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1 Introduction

Various types of indices are widely used in real world applications. Some disciplines

where the use of indices is widespread are index numbers (e.g., Allen (1975)), sta-

tistical quality control (e.g., Kotz and Lovelace (1998), Perakis (2002)), accounting

(e.g., Wild et al. (2000)) and sample surveys (e.g., Bnerjee et al. (1999)). An inter-

esting discussion of the historical background and the present situation on the use of

statistical indicators in various fields of applications is provided by De Vries (2001).

Recently, Maravelakis et al. (2003) developed some indices, which are similar in

nature with the index suggested by Perakis and Xekalaki (2002) that have applications

to statistical process control. The indices introduced by Maravelakis et al. (2003) can

be used to measure the degree of concentration on the “large” or “small” values of a

variable in ordinal scale. In that paper, the use of these indices in sample surveys is

considered, where often one is faced with questions whose answers have a somewhat

natural ordering. A common example is a question whose possible answers are “Very

Good”, “Good”, “Moderate”, “Bad” and “Very Bad”. To our knowledge no other

authors has dealt with such indices.

Different features of such types of data can be measured through various other

indices such as Cohen’s (1960) Kappa and its modifications (see e.g., Bnerjee et al.

(1999) and Doner (1999)) and the measure of nominal-ordinal association proposed

by Agresti (1981) and Piccarreta (2001).

In this paper, the indices suggested by Maravelakis et al. (2003) are generalised
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so as to measure the observed concentration on the “small” or “large” values more

objectively. Specifically, the indices proposed here, ascribe different weights to each

value of the variable in question according to its rank. These indices, as those sug-

gested by Maravelakis et al. (2003), can be used in connection with several types of

ordinal data, as explained in Section 7. Nevertheless, in the sequel we focus on their

use in sample surveys.

Section 2, describes the indices defined by Maravelakis et al. (2003) and gives the

rationale that led to the definition of the indices proposed in this paper. In the third

section, we introduce the new indices and investigate their basic properties. Section

4 is devoted to the derivation of the variances of their estimators. The construction

of confidence intervals for their actual values, using three alternative bootstrap tech-

niques, is discussed in Section 5. The performance of the three methods is tested

through simulation. An illustrative example based on real data that clarifies their

estimation is given in Section 6. Finally, some concluding remarks are provided in

Section 7.

2 Motivation

Consider a discrete valued variable that takes a finite number of values from 1 to k,

or a continuous variable with values grouped in k classes. Suppose that these k values

or classes have a natural ordering starting from the “best” (value 1) to the “worst”

(value k) and exhibit an inherent symmetry, i.e. the number of values characterised

as “positive” coincides with that of the “negative” ones. Thus, the first [k/2] values
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have a “positive” interpretation whereas the last [k/2]have a “negative” one. If the

value of k is odd, the ([k/2] + 1)st value does not belong to any of these two categories

and in the remaining of this paper is termed “neutral”.

In this paper, we consider the case where the variable under investigation consists

of the answers to a question in a study which asks a person to choose one out of

k possible categories. However, the analysis can be modified readily for any other

variable with the above properties.

Let πi (pi), i = 1, 2, ..., k denote the true (observed) proportion of answers for each

of the k categories, where π1 (p1) refers to the “best” available answer, and πk (pk)

to the “worst” one. Obviously, the “neutral” answer, if such an answer exists (i.e.

if k is odd), is located at the point [k/2] + 1. We should remark that among the k

possible answers we include the “neutral” answer (if it exists), but we do not take

into consideration answers of the type “No opinion/No answer”. If such a type of

answer exists, we should recalculate the observed proportions excluding this answer

and we proceed using the theory developed in the sequel.

In Maravelakis et al. (2003) three alternative indices were defined for the as-

sessment of the degree of concentration on “positive” answers. Index I1 was defined

as

I1 =

P[k/2]
i=1 πi
π0

,

where π0 = [k/2] · (1/k).
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Index I2, when k is odd, is given by

I2 =

P[k/2]
i=1 πiPk

i=[k/2]+2 πi
,

whereas, when k is even, it becomes

I2 =

P[k/2]
i=1 πiPk

i=[k/2]+1 πi
.

Finally, in situations where k is odd, I3 is defined as

I3 =

P[k/2]+1
i=1 πiPk
i=[k/2]+1 πi

.

The actual values of these indices can be estimated by bI1, bI2, bI3, which are defined

by the above formulae by substituting pi for πi, i = 1, ..., k.

A drawback of these indices is that they give equal importance to all categories.

This fact may cause some vagueness in the results since fixed sums of “positive”

or “negative” answers lead to the same values of the indices considered, without

taking into account how these sums are composed. This statement is clarified through

a simple artificial example given below. Suppose that the obtained proportions of

answers in two questions are as given in Table 1:

(TABLE 1)

The resulting estimates of the indices for both questions are: bI1 = 2, bI2 = 16 and

bI3 = 4.75, even though there exist substantial differences in the proportions of the

“positive” categories. Actually, in the first case the “positive” answers are mainly

comprised of the answer “Good”, while in the second case of the answer “Very Good”.
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Thus, one would expect larger index values for the second question since, despite the

fact that the sum of the proportions of the two “positive” categories coincides with the

corresponding sum of question 1, its much larger proportion in the “best” category

(i.e. “Very Good”) provides evidence of a stronger tendency of the respondents to

select the “positive” answers. The source of this deficiency of I1, I2 and I3 is related

to the fact that they assign common weights (equal to unity) to all the components of

the “positive” or “negative” categories and hence their values do not reflect changes

in the values of each component when the sums of “positive” and “negative” answers

are fixed.

