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Abstract We present an Hilbert space formulation for a set of implied volatility models

introduced in [3] in which the authors studied conditions for a family of European call

options, varying the maturing time and the strike price T an K, to be arbitrage free. The

arbitrage free conditions give a system of stochastic PDEs for the evolution of the implied

volatility surface σ̂t(T,K). We will focus on the family obtained fixing a strike K and varying

T . In order to give conditions to prove an existence-and-uniqueness result for the solution of

the system it is here expressed in terms of the square root of the forward implied volatility

and rewritten in an Hilbert space setting. The existence and the uniqueness for the (arbitrage

free) evolution of the forward implied volatility, and then of the the implied volatility, among

a class of models, are proved. Specific examples are also given.
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JEL Subject Classification G13 · C31 · C60.
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Introduction

The main aim of the paper is to prove an existence-and-uniqueness result, to study properties

of the solution and to give some examples for the implied volatility model presented in [3]:

in such a seminal work the authors presented a set of conditions, written as a system of

SPDEs, for the market (described below) to be arbitrage free. Here we prove that, indeed,

under a suitable set of conditions, such a system of SPDEs admits a (unique) solution.
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In other words the results we give allow to identify a class of (non-trivial, arbitrage free)

evolutions of the implied volatility starting from some the initial (market-given) surface.

Many aspects of implied volatility models have been diffusely studied and the reader is

referred to [10], Chapter 7 for a review.

The setting of the model and some results from [3]

Consider W
(i)

t , for i ∈ {1, ..,m} and t ≥ 0, m independent real Brownian Motions on the

probability space (Ω ,F ,P). We call Ft the induced filtration. We consider a fixed T ∗ > 0

and a market in which a bond (with interest rate equal to zero), a stock St and a family of

European call options Ot(K,T ) for t ≥ 0, T ∈ (t, t + T ∗], and K > 0 are liquidly traded. So

at every time t we consider the call options expiring in the interval (t, t +T ∗] for a fixed T ∗.

Without losing in generality (changing if necessary the Brownian motions and the measure

P) we can assume that the price of the stock St depends only on the first BM, that St is

martingale and evolves following the SDE

dSt = Stθt dW
(1)

t (1)

for some one-dimensional process θt . The Black and Scholes price for Ot(T,K) is of course

Ct(St ,σ ,K,T ) = StN(d1(St ,σ ,K,T ))−KN(d2(St ,σ ,K,T )) (2)

where N is the cumulative distribution of the normal distribution and,

d1(St ,σ ,K,T )=
ln St

K

σ
√

T − t
+

1

2
σ
√

(T − t), d2(St ,σ ,K,T )=
ln St

K

σ
√

T − t
− 1

2
σ
√

(T − t).

The implied volatility paradigm consists, as well known, in inverting (2) obtaining (and

defining) the “(Black-Scholes) implied volatility” σ̂t(T,K) as a function of Ct (and K, T ,

St ). So, once we have modeled the evolution of the implied volatility, thanks to its definition,

we can use (2) to find the evolution (varying the time t) of the prices of the options Ot(T,K)
and we can wonder if the evolution of the market so obtained is arbitrage free namely, if the

processes Ct(T,K) := StN(d1(St , σ̂t ,K,T ))−KN(d2(St , σ̂t ,K,T )) and St have an equivalent

common (varying T and K) local martingale measure.

In [3] the authors prove that, if we assume the implied volatility to follow a SDE of the

form1

dσ̂t(T,K) = mt(T,K)dt + vt(T,K)∗ dWt ,

the arbitrage-free conditions for the market can be expressed (we do not write the depen-

dence of σ̂t , and ut := vt/σ̂t on T and K in the second equation) as






































dSt = Stθt dW
(1)

t

dσ̂t = 1
2σ̂t (T−t)

(

σ̂2
t −

∣

∣

∣
θtℓ+ut ln K

St

∣

∣

∣

2
)

dt+

+
(

1
8
σ̂3

t (T − t)|ut |2 − 1
2
σ̂tθtu

(1)
t

)

dt + σ̂tu
∗
t dWt

σ̂0(T,K) initial condition

σ̂t(T,K) =
∣

∣

∣
θtℓ+ut ln K

St

∣

∣

∣
feedback condition .

(3)

1 Where mt and vt are respectively a one-dimensional and a m-dimensional process and they can depend

explicitly, as we will assume when we give some sufficient conditions to prove the existence of the solution,

on T , K, St , σ̂t and θt . vt(T,K)∗ is the adjoint of the vector vt(T,K) so that vt(T,K)∗ dWt = 〈vt(T,K), dWt〉
(〈·, ·〉 represents the scalar product in R

m).
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where we called ℓ the vector of Rm given by (1,0,0, ...,0), | · | is the norm in R
m and the

m-dimensional process ut = vt/σ̂t . They also prove that such a system of SPDEs can be

rewritten using the variable2 ξt(T,K) = (T − t)σ̂2
t (T,K) obtaining







































dSt = Stθt dW
(1)

t

dξt = ξt

(

(

1+ 1
4
ξt

)

|ut |2 −θtu
(1)
t

)

dt −
(

θt +u
(1)
t ln

(

K
St

))2

dt−

−∑
m
i=2

(

u
(i)
t

)2

ln2
(

K
St

)

dt +2ξtu
∗
t dWt

ξ T
0 initial condition

∂T ξt(T,K)|T=t =
(

θt +u
(1)
t ln

(

K
St

))2

+∑
m
i=2

(

u
(i)
t

)2

ln2
(

K
St

)

feedback condition

(4)

where we used u
(i)
t for the i-th component of ut .

The feedback condition is obtained in [3] in order to avoid the phenomenon (already

observed in [16], Section 3(a), see also ([1] and [2])) of the “bubble” of the drift for t → T .

Such a condition, it will be clearer in the following, adds a certain number of difficulties in

the study of the problem.

In [3] the author does not prove an existence result for equation (3) or (4) but they prove

that such conditions are equivalent to the market being arbitrage-free. So, if we can find

some sets of u
(i)
t and θt of stochastic processes such that equations (4, 1) admit a positive

solution (ξt ,St) (or, that is the same, (3, 1) admit a positive solution (σ̂t ,St)), the evolution

of the market is arbitrage free.

In the present work we study a “reduced” problem: indeed we consider a fixed K and we

study the existence and uniqueness for the system of SPDEs (4) varying T . We continue in

the introduction to write the equations for the the general problem and we will fix a K in Sec-

tion 1 (starting from equation (EQ)). For the general case we would need the “compatibility

conditions” described in Section 5 to be satisfied.

Forward implied volatility and formal derivation of the state equation

We want to describe the system using the square root of the forward implied volatility intro-

duced in [16]. We define Xt , formally, as

Xt(x,K) =
∂

∂x

(

xσ̂2
t (x,K)

)

=
∂

∂x
(ξt(t + x,K)) . (5)

The idea of use such a variable in the implied volatility models was introduced for the first

time, as far as we know, in [14]. In the works [14,15] the authors use different techniques to

deal with problems strictly related to the our. They use some results about strong solutions

for functional SDE proven in [17] (see also [11]) to study the case of the family for a fixed

strike K (varying the maturing time T ) in [14] and the family for fixed T (varying the strike)

in [15].

The main novelty with respect to the results obtained in [14] concerns the mathematical

techniques used, but the Hilbert space approach used in the present works allows also to

avoid a couple of additional “technical conditions” required3 in [14] and to use an analo-

gous of the Musiela parameterization (see [9]) for the HJM interest rate model. So we can

2 See also [4].
3 Actually to compare the Hypotheses needed in the two different setting is not very easy.
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consider at every time t the family of call option (for a fixed K) for all the expiration times

T ∈ [t, t +T ∗] for a fixed T ∗.

