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1. Introduction

Evaluating the forecasting potential of a model before it can be used for
planning and decision making has been the concern of many statistical workers.
A number of evaluation techniques has thus been considered and much theory
has been developed, especially for nested models based mainly on goodness of
fit considerations.

Predictive evaluation appears to have received less attention, despite the
fact that the predictive ability of a model is a very important characteristic of the
model. Xekalaki and Katti (1984) introduced an evaluation scheme of a
sequential nature that can be used for models that are not necessarily nested. It is
based on the idea of scoring rules for rating the predictive behavior of
competing models in which the researcher's subjectivity plays an important role.
Its effect is reflected through the rules according to which the performance of
the model is scored and rated. (see, also Panaretos et al., 1997, Psarakis, 1993,
Psarakis & Panaretos, 1990).

Model comparison problems have also attracted much interest. The
selection procedures that have been developed are mainly based on criteria for
testing the null hypothesis that one model is valid against an alternative
hypothesis that another model is valid. Such testing procedures lead to the
selection of one of two competing models. The problem of testing whether two
models can be considered as “equivalent” in some sense requires a different
hypothesis formulation and has only been approached indirectly through the
concept of encompassing (see, e.g., Gouriéroux et al., 1993, Gouriéroux &
Monfort, 1996) and through asymptotic results based on the change in
likelihood.

In this chapter, an evaluation method is proposed that is based on Xekalaki
and Katti’s idea of using a scoring rule but is free of the element of subjectivity.
In particular, a scoring rule is suggested to rate the behavior of a linear
forecasting model for each of a series of n points in time. A final rating which
embodies the step-by-step scores is then used as a statistic for testing the
predictive adequacy of the model. The problem of comparative evaluation is
also considered and a test procedure is suggested for testing whether two linear



models that are not necessarily nested can be considered to be “equivalent” in
their predictive abilities. In this case, a distribution which is a generalized form
of the F distribution arises as the distribution of the sample statistic is
considered. This distribution and the scoring rule associated with it are used for
comparing two linear models on real data. In particular, in section 2, the
regression model setting considered in the sequel is presented and the scheme
suggested for evaluating the predictive ability of a linear model is described.
Section 3 deals with the problem of comparatively evaluating two competing
linear models in their predictive abilities. The distribution of the test statistic
used is derived and studied is sections 4 and 5 while selected percentage points
of it are provided in the Appendix. The procedure is illustrated on several crop
yield data sets (section 6).

2. Rating the Predictive Ability of a Linear Model

Consider the linear model
Y, =XB+g, t=0,1,2,..
where Y, is an 7, x1 vector of observations on the dependent random variable,
X, is an £, xm matrix of known coefficients (¢, > m, X X,| = 0), p isanmx1
vector of regression coefficients and g 1is an /¢, x1 vector of normal error
random variables with E(g)=0 and V(g)=c’l. Here it is the ¢ x¢, identity

matrix. Therefore, a prediction for the value of the dependent random variable
for time t+1 will be given by the statistic

Yt(i-l = X?;lﬁt >
0

where B, = (X', X,)"'X", Y, is the least squares estimator of p at time t and X’

is an mx1 vector of values of the regressors at time t+1,t=0,1,2, ...

Obviously,
Xt Yt
e {x} and Yo = {Yﬂ

are of dimension £ ., xm and { ,x1 respectively, where

Cog=0,+1, t=0,1,2,...

The predictive behavior of the model would naturally be evaluated by a
measure that would be based on a statistic reflecting the degree of agreement

t+1 t+1

of the observed actual value Y, to the predicted value Y.,. Such a statistic

may be the statistic |r,,,|, where

?gl_Ygl t=0,1, ... (1)

T, =
s e xoxox X, )




Obviously,

rH1| is merely an estimate of the standardized distance between

the predicted and the observed value of the dependent random variable when o

is estimated on the basis of the preceding ¢, observations available at time t.