3 The New Indices

Our purpose is to define new indices in order to overcome the problem of equal weights

for all the possible answers. First, we introduce the methodology of computing the

appropriate weights and afterwards we propose the new indices.

3.1 The Weights

Let

wj, j = 1, ..., [k/2]

denote the weight of the jth category of the “positive” (“negative”) answers. The

value j = 1 corresponds to the “best positive” and the “worst negative” answer and

j = [k/2] corresponds to the “worst positive” and the “best negative” answer. An

appropriate set of weights must satisfy the following conditions:
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1.
P[k/2]

j=1 wj = [k/2]

2. If the weight of the [k/2] category is equal to a positive constant c, then the

weight of the jth category is defined as ([k/2]− j + 1) c. Hence, the weights for

the categories 1 through [k/2] are: [k/2] c, ([k/2]− 1) c, ..., c. Obviously, these

weights satisfy the property

w1 − w2 = w2 − w3 = ... = w[k/2]−1 − w[k/2] = c

and assure that w1 ≥ w2 ≥ ... ≥ w[k/2].

The first condition is imposed so as to assure the comparability of the values of

the new indices to those of the indices proposed by Maravelakis et al. (2003). This

arises from the fact that the sum of weights in both cases equals [k/2]. The second

condition ensures that the difference between the weights that correspond to any pair

of equidistant categories is fixed.By this definition the weights reflect the strength

of (positive or negative) views as expressed by the responses. Responses reflecting

extreme situations should naturally carry more weight. The more “distant” from the

“neutral” a category is, the greater its influence should be on the overall evaluation

of the situation based on the totality of responses. This is indeed achieved by the

suggested weights.

These conditions lead to the following system of [k/2]+1 equations with unknowns

w1, w2, ..., w[k/2] and c

A × w = c

([k/2]+1)×[k/2] [k/2]×1 ([k/2]+1)×1

, (1)
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where

A =




1 −1 0 · · · 0 0 0

0 1 −1 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · 0 1 −1

0 0 0 · · · 0 0 1

1 1 1 · · · 1 1 1




,

w =

·
w1 w2 · · · w[k/2]

¸|
and c =

·
c c · · · c [k/2]

¸|
.

The system of equations in (1) has a unique solution given by

wj = 2

µ
[k/2]− j + 1
[k/2] + 1

¶
, j = 1, ..., [k/2] (2)

and

c = w[k/2] =
2

[k/2] + 1
.

For example, if k = 7, the weights from the “best” or the “worst” category to the

closest to the “neutral” category are 6/4, 4/4 and 2/4, respectively. In the sequel,

some generalisations of the indices I1, I2 and I3 are considered based on the weights

defined in (2).

3.2 The Index I∗1

Taking advantage of the weights defined in (2), the index I1 can be generalised to the

form

I∗1 =

P[k/2]
i=1 wiπi
π0

.
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The values that I∗1 can take are in the interval [0, w1/π0]. The index takes a value close

to 0 when only a few of the given answers belong to the [k/2] “positive” categories.

On the contrary, values of I∗1 proximal to w1/π0, indicate that the respondents have

a tendency to select the “positive” categories and, more specifically, the “best” of

them. For example, in the case k = 5, the index I∗1 lies within the interval [0, 10/3].

Obviously, I∗1 takes finite positive values. In addition, it is easy to compute confi-

dence intervals for this index, not only via bootstrap, but also by using some methods

for simultaneous confidence intervals for multinomial proportions (see Section 5). A

drawback of this index is that it takes no account of the “negative” and “neutral”

answers, thus ignoring the information provided by them.

The relationship between I∗1 and I1 is determined through the sign of the quantity

r1 =
P[k/2]

i=1 πi (1− wi). Specifically, if r1 is positive (negative), then I∗1 < I1 (I∗1 > I1).

Finally, I∗1 = I1 if r1 = 0.

3.3 The Index I∗2

A generalisation of the index I2 can be obtained by

I∗2 =

P[k/2]
i=1 wiπiPk

i=[k/2]+2wk−i+1πi
,

assuming that k is odd.If k is even, I∗2 is defined as

I∗2 =

P[k/2]
i=1 wiπiPk

i=[k/2]+1wk−i+1πi
.

Index I∗2 takes values between 0 and infinity. When none of the respondents have

chosen any of the [k/2] “positive” answers, I∗2 takes the value 0. On the other hand,
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the value of the index cannot be computed (it becomes infinite) when none of the

respondents has selected any of the [k/2] “negative” answers. It should be noted that,

although this is an extreme case, it is a disadvantage for the index. Another drawback

of I∗2 is that it excludes the “neutral” category. Furthermore, a difficulty with the use

of this index is the fact that construction of confidence intervals is not possible without

resorting to the method of bootstrap, since it requires knowledge of the distribution of

the ratio of two weighted sums of multinomial proportions (see Section 5). However,

I∗2 is more informative than I
∗
1 because it takes into account “negative” answers and, at

the same time, its calculation is fairly easy. The mathematical formulation describing

the relationship between I∗1 and I
∗
2 is established in the sequel.