From the second equation of (4), using Ito-Venttsel formula (see for example [13]), we have,

formally:

dXt(x,K) =

[

∂xXt(x,K)+

(

∫ x

0
Xt(r,K)dr

)

(

1

2
Xt(x,K)|ut |2+

+
1

2
〈ut ,∂xut〉

∫ x

0
Xt(r,K)dr +2〈ut ,∂xut〉−θt∂xu

(1)
t

)

+

+Xt(x,K)
(

|ut |2 −θtu
(1)
t

)

−

−2

〈

θtℓ+ut ln

(

K

St

)

,(∂xut) ln

(

K

St

)〉]

dt+

+

[

2Xt(x,K)u∗t +2(∂xu∗t )
∫ x

0
Xt(r,K)dr

]

dW (t) (6)

where 〈·, ·〉 is the scalar product in R
m and ℓ as above.

So here we formally defined Xt as derivative of ξt and we formally obtained the differen-

tial equation that describes the evolution of the square root of the forward implied volatility

Xt from the equation for ξt . Such a differentiation is only formal and this way to approach

the problem (the most natural way from the point of view of the model) is not mathemat-

ically rigorous. For this reason our approach will be “reversed”, we will describe it more

precisely in the next paragraph.

The Hilbert space setting and the rigorous approach to the problem: the case of a fixed K

We treat the problem using a Hilbert space formulation. A similar approach was used for

example in [8] for the HJM interest rate model (see also [7], [5] and [12]).

We consider a fixed T ∗ > 0 and the Hilbert space H := H1(0,T ∗) (the Sobolev space

of index 1).

Notation 01 We use the notation f [x] to denote the evaluation of an element f of H1(0,T ∗)
(or of L2(0,T ∗)) at the point x ∈ [0,T ∗].

We want to describe Xt(x,K) as an element of H1(0,T ∗). So we introduce X̃t(K) defined as

X̃t(K)[x]
de f
= Xt(x,K).

Of course, given an arbitrary function Xt(x,K) the function X̃t(K) will not necessary belongs

to H1(0,T ∗), but we will see that (under suitable conditions on the functions u(i)) if the initial

X̃0(K) is in H1(0,T ∗), its evolution remains in H1(0,T ∗). With an abuse of notation we will

call X̃t(K) simply Xt(K).
We call I the continuous linear application

{

I : H → H , f 7→ I( f )
I( f )[x] =

∫ x
0 f [s]ds
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and A the generator of the C0 semigroup T (t) on H defined, for t ≥ 0, as

(T (t)) f [x] =

{

f [x+ t] i f x+ t ≤ T ∗

f [T ∗] i f x+ t > T ∗ (7)

so that
{

D(A) =
{

f ∈ H2 : f [T ∗] = d
dt

f [T ∗] = 0
}

A( f ) = d
dt

f [·]

In order to introduce some assumptions to guarantee the existence of the solution we

assume that u
(i)
t depends directly on Xt(K), K and St and so we write ut(i)(K,St ,Xt(K))[x]

(since ut(K,St ,Xt(K)) will be an H1(0,T ∗;Rm)-valued process we write ut(K,St ,Xt(K))[x]
to mean the evaluation of ut(K,St ,Xt(K)) at the point4 x ∈ [0,T ∗], so ut(K,St ,Xt(K))[x] ∈
R

m). We write ∂xut(K,St ,Xt(K)) for5 ∂xut(K,St ,Xt(K))[x]. So we can write formally equa-

tion (6) in H as:















































































dXt(K)= AXt(K)dt +

[

I(Xt)(K)

(

1
2
Xt(K)|ut(K,St ,Xt(K))|2+

+ 1
2
〈ut(K,St ,Xt(K)),∂xut(K,St ,Xt(K))〉 I(Xt)(K)+

+2〈ut(K,St ,Xt(K)),∂xut(K,St ,Xt(K))〉−θt(K,St ,Xt(K))∂xu
(1)
t (K,St ,Xt(K))ℓ

)

+

+Xt(K)
(

|ut(K,St ,Xt(K))|2 −θt(K,St ,Xt(K))ut(K,St ,Xt(K))(1)
)

−
−2
〈

θt(K,St ,Xt(K))ℓ+ut(K,St ,Xt(K)) ln
(

K
St

)

,(∂xut(K,St ,Xt(K))) ln
(

K
St

)〉]

dt+

+[2Xt(K)u∗t (K,St ,Xt(K))+2(∂xu∗t (K,St ,Xt(K)))I(Xt)(K)] dW (t)

dSt = θt(K,St ,Xt(K))St dW
(1)

t

X0(x,K) initial condition

(8)

where 〈·, ·〉 is the scalar product in R
m and θt(K,S,X) is for the following function (obtained

is sing the fourth equation of (4)):

θt(K,S,X) =

√

X [0]−
m

∑
j=2

(

u
( j)
t (K,S,X)[0]

)2

ln2

(

K

St

)

−u
(1)
t (K,S,X)[0] ln

(

K

S

)

. (9)

This completes the “informal” formulation of the problem, the rigorous approach (the

one that we develop in the paper) is reversed. We consider a fixed K > 0, so we consider

the family Ot(T,K) for a fixed K and varying T ∈ [t, t +T ∗]. We start studying equation (8,

9) in H and we will introduce the variable ξ and the implied volatility problem only later.

This is a scheme of our approach:

1. We start (Section 1) studying the equations (8, 9). So in Section 1 we will introduce

equation (EQ), that is nothing but a more concise form for (8), without claiming any

connection with the equation (4).

2. We study (Section 2) some properties, existence and uniqueness results for (EQ) and its

approximation (|EQ|ε ).

4 Note that ut(K,St ,Xt(K))[x] depends not only on Xt(K)[x] but on all Xt(K)[·].
5 So, since ut(K,St ,Xt) ∈ H1(0,T ∗) we have that ∂xut(K,St ,Xt(K)) is in L2(0,T ∗). Actually we will give

conditions to ensure that ∂xut(K,St ,Xt(K)) belongs to H1(0,T ∗).
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3. We introduce (Section 3) ξt(T,K) as ξt(T,K) := I(Xt)[T − t] and prove that indeed such

a ξt(T,K) satisfy, as we expect, equation (4). We will use this fact also to prove that both

ξt(T,K) and Xt(T,K) remain positive.

In Section 4 we present two classes of examples that verify the Hypotheses we described in

Section 1 (Hypothesis 11 and 13): in the first is the volvol does not depend on T while in

the second (more interesting) the volvol (that is the general statements is a function of Xt )

depends in fact on ξt in a quite general way. Note that a volvol that depends on Xt through

ξt is exactly what we need to write the equation (4) without the presence of Xt , and this is

exactly the existence result we expected.

1 Formulation of the problem and assumptions

We consider a final time T0. Later we will need to require that T0 ≤ T ∗. So we assume from

now T0 = T ∗.

Consider a probability space (Ω ,F ,P). Let Ft be the P-augmented filtration generated

by an m-dimensional Brownian motion Wt (of components W
(i)

t for i = 1, ..,m) for t ≥ 0. Let

u be a function

{

u : [0,T ∗]×R
+ ×R

+ ×H1(0,T ∗) → H1(0,T ∗;Rm) = (H1(0,T ∗))m

(t,K,S,X) 7→ (ut(K,S,X)(1)[·], ...,ut(K,S,X)(m)[·]).

For (t,K,S,X) ∈ [0,T ∗]×R
+ ×R

+ ×H1(0,T ∗) we define

θ̄t(K,S,X) :=

√

√

√

√

∣

∣

∣

∣

∣

X [0]−
m

∑
j=2

(

u
( j)
t (K,S,X)[0]

)2

ln2

(

K

S

)

∣

∣

∣

∣

∣

−u
(1)
t (K,S,X)[0] ln

(

K

S

)

.

