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1. Introduction 

 

Evaluating the forecasting potential of a model before it can be used for 

planning and decision making has been the concern of many statistical workers. 

A number of evaluation techniques has thus been considered and much theory 

has been developed, especially for nested models based mainly on goodness of 

fit considerations.  

Predictive evaluation appears to have received less attention, despite the 

fact that the predictive ability of a model is a very important characteristic of the 

model. Xekalaki and Katti (1984) introduced an evaluation scheme of a 

sequential nature that can be used for models that are not necessarily nested. It is 

based on the idea of scoring rules for rating the predictive behavior of 

competing models in which the researcher's subjectivity plays an important role. 

Its effect is reflected through the rules according to which the performance of 

the model is scored and rated. (see, also Panaretos et al., 1997, Psarakis, 1993, 

Psarakis & Panaretos, 1990). 

Model comparison problems have also attracted much interest. The 

selection procedures that have been developed are mainly based on criteria for 

testing the null hypothesis that one model is valid against an alternative 

hypothesis that another model is valid. Such testing procedures lead to the 

selection of one of two competing models. The problem of testing whether two 

models can be considered as “equivalent” in some sense requires a different 

hypothesis formulation and has only been approached indirectly through the 

concept of encompassing (see, e.g., Gouriéroux et al., 1993, Gouriéroux & 

Monfort, 1996) and through asymptotic results based on the change in 

likelihood.             

In this chapter, an evaluation method is proposed that is based on Xekalaki 

and Katti’s idea of using a scoring rule but is free of the element of subjectivity. 

In particular, a scoring rule is suggested to rate the behavior of a linear 

forecasting model for each of a series of n points in time. A final rating which 

embodies the step-by-step scores is then used as a statistic for testing the 

predictive adequacy of the model. The problem of comparative evaluation is 

also considered and a test procedure is suggested for testing whether two linear 



 

models that are not necessarily nested can be considered to be “equivalent” in 

their predictive abilities. In this case, a distribution which is a generalized form 

of the F distribution arises as the distribution of the sample statistic is 

considered. This distribution and the scoring rule associated with it are used for 

comparing two linear models on real data. In particular, in section 2, the 

regression model setting considered in the sequel is presented and the scheme 

suggested for evaluating the predictive ability of a linear model is described. 

Section 3 deals with the problem of comparatively evaluating two competing 

linear models in their predictive abilities. The distribution of the test statistic 

used is derived and studied is sections 4 and 5 while selected percentage points 

of it are provided in the Appendix. The procedure is illustrated on several crop 

yield data sets (section 6). 

 

2. Rating the Predictive Ability of a Linear Model  

 

Consider the linear model  
... 2, 1, 0,tttt =   += ,εβXY   

where Yt is an 1t ×A  vector of observations on the dependent random variable, 

Xt  is an mt ×A  matrix of known coefficients ( )0, ≠′  > tt XXm0A ,  β  is an m × 1 

vector of regression coefficients and εt  is an 1t ×A  vector of  normal error 

random variables with E(εt)=0 and V(εt)=σ2It. Here it is the tt AA ×  identity 

matrix. Therefore, a prediction for the value of the dependent random variable 

for time t+1 will be given by the statistic 
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are of dimension m1t ×+A  and 11t ×+A  respectively, where 

... 2, 1, 0,    t1,t1t =+=+ AA . 

The predictive behavior of the model would naturally be evaluated by a 

measure  that  would  be  based on a statistic reflecting the degree of agreement 

of the observed actual value 0
1tY +

ˆ  to the predicted value  0
1tY +

ˆ .  Such a statistic 

may be the statistic 1tr + , where  
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Obviously, 1tr +  is merely an estimate of the standardized distance between 

the predicted and the observed value of the dependent random variable when σ2 

is estimated on the basis of the preceding tA  observations available at time t. 

2
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So, a score based on 1tr +  can provide a measure of the predictive adequacy 

of the model for each of a series of n points in time. Then, as a final rating of the 

model one can consider the average of these scores, or any other summary 

statistic that can be regarded as reflecting the forecasting potential of the model. 

In the sequel, we consider using 2
ir as a scoring rule to rate the performance 

of the model at time t for a series of n points in time, (t =1, 2, ..., n) and we 

define  

 nrR
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the average of the squared recursive residuals, to be the final rating of the 

model. 

