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The Use of Indices in Surveys

P. E. MARAVELAKIS, M. PERAKIS, S. PSARAKIS and J. PANARETOS
Department of Statistics, Athens University of Economics and Business, Greece

Abstract. The paper deals with some new indices for ordinal data that arise from sample surveys.

Their aim is to measure the degree of concentration to the “positive” or “negative” answers in a

given question. The properties of these indices are examined. Moreover, methods for constructing

confidence limits for the indices are discussed and their performance is evaluated through an ex-

tensive simulation study. Finally, the values of the indices defined and their confidence intervals are

calculated for an example with real data.
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1. Introduction

Various types of indices are widely used in real world applications. Some fields

where the use of indices is widespread are index numbers (see e.g., Mudgett

(1951)), statistical quality control (see e.g., Kotz and Lovelace (1998) and Mont-

gomery (1997)), economics (see e.g., Cowell (1995)), fundamental analysis (see

e.g., Ritchie (1996)) and sample surveys (see e.g., Bnerjee et al. (1999)).

In the area of sample surveys, questions requiring answers that have a somewhat

natural ordering are frequently included. A common example of such type of an-

swers is “Very Good”, “Good”, “Moderate”, “Bad” and “Very Bad”. In practice, the

presentation of the observed proportions of the possible answers of such questions

is restricted to frequency tables, graphs (bar and pie charts) and some coefficients

such as Cohen’s (1960) Kappa and its modifications (see e.g., Bnerjee et al. (1999)

and Doner (1999)). A detailed presentation of categorical data analysis can be

found in Agresti (1990). However, no measure of the potential concentration of

the positive or negative answers is used.

In this paper we introduce some indices that can be used to measure this con-

centration, based on the observed proportions of the answers. In Section 2 we

define three alternative indices, we examine the properties of these indices and

compare their behavior. The third section deals with the construction of confidence

intervals for the true values of the indices. In particular, some methods for assessing

simultaneous confidence intervals for multinomial proportions are reviewed briefly.

These methods can be implemented for constructing confidence intervals for one

of the indices defined in Section 2. Furthermore, three bootstrap methods applied

to these indices (standard, percentile and bias corrected percentile) are illustrated
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and their use for obtaining confidence intervals for the indices is also described.

The results of a simulation study aimed at testing the performance of the bootstrap

confidence limits for the indices are shown in detail in Section 4. From these results

it is observed that the coverage of these bootstrap confidence limits is very satis-

factory, since it is quite close to the nominal, in most of the cases. An illustrative

example that clarifies the assessment of the indices and their corresponding confid-

ence intervals is given in Section 5. Further topics on the indices are presented in

the last section.

2. Definition and Properties of Indices

Consider a question in a study where the person who answers has to choose one

out of k possible answers. These answers have a natural ordering and thus can be

ordered from “positive” to “negative” ones. We assume that the number of “pos-

itive” answers is equal to the number of “negative” ones. Let pi , i = 1, 2, . . ., k

denote the observed percentage (%) of answers in each of the k categories, where

p1 refers to the “best” available answer, and pk to the “worst” one. Obviously,

the “neutral” answer, if such an answer exists (i.e. if k is odd), is located at point[
k/2

]
+ 1. We should remark that among the k possible answers we include the

“neutral” answer (if it exists), but we do not take into consideration answers of

the kind “No opinion/No answer”. If such a type of answer exists, we recalculate

the observed proportions excluding this answer and we proceed using the theory

developed in the following sections. In what follows, we define three alternative

indices.

2.1. INDEX I1

Let p0 denote the quantity
{[
k/2

]
· (1/k)

}
100. We define an index I1 as

I1 =
∑

[
k
2

]

i=1 pi

p0

=
p+

p0

where in the numerator we have the sum of the percentages (%) of “positive”

answers, represented by p+, and in the denominator the value of p0 is equal to the

expected percentage (%) of the “positive” answers assuming that all the answers

are uniformly distributed (i.e. each answer is chosen with the same frequency). The

use of the integer part for the computation of the “positive” answers ensures that

regardless of whether the number of available answers is odd or even we include

all the “good” answers in the computation of I1.

For illustration let us assume that we have a question with five possible answers,

which are “very good” (25%), “good” (20%), “moderate” (30%), “bad” (10%) and

“very bad” (15%) (in the parenthesis we have the observed percentages of each

answer). Then k = 5, p0 = 40, p+ = 45 and therefore I1 = 1.125.
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Index I1 can take values between 0 and 100/p0. When the index takes the value

0 it means that none of the given answers are among the [k/2] “positive” answers.

On the other hand, when I1 takes the value 100/p0, all of the given answers are

among the [k/2] “positive” answers. A value close to unity is an indication that the

number of positive answers is close to what we would expect if the answers are

uniformly distributed. It is obvious that I1 has always a finite value. In addition,

it is easy to compute confidence intervals for this index, not only via bootstrap,

but also by using some methods for simultaneous confidence intervals for multi-

nomial proportions as well (see Section 3.1). On the other hand, index I1 ignores

“negative” and “neutral” answers neglecting the information of these answers.