S? is given by

_ (Yt _XtBt) (Yt _XtBt)
(f t m)

So, a score based on |rt+1| can provide a measure of the predictive adequacy

ie., 7 , t=0,1,2,...,

of the model for each of a series of n points in time. Then, as a final rating of the

model one can consider the average of these scores, or any other summary

statistic that can be regarded as reflecting the forecasting potential of the model.
In the sequel, we consider using r? as a scoring rule to rate the performance

of the model at time t for a series of n points in time, (t =1, 2, ..., n) and we

define
R, = er /n (2)

t=1
the average of the squared recursive residuals, to be the final rating of the
model.
It has been shown (Brown, et al., 1975, Kendall et al., 1983) that if g is a
vector of normal error variables with E(g)=0 and V(g)=0"I, , the quantities
le — Yl(il
W = , t=0,1,2,..
VI X (XX )X

t+1

are independently and identically distributed normal variables with mean 0 and
variance 6°. Then, according to Kotlarski's (1966) characterization of the normal
distribution by the t distribution, the quantities r,, =w,,/s,, t=20, 1, 2, ...
constitute a sequence of independent t variables with ¢, —m degrees of

freedom, t=0, 1, 2, . . . Hence, by the assumptions of the model considered and
for large ¢,, the variables ryy, t = 0, 1, 2, ... constitute a sequence of

approximately standard normal variables which are mutually independent. This
implies that

n

_ 2
nR, = E I,

t=1
is a chi-square variable with n degrees of freedom.

3. Comparative Evaluation of the Predictive Ability of Two Linear
Models With the Use of a Generalized Form of the F Distribution

Consider now A and B to be two competing linear models that have been
used for prediction purposes for a number n; and n, of years, respectively. A



null hypothesis that is interesting to test is whether two models have
“equivalent” forecasting abilities. This is a hypothesis that can be defined only
implicitly, but it exists as a mathematical entity. The closest description of it is
“Hy: models A and B have equal mean squared prediction errors.” This is a
hypothesis that can be tested formally using conventional methods, in all cases
in which neither, one, or both models are correctly specified using the average
standardized distances between the observed value of the dependent variable
and its predicted values by models A and B. Then, a decision on whether
models A and B are “equivalent” in their predictive ability would naturally be
based on the ratio of the average scores of the two models as given by the
statistic
R, (4)
TR, )
ny

where R, (A), R, (B), are given by (2) for n=n, and n=n, and refer to model

€)

A and model B, respectively.

For large ¢, , ¢, the distribution of the statistic R, , can be approximated

np,n,
by the F distribution with n; and n, degrees of freedom whenever the ratings of
the two models are independent. Hence, values of R, , in the right tail of the F

distribution with n; and n, degrees of freedom will indicate a higher
performance by model A.
However, under the conditions of the problem, the assumption of
independence does not seem to be satisfied.
Determining the exact distribution of R, ,

n

, in the case of dependent

ratings would, however, be desirable as in practice data on ratings are often
matched. (In the latter case, n;=n,=n.)

Kotlarski (1964) has shown that, under certain conditions, the quotient
X/Y, where X,Y are positive valued random variables not necessarily
independent, follows the F distribution. According to Kotlarski (1964), a
necessary and sufficient condition for the ratio of two variables to follow an F
distribution can be established through the form of the Mellin transform of their
joint distribution. In particular, Kotlarski (1964) has shown that if ¥ is the set of
joint distribution functions F(x,y) of two not necessarily independent positive
valued random variables X and Y, whose quotient X/Y follows the F
distribution with parameters p, and p, , then the following result holds.