It has been shown (Brown, et al., 1975, Kendall et al., 1983) that if εt is a 

vector of normal error variables with Ε(εt)=0 and V(εt)=σ2 
It , the quantities  
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are independently and identically distributed normal variables with mean  0  and  

variance σ2. Then, according to Kotlarski's (1966) characterization of the normal 

distribution by the t distribution, the quantities t1t1t swr ++ = ,  t = 0, 1, 2, ... 

constitute a sequence of  independent  t  variables with mt −A  degrees of 

freedom, t = 0, 1, 2, . . . Hence, by the assumptions of the model considered and 

for large 0A , the variables rt+1, t = 0, 1, 2, ... constitute a sequence of 

approximately standard  normal  variables which are mutually independent. This 

implies that  
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is a chi-square variable with n degrees of  freedom. 

 

3. Comparative Evaluation of the  Predictive Ability of Two Linear 

Models With the Use of a Generalized Form of the F Distribution  

 

Consider now A and B to be two competing linear models that have been 

used for prediction purposes for a number n1 and n2 of years, respectively. A 



 

null hypothesis that is interesting to test is whether two models have 

“equivalent” forecasting abilities. This is a hypothesis that can be defined only 

implicitly, but it exists as a mathematical entity. The closest description of it is 

“H0: models A and B have equal mean squared prediction errors.” This is a 

hypothesis that can be tested formally using conventional methods, in all cases 

in which neither, one, or both models are correctly specified using the average 

standardized distances between the observed value of the dependent variable 

and its predicted values by models A and B. Then, a decision on whether 

models A and B are “equivalent” in their predictive ability would naturally be 

based on the ratio of the average scores of the two models as given by the 

statistic 
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where ( )AR
1n , ( )BR

2n ,  are given  by  (2) for n=n1 and n=n2 and refer to model 

A and model B, respectively. 

For large 
1t

A , 
2tA the distribution of the statistic 

21 n,nR can be approximated 

by the F distribution with n1 and n2 degrees of freedom whenever the ratings of 

the two models are independent. Hence, values of 
21 n,nR in the right tail of the F 

distribution with n1 and n2 degrees of freedom will indicate a higher 

performance by model A. 

However, under the conditions of the problem, the assumption of 

independence does not seem to be satisfied.  

Determining the exact distribution of 
21 n,nR  in the case of dependent 

ratings would, however, be desirable as in practice data on ratings are often 

matched. (In the latter case, n1=n2=n.) 

Kotlarski (1964) has shown that, under certain conditions, the quotient 

X/Y, where X,Y are positive valued random variables not necessarily 

independent, follows the F distribution. According to Kotlarski (1964), a 

necessary and sufficient condition for the ratio of two variables to follow an F 

distribution can be established through the form of the Mellin transform of their 

joint distribution. In particular, Kotlarski (1964) has shown that if Ψ is the set of 

joint distribution functions F(x,y) of two not necessarily independent positive 

valued random variables X and Y, whose quotient X/Y follows the F 

distribution with parameters p1 and p2 , then the following result holds. 

 

Theorem (Kotlarski, 1964): For a distribution function F(x,y) to belong to 

the set Ψ it is necessary and sufficient that its Mellin transform 
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For our problem, consider the random variables (A)rX ii = , (B)rY ii = , i=1, 

2,..., n obtained from (1) for model A and model B respectively. Each of the 

variables Xi, Yi follows the standard normal distribution. The joint distribution 

is therefore the bivariate standard normal distribution with a correlation 

coefficient denoted by ρ. Under these conditions, the joint distribution of the 

random variables 
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is Kibble’s (1941) bivariate Gamma distribution as defined by the probability 

density function  
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where k=n/2 and )x(Ik  is the modified Bessel function of the first kind of order 

k given by (see Abramowitz & Stegun, 1972) 
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So, finally, the probability density function of the bivariate gamma distribution 

of     (Rn(A), Rn(B)) is given by  
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To determine whether an F form can be deduced for the distribution of 

n,nR , one needs to examine if Kotlarski’s theorem applies for the joint 

distribution of ( )AR n , ( )BR n . 

For Kibble’s bivariate Gamma distribution, we obtain, by the definition of 

the Mellin transform 
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Definition by I, the double integral in the right-hand side of the above 

relationship, we have 
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or, equivalently that 
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is the hypergeometric series with α(r) denoting the ascending factorial (see 

Abramowitz & Stegun, 1972).  