2.2. INDEX I2

We define an index I2 as follows

I2 =
p+

p−

where p+ is defined as in I1 and p− is the sum of the percentages of the
[
k/2

]

“negative” answers. For the previous example and for the index I2 we have that

k = 5, p+ = 45, p− = 25 and I2 = 1.8.

Index I2 takes values between 0 and infinity. A value 0 means that nobody has

answered one of the [k/2] “positive” answers, whereas an infinite value means that

everyone has selected one of the [k/2] “positive” answers. A value close to unity is

an indication that the number of positive answers is similar to that of the negative

ones. Values greater than unity show a tendency towards the positive answers,

whereas values smaller than unity show a negative concentration. The fact that I2

can become infinite is a disadvantage, even though this is an extreme case. Another

drawback of this index is that it excludes the “neutral” answer. Also, as explained

in Section 3, the construction of confidence intervals for I2, without resorting to

bootstrap, is a difficult task, since it requires knowledge of the distribution of

ratios of multinomial proportions. However, I2 is superior to I1 because it takes

into account “negative” answers and, at the same time, its calculation is fairly easy.

2.3. INDEX I3

The third index that we consider is the index I3, defined as

I3 =
p+ + pn

p− + pn

where p+, p− are defined as previously and pn is the percentage (%) of the “neut-

ral” answers. In the example of Section 2.1 I3 = 1.36, since k = 5, p+ = 45,

p− = 25 and pn = 30.
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The values that I3 can take, lie between 0 and infinity. I3 takes the value 0

when everyone has answered one of the ”negative” answers and is equal to infinity

when everyone has chosen one of the “positive” answers. The interpretation of this

index is similar to that of the index I2. A disadvantage of I3 is the difficulty in

constructing confidence intervals for it. The only way to overcome this problem

with I3 is to use the method of bootstrap. Also, its value is not finite in some cases.

However, this is not a very probable scenario. The advantage of I3 is that it takes

into account every category in its calculation, a property that makes this index

preferable to the previous two.

2.4. INTERRELATION OF THE THREE INDICES

The following relations hold for the three indices defined:

− I1 is greater (smaller) than I2 if p− is greater (smaller) than p0.

− I2 exceeds I3 if p+ > p− (or equivalently if I2 > 1) and vice versa.

3. Confidence Intervals

This section is devoted to the construction of confidence intervals for the indices

defined. These indices are functions of multinomial proportions. Therefore, the

construction of confidence intervals for these indices can be based on the con-

struction of simultaneous confidence limits for multinomial proportions. This is

a problem that many authors have dealt with and is described briefly in Section

3.1. However, such confidence intervals can be used only in connection to I1. Con-

fidence intervals for I1 can also be obtained using the binomial distribution since

regardless of the number of categories considered, we end up with two categories

- the “positive” and the “rest” (see Section 3.1.). The construction of parametric

confidence intervals for indices I2 and I3, which are ratios of sums of multinomial

proportions, is much more complicated and cannot be based on the existing theory.

For this reason we resort to the well-known method of bootstrap for obtaining such

limits for them.

3.1. PARAMETRIC CONFIDENCE INTERVALS FOR INDEX I1

A first attempt for constructing simultaneous confidence limits for multino-

mial proportions was made by Quesenberry and Hurst (1964). They concluded

that one can obtain simultaneous confidence intervals for the actual proportions

(probabilities) (πi, i = 1, . . ., k) using the formula

1

2
(
n+ χ2

k−1,1−α
) ×
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(
χ2
k−1,1−α + 2Xi ±

√
χ2
k−1,1−α

√
χ2
k−1,1−α +

4

n
Xi (n−Xi)

)
, (1)

where n is the total number of answers corresponding the specific category,

χ2
k−1,1−α denotes the (1 − α)100% percentile of the chi-square distribution with

k − 1 degrees of freedom and Xi is the observed number of answers in category i

(i.e. Xi = pi · n/100).

Goodman (1965), proposed a modification of the previous interval. More

specifically, he found that the confidence interval (1) becomes shorter if one sub-

stitutes χ2
1,1−α/k for χ2

k−1,1−α. Hence, according to Goodman (1965), simultaneous

confidence intervals for πi’s can be obtained through the formula

1

2
(
n+ χ2

1,1−α/k

) ×

(
χ2

1,1−α/k + 2Xi ±
√
χ2

1,1−α/k

√
χ2

1,1−α/k +
4

n
Xi (n−Xi)

)
. (2)

Fitzpatrick and Scott (1987) suggested the use of the interval

pi

100
±

d
√
n

. (3)

The value of d depends on the desired coverage and it has to be 1 for 90% coverage,

1.13 for 95% coverage and 1.4 for 99% coverage.