(10)

We assume that

Hypothesis 11 For all i ∈ {1, ..,m}
{

u(i) : [0,T ∗]×R
+ ×R×H1(0,T ∗) → H1(0,T ∗)

u(i) : (t,K,S,X) 7→ ut(K,S,X)

is measurable from
(

([0,T ∗] × R
+ × R × H1),B([0,T ∗] × R

+ × R × H1)
)

into
(

H1,B(H1)
)

where B is the σ -algebra generated by the Borel sets. Moreover we as-

sume that, for all K > 0 there exists a C > 0 such that for all t > 0 and for all (S,X) ∈
R

+ ×H1(0,T ∗) we have

(i)

∣

∣

∣
u

(i)
t (K,S,X)[x]

∣

∣

∣
≤C 1

1+|ln(S)|+|∫ x
0 X(K)[s]ds|+|θ̄t (K,S,X)| for all x ∈ [0,T ∗]

(ii) ∂xu
(i)
t (K,S,X) is in H1(0,T ∗)

(iii) u
(i)
t (K,S,X), ∂xu

(i)
t (K,S,X), u

(1)
t (K,S,X)θ̄t(K,S,X), ∂xu

(1)
t (K,S,X)θ̄t(K,S,X) are lo-

cally Lipschitz (as functions in H(0,T ∗)) in (S,X) ∈ R
+ ×H1 uniformly in t

(iv)

∣

∣

∣
∂xu

(1)
t (K,S,X)

∣

∣

∣
≤ C

1+|θ̄t (K,S,X)| and

∣

∣

∣
∂xu

(1)
t (K,S,X)θ̄t(K,S,X) ln(S)

∣

∣

∣
≤C(1+ |X |)
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Remark 12 Note that we could treat a more general case, using the same arguments, al-

lowing the explicit dependence of u
(i)
t on ω ∈ Ω . In such a case we would require u

(i)
t to be

an adapted process and for all i ∈ {1, ..,m}
{

u(i) : [0,T ∗]×Ω ×R
+ × (R×H1(0,T ∗)) → H1(0,T ∗)

u(i) : (t,ω,K,(S,X)) 7→ ut(K,S,X)(ω)

is measurable from

(

([0,T ∗]×Ω)×R
+ × (R×H1),PT ∗ ×B(R+)×B(R×H1)

)

into

(

H1,B(H1)

)

where B is the σ -algebra generated by the Borel sets and PT ∗ is the

σ -field on ([0,T ∗]×Ω) generated by the sets of the form [s, t]×F with 0 ≤ s < t < T ∗ and

F ∈ Fs. In this setting we have to ask that we have to ask (i) .. (iv) to be satisfied uniformly

in ω ∈ Ω . �

In order to avoid the absolute value in the definition of θ̄ and then came to the original

problem we would like now to impose the following condition (that is implied by (4):

Xt(K)[0]−
m

∑
j=2

(

u
( j)
t (K,St ,Xt)[0]

)2

ln2

(

K

St

)

≥ 0, (11)

but of course such a condition can be imposed only if Xt(K)[0] ≥ 0. We ask the following

(we will see that it is enough to have (11) along the trajectories of the system)

Hypothesis 13

X [0]−
m

∑
j=2

(

u
( j)
t (K,S,X)[0]

)2

ln2

(

K

S

)

≥ 0 ∀S > 0, ∀X ∈ H1(0,T ∗) with X [0] ≥ 0

and

X [0]−
m

∑
j=2

(

u
( j)
t (K,S,X)[0]

)2

ln2

(

K

S

)

= 0 ⇐⇒ X [0] = 0.

We impose that the initial data are strictly positive, this is a realistic assumption from the

point of view of the model, note that in [14] the authors argue (Proposition 2.1) that the

negativity of the square root of the forward implied volatility causes elementary arbitrage

opportunities:

Hypothesis 14 For every K > 0 we choose the initial datum (s0,x0)∈ (R×H1(0,T ∗)) with

s0 > 0 and x0 > 0. This means, since x0 > 0 is in H1 and then it is continuous, that for every

K > 0 there exists a c > 0 such that x0(K)[x] > 0 for all x ∈ [0,T ∗].

We define the functions

F : [0,T ∗]×R
+ × (R×H1) → H1

B : [0,T ∗]×R
+ × (R×H1) → (H1(0,T ∗))m = H1(0,T ∗;Rm)

G : [0,T ∗]×R
+ × (R×H1) → R

L : [0,T ∗]×R
+ × (R×H1) → R

(12)
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as

F(t,K,S,X) = I(X)

(

1
2
X |ut(K,S,X)|2+

+ 1
2
〈ut(K,S,X),∂xut(K,S,X)〉 I(X)+

+2〈ut(K,S,X),∂xut(K,S,X)〉−θt(K,S,X)∂xu
(1)
t (K,S,X)ℓ

)

+

+X
(

|ut(K,S,X)|2 −θt(K,S,X)u
(1)
t (K,S,X)

)

−
−2
〈

θt(K,S,X)ℓ+ut(K,S,X) ln
(

K
S

)

,(∂xut(K,S,X)) ln
(

K
S

)〉

B(t,K,S,X) = 2Xu∗t (K,S,X)+2(∂xu∗t (K,S,X))I(X)

L(t,K,S,X) = X [0]−∑
m
j=2

(

u
( j)
t (K,S,X)[0]

)2

ln2
(

K
S

)

G(t,K,S,X) = u
(1)
t (K,S,X)[0] ln

(

K
S

)

(13)

where θt in the expression for F is defined in (9). Under Hypothesis 11 F , B, G and L are

locally Lipschitz in S,X uniformly in t, moreover, for all K > 0 there exists a M > 0 such

that
{

|F(t,K,S,X)|H1 + |B(t,K,S,X)|(H1)m ≤ M(1+ |X |H1)

G(t,K,S,X) ≤ M
(14)

for all t.

We fix now a K > 0, and avoid to write, from now, the dependence on K.

Using such a notation the (8) that can be rewritten as:

{

dXt = AXt +F(t,St ,Xt)dt +B(t,St ,Xt)dWt , X0 = x0 > 0

dSt =
(

√

L(t,St ,Xt)−G(t,St ,Xt)
)

St dW
(1)

t , S0 = s0 > 0
(EQ)

We call F̄ the function defined changing in the definition of F θt(K,S,X) with θ̄t(K,S,X).
Note that F̄ is locally Lipschitz in S,X uniformly in t and satisfies (14).

Notation 15 We will use the notation etA instead of T (t) defined in (7).

From the general theory (see [6]) we have:

Definition 16 An H1 ×R- valued predictable process (Xt ,St), t ∈ [0,T ∗] is called (mild)

solution of (EQ) if

P

[

∫ T ∗

0
|(Xs,Ss)|H1×R

ds < ∞

]

= 1 (15)

and for an arbitrary t ∈ [0,T ∗] we have

(

Xt

St

)

=

(

etAx0 +
∫ t

0 e(t−s)AF̄(s,Ss,Xs)ds+
∫ t

0 e(t−s)AB(s,Ss,Xs)dWs

s0 +
∫ t

0

(

√

L(s,Ss,Xs)−G(s,Ss,Xs)
)

Ss dW
(1)
s

)

Note that this implies L(s,Ss,Xs) ≥ 0.
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2 Results for (|EQ|ε )

We consider the approximating Xε
t (k) substituting

√

L(t,St ,Xt) in the second equation with
√

|L(t,St ,Xt)|∨ ε:
{

dXε
t = AXε

t + F̄(t,Sε
t ,Xε

t )dt +B(t,Sε
t ,Xε)dWt , Xε

0 = x0 > 0

dSε
t =

(

√

|L(t,St ,X
ε
t )|∨ ε −G(t,Sε

t ,Xε
t )
)

Sε
t dW

(1)
t , S0 = s0

(|EQ|ε )

The definition of solution of the (|EQ|ε ) is analogous to the Definition 16.