One can see that the Mellin transform of Kibble’s distribution given (6) does not 

satisfy the conditions of Theorem 1. Hence, the quotient ( ) ( )BRAR nn  does not 

follow the F distribution when ( )AR n  and ( )BR n  are dependent. 

In the next section, it is shown that the distribution of n,nR  is a generalized 

form of the F distribution. 

 

4. The Distribution of the Ratio X/Y When X and Y Follow Kibble’s 

Bivariate Gamma Distribution 

 

It is known that if X and Y are dependent random variables, the distribution 

function of Z=X/Y  is given by  
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where  )(FU ⋅ and )(fU ⋅ denote the distribution function and the probability 

density function of a random variable U respectively .  

Then, the density function of the quotient Z=X/Y can be written as 
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Furthermore, 
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Hence (7) can be written as 
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The density function in (8) defines the distribution of the quotient X/Y when the 

joint distribution of  (X,Y) is Kibble's bivariate gamma. In the sequel, we refer 

to this distribution as the correlated gamma - ratio (CGR) distribution with 

parameters ρ and k. (A reparameterized form of this distribution was arrived at 

by Izawa (1965)). 

Note: One can see that in the case where X and Y are independent, whence ρ=0, 

the probability density function of the quotient X/Y takes the form 
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1
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This is the probability density function of the Beta type II distribution with 

parameters k and R or, equivalently of the F distribution with 2k and 2k degrees 

of freedom.  

 

5. The t Distribution as a Limiting Case of the Correlated Gamma Ratio 

Distribution 

 

In the sequel, it is shown that the t distribution can be obtained as a limiting 

case of the CGR distribution. 

Let Z follow the CGR distribution with density function given by (8). 

Consider the variable  
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Using (8), this reduces to 
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Taking the limit as ρ → 1 we obtain 
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But this is the probability density function of the t distribution.  

In the Appendix, some graphs of the probability density function of the 

correlated gamma-ratio distribution are provided for different values of k and ρ. 

Also, Tables A1, A2 and A3 provide percentage points of the distribution for 

selected values of the parameter  k (k=1(1) 30, 40, 50, 60) and of the correlation 

coefficient ρ  (ρ=0.0(0.1)  0.9). 

 

6. An Application to Crop-Yield Data 

 

For the purpose of illustrating the model selection procedure, a problem 

presented in Xekalaki and Katti (1984), concerning the selection of a linear 

model among several competing ones considered by the United States 

Department of Agriculture (USDA) to predict the corn yield for 10 Crop 

Reporting Districts (CRD 10, 20, …,100), was re-examined based on several 

sets of real data for the State of Iowa for the years 1956 to 1980. The competing 

models use information about the weather conditions (e.g., temperature, rainfall 

etc.) for the previous time periods as well as general trend factors for predicting 

the crop yield. A detailed description of the models can be found in Linardis 

(1998).  

The aim of the application is to compare the predictability of these models 

for every district, using the Correlated Gamma - Ratio distribution. 

Let Am  and Bm denote these two models respectively. To compare the two 

crop yield models we need to test a hypothesis of the form: 

 H0: Models Am  and Bm  are of “equivalent” predictive ability (symbolically, 

Am  ~ Bm )versus an alternative 

  H1: The two models differ in their predictive ability, i.e., Am  is of higher  

         predictive ability (symbolically, Am ; Bm ) or of lower predictive  

        ability (symbolically, Am ≺ Bm ) , 

where the term “equivalent” is used in the sense defined in section 3.   

Rejection of the null hypothesis indicates that one of the models performs 

differently. With a one-sided alternative, one may proceed in a manner similar 

to that used when testing for equality of variances via the F-test. The results of 

testing the predictive equivalence of models Am  and Bm  on the crop yield data 

 



 

and considered together with the estimated values of the correlations between 

the standardized prediction errors for the two models are summarized in 

Table16.1. 

 

 

 

 

Table 16.1: Results of testing the null hypothesis of predictive equivalence of 

models Am  and Bm  H0: Am ~ Bm  on the crop yield data of the 10 

reporting districts the state of Iowa (n=24).  