Sison and Glaz (1995) proposed another method for constructing simultaneous

confidence intervals for multinomial proportions. This method is much more com-

plicated than the three methods described so far. However, as Sison and Glaz (1995)

point out their method achieves coverage closer to the nominal in comparison to

the coverage that the intervals (1), (2) and (3) achieve. A short description of this

method is given here. The method of Sison and Glaz (1995) (see also Glaz and

Sison (1999)) leads to confidence intervals of the form

(
pi

100
−
c

n
,
pi

100
+
c + 2γ

n

)
, (4)

where

γ =
(1 − α)− v (c)

v (c + 1)− v (c)

and c is an integer such that

v (c) < 1 − α < v (c + 1)
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and finally

v (c) = P
(
Xi − c ≤ X∗

i ≤ Xi + c; i = 1, . . ., k
)
. (5)

Here,
(
X∗

1, . . ., X
∗
k

)
follows a multinomial distribution with parameters n,

p1

100
, . . .,

pk
100

. In order to find the value of c, Sison and Glaz (1995) showed that (5) can be

rewritten as

n!
nne−n

{
k∏

i=1

P (Xi − c ≤ Vi ≤ Xi + c)

}
fe


n−

∑k
i=1 µi√∑k

i=1 σ
2
i


 1√∑k

i=1 σ
2
i

,

where Vi, i = 1, . . ., k are independent Poisson random variables with parameters

npi and the function fe (x) is defined as

fe (x) =
(

1
√

2π
e− x2

2

)

×
[
1 +

γ1

6

(
x3 − 3x

)
+
γ2

24

(
x4 − 6x2 + 3

)

+
γ 2

1

72

(
x6 − 15x4 + 45x2 − 15

)]
,

where

γ1 =
∑k

i=1 µ3,i(∑k
i=1 σ

2
i

)3/2
,

and

γ2 =
∑k

i=1

(
µ4,i − 3σ 4

i

)
(∑k

i=1 σ
2
i

)2

µi , σ
2
i and µ3,i , µ4,i are the expected values, the variances and the central mo-

ments of the truncated Poisson distribution with mean npi/100, to the interval

[Xi − c,Xi + c]. These central moments can be assessed using a formula for the

factorial moments of the truncated Poisson distribution provided by Sison and Glaz

(1995). May and Johnson (1997) studied the performance of various methods for

simultaneous confidence intervals for multinomial proportions and concluded that

the methods of Goodman (1965) and Sison and Glaz (1995) are superior.

The 100(1 − a)% confidence interval of index I1 based on any of the preceding

methods is given by

(
100 ·

∑[k/2]
i=1 p

(i)
L

p0

,
100 ·

∑[k/2]
i=1 p

(i)
U

p0

)
, (6)
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where p
(i)
L , p

(i)
U are the lower and the upper simultaneous confidence limits for

category i, using any of the previous methods.

Since, in index I1, the k categories are separated into only two groups - the first

group consisting of the positive answers and the second of the remaining answers

- we may compute exact confidence intervals for it using the existing theory for

binomial proportions (see e.g., Johnson et al. (1993)). Using the property that

n∑

x=r

(
n

x

) ( p+

100

)x (
1 −

p+

100

)n−x
= P

[
F ≤

ν2p+

ν1(100 − p+)

]
,

where F follows the F distribution with ν1 = 2r and ν2 = 2(n− r + 1) degrees of

freedom, a confidence interval for
∑[k/2]

i=1 πi is given by

(
δ1Fδ1,δ2,a/2

δ2 + δ1Fδ1,δ2,a/2

,
δ3Fδ3,δ4,1−a/2

δ4 + δ3Fδ3,δ4,1−a/2

)
, (7)

where δ1 = 2X+, δ2 = 2(n − X+ + 1), δ3 = 2(X+ + 1), δ4 = 2(n − X+) and

X+ =
∑[k/2]

i=1 Xi . If we denote the limits of (7) by p+
L and p+

U we conclude that the

100(1 − a)% confidence interval for I1 is given by

(
100 · p+

L

p0

,
100 · p+

U

p0

)
. (8)

3.2. BOOTSTRAP CONFIDENCE INTERVALS

As it is well-known bootstrap is a non-parametric technique that can be used

whenever it is troublesome to create confidence intervals for a parameter using

standard statistical techniques. The method was introduced by Efron (1979) and a

detailed description of it and its implementation for the construction of confidence

intervals can be found in Efron and Tibshirani (1993). In this section we illustrate

how the bootstrap method is used for constructing confidence intervals for the

indices that were defined previously. For simplicity we adopt the general notation

I for all indices defined.

Let us assume that we have a sample with k categories, n observations and

observed proportions p1/100, p2/100, . . ., pk/100. From this initial sample we

generate a large number of multinomial samples, say B, by sampling with re-

placement. The choice of B is arbitrary, but its value must be sufficiently large.

In practice, the number of B that is preferred, is 1000. The B samples are called

bootstrap samples. For each bootstrap sample the value of the index I is calculated.