Theorem (Kotlarski, 1964): For a distribution function F(x,y) to belong to
the set W it is necessary and sufficient that its Mellin transform

h(u,v) = ]i]ex”yvdF(x,y)
00

satisfies the condition



h(u—u) = T +w) I'py —w) -
L) T(py)
For our problem, consider the random variables X, =r;(A), Y; =r,(B), i=1,

2,..., n obtained from (1) for model A and model B respectively. Each of the
variables X;, Y; follows the standard normal distribution. The joint distribution
is therefore the bivariate standard normal distribution with a correlation
coefficient denoted by p. Under these conditions, the joint distribution of the
random variables

X2

1

X="L =R, (A) and y=41l__-R, (B)
n n

v2

1

is Kibble’s (1941) bivariate Gamma distribution as defined by the probability
density function

~(k-1) P 204/
p 2 Py Xy
fix,y)= —, 4
(x.y) TW)ip (x { (4)
where k=n/2 and 1, (x) is the modified Bessel function of the first kind of order
k given by (see Abramowitz & Stegun, 1972)

0

020 e ©

i=0

Therefore,
—(k—l) .S A k+2i-1 %4—%“ %4—%%
__P 1-p? P X y
f(x.y) )l—p? e ;(l—sz i )riek)

So, finally, the probability density function of the bivariate gamma distribution
of (Ry(A), Ry(B)) is given by
_Xty
1-p? ® (p/(1- 2))2i )
flxy)=—" PPl (xy)
F(k)(l—pQ)k e F(1+1)F(1+k)\

To determine whether an F form can be deduced for the distribution of
R,,, one needs to examine if Kotlarski’s theorem applies for the joint
distribution of R, (A), R, (B).

For Kibble’s bivariate Gamma distribution, we obtain, by the definition of
the Mellin transform
h(w,v)=E(X"Y")

(1 pz)«k 0 0 i 0 w0 x+y . .
_ - u+ 1+i v+ +i-1
- F(k) z[(l—pz)J 1+1 1+k .([.!‘e dxdy .

i=0




Definition by I, the double integral in the right-hand side of the above
relationship, we have
TF'u+k+i) I'(v+k+1)

[= (1= p?) wridked)

This, in turn, implies that

h(u,v)= (1 —p? )7k+u+v+2k NP T+ k+)T(v+k+i)
’ (k) - i (k +1)
_ (1—p2)“””‘ T(k+u) r (k+v i k+u)g(k+v)g p2
r(k) r(k) — ) il
or, equivalently that
(k + u) F(k + V)

h(u,v)= (l—pz)wwk2F,(k+u,k+v;k;p2), (6)

where

0

b
2Fi(abie;z) = za(r) ()2

c r!
r=0 (r)
is the hypergeometric series with o denoting the ascending factorial (see
Abramowitz & Stegun, 1972).
One can see that the Mellin transform of Kibble’s distribution given (6) does not
satisfy the conditions of Theorem 1. Hence, the quotient R, (A)/R,(B) does not
follow the F distribution when R, (A) and R, (B) are dependent.

In the next section, it is shown that the distribution of R

is a generalized

n,n

form of the F distribution.

4. The Distribution of the Ratio X/Y When X and Y Follow Kibble’s
Bivariate Gamma Distribution

It is known that if X and Y are dependent random variables, the distribution
function of Z=X/Y is given by

F,(z)=P(X/Y <z)= TP(X <zy|Y = y)fy (y)dy

where F(-)and f () denote the distribution function and the probability
density function of a random variable U respectively .
Then, the density function of the quotient Z=X/Y can be written as

£, = jfxly (9)fy ()dy = j ;((y)” £y (y)dy

= Iy fx y(zy,y)dy
0



This leads to

Bav @ = [ 3 iy (2y.3)dy

1 i . J-exp( zy+y] K+ 1y2(k+1) ld
( - 1'F(1 +k)

p*froo 0
S i Texp[ z+1 ] gy
( )(r(k)lo - 1'1*(1+k)0
k-1 ) s N
T (14g)x rk+2)( p 7 ,
e F(k)( ) Zo TGi+k) ((1+2)f ) i )

Furthermore,

r(2k+2i)  T(2k+2i)T(2k) (2K)) B (k)]

r(k)
M) ri+k) Tl ri+k) TR0 kg

b [k ,
z(l 2

F(@I(B)
I'(a+B)

nm(a} (a+1j (a+n—1]
a(mn):n — .
D)\ 1 J(m) n (m)

Letting 0=2k, m=i, n=2 one obtains

22i[2k+1}
(2K + 2i) 2y

r(ri+k)  Blk)

