MD-11

Aircraft ID 1 2 3 4
first delivery 1993 1993 1995 1990
seats 270 326 325 293
range(km) 12378 14312 14067 12670
No. of engines 2 4 2 3

Table 2: Demand Function Estimates

R2 = 0.9724; Adj. R2 = 0.9711

Variable Estimate S.E. t p > |t| Data S.E

Constant -3.59 0.22 -16.51 0.00 N/A
seats/100 0.11 0.06 1.91 0.06 0.36
range/10000 2.04 1.07 1.91 0.06 0.20
No. of engines -0.07 0.02 -2.73 0.01 0.91
price/100 -0.52 0.16 -3.25 0.00 0.17
InGroup Corr. (σ) 0.98 0.04 23.81 0.00 1.13

Table 3: Demand Function Estimates (with Generation)

R2 = 0.9724; Adj. R2 = 0.9711

Variable Estimate S.E. t p > |t| Data S.E

Constant -3.40 0.22 -15.46 0.00 N/A
Generation 0.12 0.06 2.02 0.05 0.49
seats/100 0.07 0.06 1.25 0.21 0.36
range/10000 0.15 0.11 1.43 0.16 0.20
No. of engines -0.03 0.03 -0.80 0.42 0.91
price/100 -0.75 0.13 -5.90 0.00 0.17
InGroup Corr. (σ) 0.97 0.02 50.26 0.00 1.13
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Table 4: Learning Curve Parameters

Explanation Value Std Value Std

lnA Labor Cost Intercept 9.2590 (3.2885) 9.3113 (3.1696)
γ2 Return to Scale 0.3178 (0.5904) 0.3141 (0.5552)
γ1 Learning Parameter -1.1462 (0.1374) -1.1523 (0.1275)

Implied Learning Rate 55% 55%
δ Depreciation of E 0.9546 (0.0014) 0.9549 (0.0012)
θ1 In-family Spillover 0.9999 (0.0239) 0.9742 (0.0198)
θ2 In-firm Spillover 0.2383 (0.0029) 0.2408 (0.0001)
θ3 Across-firm Spillover 0.0138 (0.0017) 0.0182 (0.0001)
υ1 Seats Diff. 0.9998 (0.0037)
υ2 Maximum Range Diff. 0.9998 (0.0032)

Note: Implicit learning rate is calculated as 1− 2γ1,
which measure percent of labor saving when experience doubles.

Table 5: Market Size and Preference Rank Parameters

ξj = (-1.5E-9, 6.0E-10, 0.0, -1.2E-9)

κT1 = ( 0.0995, 0.0590)
κT0 = (-0.0885, -0.0524)
κF1 = (-0.0156, -0.0754)
κF0 = ( 0.0286, 0.2074)

T transition:

(
0.4286 0.5556
0.5714 0.4444

)

F transition:

(
0.8182 0.4
0.1818 0.6

)

M grids: ( 2823, 2966, 3100)

M transition:



0.8462 0.2143 0.0000
0.1538 0.7143 0.1429
0.0000 0.0714 0.8571
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Table 6: Merger Effect for Game A (Full Model)

Scenario (i) Scenario (ii) Scenario (iii) (i)-(iii)

Value (a) τ = 0 (b) τ = 1 (a) τ = 0 (b) τ = 1 (i.a)-(iii) (i.b)-(iii)

CS 154.19 157.55 154.83 157.61 155.97 -1.78 1.57
πall 30.43 36.30 27.41 33.62 26.31 4.12 9.99
TS 184.62 193.85 182.25 191.23 182.29 2.34 11.56
πA330 18.27 15.13 17.87 15.17 17.05 1.22 -1.92
πA340 -2.23 -2.35 -2.27 -2.35 -2.30 0.07 -0.05
πB777 14.39 23.52 14.19 23.35 13.83 0.55 9.69
πMD11 N/A N/A -2.38 -2.54 -2.27 2.27 2.27

All values are total discounted expected values in billions of 1994 U.S. dollar.