After the assessment of all B index values, we order them in a non-descending

order and we denote the i − th of these values by

I(i), i = 1, . . ., B.
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In the sequel, we describe three alternative methods that one can apply in order to

create bootstrap confidence intervals. These methods, are the standard bootstrap,

the percentile bootstrap and the bias-corrected percentile bootstrap (see e.g., Efron

and Tibshirani (1993)).

3.2.1. The Standard Bootstrap

According to this method, a 100(1 − α)% confidence interval for the index I is

given by

(
Î − z1−α/2SI , Î + z1−α/2SI

)
,

where zα denotes the 100α% percentile of the standard normal distribution,

SI =

√√√√ 1

B − 1

B∑

i=1

(
I(i) − I

)2

is the standard deviation of the B index values,

I =
1

B

B∑

i=1

I(i)

is the mean of the B index values and Î is the index value that was assessed from

the initial sample.

3.2.2. The Percentile Bootstrap

According to this approach, the 100(1 − α)% confidence limits for the index I are

the 100 (a/2)% and 100(1 − α/2)% percentile points of the bootstrap distribution

of I . Consequently, the interval is

(
I(Bα/2), I(B(1−α/2))

)
.

It has to be remarked that, sometimes, Bα/2 or (1 − α/2)B are not integers and

so we cannot find the exact 100 (a/2)% and 100(1 − α/2)% percentiles. In such

cases, we take the nearest integers to Bα/2 and (1 − α/2)B.

3.2.3. The Bias-corrected Percentile Bootstrap

This third approach is similar to the second but involves a slight correction. The

reason why this correction is made is the potential bias. This method, despite the

fact that it is more complicated than the two previously described, performs usually

better than they do. According to this method, we firstly find the two successive

values I(i) and I(i+1) between which the value of the index that was assessed from
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the initial sample (Î ) lies. Then, we assess the value for which the cumulative

distribution function of the standard normal distribution ( takes the value i/B.

If we denote this value by z0, then z0 = (−1 (i/B). Finally, we calculate the

probabilities pl and pu, which are defined as

pl = ((2z0 + zα/2)

and

pu = ((2z0 + z1−α/2).

Using these probabilities we end up with a 100(1 − α)% confidence interval of the

form
(
I(B·pl), I(B·pu)

)
.

4. A Simulation Study

The performance of the three bootstrap methods that were described in the previ-

ous section is examined through a simulation study, whose results are presented

in the current section. In this study 10000 random samples from the multinomial

distribution with parameters n = 250 and n = 500 and various combinations of

π1, π2, . . ., π7 were generated. We selected 9 combinations of proportions so as

to include cases where the values of the indices are small, moderate or large. The

number of the selected categories is k = 7. Other choices of k are not considered

since the values of the three indices depend only on the percentages of the positive,

the negative and the neutral answers no matter how many positive and negative

answers exist. The selected combinations of the proportions are these presented in

Tables AI–AIV in the Appendix.

From each of the samples we generated B = 1000 samples. In each case

we found the observed coverage (OC), which must be as close as possible to

the nominal coverage. The nominal coverage is 0.90 (Tables AI and AIII ) and

0.95 (Tables AII and AIV). The first entry of each cell corresponds to the standard

bootstrap (SB) method, the second to the percentile bootstrap (PB) and the third to

the bias corrected percentile bootstrap (BB). Moreover the tables present the mean

range (MR) of the confidence intervals that each method gives. Similarly, the first

value corresponds to the SB, the second to PB and the third to BB.

From the tables we observe that:

− The observed coverage is not affected by the value of n (250 or 500). Thus,

we may construct confidence intervals for the indices even when we have a

relatively small number of available observations.

− For the index I1, method BB does not give satisfactory results in many cases.

On the other hand, method SB appears to be the one with the best results. The

mean range of the confidence intervals produced from the three methods is

nearly the same.
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− For index I2, in almost all cases, PB and BB provide confidence intervals

with very good coverage. However, using the method SB seems to be ill-

conditioned and it also gives the largest mean range. The mean range of the

other two methods is quite close even though BB method results generally in

shorter intervals.

− For index I3 methods PB and BB result in coverage close to the nominal

in all the examined cases. On the contrary, SB performs quite well in most

of the parameters combinations, but leads to unsatisfactory results when the

proportion of positive answers is very large. Generally, method SB gives wider

intervals while BB gives shortest ones.

Note that the mean range of I2 and I3 can not be computed in any case as

these indices may equal infinity. Finally, it should be remarked that the previously

described procedure was also implemented for B = 500 and the obtained results

were similar. However, we suggest the use of B = 1000, since it is the standard

practice in most related papers.

5. An Illustrative Example

In order to illustrate the assessment of the indices defined in this paper and the

construction of confidence intervals for their true values we used the data analyzed

by Jensen (1986). These data were collected between 1973 and 1976 from the only

Catholic high school and its two neighboring public high schools of a southeastern

city of the United States. Questionnaires were given to about 60% of the students

of each school. (More details on the survey design and the data collection are given

in Jensen (1986)). The questionnaires that were given to the students include some

questions with ordinal answers for which one can implement the theory developed

in the preceding sections.

