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An Examination of the Robustness to Non Normality
of the EWMAControl Charts for the Dispersion
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Department of Statistics, Athens University of Economics and Business,
Athens, Greece

The EWMA control chart is used to detect small shifts in a process. It has been
shown that, for certain values of the smoothing parameter, the EWMA chart for
the mean is robust to non normality. In this article, we examine the case of non
normality in the EWMA charts for the dispersion. It is shown that we can have
an EWMA chart for dispersion robust to non normality when non normality is not
extreme.

Keywords Average run length; Control charts; Exponentially weighted moving

average control chart; Median run length; Non normality; Statistical process

control.
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1. Introduction

Control charts are a well-known tool in today’s industry. The most known of them
are the Shewhart control charts. However, they are unable to detect small shifts in a
process quickly enough. For this reason, other charts have been implemented such
as the Cumulative Sum (CUSUM) (Page, 1954) and the Exponentially Weighted
Moving Average (EWMA) charts (Roberts, 1959).

The EWMA chart is popular because of another characteristic. As Montgomery
(2001, p. 433) states: “It is almost a perfectly non parametric (distribution free)
procedure”. Borror et al. (1999), examined the Average Run Length (ARL)
performance of the EWMA chart for the mean in non normal cases when the
parameters of the process are known and concluded in the same result for certain
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values of the smoothing parameter. Recently, Stoumbos and Sullivan (2002) and
Testik et al. (2003) extended the work of Borror et al. (1999) to the multivariate
case of the EWMA chart. They concluded that a properly designed multivariate
EWMA control chart is robust to the non normality assumption. The performance
of the EWMA charts for the dispersion under non normality appears to have been
studied so far only by Stoumbos and Reynolds (2000). In this article, we examine
the performance under non normality of the charts discussed in Stoumbos and
Reynolds (2000) along with a new suggestion and other EWMA charts that have
been proposed (Domangue and Patch, 1991) for monitoring a process’ dispersion.

The article outline is as follows. In Sec. 2, we present the EWMA charts for
dispersion that have been implemented up to now together with a new proposal.
Section 3 presents the methods for evaluating the performance of a control chart’s
behavior and ways to compute them. In Sec. 4, the results on the performance of
the charts are given with some recommendations. The conclusions are summarized
in Sec. 5.

2. The EWMA Control Charts for Monitoring the Process Dispersion

The first step in the setting up control charts is to gather data that are used to
estimate the unknown parameters. These data are used to examine whether the
process was in control at the time they were collected, since otherwise the parameter
estimates computed would affect the ability of a chart to detect an out of control
situation (see e.g., Sullivan and Woodall, 1996).

Let �0 and �0 denote the in-control values of the process parameters that are
either known or estimated from a very large sample taken when the process is
assumed to be in control. We want to detect any shifts of the dispersion in the
process using EWMA charts that are known to be efficient for detecting small to
moderate shifts in the parameters. For the remainder of this article we consider
individual observations �n = 1� which are independent and identically distributed.
We further assume that we are in the prospective setting (Phase II), where the
estimates or the parameter values are used to monitor the process.

Several publications dealing with the subject of detecting shifts in the dispersion
using an EWMA type chart have appeared in the literature (see, e.g., Acosta-
Mejia and Pignatiello, 2000; Domangue and Patch, 1991; MacGregor and Harris,
1993). Our main concern is to detect increases in the process dispersion. It should
be stressed that detecting decreases in the dispersion is equally important because
they indicate an improvement in the process. Nevertheless, it is not probable that
a reduction in the process standard deviation, or variance, will occur without a
corrective action. Therefore, when an attempt to improve the quality of a process
is taking place, the time that this possible change occurs is known. A control chart
is one of the tools used to check for possible reduction in the variance before and
after the corrective action. However, the main use of a control chart is to detect
persistent or sudden shifts in a process at unknown times.

The EWMA chart of squared deviations from target (WR) was proposed by
Wortham and Ringer (1971) for detecting a shift in the process standard deviation.
The statistic of this chart is given by

Si = ��xi − �0�
2 + �1− ��max�Si−1� �

2
0�� S0 = �2

0
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where � is a smoothing parameter that takes values between 0 and 1 and S0 is the
initial value. The above statistic is defined in a way to detect only upward shifts and
therefore we need only an upper control limit. This happens because, whenever Si is
less than �2

0, we set it equal to its starting value. The control limit of this chart is

UCL = �2
0 + hS�

2
0

√

(

2�

2− �

)

�

where hS is a constant used to specify the width of the control limit. Note that �2
0

would be the mean and �2
0

√

2�/�2− �� would be the asymptotic standard deviation
of Si if the reset were not used.

As Stoumbos and Reynolds (2000) point out, when the normality assumption
is questionable for the observations, the WR statistic does not converge fast to
normality because it is a weighted average of squared deviations. For this reason,
they propose an EWMA chart of the absolute deviations from target (SR), adjusted
for detecting only upward shifts. The statistic of this chart is

Vi = ��xi − �0� + �1− ��max�Vi−1� �0

√

2/��� V0 = �0

√

2/�

where V0 is the initial value. As in the case of the WR statistic, the above statistic
can detect only upward shifts and therefore we need again only an upper control
limit. The control limit of this chart is

UCL = �0

√

2/�+ hV�0

√

1− �2/��
√

�/�2− ���

where hV is a constant specifying the width of the control limit. Note that �0

√

2/�

would be the mean and �0

√

1− �2/��
√

�/�2− �� would be the asymptotic standard
deviation of Vi if the reset were not used.