Notation 21 We take a cut-off ψ(·) : R → R. In particular we assume that: ψ(·) is C∞,

ψ∣
∣[−1,1]

≡ 1 and that ψ∣
∣(−∞,−2)∪(2,+∞)

≡ 0.

Lemma 22 Fix now ε̄ > 0. Let ε ∈ [0, ε̄]. Suppose that there exists a solution (Xε ,Sε) for

(|EQ|ε ) (that for ε = 0 is (EQ)). Then if we call τN the exit time defined as

τN = inf{t ∈ [0,T ∗] : |Xε
t | > N}6

(and +∞ if the set is void) we have that

lim
N→+∞

P [τN ≤ T ∗] = 0 (16)

and the limit is uniformly in ε ∈ [0, ε̄] and in (Xε ,Sε).

Proof We call

F̄N(t,S,X) := F̄(t,S,X)ψ

( |X |
N

)

BN(t,S,X) := B(t,S,X)ψ

( |X |
N

)

.

We choose N > |X0|, we have

Xε
t∧τN

= et∧τN Ax0 +
∫ t∧τN

0
e(t−s)AF̄N(s,Ss,X

ε
s∧τN

)ds+
∫ t∧τN

0
e(t−s)ABN(s,Ss,X

ε
s∧τN

)dWs

and so, using (14) and Lemma 7.3 [6],

E

[

sup
s∈[0,t]

∣

∣Xε
t∧τN

∣

∣

2

]

≤CT ∗

(

1+E

∫ t

0
|Xε

s∧τN
|2 ds+E

∫ t

0
|Xε

s∧τN
|2 ds

)

where CT ∗ depends on T ∗ and on the initial datum x0 ∈ H1. So, thanks to Gronwall’s lemma

we have

E

[

sup
s∈[0,t]

∣

∣Xε
t∧τN

∣

∣

2

]

≤C

uniformly in N. In particular, since Xε
t is continuous ([6] Theorem 7.4 7 then

sup
0≤t≤τN

|Xε
t |2 = N2 on {τN ≤ T ∗}

and then

P(τN ≤ T ∗) ≤ C

N2

and then we have the claim. �

6 We use |Xt | or |X | for the norm in H1 whereas |X [0]| is the norm in R

7 Once we have fixed Sε , the solution of the (|EQ|ε ) for Xε is unique and it satisfies the properties ensured

by Theorem 7.4 of [6]
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Lemma 23 The equation (|EQ|ε ) has a unique solution (Definition 16) (Xε
t ,Sε

t ). Moreover

(Xε
t ,Sε

t ) belongs to C([0,T ∗];L2(Ω ,F ,P;(H1 ×R)) and has continuous trajectories.

Proof We proceed localizing the problem using τN as defined in Lemma 22 using the same

notations BN , F̄N (and also GN(t,S,X) = G(t,S,X)ψ
(

|X |
N

)

, LN(t,S,X) = L(t,S,X)ψ
(

|X |
N

)

).

The equation







dX
ε,N
t = AX

ε,N
t + F̄N(t,Sε,N

t ,Xε,N
t )dt +BN(t,Sε,N

t ,Xε,N
t )dWt

dS
ε,N
t =

(

√

|LN(t,St ,X
ε,N
t )|∨ ε −GN(t,Sε,N

t ,Xε,N
t )

)

S
ε,N
t dW

(1)
t

(17)

(with initial data X
ε,N,N
0 = x0 > 0 and S0 = s0 > 0) satisfies the hypotheses of Theorem 7.4 of

[6] and then has a unique continuous solution (Xε,N
t ,Sε,N

t ) in C([0,T ∗],L2(Ω ,F ,P;(H1 ×
R))).

If N′ > N we have that BN = BN′ on {|X | ≤ N} (and in the same way F̄N = F̄N′ , GN =

GN′ , LN = LN′ on {|X | ≤ N}) and then X
ε,N
t = X

ε,N′
t on {τN > T ∗} a.s. So we can define

Xε
t = X

ε,N
t on {τN > T ∗}× [0,T ∗]. (18)

We can obtain an estimate as (16) uniformly in N and then ensure that limN→+∞{τN > T ∗}=
Ω . Note that, since Sε

t∧τN
solves

Sε
t∧τN

= s0 +
∫ t∧τN

0
(
√

|LN(t,St ,X
ε
t∧τN

)|∨ ε −GN(s,Xε
t∧τN

,Sε
t∧τN

)Ss dW
(1)
s

then we have

E
[

|Sε
t∧τN

|2
]

≤ s0e2(N+N2)t (19)

where the second term does not depend on ε and then P

[

∫ T ∗
0 |Sε

t |2 dt < +∞

]

= 0 as re-

quired by (15). The uniqueness follows from the uniqueness for the localized problems. The

regularity properties follow from the regularity for the approximating equations. �

Lemma 24 Consider (Xε
t ,Sε

t ) as in Lemma 23, then Xε
t it is a solution of the following

integral equation in C([0,T ∗];L2(Ω ,F ,P;L2(0,T ∗))):

Xε
t = x0 +

∫ t

0
∂xXε

s [x]ds+
∫ t

0
F̄(s,Sε

t ,Xε
s )ds+

∫ t

0
B(s,Sε

t ,Xε
s )dWs (20)

Proof We can assume that F̄ and B are Lipschitz-continuous in Sε ∈ R and Xε ∈ H1 uni-

formly in t and ω (with Lipschitz constant C), otherwise we can localize the problem as in

the proof of Lemma 23.

Consider the Yosida approximation of A given by An = n2(nI −A)−1 −nI. We consider

the solution X
ε,n
t of the equation

dX
ε,n
t = AnX

ε,n
t dt + F̄(t,Sε

t ,Xε,n
t )dt +B(t,Sε

t ,Xε,n
t )dWt , Xε

0 = x0.

Since An is linear continuous, and then Lipschitz, the mild form of such an equation can be

written in two equivalent ways:

X
ε,n
t = eAntx0 +

∫ t

0
e(t−s)An F̄(s,Sε

t ,Xε,n
t )ds+

∫ t

0
e(t−s)An B(s,Sε

t ,Xε,n
t )dWs
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and

X
ε,n
t = x0 +

∫ t

0
AnX

ε,n
t ds+

∫ t

0
F̄(s,Sε

t ,Xε,n
t )ds+

∫ t

0
B(s,Sε

t ,Xε,n
t )dWs. (21)

Moreover (see [6] Proposition 7.5 page 193)

Xε,n n→∞−−−−−−−−−−−−−−−−−−→
C([0,T ∗];L2(Ω ,F ,P;H1(0,T ∗)))

Xε . (22)

In order to prove the claim we need only to check that every term of (21) converges to the

corresponding term of the (20) in C([0,T ∗];L2(Ω ,F ,P;L2(0,T ∗))):

sup
t∈[0,T ∗]

E

[

∣

∣

∣

∣

∫ t

0
B(s,Sε

t ,Xε
s )−B(s,Sε

t ,Xε,n
t )dWs

∣

∣

∣

∣

2

L2

]

≤

sup
t∈[0,T ∗]

E

[

∣

∣

∣

∣

∫ t

0
B(s,Sε

t ,Xε
s )−B(s,Sε

t ,Xε,n
t )dWs

∣

∣

∣

∣

2

H1

]

≤

≤C1E

[

∫ T ∗

0

∣

∣B(s,Sε
t ,Xε

s )−B(s,Sε
t ,Xε,n

t )
∣

∣

2

H1 ds

]

≤

≤C1C2
E

[

∫ T ∗

0

∣

∣Xε
s −X

ε,n
t

∣

∣

2

H1 ds

]

n→∞−−−→ 0 (23)

where the last convergence holds since we have (22). The estimation with the term with F̄

can be done in the same way. Moreover

sup
t∈[0,T ∗]

E

[

∫ t

0

∣

∣∂xXε
s [x]−AnX

ε,n
t [x]

∣

∣

2

L2 ds

]