Let r2 =
³Pk

i=[k/2]+2wk−i+1πi
´
/π0. Then I

∗
1 < I

∗
2 , provided that r2 < 1. On the

other hand, in the case where r2 > 1, it can be seen that I
∗
1 > I

∗
2 . Finally, the two

indices take the same value if r2 = 1. These relationships hold when k is odd and can

be easily modified for even values of k.

3.4 The Index I∗3

The index I∗3 , defined subsequently, can be used in situations where the total number

of answers is odd. In this case, since the “neutral” category is involved in the compu-

tation, we have to assign a weight for it. In particular, the appropriate weights arise

from (2) by substituting the value [k/2] + 1 for [k/2], i.e.

w
0

j = 2

µ
[k/2]− j + 2
[k/2] + 2

¶
, j = 1, ..., [k/2] + 1.
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Therefore, the new index is defined as

I∗3 =

P[k/2]+1
i=1 w

0

iπiPk
i=[k/2]+1w

0

k−i+1πi
.

Index I∗3 takes values that lie between 0 and infinity. The value 0 arises when all of the

respondents have opted for a “negative” answer. On the other hand, I∗3 approaches

infinity as the number of “positive” respondents increases. The fact that its value may

tend to infinity is a drawback. However, it should be noted that this is not a probable

scenario. Another disadvantage of I∗3 is that it is difficult to obtain confidence limits

for its true value analytically. This problem can be overcome by using the bootstrap

method (see Section 5). Index I∗3 surpasses a drawback of the indices I
∗
1 and I

∗
2 since

it takes into account the “neutral” category.

3.5 Estimation

The actual values of the indices I∗1 , I
∗
2 , I

∗
3 can be estimated by

bI∗1 =
P[k/2]

i=1 wipi
π0

,

bI∗2 =
P[k/2]

i=1 wipiPk
i=[k/2]+2wk−i+1pi

, when k is odd,

bI∗2 =
P[k/2]

i=1 wipiPk
i=[k/2]+1wk−i+1pi

, when k is even,

and

bI∗3 =
P[k/2]+1

i=1 w
0

ipiPk
i=[k/2]+1w

0

k−i+1pi
,

respectively. Obviously, these estimators arise by substituting pi for πi.
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3.6 An Example

Let us now reconsider the example of Section 2 so as to clarify the estimation of the

new indices and illustrate their superiority over I1, I2 and I3. In the first question,

the estimates of the new indices are:

bI∗1 =
(4/3)0.02 + (2/3)0.78

0.4
= 1.3667,

bI∗2 =
(4/3)0.02 + (2/3)0.78

(4/3)0.03 + (2/3)0.02
= 10.25

and

bI∗3 =
(6/4)0.02 + (4/4)0.78 + (2/4)0.15

(6/4)0.03 + (4/4)0.02 + (2/4)0.15
= 6.3214,

respectively. The corresponding values for the second question are

bI∗1 =
(4/3)0.78 + (2/3)0.02

0.4
= 2.6333,

bI∗2 =
(4/3)0.78 + (2/3)0.02

(4/3)0.03 + (2/3)0.02
= 19.75,

bI∗3 =
(6/4)0.78 + (4/4)0.02 + (2/4)0.15

(6/4)0.03 + (4/4)0.02 + (2/4)0.15
= 9.0353

and reflect the stronger tendency of the respondents to select the “positive” answers

in the second question.

4 The Variances of the Estimators

In this section, the variances of the estimators of the three indices are assessed. For

all the indices the method of bootstrap is implemented. Especially for bI∗1 , a formula

for finding the exact value of its variance is derived.
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In the case of the index I∗1 , the parametric calculation is as follows.

Let p =

·
p1 p2 ... pk

¸|
denote the vector of observed proportions of the k

answers and π =

·
π1 π2 ... πk

¸|
represent the corresponding true proportions.

The unrestricted unbiased maximum likelihood estimator of π is given by p (see e.g.,

May and Johnson (1997)) and the covariance matrix of p is

Σ =
1

N




π1(1− π1) −π1π2 ... −π1πk

−π1π2 π2(1− π2) ... −π2πk
...

...
. . .

...

−π1πk −π2πk ... πk(1− πk)




,

where N is the number of available answers. The unrestricted maximum likelihood

estimator of Σ is computed by replacing πi with pi and is denoted by S. Then,

V ar(bI∗1 ) = V ar(
w|p∗

π0
) =

1

π20
w|V ar(p∗)w =

1

π20
w|Σ∗w, (3)

where Σ∗ is a partition of Σ containing the first [k/2] rows and columns of Σ and

p∗=

·
p1 p2 ... p[k/2]

¸|
. For instance, when k = 7, the expression given in (3)

simplifies to

V ar(bI∗1 ) = −
49

36N
(−9π1 + 9π21 + 12π1π2 + 6π1π3 − 4π2 + 4π22 + 4π3π2 − π3 + π23).

An estimate of V ar(bI∗1 ) can be obtained by replacing πi (i = 1,...,k) by their sample

counterparts.