 

  Sums of squared recursive 

residuals 
    

Crop 

reporting 

district 

 

 

H1 

Model 

Am  

(n )A(nR )

Model 

Bm  

(n )B(nR ) 

 

 

Rn,n 

Estimated 

value 

of ρ 

 

 

p-value 

model  to be 

selected 

(“best” 

model) 

10 CRD  BmAm ;  58.844  92.798  0.634  0.803  0.0355  A model  

20 CRD  BmAm ;  58.681  59.595  0.985  0.908  0.4656  "equivalent"  

30 CRD  BmAm ;  24.638  

 

35.354  0.697  0.885  0.0337  A model  

40 CRD  BmAm ≺  69.677  

 

66.691  1.044  0.449  0.453  "equivalent"  

50 CRD  BmAm ;  49.005  

 

51.028  0.961  0.620  0.45  "equivalent"  

60 CRD  BmAm ≺  55.949  

 

32.789  1.706  0.155  0.0963  B model  

70 CRD  BmAm ;  39.933  

 

49.012  0.815  0.561  0.275  "equivalent"  

80 CRD  BmAm ≺  57.396  

 

52.232  1.098  0.796  0.353  "equivalent"  

90 CRD  BmAm ≺  61.461  

 

41.810  1.470  0.669  0.1068  "equivalent"  

100 CRD BmAm ;  46.515  

 

73.943  0.629  0.593  0.0868  A model  

 

From this table, one may see that for six districts, the models are of 

equivalent predictive ability. Model mA  performs “better” in 3 cases while only 

in one case model Bm  is “superior.” 

In all the cases considered, the parameter ρ was estimated from the data as 

the sample correlation between the standardized prediction errors of the two 

competing models. The extent to which the use of an estimate of ρ may affect 

the selection procedure has to be investigated. Of course, asymptotically, it is 

not expected to have any impact because ρ is estimated consistently. The first 



 

investigation results for small to moderate sample sizes are not indicative of any 

appreciable effect either. 

 

 

 

 

 
APPENDIX 

 
Table A1: Percentage points of the Correlated Gamma Ratio distribution for α=0.1 
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    ρ 

k 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 9 8.93 8.72 8.36 7.85 7.2 6.4 5.45 4.33 3.02 

2 4.11 4.08 4.01 3.88 3.71 3.48 3.2 2.85 2.44 1.93 

3 3.055 3.04 3.00 2.92 2.81 2.67 2.49 2.27 2.00 1.66 

4 2.59 2.58 2.55 2.49 2.41 2.3 2.17 2.00 1.8 1.53 

5 2.32 2.31 2.29 2.24 2.18 2.09 1.98 1.84 1.67 1.46 

6 2.15 2.14 2.12 2.08 2.02 1.95 1.85 1.74 1.59 1.41 

7 2.02 2.01 2.00 1.96 1.91 1.85 1.76 1.66 1.54 1.37 

8 1.93 1.92 1.90 1.87 1.83 1.77 1.70 1.61 1.49 1.34 

9 1.85 1.846 1.83 1.80 1.76 1.71 1.64 1.56 1.455 1.315 

10 1.79 1.785 1.775 1.75 1.71 1.665 1.6 1.525 1.425 1.295 

11 1.745 1.74 1.725 1.705 1.67 1.62 1.565 1.49 1.4 1.277 

12 1.705 1.70 1.685 1.665 1.63 1.59 1.535 1.465 1.38 1.265 

13 1.665 1.664 1.65 1.63 1.60 1.56 1.51 1.44 1.36 1.253 

14 1.635 1.63 1.62 1.6 1.57 1.53 1.485 1.423 1.345 1.24 

15 1.605 1.604 1.59 1.575 1.546 1.51 1.465 1.405 1.33 1.31 

16 1.585 1.58 1.57 1.55 1.525 1.49 1.445 1.39 1.32 1.225 

17 1.56 1.553 1.546 1.53 1.505 1.471 1.43 1.376 1.307 1.216 

18 1.54 1.535 1.525 1.510 1.486 1.455 1.415 1.364 1.297 1.207 

19 1.52 1.519 1.51 1.495 1.471 1.44 1.402 1.351 1.287 1.203 

20 1.505 1.504 1.495 1.48 1.456 1.426 1.39 1.341 1.28 1.197 

21 1.49 1.489 1.48 1.465 1.44 1.415 1.377 1.331 1.274 1.193 

22 1.475 1.474 1.466 1.451 1.43 1.404 1.379 1.323 1.353 1.187 

23 1.465 1.460 1.455 1.440 1.567 1.391 1.358 1.315 1.259 1.183 

24 1.454 1.450 1.442 1.428 1.408 1.382 1.35 1.306 1.252 1.178 

25 1.442 1.44 1.432 1.418 1.4 1.374 1.34 1.3 1.246 1.174 

26 1.432 1.43 1.422 1.408 1.39 1.366 1.344 1.292 1.240 1.17 



 