≤

≤ I1 + I2
de f
= sup

t∈[0,T ∗]
E

[

∫ t

0

∣

∣∂xAnXε
s [x]−AnX

ε,n
t [x]

∣

∣

2

L2 ds

]

+

+ sup
t∈[0,T ∗]

E

[

∫ t

0

∣

∣∂xXε
s [x]−∂xX

ε,n
t [x]

∣

∣

2

L2 ds

]

. (24)

For I2 we have:

I2 ≤ E

[

∫ T ∗

0

∣

∣∂xXε
s [x]−∂xX

ε,n
t [x]

∣

∣

2

L2 ds

]

≤ E

[

∫ T ∗

0

∣

∣Xε
s −X

ε,n
t

∣

∣

2

H1 ds

]

n→∞−−−→ 0,

where we used that
∣

∣∂xXε
s [x]−∂xX

ε,n
t [x]

∣

∣

L2 ≤
∣

∣Xε
s −X

ε,n
t

∣

∣

2

H1 since the derivative is a linear

continuous contractive function from H1 to L2. To treat I1 we have only to observe that

An
L (H1;L2)−−−−−−→

n→∞
and Xε,n C([0,T ∗];L2(Ω ,F ,P;H1))−−−−−−−−−−−−−−→

n→∞
Xε . And so we have the claim. �

We consider now the stopping time

τ̄ε := inf{t ∈ [0,T ∗] : L(t,Sε
t ,Xε

t ) < ε}.

and the process

(X̂ε
t , Ŝε

t ) := χ[0,τ̄ε ](t)(X
ε
t ,Sε

t )
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It solves the integral equation















X̂ε
t = χ[0,τ̄ε ](t)e

tAx0 +χ[0,τ̄ε ](t)
∫ t

0 χ[0,τ̄ε ](s)e
(t−s)AF̄(s, X̂ε

t , Ŝε
t )ds+

+χ[0,τ̄ε ](t)
∫ t

0 χ[0,τ̄ε ](s)e
(t−s)AB(s, X̂ε

t , Ŝε
t )dWs

Sε
t = χ[0,τ̄ε ](t)s0 + χ[0,τ̄ε ](t)

∫ t
0 χ[0,τ̄ε ](s)

(

√

L(s, X̂ε
t , Ŝε

t )−G(s, X̂ε
t , Ŝε

t )

)

Ŝε
t dW

(1)
s

(25)

Given a γ < ε we have that

(X̂ε
t , Ŝε

t ) = (X̂
γ
t , Ŝ

γ
t ) on t ≤ τ̄ε

So, we can define

(Xt ,St) := lim
ε→0

(X̂ε
t , Ŝε

t ) (26)

on t ≤ τ̄ where τ̄ is defined as

τ̄ := sup
ε>0

,

and (Xt ,St) := (0,0) on t > τ̄ . Passing to the limit in (25) we have that (Xt ,St) is a solution

of











Xt = χ[0,τ̄](t)e
tAx0 +χ[0,τ̄](t)

∫ t
0 χ[0,τ̄](s)e

(t−s)AF̄(s,Xt ,St)ds+

+χ[0,τ̄](t)
∫ t

0 χ[0,τ̄](s)e
(t−s)AB(s,Xt ,St)dWs

St = χ[0,τ̄](t)s0 + χ[0,τ̄](t)
∫ t

0 χ[0,τ̄](s)
(

√

L(s,Xt ,St)−G(s,Xt ,St)
)

St dW
(1)
s

(27)

Moreover if we set

τ̄ := sup
ε>0

τ̄ε = inf{t ∈ [0,T ∗] : Xt [0] ≤ 0},

since (X̂ε
t , Ŝε

t ) is a solution of (EQ) until time τ̄ε and (EQ) is locally Lipschitz until time τ̄ ,

(Xt ,St) is the only solution of (EQ) until τ̄ .

From Lemma 24 we obtain the following corollary:

Lemma 25 Xt defined in (26) is a solution of the following integral equation:

Xt = χ[0, τ̄](t)

(

x0 +
∫ t

0
∂xχ[0,τ̄](s)Xs[x]ds+

∫ t

0
χ[0,τ̄](s)F̄(s,Ss,Xs)ds+

+
∫ t

0
χ[0,τ̄](s)B(s,Ss,Xs)dWs

)

(28)

We call Yt the process

Yt = x0 +
∫ t

0
χ[0,τ̄](s)∂xXs[x]ds+

∫ t

0
χ[0,τ̄](s)F̄(s,Ss,Xs)ds+

+
∫ t

0
χ[0,τ̄](s)B(s,Ss,Xs)dWs (29)
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3 The process ξt and its properties

In this section we (re)introduce the process ξt that we used in the introduction as starting

point. We will prove that such a process, here defined integrating Xt , indeed solves the SDE

(4) that appears in [3].

Consider now the real process
(

ξ T
t

)

t∈[0,T ∗] where

ξ T
t =

∫ T−t

0
Yt [x]dx. (30)

If we define
ΦT : [0,T ∗]×L2(0,T ∗) → R

ΦT : (t,φ) 7→ ∫ T−t
0 φ [x]dx.

we have that ξ T
t = ΦT (t,Xt). We want to find a (real) SDE solved by ξ T

t and so we apply

Ito’s formula to ΦT using the fact that Xt satisfies (28). We have to put some attention

because ∂tΦ
T is not defined on all [0,T ∗]×L2(0,T ∗):

Proposition 31 ξ T
t solves the following SDE:



























ξ T
t∧τ̄ =

∫ t
0 χ[0,τ̄](s)

(

ξ T
s

(

(

1+ 1
4
ξ T

s

)

|vs|2 −θsv
(1)
s

))

ds−

−∫ t
0 χ[0,τ̄](s)

(

θs + v
(1)
s ln

(

k
Ss

))2

ds−

−∫ t
0 χ[0,τ̄](s)∑

m
j=2

(

v
( j)
s

)2

ln2
(

k
Ss

)

ds+
∫ t

0 χ[0,τ̄](s)2ξ T
s v∗s dWs

ξ T
0 =

∫ T
0 Y0[x]dx =

∫ T
0 x0[x]dx

(31)

where we called vs = us(k,Ss,Xs)[T − s] and θt is defined in (9) (note that on t ≤ τ̄ we have

that θt = θ̄t ).

Proof We want to apply Ito’s formula to ΦT along Yt using the fact that Yt satisfies integral

equation (29) and then it is in C([0,T ∗];L2(Ω ,F ,P;L2(0,T ∗))). We have that

∂φ ΦT (t,φ) = χ[0,T−t]

and

∂ 2
φ ΦT (t,φ) = 0.

and then they are uniformly continuous on bounded set. More problematic is the derivative

along the time variable. Anyway we can observe that for t ≤ τ̄ we have that Yt = Xt , and for

t ≤ τ̄ Xt is pathwise continuous in H1. So we have that, for t ≤ τ̄

∂tΦ
T (t,Yt) = −Xt [T − t].

∂tΦ
T is not defined on all [0,T ∗]×L2(0,T ∗) (and a fortiori it is not uniformly continuous on

bounded subsets of [0,T ∗]×L2(0,T ∗)), we can anyway observe that what is really needed

in the proof of Ito’s formula (see [6] Theorem 4.17 page 105) is just the convergence

M−1

∑
j=0

ΦT (t j+1,Yt j+1
)−ΦT (t j,Yt j+1

)
♭(π)→0−−−−→

∫ t

0
∂tΦ

T (s,Ys)ds P−a.s. (32)

where “♭(π)→ 0” means that the mesh ♭(π) of the partition π = {0 = t0 < t1 < ... < tM−1 <
tM = t} goes to zero Note that we only need to verify it on t ≤ τ̄ , thanks to the form of



14

equation (31) and to the fact that the derivative w.r.t. the time enters only in the deterministic

integral so (32) can be proved in our case since, for t ≤ τ̄ ,

ΦT (t j+1,Yt j+1
)−ΦT (t j,Yt j+1

) =
∫ T−t j+1

T−t j

−Xt j+1
[x]dx

and, the trajectories of Xt(ω) for t ≤ τ̄ are continuous in H1.