In Table 5 of Jensen (1986) we have answers on some questions related to the

attitudes of the students toward school. These questions are

1. The things we learn in school are important to me

2. Going to school is making me a better person

3. Getting good grades is important to me

4. I wish I could drop out of school

and the possible answers were “strongly agree” (SA), “agree” (A), “uncertain” (U),

“disagree” (D), “strongly disagree” (SD).

Jensen (1986) gives the observed proportions of the answers for public-school

and catholic-school students separately. The observed proportions (%) of public

and catholic schools are displayed on Tables I and II, respectively.

In Table III, we present the values of the three indices for the two types of

schools and for all the four questions. For the first three questions, we see that the

students seem to prefer the positive answers (SA and A) since the values of all the

indices are greater than one. On the other hand, for the fourth question the values
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Table I. Public schools

Question SA A U D SD n

1 25.2 49.1 14.6 7.5 3.7 1463

2 24.0 41.3 21.9 8.4 4.5 1481

3 37.3 47.0 8.0 5.7 2.0 1481

4 3.7 4.7 9.0 25.4 57.2 1478

Table II. Catholic schools

Question SA A U D SD n

1 27.9 48.5 11.7 8.9 3.0 437

2 27.2 39.0 20.9 10.0 2.9 441

3 45.6 41.7 7.0 3.6 2.0 441

4 2.3 5.7 12.9 26.5 52.6 441

of all the indices are very small, which means that the students avoid selecting

positive answers.

In Tables IV–IX we present confidence intervals for the indices using the

techniques described in Section 3. In particular, Tables IV and V refer to boot-

strap confidence intervals for the three indices for public and catholic schools,

respectively. Tables VI–IX correspond to the parametric methods of Section 3.1

for confidence intervals of index I1.

From all the confidence intervals we conclude that in the first three questions

the students seem to prefer the positive answers (SA and A) since all the values

contained in the intervals are greater than one. In the fourth question the range

of values of all the intervals is restricted to values less than one, which indicates

that the students do not tend to select positive answers. Furthermore, according to

Table III. Values of the three indices

Public schools Catholic schools

Question I1 I2 I3 I1 I2 I3

1 1.857 6.634 3.446 1.910 6.420 3.733

2 1.632 5.062 2.506 1.655 5.132 2.577

3 2.108 10.948 5.879 2.182 15.589 7.484

4 0.210 0.102 0.190 0.200 0.101 0.227
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Table IV. Bootstrap confidence intervals

Public schools

Question I1 I2 I3

SB (1.8007, 1.9143) (5.5403, 7.7276) (3.1001, 3.7914)

1 PB (1.8011, 1.9122) (5.7676, 7.9643) (3.1401, 3.8134)

BB (1.8011, 1.9122) (5.6774, 7.8085) (3.1157, 3.7886)

SB (1.5719, 1.6931) (4.2574, 5.8666) (2.2987, 2.7128)

2 PB (1.5699, 1.6965) (4.3807, 6.0488) (2.3175, 2.7421)

BB (1.5716, 1.6965) (4.3670, 5.9814) (2.3110, 2.7220)

SB (2.0615, 2.1535) (8.7435, 13.1527) (5.1139, 6.6441)

3 PB (2.0645, 2.1556) (9.2313, 13.5376) (5.2326, 6.7246)

BB (2.0679, 2.1590) (9.2481, 13.5914) (5.2852, 6.8209)

SB (0.1756, 0.2444) (0.0834, 0.1199) (0.1677, 0.2122)

4 PB (0.1776, 0.2453) (0.0842, 0.1209) (0.1681, 0.2117)

BB (0.1810, 0.2503) (0.0852, 0.1226) (0.1704, 0.2151)

Table V. Bootstrap confidence intervals

Catholic schools

Question I1 I2 I3

SB (1.8091, 2.0109) (4.4006, 8.4397) (2.9849, 4.4812)

1 PB (1.8078, 2.0080) (4.8060, 8.8974) (3.1074, 4.5814)

BB (1.8078, 2.0080) (4.8333, 8.9487) (3.1176, 4.5862)

SB (1.5434, 1.7666) (3.5798, 6.6837) (2.1727, 2.9811)

2 PB (1.5420, 1.7630) (3.9286, 7.1860) (2.2256, 3.0226)

BB (1.5420, 1.7687) (3.9437, 7.1905) (2.2470, 3.0630)

SB (2.1038, 2.2612) (7.9414, 23.2371) (5.3908, 9.5774)

3 PB (2.1032, 2.2619) (10.8000, 26.1333) (5.8429, 10.2381)

BB (2.0918, 2.2562) (10.7429, 25.1875) (5.8857, 10.2927)

SB (0.1378, 0.2622) (0.0668, 0.1355) (0.1831, 0.2712)

4 PB (0.1417, 0.2664) (0.0708, 0.1377) (0.1827, 0.2720)

BB (0.1474, 0.2721) (0.0718, 0.1399) (0.1849, 0.2744)

the index values and confidence intervals we do not observe significant differences

in the degree of concentration to the positive answers in all the questions for the

two types of schools (the corresponding confidence intervals have common values).