The derivation of exact formulae for the variance of the estimators of the indices

I∗2 and I
∗
3 is a difficult task since these are ratios of weighted sums of multinomial
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proportions. However, we may approximate the value of the variance for particular

choices of π and N using the method of bootstrap.(A detailed description of this

method and its applications can be found in Efron and Tibshirani (1993)).

In the sequel, the method of bootstrap is implemented for the approximation

of the variances of the estimators of the three new indices for various choices of π

and N . Specifically, assuming that we have a question with k possible answers, N

observations and proportions π1, π2, ..., πk, we generate a large number of multinomial

samples, say B = 1000, via sampling with replacement. The B samples are termed

bootstrap samples. For each bootstrap sample, the value of the index I∗ is calculated.

The general notation I∗ is used here to denote any of the three new indices. An

approximation of the variance for the estimator of each index (S2I∗) can be found

through the formula

S2I∗ =
1

B − 1
BX

i=1

³
I∗i − I

∗´2
,

where I∗i is the index value assessed on the basis of the ith bootstrap sample and I
∗

is the mean of the B bootstrap index values.

The obtained results, assuming k = 7, are summarized in Tables 2-5. Each of

these tables corresponds to a different sample size (N). Moreover, the proportions

considered were selected to cover a wide range of cases, i.e. small, moderate or large

index values.

In the case of I∗1 , the bootstrap approximations (A) can be compared with the

exact ones (E) computed using formula (3).
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(TABLE 2)

>From Tables 2-5 one may draw the following conclusions:

� As the sample size increases, the variance of all the estimators decreases

� The variance of bI∗1 appears to be generally smaller in comparison to the variances

of the estimators of the other indices

� The variance of bI∗1 is not seriously affected by changes in the values of the

proportions

� The variances of bI∗2 and bI∗3 increase as the degree of concentration on the “pos-

itive” answers increases

� The performance of the bootstrap method is fairly satisfactory as can be ob-

served from the differences between the exact and the approximate (bootstrap)

values of the variance of bI∗1

� For small sample sizes, the approximations of the variances of bI∗2 and bI∗3 cannot

be obtained in situations where the proportions of the “positive” answers are

very large (see the last rows of Tables 2 and 3). This is a consequence of the

fact that the values of these indices become infinite for some of the bootstrap

samples.

(TABLE 3)

(TABLE 4)

(TABLE 5)
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5 Confidence Intervals

This section is devoted to the construction of confidence intervals for the true values of

the indices defined. Owing to the fact that these indices are functions of multinomial

proportions, the construction of confidence intervals for them relates to the construc-

tion of simultaneous confidence limits for multinomial proportions. This is a problem

dealt with by several authors (e.g. Quesenberry and Hurst (1964), Goodman (1965),

Fitzpatrick and Scott (1987), Sison and Glaz (1995), Kwong (1996, 1998) and Ahmed

(2000)). However, these confidence limits can be used only in the case of I∗1 . The

construction of parametric confidence intervals for indices I∗2 and I
∗
3 , which are ratios

of weighted sums of multinomial proportions, is much more complicated. For this

reason, we resort to the well-known method of bootstrap for obtaining confidence

intervals for them. A 100(1− a)% confidence interval of index I∗1 is given by

ÃP[k/2]
i=1 wip

(i)
L

π0
,

P[k/2]
i=1 wip

(i)
U

π0

!
, (4)

where p
(i)
L , p

(i)
U are the lower and the upper simultaneous confidence limits for category

i calculated using any of the suggested methods.

Alternatively, one may take advantage of the bootstrap method so as to assess

confidence intervals for the actual values of the indices I∗1 , I
∗
2 and I

∗
3 . For simplicity,

we adopt again the general notation I∗ for any of these indices. For the calculation

of bootstrap confidence intervals we order the B index values, obtained following the

procedure described in the previous section, in a non-descending order and we denote
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the ith of these values by

I∗(i), i = 1, ..., B.

We will now describe three alternative methods that one can apply in order to cre-

ate bootstrap confidence intervals. These are the standard bootstrap, the percentile

bootstrap and the bias-corrected percentile bootstrap.

According to the standard bootstrap method, a 100(1− α)% confidence interval

for the index I∗ is given by

³
bI∗ − z1−α/2SI∗ , bI∗ + z1−α/2SI∗

´
,

where zα denotes the 100α% percentile of the standard normal distribution, SI∗ is the

standard deviation of the B index values and bI∗ is the index value that was assessed

from the initial sample.

Following the percentile bootstrap technique, a 100(1 − α)% confidence interval

for the index I∗ is given by

¡
I∗(Bα/2), I

∗
(B(1−α/2))

¢
.

The bias-corrected percentile bootstrap method is similar to the percentile boot-

strap, but involves a slight correction for the potential bias. According to this method,

we firstly find the two successive values I∗(i) and I
∗
(i+1) between which the value of the

index that was assessed from the initial sample (bI∗) lies. Then, we derive the value for

which the cumulative distribution function of the standard normal distribution (Φ)

takes the value i/B. If we denote this value by z0, then we calculate the probabilities

pl and pu, which are defined as pl = Φ(2z0 + zα/2) and pu = Φ(2z0 + z1−α/2). Using
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these probabilities we end up with a 100(1− α)% confidence interval of the form

¡
I∗(B·pl), I

∗
(B·pu)

¢
.