So we can now use Ito formula end we find:

ξ T
t∧τ̄ = ΦT (t,Yt) = ΦT (0,x0)+

∫ t

0
χ[0,τ̄](s)

(

∂tΦ
T (s,Ys)+

〈

∂xΦT (s,Ys),∂xXs[·]
〉

L2

)

ds+

+
∫ t

0
χ[0,τ̄](s)

〈

∂xΦT (s,Ys), F̄(s,Ss,Xs)
〉

L2 ds+

+
∫ t

0
χ[0,τ̄](s)

1

2
Tr[B(s,Ss,Xs)∂

2
x ΦT (s,Ys)B(s,Ss,Xs)]ds+

+
∫ t

0
χ[0,τ̄](s)

〈

∂xΦT (s,Ys),B(s,Ss,Xs)dWs

〉

L2 =

= 0+
∫ t∧τ̄

0

(

−Xs[T − s]+
∫ T−s

0
∂xXs[x]dx

)

ds+

+
∫ t

0
χ[0,τ̄](s)

∫ T−s

0
F̄(s,Ss,Xs)[x]dxds+

∫ t

0
χ[0,τ̄](s)

∫ T−s

0
B(s,Ss,Xs)[x]dxdWs = (33)

using the explicit expression of F̄ and B given by (13)

=
∫ t∧τ̄

0
−Xs[0]ds+

+
∫ t∧τ̄

0

∣

∣

∣

∣

I(Xs)[x]

((

1+
1

4
I(Xs)[x]

)

|us(k,Ss,Xs)[x]|2 −θ
(1)
s u

(1)
s (k,Ss,Xs)[x]

)∣

∣

∣

∣

x=T−s

x=0

ds−

−
∫ t∧τ̄

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

θsℓ+us(k,Ss,Xs)[x] ln

(

k

Ss

)∣

∣

∣

∣

2
∣

∣

∣

∣

∣

x=T−s

x=0

ds+

+
∫ t

0
χ[0,τ̄](s) |2I(Xs)[x]u

∗
s (k,Ss,Xs)[x]|x=T−s

x=0 dWs = (34)

noting that, from (9),

∣

∣

∣
θsℓ+us(k,Ss,Xs)[x] ln

(

k
Ss

)∣

∣

∣

2

x=0
= Ys[0], that for s ≤ τ̄ is equal to

Xs[0], and recalling that Ys = Xs on s ≤ τ̄ we have

=
∫ t

0
χ[0,τ̄](s)ξ

T
s

((

1+
1

4
ξ T

s

)

|vs|2 −θ
(1)
s vs

)

ds−
∫ t

0
χ[0,τ̄](s)

∣

∣

∣

∣

θsℓ+ vs ln

(

k

Ss

)∣

∣

∣

∣

2

ds+

+
∫ t

0
χ[0,τ̄](s)2ξ T

s v∗s dWs (35)

That is the claim. �

Since we obtained at the beginning Xt [x] differentiating (formally) with respect to x the

process t 7→ ξ t+x
t so what we have obtained now it not unexpected but exactly equation (4).



15

Theorem 32 For all T ∈ [0,T ∗], ξ T
t ≥ 0 for all t ≤ τ̄ .

P{τ̄ ≤ T ∗} = 0.

and (St ,Xt) = (St ,Yt), 0 ≤ t ≤ T ∗ is the only solution of (EQ). Moreover it is in

C([0,T ∗];L2(Ω ,F ,P;(H1 ×R)) and has continuous trajectories.

Proof Since ξ T
t∧τ̄ solves the (31) (note that we can use on the right side ξ T

s∧τ̄ instead of ξ T
s

without any difference) we can write it as

ξ T
t∧τ̄ = eLT

t f (T,k)− eLL
t

∫ t∧τ̄

0
e−LT

s

∣

∣

∣

∣

θsℓ+ vs ln

(

k

Ss

)∣

∣

∣

∣

2

ds

where

LT
t = Lt(T,K) =

∫ t

0
χ[0,τ̄](s)2v∗s dWs −

∫ t

0
χ[0,τ̄](s)

((

1− 1

4
ξ T

s∧τ̄

)

|vs|2 +θsv
(1)
s

)

ds.

Since ξ τ̄
τ̄ = 0 we have

f (τ̄,k) =
∫ τ̄

0
e−Lτ̄

s

∣

∣

∣

∣

θsℓ+ vs ln

(

k

Ss

)∣

∣

∣

∣

2

ds = f (τ̄,k) =

=
∫ t∧τ̄

0
e−Lτ̄

s

∣

∣

∣

∣

θsℓ+ vs ln

(

k

Ss

)∣

∣

∣

∣

2

ds+
∫ τ̄

t∧τ̄
e−Lτ̄

s

∣

∣

∣

∣

θsℓ+ vs ln

(

k

Ss

)∣

∣

∣

∣

2

ds (36)

Hence

ξ τ̄
t∧τ̄ = eLτ̄

t

∫ τ̄

t∧τ̄
e−Lτ̄

s

∣

∣

∣

∣

θsℓ+ vs ln

(

k

Ss

)∣

∣

∣

∣

2

ds ≥ 0. (37)

In particular

∫ τ̄

0
x0[x]dx = ξ τ̄

0 =
∫ τ̄

0
e−Lτ̄

s

∣

∣

∣

∣

θsℓ+ vs ln

(

k

Ss

)∣

∣

∣

∣

2

ds =
∫ τ̄

0
e−Lτ̄

s Xs[0]ds = (38)

We take now h ∈ (0,1), as before we can obtain

∫ (1−h)τ̄

0
x0[x]dx = ξ

(1−h)τ̄
0 =

∫ (1−h)τ̄

0
e−L

(1−h)τ̄
s Xs[0]ds (39)

From (38) and (39) we obtain

∫ τ̄
(1−h)τ̄ x0[x]dx

h
=

∫ τ̄
(1−h)τ̄ e−Lτ̄

s Xs[0]ds

h
+

∫ (1−h)τ̄
0

(

e−Lτ̄
s − e−L

(1−h)τ̄
s

)

Xs[0]ds

h
.

Now assume by contradiction that there exist a subset Ω̄ ⊆ Ω with P(Ω̄) = c > 0 such that

τ̄(ω) ≤ T ∗ for ω ∈ Ω̄ . Observe also that, since x0 > 0 and it is continuous (it is in H1), we

have x0 ≥ c2 > 0. From the previous equation we obtain:

∫

Ω̄

∣

∣

∣

∫ τ̄
(1−h)τ̄ x0[x]dx

∣

∣

∣
dP(ω)

h
≤
∫

Ω̄

∣

∣

∣

∫ τ̄
(1−h)τ̄ e−Lτ̄

s Xs[0]ds

∣

∣

∣
dP(ω)

h
+

+

∫

Ω̄

∣

∣

∣

∫ (1−h)τ̄
0

(

e−Lτ̄
s − e−L

(1−h)τ̄
s

)

Xs[0]ds

∣

∣

∣
dP(ω)

h
. (40)
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Passing to the liminf in h → 0 the left side is greater than c2c
∫

Ω̄ |τ̄|dP(ω) > 0 while the

right side goes to zero.

So we can see that χ[0,τ̄](t) in equation (27) is indeed always 1 for t ∈ [0,T ∗] and the

process Xt solves the integral equation
{

Xt = etAx0 +
∫ t

0 e(t−s)AF̄(s,Xt ,St)ds+
∫ t

0 e(t−s)AB(s,Xt ,St)dWs

St = s0 +
∫ t

0

(

√

L(s,Xt ,St)−G(s,Xt ,St)
)

St dW
(1)
s .