=[B (k)|

Here, we made use of the identities
B(a,B) =

and

Hence (7) can be written as

v (2) = (1 - pz)k LUty {Zk - IL) [492(2 + 1)_2]izi

B (kk) 2 il

i=0
2k+1

=(-p2) 2 13(21:13 [1 4(Zp+f) }

Therefore,



2k+l

2\ 2 2
fyy(z)= ngik%Zk_l (1+z)_2k [1 —{ZZEJ z] . (8)
The density function in (8) defines the distribution of the quotient X/Y when the
joint distribution of (X,Y) is Kibble's bivariate gamma. In the sequel, we refer
to this distribution as the correlated gamma - ratio (CGR) distribution with
parameters p and k. (A reparameterized form of this distribution was arrived at
by Izawa (1965)).
Note: One can see that in the case where X and Y are independent, whence p=0,
the probability density function of the quotient X/Y takes the form

fX/Y (z) = @ZH (1 + z)ﬁzk
This is the probability density function of the Beta type II distribution with
parameters k and R or, equivalently of the F distribution with 2k and 2k degrees
of freedom.

5. The t Distribution as a Limiting Case of the Correlated Gamma Ratio
Distribution

In the sequel, it is shown that the t distribution can be obtained as a limiting
case of the CGR distribution.

Let Z follow the CGR distribution with density function given by (8).
Consider the variable

T-_P Z-1
1—p2 Z+1"
Then,
2 [ 2
F (1) =P(T<t)=p| z<PTNIZP | p 1 prtIZp” |
p-ty1-p’ p—ty1-p?
where —

P p
<t< .
-0 1-p?
We have therefore, for the probability density function of T that
¢ (t)— ¢ [p+t\/1—p2 ] prll—pz
T -z 2
p—twll—p2 (p—t ll_pzj

>

P i< .
1— pz \/1 B p2
Using (8), this reduces to

where —




k-1

2
1-2k 2 2k+1
£r(t)= L2 1—[ op t] (lee2) 2,

~ pB(k.k) p

where ___ P _,__ P .
Vi-p? Vi-p?
Taking the limit as p — 1 we obtain

. l-2k ( 2)7@
})il}fT(t):ml-’—t 2, ~o<t<+ o0,

But this is the probability density function of the t distribution.

In the Appendix, some graphs of the probability density function of the
correlated gamma-ratio distribution are provided for different values of k and p.
Also, Tables Al, A2 and A3 provide percentage points of the distribution for
selected values of the parameter k (k=1(1) 30, 40, 50, 60) and of the correlation
coefficient p (p=0.0(0.1) 0.9).

6. An Application to Crop-Yield Data

For the purpose of illustrating the model selection procedure, a problem
presented in Xekalaki and Katti (1984), concerning the selection of a linear
model among several competing ones considered by the United States
Department of Agriculture (USDA) to predict the corn yield for 10 Crop
Reporting Districts (CRD 10, 20, ...,100), was re-examined based on several
sets of real data for the State of lowa for the years 1956 to 1980. The competing
models use information about the weather conditions (e.g., temperature, rainfall
etc.) for the previous time periods as well as general trend factors for predicting
the crop yield. A detailed description of the models can be found in Linardis
(1998).

The aim of the application is to compare the predictability of these models
for every district, using the Correlated Gamma - Ratio distribution.

Let m, and my denote these two models respectively. To compare the two

crop yield models we need to test a hypothesis of the form:
Ho: Models m, and my are of “equivalent” predictive ability (symbolically,

m, ~mg )versus an alternative

H;: The two models differ in their predictive ability, i.e., m, is of higher
predictive ability (symbolically, m, - mg) or of lower predictive
ability (symbolically, m, < mg),

where the term “equivalent” is used in the sense defined in section 3.

Rejection of the null hypothesis indicates that one of the models performs
differently. With a one-sided alternative, one may proceed in a manner similar
to that used when testing for equality of variances via the F-test. The results of
testing the predictive equivalence of models m, and mg on the crop yield data



and considered together with the estimated values of the correlations between
the standardized prediction errors for the two models are summarized in
Tablel6.1.