The performance of the three bootstrap techniques is examined via a simulation

study. The results obtained are provided in the Appendix. In this study, 10000

random samples were generated from the multinomial distribution with parameters

N = 250 and N = 500 and various combinations of π1,π2, ...,π7. These combinations

are the same as those considered in Section 4. The number k of the selected categories

was assumed to be 7, without loss of generality.

The number of bootstrap samples generated each time is B = 1000. For any case,

the observed coverage (OC) and the mean range (MR) are computed. Tables 10 and 12

refer to confidence level 0.90, whereas Tables 11 and 13 refer to confidence level 0.95.

The first entry of each cell corresponds to the standard bootstrap (SB) method, the

second to the percentile bootstrap (PB) and the third to the bias-corrected percentile

bootstrap (BB).

On the basis of these tables one may conclude that:

� The observed coverage is not seriously affected by the sample size. Hence, one

may construct confidence intervals for the true values of the indices even when

the number of available observations is not very large

� The mean range of the confidence intervals produced from all the techniques

reduces as the sample size increases
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� For the index I∗1 , all the methods appear to attain a coverage close to the

nominal. Likewise, the mean range of the confidence intervals produced from

the three methods is nearly the same

� In the case of index I∗2 , despite the fact that we do not observe substantial differ-

ences in the coverage of the three methods, BB seems to provide the confidence

intervals with the best coverage. The mean range of the SB confidence intervals

appears to exceed the ones of the other two methods

� For index I∗3 method BB results in a coverage closer to the nominal in most of

the examined cases. In addition, method SB gives the widest intervals

It should be remarked that the mean range of the confidence intervals I∗2 and I
∗
3 could

not be computed in some cases because, for some of the generated bootstrap samples,

the values of these indices become infinite.

6 An Illustrative Example

In the sequel, the data analysed by Jensen (1986) are used in order to illustrate the

advantages of the indices I∗1 , I
∗
2 and I

∗
3 proposed in this paper in comparison to the

indices I1, I2 and I3 suggested by Maravelakis et al. (2003). Jensen (1986) dealt with

data acquired through a questionnaire that was given between 1973 and 1976 to 60%

of the students of the only Catholic high school and its two neighboring public high

schools in a southeastern city of the United States. For more details on this survey,

the reader is referred to Jensen (1986). The questionnaires that were given to the
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students include several questions whose answers have a natural ordering. Therefore,

one can take advantage of the theory developed in this paper so as to measure the

observed degree of concentration on the “positive” categories in each question.

In Table 4 of Jensen (1986), the obtained results for various questions associ-

ated with students’s choices, moral evaluations and perceptions of risk are provided

separately for the students of public and catholic schools. Some of these questions

are:

1. Suppose you and your friends were messing around one afternoon and they

decided to steal something from a store just for kicks. Do you think it would be

wrong to go along? (Public schools)

2. Suppose you and your friends were messing around one night and they decided

to break into a place and steal some things. Would it be wrong to go along?

(Catholic schools)

In both questions the possible answers were “Definitely Yes” (DY), “Yes” (Y), “Un-

certain” (U), “No” (NO), “Definitely No” (DN).

The observed proportions and the number of responses for these questions are

displayed on Table 6,while in Table 7 the corresponding estimates of the values of

the six indices are presented.

(TABLE 6)

(TABLE 7)
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In both questions, the values of the six indices indicate a tendency of the respon-

dents to prefer the “positive” answers. Likewise, this tendency seems to be stronger

in Question 2.

Suppose now that the obtained proportions of the two questions were as shown in

Table 8. Obviously, in this case the proportions of the first two categories are given

in reverse order. However, as one may observe from Table 9, the indices I1, I2 and I3

do not reflect these changes since their values remain unchanged. On the other hand,

in both cases, the values of the new indices decreased as a consequence of the fact

that even though the total proportion of the “positive” answers remains constant its

distribution to the two categories has changed substantially.

(TABLE 8)

(TABLE 9)

7 Concluding Remarks

In this paper, some new indices were introduced and their properties were studied.

These indices can be considered as generalizations of the indices proposed by Mar-

avelakis et al. (2003). Their aim is to measure the degree of concentration on the

“small” or the “large” values of ordinal variables and have applications in various

disciplines. The use of these indices was illustrated in connection with data obtained

from sample surveys. Nevertheless, various other fields of applications where these

indices may serve as a useful tool, exist. As an example, we refer to the educational
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field and especially the evaluation of different groups of students in situations where

their grades are in ordinal scale.

As already mentioned, indices have been used in a number of fields. A natural

question in using weighted indices is how the weights are chosen. In Statistical Process

Control the Exponentially Weighted Moving Average (EWMA) control chart is a sta-

tistic (index) of the current level of a process. The weights in this statistic decrease

geometrically, assigning the largest weight to the most recent observation and a con-

tinuously decreasing weight from the next most recent observation to the oldest (see,

e.g. Montgomery (2001)). This selection of weights stems from the fact that the

newer observation gives the best outlook of the process. In the education field dif-

ferent weights are assigned to the factors related to the quality of education. These

weights are not based on a mathematical formulation but rather on a subjective se-

lection (see Han (1996)). In the areas of classification and clustering different indices

have been proposed with various types of weighting. The criteria for selecting these

weights is based on the analyst(Cox and Cox (2000)). Therefore, one may conclude

that the set of weights chosen in each subject depends on the nature of the problem

and even for the same problem different weights may be assigned. In the problem

studied the set of weights used are based on mathematical relations with the aim to

arrive at a logical selection.