Noting that for t ≤ T ∗ we have t ≤ τ̄ and then F = F̄ we have that (Xt ,St) is a solution of

(EQ) on [0,T ∗]. The regularity properties follow from the ones of (Xε
t ,Sε

t ). �

Remark 33 The argument used for the positivity of ξt is the same used in [3].

Proposition 34 ξ T
t is positive and, on [0,T ∗], we have:







































dSt = Stθt dW
(1)

t

dξ T
t = ξ T

t

(

(

1+ 1
4
ξ T

t

)

|vt |2 −θtv
(1)
t

)

dt −
(

θt + v
(1)
t ln

(

k
St

))2

−

−∑
m
j=2

(

v
( j)
t

)2

ln2
(

k
St

)

+2ξ T
t v∗t dWt

ξ T
0 =

∫ T
0 X0[x]dx

∂T ξ T
t

∣

∣

T=t
=
(

θt + v
(1)
t ln

(

k
St

))2

+∑
m
j=2

(

v
( j)
t

)2

ln2
(

k
St

)

(41)

Proof This is just a corollary of Theorem 32, the result follows from (31) using that Xt =
Yt and that for T ∗ ≤ τ̄ . The feedback equation is easily seen to be satisfied thanks to the

definition of θt . �

Proposition 35 St is a strictly positive process, moreover, for all x ∈ [0,T ∗], we have that

Xt [x] ≥ 0 P−a.s.

Proof The statement for St is easy since it can be written as

dSt

St

= θt dW
(1)

t .

The assertion for Xt follows from the same arguments we used in Proposition 31 and in

Theorem 32. Indeed for T1 < T2 ≤ T ∗ we can define ξ T1,T2
t = ΦT1,T2(t,Xt) where

ΦT1,T2 : [0,T2 −T1]×L2(0,T ∗) → R

ΦT1,T2 : (t,φ) 7→ ∫ T2−t
T1

Xt [x]dx.

It can be seen using the same arguments we used in Proposition 31 that ξ T1,T2
t solves the

equation


















dξ T1,T2
t = ξ T1,T2

t

((

1+ 1
4
ξ T1,T2

t

)

|vt |2 −θtv
(1)
t

)

dt −
(

θt + v
(1)
t ln

(

k
St

))2

−

−∑
m
j=2

(

v
( j)
t

)2

ln2
(

k
St

)

+2ξ T1,T2
t v∗t dWt

ξ T1,T2
0 =

∫ T2
T1

X0[x]dx

(42)

Arguing as in Theorem 32 ξ T1,T2
t can be proved to be always positive in the interval t ∈

[0,T2 −T1] and then, step-by-step, to be always positive in the interval t ∈ [0,T ∗] and so we

have that, for all 0 ≤ T1 ≤ T2 ≤ T ∗ all the integrals
∫ T2

T1
Xt [x]dx are positive and then, since

Xt ∈ H1, we have the claim. �
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4 Two examples

We show now two possible examples in which the Hypotheses 11, 13 are satisfied. In both

we take m = 2 (similar examples with m > 2 can be done). In both the cases u(i) depend on ω
only through the variables S and X . Note that in both cases we choose a simple “decoupled”

form for u(i) given by

u
(i)
t (k,S,X)(ω)[x] = ϕ(i) (X)ψ(i)

(

k

S

)

η(i)(|X [0]|).

4.1 First example: the volvol does not depend on x

In this first example we assume ut(k,S,X) : x 7→ ut(k,S,X)[x] is a constant function. This

means that ∂xut ≡ 0 and we have not problems in satisfying points (ii) (iv) (and part of (iii))
of Hypothesis 11.

We take

u
(2)
t (k,S,X)(ω)[x] = ϕ(2)

(

sup
r∈[0,T ∗]

|X [r]|
)

ψ(2)
(

k
S

)

ln
(

k
S

) η(2)(X [0])

for all x ∈ [0,T ∗] and ω ∈ Ω . We assume that

{

η(2) : R
+ → R

η(2) : σ 7→ η(2)(σ)

is locally Lipschitz, bounded, η(2)(0) = 0, and

η(2)(σ) <
√

σ for all σ > 0. (43)

Moreover we assume that
{

ψ(2) : R
+ → R

ψ(2) : σ 7→ ψ(2)(σ)

is bounded and continuous and σ 7→ ψ(2)(σ)
ln(σ) is bounded and locally Lipschitz continuous.

ϕ(2) is continuous, locally Lipschitz continuous and σ 7→ ϕ(2)(σ)(1+σ) is bounded. More-

over

ϕ(2)(σ) ≤ 1 ψ(2)(σ) ≤ 1 (44)

We take

u
(1)
t (k,S,X)(ω)[x] = ϕ(1)

(

sup
r∈[0,T ∗]

|X [r]|
)

ψ(1)
(

k
S

)

ln
(

k
S

) η(1)(X [0])

for all x ∈ [0,T ∗] and ω ∈ Ω . ϕ(1) is locally Lipschitz σ 7→ ϕ(2)(σ)(1 + σ) is bounded,

ψ(1) is bounded and continuous and σ 7→ ψ(1)(σ)
ln(σ) is bounded and locally Lipschitz contin-

uous, η(1) is locally Lipschitz continuous and bounded, σ 7→ η(1)(σ)
√

σ locally Lipschitz

continuous.

So if we define

ũ
(2)
t (k,S,X)

de f
= u

(2)
t (k,S,X) ln

(

k

S

)

= ϕ(2)

(

sup
r∈[0,T ∗]

|X [r]|
)

ψ(2)

(

k

S

)

η(2)(X [0])
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we can note that (43) and (44) gives

X [0]−
(

ũ
(2)
t (k,S,X)

)2

≥ 0

and it is equal to zero if and only if X [0] = 0; so Hypothesis 13 is satisfied.

Part (i) of Hypothesis 11 follows by the boundedness of σ 7→ ψ(i)(σ), of σ 7→
ϕ(i)(σ)(1+σ) and of σ 7→ η(i).

Local Lipschitz continuity properties required in (iii) of Hypothesis 11 follow by the

local Lipschitz continuity properties of the functions considered.

4.2 Second example: u
(i)
t depends on ξ

We assume now that ut(S,X)[x] depends on X through X [0] and
∫ x

0 X [r]dr = ξ , moreover

ut(S,X)[x] depends on x through
∫ x

0 X [r]dr = ξ , note that it is the quantity considered in the

formulation of [3] and is the variable interesting from a financial point of view. Note that for

technical reasons (to satisfy point (iv) of Hypothesis 11 we have to introduce a cut-off γN in

other example. γN is a C∞ function R → R
+ equal to 1 in the interval [−N,N] and equal to

0 in [2N,+∞) and (−∞,−2N].

We assume

u
(2)
t (k,S,X)(ω)[x] = ϕ(2)

(

∫ x

0
X [r]dr

)

ψ(2)
(

k
S

)

ln
(

k
S

) η(2)(X [0])γN(|X |H1)

for all x ∈ [0,T ∗] and ω ∈Ω . We assume first that ϕ(2) : R→R is C2, bounded with first and

second derivative bounded and we observe that the derivative d
dx

[

ϕ(2) (
∫ x

0 f [r]dr)
]

define a

locally Lipschitz continuous function on H1:

Lemma 41 Suppose ϕ(2) : R
+ → R is C2, bounded with first and second derivative

bounded: |ϕ(2)| ≤ M, |ϕ(2)
x | ≤ M, |ϕ(2)

xx | ≤ M. Then

(a) the function
{

Γϕ(2) : H1(0,T ∗;R) → H1(0,T ∗;R)

Γϕ(2) : f [·] 7→
(

x 7→ ϕ(2) (
∫ x

0 f [r]dr)
)

is locally Lipschitz continuous.