Table 7: Merger Effect for Game B (without Generation Upgrade)

Scenario (i) Scenario (ii) Scenario (iii) (i)-(iii)

Value (a) τ = 0 (b) τ = 1 (a) τ = 0 (b) τ = 1 (i.a)-(iii) (i.b)-(iii)

CS 177.89 184.06 178.36 184.06 180.68 -2.79 3.38
πall 58.99 63.64 56.09 61.02 53.98 5.01 9.66
TS 236.87 247.69 234.46 245.08 234.66 2.22 13.04
πA330 24.04 20.69 23.71 20.69 22.34 1.71 -1.65
πA340 -1.45 -1.97 -1.52 -1.98 -1.69 0.24 -0.28
πB777 36.40 44.92 36.27 44.92 35.28 1.11 9.64
πMD11 N/A N/A -2.36 -2.61 -1.95 1.95 1.95

All values are total discounted expected values in billions of 1994 U.S. dollar.

Table 8: Merger Effect for Game C (the Static Game)

Value Scenario (i) Scenario (ii) Scenario (iii) (i)-(iii)

CS 63.05 82.99 85.58 -22.53
πall 51.91 45.77 43.68 8.23
TS 114.96 128.76 129.26 -14.30
πA330 26.56 17.22 16.18 10.38
πA340 23.45 15.50 14.63 8.82
πB777 1.90 -0.65 -0.25 2.15
πMD11 N/A 13.69 13.13 -13.13

All values are total discounted expected values in billions of 1994 U.S. dollar.

Recall that τ = 0 corresponds to no experience share after the merger while τ = 1

matches complete experience share. The 3 scenarios are:

• Scenario (i): Boeing merged with McDonnell Douglas and immediately shut down

MD-11

• Scenario (ii): Boeing kept MD-11 after the merger.

• Scenario (iii): No merger
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Figure 1: Interior Arrangements of a Typical Boeing 777-200 (3-Class)

 

Figure 2: Seats and Range of All Wide-bodied Aircraft in Production since 1990
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Figure 3: Distribution of medium-wide-ratio

Figure 4: Correlation of Quantities and Past Accident Index
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Figure 5: Fit of Labor Input of L-1011

Figure 6: L-1011 Generation Impact on Experience Level
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Figure 7: Distribution of Percentile Difference between Actual and Estimated Market Share
Ratio

Figure 8: Distribution of Percentile Difference between Actual and Estimated Quantity
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Figure 9: ξ Approximation Performance Comparison

Figure 10: Demonstration of Robustness of Discretization
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Figure 11: Comparison of ∆CS for Game A and B when τ Varies

Figure 12: CS Path Comparison since 1997
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Figure 13: Quantity Path Comparison of A330 since 1997

Figure 14: Quantity Path Comparison of A340 since 1997
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Figure 15: Quantity Path Comparison of B777 since 1997

Figure 16: Quantity Path Comparison of MD-11 since 1997
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Figure 17: Experience Path Comparison of A330 since 1997

Figure 18: Experience Path Comparison of A340 since 1997
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Figure 19: Experience Path Comparison of B777 since 1997

Figure 20: Experience Path Comparison of MD-11 since 1997
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Figure 21: Paths of Expected Upgrading Prob. for A330 since 1997

Figure 22: Paths of Expected Upgrading Prob. for A340 since 1997
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Figure 23: Paths of Expected Upgrading Prob. for B777 since 1997

Figure 24: Paths of Expected Upgrading Prob. for MD-11 since 1997

73



Figure 25: Comparison of ∆CS when τ Varies for Different Models

Figure 26: Merger Efficiency for different pG and ϕ when τ = 1

74



Figure 27: EV00 + EV11 − EV01 − EV10 ≥ 0

Figure 28: EV00 + EV11 − EV01 − EV10 < 0
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