27 1.422 1.42 1.412 1.4 1.382 1.356 1.326 1.286 1.238 1.166 

28 1.412 1.410 1.402 1.39 1.372 1.35 1.32 1.28 1.23 1.163 

29 1.404 1.402 1.394 1.382 1.366 1.342 1.312 1.274 1.226 1.16 

30 1.396 1.394 1.386 1.375 1.358 1.336 1.306 1.27 1.222 1.157 

40 1.333 1.332 1.326 1.316 1.302 1.284 1.259 1.228 1.189 1.134 

50 1.293 1.291 1.287 1.279 1.267 1.249 1.229 1.203 1.168 1.119 

60 1.265 1.264 1.259 1.252 1.24 1.226 1.207 1.183 1.152  

 

 

 

Table A2: Percentage points of the Correlated Gamma Ratio distribution for α=0.05   
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    ρ 

k 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 19 18.80 18.3 17.4 16.27 14.73 12.84 10.60 8.02 5.04 

2 6.39 6.34 6.20 5.97 5.64 5.22 4.7 4.07 3.34 2.46 

3 4.284 4.26 4.18 4.04 3.85 3.61 3.31 2.945 2.51 1.97 

4 3.44 3.42 3.36 3.27 3.145 2.96 2.74 2.48 2.16 1.76 

5 2.98 2.96 2.92 2.84 2.74 2.6 2.43 2.22 1.965 1.64 

6 2.687 2.675 2.65 2.57 2.485 2.37 2.23 2.06 1.835 1.56 

7 2.49 2.47 2.44 2.39 2.31 2.21 2.09 1.935 1.75 1.51 

8 2.335 2.325 2.29 2.25 2.18 2.1 1.985 1.85 1.675 1.46 

9 2.22 2.21 2.19 2.14 2.18 2 1.95 1.775 1.63 1.427 

10 2.125 2.115 2.095 2.055 2 1.93 1.837 1.725 1.585 1.4 

11 2.05 2.04 2.02 1.983 1.935 1.87 1.783 1.677 1.55 1.375 

12 1.983 1.977 1.955 1.925 1.876 1.815 1.735 1.635 1.515 1.355 

13 1.93 1.922 1.905 1.875 1.83 1.775 1.697 1.605 1.49 1.338 

14 1.884 1.876 1.86 1.83 1.787 1.733 1.663 1.577 1.47 1.324 

15 1.843 1.835 1.82 1.794 1.752 1.7 1.63 1.552 1.453 1.31 

16 1.805 1.798 1.783 1.757 1.72 1.675 1.61 1.527 1.427 1.297 

17 1.775 1.767 1.753 1.727 1.697 1.644 1.582 1.508 1.414 1.287 

18 1.745 1.74 1.723 1.697 1.667 1.620 1.563 1.493 1.397 1.277 

19 1.717 1.711 1.697 1.678 1.644 1.59 1.543 1.472 1.387 1.27 

20 1.695 1.69 1.676 1.653 1.624 1.576 1.527 1.46 1.375 1.262 

21 1.672 1.667 1.654 1.633 1.604 1.564 1.511 1.447 1.362 1.254 

22 1.654 1.647 1.635 1.613 1.584 1.549 1.498 1.434 1.353 1.247 

23 1.633 1.629 1.617 1.597 1.567 1.531 1.484 1.424 1.344 1.242 

24 1.615 1.612 1.6 1.581 1.553 1.516 1.469 1.412 1.336 1.236 

25 1.6 1.596 1.585 1.566 1.54 1.504 1.458 1.401 1.328 1.229 



 