Table 16.1: Results of testing the null hypothesis of predictive equivalence of
models m, and my; Hy: m, ~ my on the crop yield data of the 10

reporting districts the state of lowa (n=24).

Sums of squared recursive

residuals
Model
Crop Model ode Estimated model to be
. m m selected
reporting A B value (“best”
district H @R, A)@R,(B)) Run ofp p-value model)

CRD10 my>mp 58844 92798 0.634  0.803 0.0355 model A

CRD20 mp,>mp 58.681 59.595 0.985 0.908 0.4656  "equivalent"
CRD30 my>mpg 24.638 35354 0.697 0.885 0.0337 model A

CRD40 my <mg 69.677 66.691 1.044  0.449 0.453  "equivalent"
CRD50 mp,>mp 49.005 51.028 0961 0.620 0.45 " equivalent”
CRD60 my <mg 55949 32789 1.706  0.155 0.0963 model B

CRD70 mp>mp 39933 49.012 0.815 0.561 0.275  "equivalent"
CRD80 my <mg 57396 52232 1.098 0.796 0.353  "equivalent
CRD90 mp <mg 61461 41810 1.470 0.669 0.1068  "equivalent"

CRD100 my ~mp 46.515 73943 0.629 0.593 0.0868 model A

From this table, one may see that for six districts, the models are of
equivalent predictive ability. Model m , performs “better” in 3 cases while only
in one case model my is “superior.”

In all the cases considered, the parameter p was estimated from the data as
the sample correlation between the standardized prediction errors of the two
competing models. The extent to which the use of an estimate of p may affect

the selection procedure has to be investigated. Of course, asymptotically, it is
not expected to have any impact because p is estimated consistently. The first



investigation results for small to moderate sample sizes are not indicative of any
appreciable effect either.

APPENDIX

Table Al: Percentage points of the Correlated Gamma Ratio distribution for 0=0.1

o Blk) t+1

[

=

z|1l-p j 21 "2
i k=1 (14 ) 2 1_[2_9} ( dt =1-a =090

%

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

9 8.93 8.72 8.36 7.85 72 6.4 5.45 433 3.02
4.11 4.08 4.01 3.88 3.71 3.48 32 2.85 2.44 1.93
3.055 3.04 3.00 2.92 2.81 2.67 2.49 2.27 2.00 1.66
2.59 2.58 2.55 2.49 241 23 2.17 2.00 1.8 1.53
232 231 2.29 2.24 2.18 2.09 1.98 1.84 1.67 1.46
2.15 2.14 2.12 2.08 2.02 1.95 1.85 1.74 1.59 1.41
2.02 2.01 2.00 1.96 1.91 1.85 1.76 1.66 1.54 1.37
1.93 1.92 1.90 1.87 1.83 1.77 1.70 l1.61 1.49 1.34
1.85 1.846 1.83 1.80 1.76 1.71 1.64 1.56 1455 1315
10 | 1.79 1.785 1.775  L.75 1.71 1.665 1.6 1.525 1425 1.295
11 | 1.745 1.74 1.725  1.705 1.67 1.62  1.565 1.49 1.4 1.277
12 | 1.705 1.70 1.685  1.665 1.63 1.59  1.535 1465 138  1.265
13 | 1.665 1.664 1.65 1.63 1.60 1.56 1.51 1.44 136 1.253
14 | 1.635 1.63 1.62 1.6 1.57 1.53 1485 1423 1345 1.24
15 | 1.605 1.604 1.59  1.575 1.546 1.51 1.465 1.405 133 1.31
16 | 1.585 1.58 1.57 1.55 1.525 1.49  1.445 1.39 132 1.225
17 | 1.56 1.553 1.546  1.53 1.505 1.471 1.43 1.376 1307 1216
18 | 1.54 1.535 1.525 1510 1486 1455 1415 1364 1297 1.207
19 | 1.52 1.519 1.51 1.495 1.471 144 1402 1351 1.287 1.203
20 | 1.505 1.504 1495 148 1.456 1426 1.39 1.341 1.28  1.197
21 | 149 1.489 1.48  1.465 1.44 1.415 1377 1331 1274 1.193
22 ) 1475 1474 1466 1451 1.43 1.404 1379 1323 1353 1.187
23 | 1465 1460 1455 1440 1567 1391 1.358 1315 1259 1.183
24 | 1454 1450 1442 1428 1408 1382 135 1.306 1.252  1.178
25 | 1.442 1.44 1432 1.418 1.4 1374 134 1.3 1.246  1.174
26 | 1.432 1.43 1.422  1.408 1.39 1.366 1344 1292 1240 1.17