(b) the function
{

Ψϕ(2) : H1(0,T ∗;R) → H1(0,T ∗;R)

Ψϕ(2) : f [·] 7→
(

x 7→ ϕ
(2)
x (

∫ x
0 f [r]dr) f [x]

)

is locally Lipschitz continuous.

Proof We prove only the point (b) because (a) is simpler and can be treated with the same

arguments.
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We take f [·] and g[·] in H1(0,T ∗;R):

∣

∣

∣
Ψϕ(2)( f [·])−Ψϕ(2)(g[·])

∣

∣

∣

H1
=

=
∣

∣

∣
Ψϕ(2)( f [·])−Ψϕ(2)(g[·])

∣

∣

∣

L2
+
∣

∣

∣
∂x

(

Ψϕ(2)( f [·])
)

−∂x

(

Ψϕ(2)(g[·])
)∣

∣

∣

L2
=

= P1 +P2
de f
=

∣

∣

∣

∣

(

ϕ
(2)
x

(

∫ ·

0
f [r]dr

)

f [·]−ϕ
(2)
x

(

∫ ·

0
g[r]dr

)

g[·]
)∣

∣

∣

∣

L2

+

+

∣

∣

∣

∣

ϕ
(2)
xx

(

∫ ·

0
f [r]dr

)

f 2[·]+ϕ
(2)
x

(

∫ ·

0
f [r]dr

)

fx[·]−

−ϕ
(2)
xx

(

∫ ·

0
g[r]dr

)

g2[·]−ϕ
(2)
x

(

∫ ·

0
g[r]dr

)

gx[·]
∣

∣

∣

∣

L2

. (45)

We consider first P1:

P1 ≤ P1
1 +P2

1

de f
=

∣

∣

∣

∣

ϕ
(2)
x

(

∫ ·

0
f [r]dr

)

( f [·]−g[·])
∣

∣

∣

∣

L2

+

+

∣

∣

∣

∣

(

ϕ
(2)
x

(

∫ ·

0
f [r]dr

)

−ϕ
(2)
x

(

∫ ·

0
g[r]dr

))

g[·]
∣

∣

∣

∣

L2

. (46)

For P1
1 we have simply P1

1 ≤ M| f − g|L2 ≤ M| f − g|H1 . For P2
1 note first that there exist a

constant C such that for every h in a neighborhood (in H1) of g we have |h|L∞ ≤C, so locally

we have

P2
1 ≤ MC

∫ T ∗

0

(

∫ x

0
f [r]−g[r]dr

)2

dx ≤ MC

∫ T ∗

0

(

∫ T ∗

0
f [r]−g[r]dr

)2

dx ≤

≤ CM

T ∗

∫ T ∗

0

∫ T ∗

0
( f [r]−g[r])2 dr dx ≤CM| f −g|L2 ≤CM| f −g|H1 . (47)

We estimate now P2:

P2 = P1
2 +P2

2 +P3
2 +P4

2 +P5
2

de f
=

∣

∣

∣

∣

(

ϕ
(2)
xx

(

∫ ·

0
f [r]dr

)

−ϕ
(2)
xx

(

∫ ·

0
g[r]dr

))

f 2[·]
∣

∣

∣

∣

L2

+

+

∣

∣

∣

∣

( f [·]−g[·]) f [·]ϕ(2)
xx

(

∫ ·

0
g[r]dr

)∣

∣

∣

∣

L2

+

∣

∣

∣

∣

( f [·]−g[·])g[·]ϕ(2)
xx

(

∫ ·

0
g[r]dr

)∣

∣

∣

∣

L2

+

+

∣

∣

∣

∣

(

ϕ
(2)
x

(

∫ ·

0
f [r]dr

)

−ϕ
(2)
x

(

∫ ·

0
g[r]dr

))

fx[·]
∣

∣

∣

∣

L2

+

∣

∣

∣

∣

ϕ
(2)
x

(

∫ ·

0
g[r]dr

)

( fx[·]−gx[·])
∣

∣

∣

∣

L2

.

(48)

Recalling that for h in a neighborhood (in H1) of g and of f |h|L∞ ≤ C we can estimate P2
2

and P3
2 as P1

1 , P1
2 and P4

2 can be treated as P2
1 . Eventually P5

2 ≤ M| fx −gx|L2 ≤ M| f −g|H1 .

�

We assume that: ϕ(2) is C2 with bounded first and second derivative, |ϕ(2)| ≤ 1 and σ 7→
ϕ(2)(σ)(1+ |σ |) is bounded. Moreover we take ψ(2) bounded and continuous with |ψ(2)| ≤
1 such that

ψ(2)(·)
ln(·) is bounded and locally Lipschitz continuous. η(2) is locally Lipschitz,

with σ 7→ η(2)(σ)(1+
√

|σ |) bounded and locally Lipschitz continuous, η(2)(0) = 0, and

η(2)(σ) <
√

σ for all σ > 0. (49)
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We assume that u
(1)
t has the following form:

u
(1)
t (k,S,X)(ω)[x] = ϕ(1)

(

∫ x

0
X [r]dr

)

ψ(1)
(

k
S

)

ln
(

k
S

) η(1)(X [0])γN(|X |H1)

where: ϕ(1) is a C2 function with bounded first and second derivatives, σ 7→ ϕ(1)(σ)(1+σ)

is bounded; ψ(1) is bounded and continuous and σ 7→ ψ(1)(σ)
ln(σ) is bounded and locally Lips-

chitz continuous, η(1) is locally Lipschitz continuous and bounded with σ 7→ ϕ(1)(σ)(1 +
√

|σ |) bounded and locally Lipschitz continuous.

We claim that the Hypotheses 11 and 13 are satisfied. Hypothesis 13 follows by (49) and

the fact that ϕ(2),ψ(2) ≤ 1. Note that thank to the boundedness of u
(1)
t and u

(2)
t we have that

θ ≤
√

|X [0]|+M for some constant M. So the first of (iv) of Hypothesis 11 follows by the

boundedness of x 7→ ϕ(i)(x)(1+
√

|x|) and from the use of the cut-off γN ; (i) follows by the

boundedness of x 7→ ϕ(i)(x)(1 +
√

|x|), x 7→ ϕ(i)(x)(1 + |x|) and x 7→ ψ(i)(x) and (ii) from

Lemma 41 that gives also the local Lipschitz continuity property of ∂xu required in (iii).
The other local Lipschitz continuity property of (iii) can be proved using the local Lipschitz

continuity properties of ψ(i) , ϕ(i) and η(i) and by Lemma 41.

5 Conclusions and future work

We have proven an existence-and-uniqueness result for the implied volatility model pre-

sented in [3]. The approach we used was based on the rewriting the problem in a suitable

Hilbert space formulation. We dealt with the one-parameter family of European call option

Ot(K,T ) for a fixed strike price K > 0.

A natural object for future work is studying the case of the whole family Ot(K,T ) vary-

ing both the strike and the expiration time. As we have already observed in the introduction

the feedback condition imply the unpleasant equation (9) in which θt appears as a function

of K. θt is the process that drives the evolution of the stock price and of course, if we want

to deal with the general case of the complete family Ot(K,T ) varying both T and K, it has

be the same for every K. So we obtain the following family of compatibility conditions: for

all the strikes K1 > 0 and K2 > 0

θt(K1,St ,Xt(K1)) = θt(K2,St ,Xt(K2))

that is

√

Xt(K1)[0]−
m

∑
j=2

(

u
( j)
t (K1,St ,Xt(K1))[0]

)2

ln2

(

K1

St

)

−u
(1)
t (K1,St ,Xt(K1))[0] ln

(

K1

St

)

=

√

Xt(K2)[0]−
m

∑
j=2

(

u
( j)
t (K1,St ,Xt(K2))[0]

)2

ln2

(

K1

St

)

−u
(1)
t (K1,St ,Xt(K2))[0] ln

(

K1

St

)

.

(50)

For the difficulties in trating the multi-strike case see [15].
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