However, Jensen (1986) implemented chi-square test in order to capture differences
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Table VI. Confidence intervals (8)

Question Public schools Catholic schools

1 (1.7995, 1.9131) (1.8041, 2.0083)

2 (1.5702, 1.6930) (1.5397, 1.7655)

3 (2.0578, 2.1522) (2.0957, 2.2566)

4 (0.1757, 0.2480) (0.1398, 0.2716)

Table VII. Confidence intervals (1)

Question Public schools Catholic schools

1 (1.6741, 2.0492) (1.5772, 2.2693)

2 (1.4544, 1.8213) (1.3341, 2.0121)

3 (1.9132, 2.3052) (1.8296, 2.5489)

4 (0.1431, 0.3056) (0.1002, 0.3935)

in the way that the students of public and catholic schools answered and concluded

that there exist significant differences in the third question.

Finally, we have to remark that the method of Sison and Glaz (1995) has not

been implemented as it would have been extremely cumbersome due to the large

sample size of our example.

6. Discussion-Conclusions

In the previous sections we introduced some new indices for ordered answers in

questionnaires. Various methods for constructing confidence intervals for these

indices are outlined. Finally, the performance of some of these methods was

investigated.

Table VIII. Confidence intervals (2)

Question Public schools Catholic schools

1 (1.8342, 1.8866) (1.8547, 1.9844)

2 (1.6104, 1.6620) (1.6039, 1.7318)

3 (2.0818, 2.1351) (2.1214, 2.2531)

4 (0.2029, 0.2371) (0.1910, 0.2740)
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Table IX. Confidence intervals (3)

Question Public schools Catholic schools

1 (1.7098, 2.0052) (1.6405, 2.1810)

2 (1.4855, 1.7792) (1.3863, 1.9244)

3 (1.9599, 2.2535) (1.9135, 2.4516)

4 (0.0628, 0.3567) (0.0072, 0.4675)

It would be useful to compare the observed coverage of the confidence intervals

for index I1 based on formulae (1), (2), (3) and (4), even though the coverage of the

bootstrap confidence intervals seems to be quite satisfactory in most of the cases.

Nevertheless, we believe that bootstrap confidence limits should be preferred since

the method of Sison and Glaz (1995), which performs better than the other three

parametric methods (see Sison and Glaz (1995)), is extremely complicated and

time consuming. Finally, it should be noted that we currently work on possible

modifications of the indices introduced, that overcome some of their drawbacks.

Appendix

See tables on following pages
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Table AI. B = 1000, n = 250, (90%)