O 001NN AW~




1.422
1.412
1.404
1.396
1.333
1.293
1.265

1.42
1.410
1.402
1.394
1.332
1.291
1.264

1.412
1.402
1.394
1.386
1.326
1.287
1.259

1.4
1.39
1.382
1.375
1.316
1.279
1.252

1.382
1.372
1.366
1.358
1.302
1.267
1.24

1.356
1.35
1.342
1.336
1.284
1.249
1.226

1.326
1.32
1.312
1.306
1.259
1.229
1.207

1.286
1.28
1.274
1.27
1.228
1.203
1.183

1.238
1.23
1.226
1.222
1.189
1.168
1.152

1.166
1.163
1.16
1.157
1.134
1.119

Table A2: Percentage points of the Correlated Gamma Ratio distribution for 0=0.05

Z

[

(=)

k=T )2k {1[

2
2p ] )
t+1

2k +1

dt =1-a =0.95

o Blk)
- e
N 0.0 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9

1 19 1880 183 174 1627 1473 1284 1060 802  5.04
2 | 639 634 620 597 564 522 47 407 334 246
3 | 4284 426 418 404 385 361 331 2945 251 197
4 | 344 342 336 327 3145 296 274 248 216 176
5 | 298 296 292 284 274 26 243 222 1965 1.64
6 | 2687 2675 265 257 2485 237 223 206 1835 1.6
7 | 249 247 244 239 231 221 209 1935 175 151

8 | 2335 2325 229 225 218 21 1985 185 1675 146
9 | 222 221 219 214 218 2 195 1775 163 1427
10 | 2125 2115 2095 2055 2 193 1837 1725 1585 14

11| 205 204 202 198 1935 187 1783 1677 155 1375
12 | 1983 1977 1955 1925 1876 1815 1.735 1.635 1515 1355
13| 193 1922 1905 1875 183 1775 1.697 1605 149 1338
14 | 1884 1876 18 1.8 1787 1733 1.663 1577 147 1324
15 | 1.843 1835 182 1794 1752 17 163 1552 1453 131

16 | 1.805 1.798 1.783 1757 172 1675 161 1527 1427 1297
17 | 1775 1767 1753 1727 1.697 1644 1582 1508 1414 1287
18 | 1745 174 1723 1697 1.667 1620 1563 1493 1397 1277
19 | 1717 1711 1697 1.678 1.644 159 1543 1472 1387 127
20 | 1695 169 1.676 1.653 1624 1576 1527 146 1375 1262
21 | 1672 1.667 1654 1.633 1.604 1564 1511 1447 1362 1254
22 | 1.654 1.647 1635 1.613 1584 1549 1498 1434 1353 1247
23 | 1633 1.629 1.617 1597 1567 1.531 1484 1424 1344 1242
24 | 1615 1612 1.6 1581 1553 1516 1469 1412 1336 1236
25 | 1.6 1596 1585 1566 1.54 1504 1458 1401 1328 1229