26 1.585 1.581 1.57 1.552 1.526 1.491 1.447 1.390 1.320 1.224 

27 1.57 1.566 1.558 1.54 1.514 1.48 1.437 1.383 1.314 1.22 

28 1.558 1.556 1.544 1.528 1.502 1.47 1.426 1.374 1.307 1.215 

29 1.546 1.543 1.532 1.516 1.492 1.459 1.418 1.367 1.302 1.211 

30 1.534 1.531 1.522 1.505 1.482 1.45 1.41 1.359 1.296 1.207 

40 1.447 1.445 1.437 1.423 1.404 1.378 1.346 1.303 1.249 1.175 

50 1.391 1.390 1.382 1.37 1.355 1.332 1.304 1.267 1.22 1.156 

60 1.353 1.35 1.345 1.334 1.319 1.299 1.274 1.241 1.199  

 

 

 

 

Table A3: Percentage points of the Correlated Gamma Ratio distribution for α=0.01  
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   ρ 

k 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1 99 98.10 95.2 90.3 83.5 74.8 64.1 51.7 36.7 20.4 

2 15.98 15.84 15.42 14.71 13.72 12.45 10.90 9.05 6.91 4.45 

3 8.47 8.40 8.20 7.87 7.40 6.8 6.05 5.17 4.13 2.91 

4 6.03 5.99 5.86 5.64 5.34 4.95 4.47 3.89 3.2 2.38 

5 4.85 4.82 4.73 4.57 4.34 4.05 3.69 3.25 2.73 2.11 

6 4.155 4.13 4.06 3.93 3.75 3.52 3.23 2.88 2.46 1.94 

7 3.7 3.68 3.62 3.51 3.36 3.16 2.92 2.62 2.27 1.83 

8 3.37 3.36 3.30 3.21 3.08 2.91 2.7 2.45 2.14 1.75 

9 3.13 3.12 3.07 2.99 2.87 2.72 2.53 2.31 2.03 1.68 

10 2.94 2.93 2.88 2.81 2.705 2.565 2.405 2.2 1.95 1.63 

11 2.785 2.775 2.735 2.67 2.575 2.45 2.3 2.11 1.88 1.59 

12 2.66 2.65 2.61 2.55 2.465 2.35 2.21 2.04 1.825 1.555 

13 2.555 2.545 2.51 2.455 2.375 2.27 2.135 1.975 1.78 1.525 

14 2.465 2.455 2.425 2.37 2.295 2.195 2.075 1.925 1.74 1.497 

15 2.39 2.38 2.35 2.3 2.23 2.135 2.025 1.88 1.705 1.475 

16 2.32 2.31 2.285 2.235 2.17 2.08 1.975 1.84 1.675 1.46 

17 2.26 2.25 2.225 2.18 2.117 2.035 1.935 1.805 1.645 1.437 

18 2.208 2.195 2.172 2.13 2.07 1.99 1.895 1.773 1.62 1.418 

19 2.16 2.15 2.127 2.086 2.03 1.955 1.86 1.744 1.599 1.41 

20 2.115 2.105 2.085 2.046 1.994 1.92 1.83 1.72 1.58 1.395 

21 2.075 2.07 2.049 2.01 1.956 1.89 1.801 1.695 1.56 1.384 

22 2.04 2.034 2.01 1.976 1.925 1.86 1.775 1.675 1.544 1.374 



 

23 2.005 2 1.98 1.946 1.897 1.835 1.754 1.654 1.53 1.364 

24 1.978 1.972 1.952 1.918 1.872 1.810 1.732 1.634 1.512 1.352 

25 1.95 1.944 1.924 1.892 1.848 1.788 1.712 1.618 1.5 1.344 

26 1.924 1.918 1.90 1.868 1.824 1.766 1.694 1.602 1.488 1.336 

27 1.9 1.894 1.876 1.846 1.804 1.748 1.676 1.588 1.476 1.328 

28 1.878 1.872 1.854 1.826 1.784 1.73 1.66 1.574 1.464 1.32 

29 1.856 1.852 1.834 1.806 1.766 1.712 1.645 1.561 1.455 1.314 

30 1.838 1.832 1.816 1.788 1.748 1.696 1.632 1.55 1.446 1.308 

40 1.69 1.685 1.672 1.65 1.619 1.578 1.525 1.458 1.374 1.259 

50 1.597 1.594 1.583 1.565 1.538 1.502 1.456 1.4 1.327 1.229 

60 1.536 1.532 1.522 1.506 1.48 1.449 1.409 1.359 1.294 - 

 

 

The probability density function of the Correlated Gamma Ratio Distribution 

 
 

The probability density function of the Correlated Gamma-Ratio distribution for selected 

values of k and ρ 
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