I1 I2 I3

Proportions OC MR OC MR OC MR

SB 0.8831 0.1450 0.9015 0.1655 0.9004 0.1344

0.03 0.02 0.05 0.45 0.05 0.2 0.2 PB 0.8892 0.1446 0.8978 0.1646 0.8994 0.1343

BB 0.8711 0.1435 0.8992 0.1653 0.9004 0.1343

SB 0.8888 0.1934 0.9005 0.2926 0.8999 0.1753

0.06 0.06 0.08 0.4 0.1 0.15 0.15 PB 0.8897 0.1931 0.8979 0.2906 0.8976 0.1750

BB 0.8813 0.1925 0.9013 0.2910 0.8979 0.1751

SB 0.9005 0.2218 0.9100 0.4611 0.9044 0.2332

0.1 0.1 0.1 0.35 0.15 0.10 0.10 PB 0.8954 0.2216 0.9015 0.4574 0.9008 0.2327

BB 0.8913 0.2213 0.9024 0.4570 0.9008 0.2327

SB 0.8962 0.2373 0.9131 0.7043 0.9056 0.3184

0.15 0.15 0.1 0.3 0.1 0.1 0.1 PB 0.8942 0.2372 0.9059 0.6967 0.9021 0.3173

BB 0.8917 0.2371 0.9052 0.6951 0.9028 0.3171

SB 0.9054 0.2422 0.9121 0.8438 0.9100 0.4513

0.2 0.15 0.15 0.2 0.10 0.10 0.10 PB 0.9170 0.2419 0.9011 0.8342 0.9031 0.4489

BB 0.9134 0.2422 0.9027 0.8312 0.9048 0.4484

SB 0.9015 0.2373 0.9129 0.9823 0.9077 0.6768

0.2 0.2 0.2 0.1 0.1 0.1 0.1 PB 0.9000 0.2372 0.9024 0.9710 0.9005 0.6718

BB 0.8955 0.2377 0.9029 0.9667 0.9021 0.6699

SB 0.8994 0.2219 0.9188 2.0187 0.9099 1.1332

0.25 0.25 0.2 0.1 0.1 0.05 0.05 PB 0.9104 0.2217 0.8953 1.9790 0.8960 1.1206

BB 0.9062 0.2226 0.8970 1.9600 0.8941 1.1146

SB 0.8942 0.1935 0.9396 6.9855 0.9216 2.2949

0.25 0.25 0.3 0.1 0.05 0.03 0.02 PB 0.8960 0.1933 0.8968 6.6062 0.8964 2.2509

BB 0.8937 0.1947 0.9015 6.4264 0.9013 2.2249

SB 0.8844 0.1449 0.8668 – 0.9367 7.7877

0.3 0.3 0.3 0.05 0.02 0.02 0.01 PB 0.9135 0.1446 0.8979 – 0.8931 7.3692

BB 0.9178 0.1471 0.8947 – 0.8973 7.1222
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Table AII. B = 1000, n = 250, (95%)

I1 I2 I3

Proportions OC MR OC MR OC MR

SB 0.9388 0.1728 0.9451 0.1972 0.9482 0.1601

0.03 0.02 0.05 0.45 0.05 0.2 0.2 PB 0.9396 0.1720 0.9450 0.1967 0.9476 0.1600

BB 0.9286 0.1708 0.9466 0.1975 0.9470 0.1601

SB 0.9433 0.2304 0.9456 0.3487 0.9492 0.2089

0.06 0.06 0.08 0.4 0.1 0.15 0.15 PB 0.9388 0.2299 0.9473 0.3479 0.9483 0.2088

BB 0.9307 0.2293 0.9499 0.3483 0.9487 0.2088

SB 0.9494 0.2643 0.9542 0.5495 0.9534 0.2779

0.1 0.1 0.1 0.35 0.15 0.10 0.10 PB 0.9483 0.2639 0.9503 0.5481 0.9510 0.2777

BB 0.9402 0.2636 0.9507 0.5477 0.9501 0.2777

SB 0.9477 0.2828 0.9569 0.8393 0.9526 0.3794

0.15 0.15 0.1 0.3 0.1 0.1 0.1 PB 0.9464 0.2824 0.9511 0.8363 0.9507 0.3790

BB 0.9428 0.2824 0.9513 0.8343 0.9498 0.3788

SB 0.9530 0.2886 0.9571 1.0054 0.9549 0.5378

0.2 0.15 0.15 0.2 0.10 0.10 0.10 PB 0.9588 0.2883 0.9458 1.0016 0.9512 0.5368

BB 0.9576 0.2886 0.9476 0.9978 0.9500 0.5360

SB 0.9489 0.2827 0.9566 1.1704 0.9555 0.8064

0.2 0.2 0.2 0.1 0.1 0.1 0.1 PB 0.9496 0.2824 0.9495 1.1662 0.9484 0.8045

BB 0.9458 0.2832 0.9509 1.1610 0.9488 0.8021

SB 0.9482 0.2644 0.9575 2.4054 0.9556 1.3503

0.25 0.25 0.2 0.1 0.1 0.05 0.05 PB 0.9559 0.2641 0.9472 2.3900 0.9484 1.3455

BB 0.9529 0.2654 0.9471 2.3662 0.9474 1.3385

SB 0.9477 0.2306 0.9642 8.3238 0.9589 2.7346

0.25 0.25 0.3 0.1 0.05 0.03 0.02 PB 0.9473 0.2303 0.9442 8.1424 0.9484 2.7173

BB 0.9448 0.2321 0.9471 7.9110 0.9504 2.6863

SB 0.9355 0.1726 0.8864 – 0.9601 9.2796

0.3 0.3 0.3 0.05 0.02 0.02 0.01 PB 0.9558 0.1722 0.9411 – 0.9431 9.0766

BB 0.9581 0.1752 0.9486 – 0.9479 8.7654
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Table AIII. B = 1000, n = 500, (90%)