Specifically, the first condition for selecting the appropriate weights in Section 3 is

not a binding one because the sum of the weights could be any value. We choose the

particular one for comparison purposes. On the other hand, the second condition is
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crucial on the selection of the weights. In the case of a questionnaire it seems natural

that the weights of symmetrical classes be equal, although there may be cases where

the researcher may decide otherwise.

(TABLE 10)

(TABLE 11)

(TABLE 12)

(TABLE 13)
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TABLE 1. An Artificial Example

Question Very Good Good Moderate Bad Very Bad

1 0.02 0.78 0.15 0.02 0.03

2 0.78 0.02 0.15 0.02 0.03
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TABLE 2. The Variances of the Estimators of the Three Indices

for B = 1000 and N = 50

bI∗1 bI∗2 bI∗3

Proportions E A A A

.03 .02 .05 .45 .05 .2 .2 .0100 .0093 0.0091 0.0093

.06 .06 .08 .4 .1 .15 .15 .0195 .0187 0.0407 0.0265

.1 .1 .1 .35 .15 .10 .10 .0283 .0287 0.1707 0.0680

.15 .15 .1 .3 .1 .1 .1 .0361 .0376 0.4012 0.1484

.2 .15 .15 .2 .10 .10 .10 .0394 .0408 0.8039 0.3135

.2 .2 .2 .1 .1 .1 .1 .0370 .0378 0.7993 0.4863

.25 .25 .2 .1 .1 .05 .05 .0367 .0372 5.7835 2.1036

.25 .25 .3 .1 .05 .03 .02 .0312 .0326 - 19.148

.3 .3 .3 .05 .02 .02 .01 .0261 .0261 - -
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TABLE 3. The Variances of the Estimators of the Three Indices

for B = 1000 and N = 100

bI∗1 bI∗2 bI∗3

Proportions E A A A

.03 .02 .05 .45 .05 .2 .2 .0050 .0049 0.0045 0.0047

.06 .06 .08 .4 .1 .15 .15 .0097 .0102 0.0190 0.0127

.1 .1 .1 .35 .15 .10 .10 .0142 .0143 0.0777 0.0347

.15 .15 .1 .3 .1 .1 .1 .0181 .0181 0.1683 0.0696

.2 .15 .15 .2 .10 .10 .10 .0197 .0190 0.2182 0.1108

.2 .2 .2 .1 .1 .1 .1 .0185 .0189 0.2717 0.1789

.25 .25 .2 .1 .1 .05 .05 .0183 .0183 1.8565 0.8036

.25 .25 .3 .1 .05 .03 .02 .0156 .0160 26.303 4.9743

.3 .3 .3 .05 .02 .02 .01 .0131 .0135 - 76.386
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TABLE 4. The Variances of the Estimators of the Three Indices

for B = 1000 and N = 250

bI∗1 bI∗2 bI∗3

Proportions E A A A

.03 .02 .05 .45 .05 .2 .2 .0020 .0020 0.0017 0.0018

.06 .06 .08 .4 .1 .15 .15 .0039 .0035 0.0066 0.0046

.1 .1 .1 .35 .15 .10 .10 .0057 .0055 0.0261 0.0125

.15 .15 .1 .3 .1 .1 .1 .0072 .0070 0.0578 0.0257

.2 .15 .15 .2 .10 .10 .10 .0079 .0080 0.0868 0.0452

.2 .2 .2 .1 .1 .1 .1 .0074 .0068 0.0951 0.0655

.25 .25 .2 .1 .1 .05 .05 .0073 .0072 0.6194 0.2827

.25 .25 .3 .1 .05 .03 .02 .0063 .0061 6.3119 1.5515

.3 .3 .3 .05 .02 .02 .01 .0052 .0053 79.097 16.941
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TABLE 5. The Variances of the Estimators of the Three Indices

for B = 1000 and N = 500

bI∗1 bI∗2 bI∗3

Proportions E A A A

.03 .02 .05 .45 .05 .2 .2 .0010 .0010 0.0009 0.0010

.06 .06 .08 .4 .1 .15 .15 .0020 .0019 0.0036 0.0025

.1 .1 .1 .35 .15 .10 .10 .0028 .0027 0.0129 0.0062

.15 .15 .1 .3 .1 .1 .1 .0036 .0037 0.0270 0.0124

.2 .15 .15 .2 .10 .10 .10 .0039 .0039 0.0420 0.0225

.2 .2 .2 .1 .1 .1 .1 .0037 .0038 0.0504 0.0348

.25 .25 .2 .1 .1 .05 .05 .0037 .0040 0.2856 0.1391

.25 .25 .3 .1 .05 .03 .02 .0031 .0031 2.7278 0.7130

.3 .3 .3 .05 .02 .02 .01 .0026 .0026 27.230 7.1804
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TABLE 6. The Proportions and the Number of Responses

for Questions 1 and 2 for Jensen’s (1986) data

Question DY Y U NO DN N

1 0.473 0.327 0.086 0.065 0.049 1480

2 0.623 0.243 0.052 0.030 0.052 440
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TABLE 7. Estimates of the Values of the Six Indices