1.585
1.57
1.558
1.546
1.534
1.447
1.391
1.353

1.581
1.566
1.556
1.543
1.531
1.445
1.390
1.35

1.57
1.558
1.544
1.532
1.522
1.437
1.382
1.345

1.552
1.54
1.528
1.516
1.505
1.423
1.37
1.334

1.526
1.514
1.502
1.492
1.482
1.404
1.355
1.319

1.491
1.48
1.47

1.459
1.45

1.378

1.332

1.299

1.447
1.437
1.426
1.418
1.41
1.346
1.304
1.274

1.390
1.383
1.374
1.367
1.359
1.303
1.267
1.241

1.320
1.314
1.307
1.302
1.296
1.249
1.22
1.199

1.224
1.22
1.215
1.211
1.207
1.175
1.156

Table A3: Percentage points of the Correlated Gamma Ratio distribution for 0=0.01

=)

2k +1

z 2
[ k=14 p)-2k 1—[2—9} t dt =1-a =0.99
o Blkk) t+1
1-on
P
}K 00 01 02 03 04 05 06 07 08 09
1 99 98.10 952 90.3 83.5 74.8 64.1 51.7 36.7 20.4
2 15.98 1584 1542 1471 13.72 1245 10.90 9.05 6.91 4.45
3 8.47 8.40 8.20 7.87 7.40 6.8 6.05 5.17 413 2.91
4 6.03 5.99 5.86 5.64 534 495 4.47 3.89 32 2.38
5 4.85 4.82 4.73 4.57 434 4.05 3.69 3.25 2.73 2.11
6 4.155 4.13 4.06 3.93 3.75 3.52 3.23 2.88 246 1.94
7 3.7 3.68 3.62 3.51 3.36 3.16 2.92 2,62 227 1.83
8 3.37 3.36 3.30 3.21 3.08 291 2.7 2.45 2.14 1.75
9 3.13 3.12 3.07 2.99 2.87 272 2.53 2.31 2.03 1.68
10 2.94 2.93 2.88 2.81 2.705 2.565 2.405 2.2 1.95 1.63
11 2785 2775 2735 267 2.575 245 2.3 2.11 1.88 1.59
12 2.66 2.65 2.61 2.55 2465 235 2.21 2.04 1.825 1.555
13 2.555 2.545 251 2455 2375 227 2135 1975 1.78 1.525
14 2465 2455 2425 237 2295 2195 2.075 1925 1.74 1.497
15 2.39 2.38 2.35 2.3 223 2135 2.025 1.88 1.705 1.475
16 2.32 231 2285 2235 2.17  2.08 1.975 1.84 1.675 1.46
17 2.26 225 2225 218 2.117 2.035 1935 1.805 1.645 1437
18 2208 2,195 2172 213 2.07 1.99 1.895 1.773 1.62 1.418
19 2.16 2.15 2127 2.086 2.03 1.955 1.86 1.744  1.599 1.41
20 2.115  2.105 2.085 2.046 1994 1.92 1.83 1.72 1.58 1.395
21 2.075 2.07 2.049 2.01 1.956 1.89 1.801 1.695 1.56 1.384
22 2.04 2.034 201 1.976 1925 1.86 1.775 1.675 1.544 1.374




23 2.005
24 1.978
25 1.95
26 1.924
27 1.9

28 1.878
29 1.856
30 1.838
40 1.69
50 1.597
60 1.536

2
1.972
1.944
1.918
1.894
1.872
1.852
1.832
1.685
1.594
1.532

1.98
1.952
1.924

1.90
1.876
1.854
1.834
1.816
1.672
1.583
1.522

1.946
1.918
1.892
1.868
1.846
1.826
1.806
1.788
1.65
1.565
1.506

1.897
1.872
1.848
1.824
1.804
1.784
1.766
1.748
1.619
1.538
1.48

1.835
1.810
1.788
1.766
1.748
1.73
1.712
1.696
1.578
1.502
1.449

1.754
1.732
1.712
1.694
1.676
1.66
1.645
1.632
1.525
1.456
1.409

1.654
1.634
1.618
1.602
1.588
1.574
1.561
1.55
1.458
1.4
1.359

1.53
1.512
1.5
1.488
1.476
1.464
1.455
1.446
1.374
1.327
1.294

1.364
1.352
1.344
1.336
1.328
1.32
1.314
1.308
1.259
1.229

The probability density function of the Correlated Gamma Ratio Distribution
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