I1 I2 I3

Proportions OC MR OC MR OC MR

SB 0.9015 0.1027 0.9016 0.1156 0.8999 0.0949

0.03 0.02 0.05 0.45 0.05 0.2 0.2 PB 0.8984 0.1025 0.8995 0.1152 0.8992 0.0948

BB 0.8902 0.1022 0.9013 0.1156 0.8983 0.0949

SB 0.9003 0.1371 0.9064 0.2045 0.9068 0.1238

0.06 0.06 0.08 0.4 0.1 0.15 0.15 PB 0.8992 0.1371 0.9085 0.2038 0.9044 0.1237

BB 0.8934 0.1368 0.9075 0.2040 0.9039 0.1237

SB 0.8988 0.1570 0.9040 0.3190 0.9018 0.1640

0.1 0.1 0.1 0.35 0.15 0.10 0.10 PB 0.8971 0.1570 0.8998 0.3176 0.8988 0.1637

BB 0.8947 0.1570 0.8986 0.3177 0.8981 0.1638

SB 0.9003 0.1680 0.9043 0.4853 0.9006 0.2235

0.15 0.15 0.1 0.3 0.1 0.1 0.1 PB 0.8984 0.1680 0.8984 0.4828 0.8956 0.2230

BB 0.8957 0.1680 0.8984 0.4825 0.8950 0.2231

SB 0.9000 0.1714 0.9056 0.5806 0.9035 0.3151

0.2 0.15 0.15 0.2 0.10 0.10 0.10 PB 0.9093 0.1713 0.8970 0.5772 0.9006 0.3142

BB 0.9086 0.1715 0.8963 0.5767 0.9025 0.3142

SB 0.8922 0.1679 0.9062 0.6762 0.9037 0.4701

0.2 0.2 0.2 0.1 0.1 0.1 0.1 PB 0.8949 0.1679 0.9005 0.6723 0.8963 0.4684

BB 0.8928 0.1681 0.9009 0.6713 0.8976 0.4680

SB 0.8983 0.1571 0.9068 1.3638 0.9027 0.7803

0.25 0.25 0.2 0.1 0.1 0.05 0.05 PB 0.9087 0.1570 0.8965 1.3518 0.8964 0.7761

BB 0.9058 0.1573 0.8948 1.3466 0.8953 0.7747

SB 0.8988 0.1371 0.9239 4.3475 0.9122 1.5451

0.25 0.25 0.3 0.1 0.05 0.03 0.02 PB 0.9006 0.1370 0.9003 4.2565 0.8998 1.5309

BB 0.8977 0.1375 0.9025 4.2109 0.9006 1.5238

SB 0.8938 0.1027 0.9348 15.385 0.9202 4.8820

0.3 0.3 0.3 0.05 0.02 0.02 0.01 PB 0.9096 0.1025 0.8907 14.505 0.8960 4.7789

BB 0.9093 0.1035 0.8947 14.078 0.8956 4.7180
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Table AIV. B = 1000, n = 500, (95%)

I1 I2 I3

Proportions OC MR OC MR OC MR

SB 0.9482 0.1224 0.9497 0.1377 0.9512 0.1131

0.03 0.02 0.05 0.45 0.05 0.2 0.2 PB 0.9467 0.1221 0.9485 0.1375 0.9514 0.1130

BB 0.9401 0.1217 0.9490 0.1378 0.9498 0.1131

SB 0.9481 0.1634 0.9529 0.2436 0.9542 0.1475

0.06 0.06 0.08 0.4 0.1 0.15 0.15 PB 0.9463 0.1633 0.9548 0.2433 0.9520 0.1474

BB 0.9434 0.1631 0.9554 0.2436 0.9518 0.1475

SB 0.9467 0.1871 0.9489 0.3801 0.9492 0.1954

0.1 0.1 0.1 0.35 0.15 0.10 0.10 PB 0.9450 0.1870 0.9483 0.3796 0.9481 0.1953

BB 0.9428 0.1869 0.9496 0.3796 0.9475 0.1953

SB 0.9513 0.2002 0.9511 0.5783 0.9499 0.2663

0.15 0.15 0.1 0.3 0.1 0.1 0.1 PB 0.9511 0.2001 0.9478 0.5774 0.9479 0.2662

BB 0.9478 0.2002 0.9489 0.5771 0.9482 0.2663

SB 0.9479 0.2043 0.9528 0.6918 0.9509 0.3754

0.2 0.15 0.15 0.2 0.10 0.10 0.10 PB 0.9527 0.2041 0.9505 0.6903 0.9502 0.3750

BB 0.9522 0.2044 0.9504 0.6896 0.9490 0.3750

SB 0.9472 0.2001 0.9514 0.8057 0.9507 0.5602

0.2 0.2 0.2 0.1 0.1 0.1 0.1 PB 0.9471 0.1999 0.9473 0.8042 0.9475 0.5594

BB 0.9457 0.2003 0.9476 0.8031 0.9470 0.5591

SB 0.9488 0.1871 0.9537 1.6251 0.9537 0.9298

0.25 0.25 0.2 0.1 0.1 0.05 0.05 PB 0.9563 0.1871 0.9491 1.6200 0.9502 0.9283

BB 0.9567 0.1876 0.9485 1.6141 0.9498 0.9265

SB 0.9472 0.1634 0.9577 5.1804 0.9533 1.8411

0.25 0.25 0.3 0.1 0.05 0.03 0.02 PB 0.9495 0.1632 0.9471 5.1430 0.9469 1.8355

BB 0.9462 0.1640 0.9485 5.0884 0.9474 1.8275

SB 0.9447 0.1223 0.9589 18.332 0.9589 5.8172

0.3 0.3 0.3 0.05 0.02 0.02 0.01 PB 0.9537 0.1221 0.9423 17.902 0.9456 5.7755

BB 0.9560 0.1233 0.9460 17.367 0.9486 5.7009
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