for Questions 1 and 2

Question bI1 bI∗1 bI2 bI∗2 bI3 bI∗3

1 2 2.122 7.018 7.810 4.430 5.948

2 2.165 2.482 10.561 11.112 6.851 8.981
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TABLE 8. The Proportions and the Number of Responses

for Questions 1∗ and 2∗

Question DY Y U NO DN N

1∗ 0.327 0.473 0.086 0.065 0.049 1480

2∗ 0.243 0.623 0.052 0.030 0.052 440
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TABLE 9. Estimates of the Values of the Six Indices

for Questions 1∗ and 2∗

Question bI1 bI∗1 bI2 bI∗2 bI3 bI∗3

1∗ 2 1.878 7.018 6.914 4.430 5.545

2∗ 2.165 1.848 10.561 8.276 6.851 7.563

35



TABLE 10. The Simulation Study for N = 250 and 1− α = 0.9

I∗1 I∗2 I∗3
Proportions OC MR OC MR OC MR

SB .8880 .1459 .8975 .1400 .9015 .1435

.03 .02 .05 .45 .05 .2 .2 PB .8928 .1456 .8918 .1390 .8962 .1430

BB .8889 .1453 .8923 .1402 .8968 .1432

SB .8938 .2040 .9012 .2839 .9000 .2337

.06 .06 .08 .4 .1 .15 .15 PB .9018 .2038 .8948 .2817 .8959 .2327

BB .9014 .2036 .8961 .2827 .8969 .2330

SB .9003 .2466 .9121 .5440 .9028 .3703

.1 .1 .1 .35 .15 .10 .10 PB .9070 .2465 .8991 .5385 .9005 .3685

BB .9062 .2464 .9021 .5387 .8998 .3687

SB .8972 .2789 .9176 .8095 .9102 .5342

.15 .15 .1 .3 .1 .1 .1 PB .8957 .2789 .9023 .7995 .9017 .5308

BB .8954 .2789 .9038 .7982 .9028 .5307

SB .9028 .2912 .9150 .9616 .9111 .6932

.2 .15 .15 .2 .10 .10 .10 PB .9026 .2912 .8989 .9491 .9003 .6878

BB .9023 .2913 .9005 .9464 .9024 .6872

SB .9011 .2822 .9147 1.0674.9111 .8789

.2 .2 .2 .1 .1 .1 .1 PB .9076 .2822 .8980 1.0537.8983 .8706

BB .9065 .2823 .9004 1.0500.9009 .8687

SB .9000 .2812 .9228 2.6657.9131 1.7879

.25 .25 .2 .1 .1 .05 .05 PB .9005 .2812 .8927 2.6045.8921 1.7621

BB .8991 .2814 .8941 2.5788.8927 1.7529

SB .8977 .2592 .9399 9.0278.9271 4.2237

.25 .25 .3 .1 .05 .03 .02 PB .8977 .2592 .8917 8.4496.8925 4.1226

BB .8969 .2594 .8943 8.2090.8949 4.0723

SB .8965 .2372 .8653 - .9385 14.703

.3 .3 .3 .05 .02 .02 .01 PB .9028 .2372 .8784 - .8873 13.727

BB .9036 .2375 .8871 - .8916 13.275
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TABLE 11. The Simulation Study for N = 250 and 1− α = 0.95

I∗1 I∗2 I∗3
Proportions OC MR OC MR OC MR

SB .9386 .1739 .9387 .1668 .9463 .1710

.03 .02 .05 .45 .05 .2 .2 PB .9431 .1732 .9432 .1621 .9445 .1706

BB .9420 .1729 .9473 .1675 .9452 .1710

SB .9414 .2431 .9464 .3383 .9468 .2786

.06 .06 .08 .4 .1 .15 .15 PB .9487 .2426 .9448 .3372 .9465 .2779

BB .9456 .2424 .9460 .3384 .9481 .2782

SB .9480 .2939 .9499 .6483 .9510 .4413

.1 .1 .1 .35 .15 .10 .10 PB .9504 .2937 .9488 .6459 .9496 .4403

BB .9494 .2935 .9492 .6461 .9493 .4405

SB .9462 .3324 .9584 .9646 .9551 .6366

.15 .15 .1 .3 .1 .1 .1 PB .9465 .3321 .9508 .9605 .9512 .6348

BB .9471 .3320 .9504 .9590 .9517 .6346

SB .9504 .3470 .9560 1.1458.9542 .8261

.2 .15 .15 .2 .10 .10 .10 PB .9508 .3468 .9502 1.1406.9493 .8237

BB .9508 .3468 .9499 1.1376.9495 .8227

SB .9482 .3363 .9559 1.2719.9540 1.0473

.2 .2 .2 .1 .1 .1 .1 PB .9509 .3362 .9482 1.2665.9499 1.0438

BB .9508 .3363 .9501 1.2621.9501 1.0416

SB .9501 .3350 .9587 3.1764.9549 2.1304

.25 .25 .2 .1 .1 .05 .05 PB .9495 .3350 .9442 3.1514.9457 2.1205

BB .9478 .3352 .9447 3.1193.9460 2.1090

SB .9467 .3089 .9624 10.757.9605 5.0329

.25 .25 .3 .1 .05 .03 .02 PB .9469 .3088 .9397 10.461.9439 4.9899

BB .9466 .3090 .9432 10.155.9456 4.9291

SB .9484 .2826 .8870 - .9636 17.519

.3 .3 .3 .05 .02 .02 .01 PB .9530 .2825 .9333 - .9378 17.024

BB .9518 .2828 .9400 - .9421 16.442
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TABLE 12. The Simulation Study for N = 500 and 1− α = 0.9

I∗1 I∗2 I∗3
Proportions OC MR OC MR OC MR

SB .8962 .1035 .8990 .0978 .8979 .1008

.03 .02 .05 .45 .05 .2 .2 PB .8962 .1034 .8954 .0975 .8981 .1006

BB .8965 .1033 .8965 .0979 .8976 .1007

SB .9000 .1448 .9058 .1981 .9045 .1644

.06 .06 .08 .4 .1 .15 .15 PB .9045 .1447 .9016 .1972 .9024 .1640

BB .9030 .1447 .9017 .1977 .9012 .1642

SB .8998 .1746 .9018 .3748 .8991 .2589

.1 .1 .1 .35 .15 .10 .10 PB .9027 .1746 .8961 .3728 .8982 .2582

BB .9030 .1746 .8975 .3730 .8993 .2584

SB .8999 .1974 .9062 .5555 .9021 .3728

.15 .15 .1 .3 .1 .1 .1 PB .9029 .1973 .8983 .5522 .8995 .3716

BB .9003 .1974 .8996 .5521 .8998 .3717

SB .9021 .2062 .9085 .6596 .9044 .4818

.2 .15 .15 .2 .10 .10 .10 PB .9054 .2063 .9003 .6553 .8987 .4799

BB .9036 .2063 .8990 .6548 .8976 .4798

SB .8938 .1998 .9051 .7333 .9026 .6086

.2 .2 .2 .1 .1 .1 .1 PB .8989 .1998 .8947 .7286 .8958 .6056

BB .8992 .2000 .8961 .7279 .8976 .6052

SB .8983 .1990 .9067 1.7864.9012 1.2241

.25 .25 .2 .1 .1 .05 .05 PB .9013 .1989 .8908 1.7672.8918 1.2157

BB .9011 .1991 .8917 1.7601.8938 1.2132

SB .8999 .1836 .9265 5.5162.9129 2.8152

.25 .25 .3 .1 .05 .03 .02 PB .8988 .1836 .9002 5.3798.8991 2.7828

BB .8982 .1837 .9015 5.3161.9003 2.7683

SB .9013 .1679 .9371 19.016.9219 8.9700

.3 .3 .3 .05 .02 .02 .01 PB .9048 .1679 .8841 17.789.8912 8.7384

BB .9025 .1681 .8895 17.267.8947 8.6164
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TABLE 13. The Simulation Study for N = 500 and 1− α = 0.95

I∗1 I∗2 I∗3
Proportions OC MR OC MR OC MR

SB .9414 .1234 .9473 .1166 .9507 .1201

.03 .02 .05 .45 .05 .2 .2 PB .9432 .1231 .9499 .1163 .9497 .1200

BB .9437 .1230 .9479 .1168 .9473 .1201

SB .9487 .1725 .9487 .2361 .9532 .1959

.06 .06 .08 .4 .1 .15 .15 PB .9510 .1722 .9493 .2357 .9510 .1957

BB .9513 .1722 .9505 .2361 .9510 .1958

SB .9484 .2081 .9486 .4466 .9494 .3085

.1 .1 .1 .35 .15 .10 .10 PB .9502 .2079 .9485 .4457 .9482 .3081

BB .9504 .2079 .9489 .4459 .9499 .3083

SB .9484 .2353 .9532 .6620 .9510 .4442

.15 .15 .1 .3 .1 .1 .1 PB .9512 .2351 .9491 .6604 .9483 .4436

BB .9500 .2352 .9481 .6601 .9466 .4436

SB .9493 .2458 .9537 .7860 .9519 .5741

.2 .15 .15 .2 .10 .10 .10 PB .9523 .2456 .9483 .7840 .9492 .5731

BB .9511 .2457 .9494 .7832 .9501 .5729

SB .9474 .2382 .9539 .8737 .9521 .7252

.2 .2 .2 .1 .1 .1 .1 PB .9506 .2381 .9466 .8718 .9472 .7239

BB .9483 .2382 .9456 .8707 .9463 .7236

SB .9458 .2371 .9545 2.1287.9522 1.4586

.25 .25 .2 .1 .1 .05 .05 PB .9482 .2370 .9438 2.1205.9450 1.4547

BB .9484 .2371 .9436 2.1118.9457 1.4517

SB .9498 .2188 .9616 6.5728.9548 3.3545

.25 .25 .3 .1 .05 .03 .02 PB .9489 .2186 .9481 6.5214.9484 3.3410

BB .9486 .2188 .9489 6.4418.9495 3.3229

SB .9517 .2001 .9604 22.658.9598 10.689

.3 .3 .3 .05 .02 .02 .01 PB .9529 .2000 .9398 22.046.9410 10.597

BB .9541 .2002 .9436 21.374.9425 10.448
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