Hawkins and Olwell (1998, p. 82) suggested a different statistic for monitoring
individual readings for scale changes. Specifically, they recommended the use of
the differences �Xn − �0� CUSUMming the square root of their absolute values.
Here, we introduce an EWMA type control chart using the suggestion of Hawkins
and Olwell. Let H =

√

�xi − �0�, where xi are our observations. It can be shown
that if X is normally distributed �N��0� �

2
0��, then E�H� = �23/4���3/4�

√

�0/2�

and Var�H� = �0

(

�
√

2
�
−

√
2 �2�3/4�

�

)

, where the gamma function is defined as

��z� =
∫ �
0
xz−1e−xdx� z > 0. Then, the Hawkins-Olwell (HO) chart is based on the

statistic

Hi = �
√

�xi − �0� + �1− ��max
(

Hi−1� �2
3/4���3/4�

√

�0/2�
)

�

H0 = �23/4���3/4�
√

�0/2��

where H0 is the initial value. The control limit of this chart is

UCL = �23/4���3/4�
√

�0/2�+ hH

√

�0

((

2/
√
2�

)

−
√
2�2�3/4�/�

)

�/�2− ���
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where hH is a constant specifying the width of the control limit. The mean of Hi

is �23/4���3/4�
√

�0/2� and

√

�0��2/
√
2��−

√
2�2�3/4�/���/�2− �� is the asymptotic

standard deviation of Hi if the reset is not used.
Domangue and Patch (1991) introduced the omnibus EWMA control charts.

The statistic used in these charts is Zi = �xi − �0�/�0 and the proposed Domangue-
Patch (DP) scheme is

Ai = ��Zi�	 + �1− ��Ai−1�

where the starting value A0 is set by the practitioner and it is usually equal to the
asymptotic mean of Ai. Two different schemes were proposed by Domangue and
Patch, one with a = 0
5 and the second with a = 2. In the case of independent
samples from a normal process with mean �0 and standard deviation �0, Domangue
and Patch (1991) showed that the asymptotic mean and variance of Ai for the

DP1 scheme with a = 1/2 are E�Ai� = �
√
2/��1/2��3/4� and Var�Ai� =

√
2�

�2−���
�
√
�−

�2�3/4��. In the case of the DP2 scheme, where a = 2, they proved that E�Ai� = 1
and Var�Ai� = 2�

�2−��
. Then, the control limit in each case is

UCL = E�Ai�+ hAVar�Ai�
1/2�

where hA is a constant specifying the width of the control limit and either of
the schemes signals whenever Ai ≥ UCL. Note that these schemes can signal only
upward because of the way they are constructed. Moreover, as Domangue and
Patch point out these schemes are sensitive to increases in dispersion. Note that if we
use in the computation of the scheme a reset as in the other charts already presented,
then for a = 1/2 we end up with a chart that has exactly the same performance as
the HO chart. However, since Domangue and Patch demonstrated that the charts
they propose are able to detect an increase in the process dispersion, we choose to
use them as they are.

For all the above schemes, we observe that they are vulnerable to shifts in the
mean apart from the dispersion. Therefore, a signal of these charts might be the
result of a change in the mean. This deficiency can be resolved by using the moving
range (Hawkins and Olwell, 1998, p. 82) or by calculating at each point in time
(observation) an estimate of the mean (MacGregor and Harris, 1993). However, the
use of either of these techniques might lead to other problems such as dependence
of the observations and since they involve cumbersome calculations they are not
considered here.

3. Methods of Evaluating Control Charts Performance
and Their Computation

In a control chart, we have two objectives. Firstly, when we are in control, we
want the chart to signal as we have planned it to do (false alarm). Secondly,
when the process is out of control, we want the control chart to signal as soon as
possible. Different measures for evaluating the performance of a chart, concerning
the previous two objectives, have been proposed. The most known measure is the
average run length (ARL), which is based on the run length (RL) distribution. The
number of observations (individual data), or samples (data in subgroups), needed
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for a control chart to signal is a run length or, equivalently, one observation of the
RL distribution. The mean of the RL distribution is the ARL, which is actually the
average number of observations needed for a control chart to signal. Usually, along
with the ARL, the standard deviation of the run length (SDRL) is also computed.
Alternatively, the ARL is expressed as the average number of observations to signal
(ANOS). A measure similar to the ARL is the average time to signal (ATS), which
is the average time needed for a control chart to signal and it is actually a product
of the ARL and the sampling interval used in the case of fixed sampling.

From the preceding discussion, one can see that all these measures are related to
the ARL. However, the sole use of the ARL has been criticized (see, e.g., Barnard,
1959; Bissell, 1969; Gan, 1993, 1994; Woodall, 1983). The disadvantage of the ARL
is the skewness of the run length distribution in the in and out of control cases as
well as in non normality cases. As a result, one can draw misleading conclusions
based on the ARL. An alternative measure is the median run length (MRL), which
is more credible since it is less affected by the skewness of the run length distribution
(see, e.g., Gan, 1993, 1994).

In the context of EWMA charts, computing the previously stated measures of
performance can be done by employing the integral equation method, the Markov
chain method or via simulation (see e.g., Brook and Evans, 1972; Domangue and
Patch, 1991; Lucas and Saccucci, 1990). The integral equation method is an exact
method. However, estimates of the measures in question are not always obtainable.
The Markov chain method can be implemented in the cases where the previous
method cannot, but requires discretization of the continuity of the process using
many steps. The simulation method is easy in its implementation and, when using
a large number of iterations, the results are very close to the ones of the exact case.
In this article, the simulation approach is used, with 200,000 iterations.

In order to study the effect of non normality in the performance of the EWMA
charts for dispersion we use the same types of distributions as in Borror et al. (1999)
and Stoumbos and Reynolds (2000); symmetric and skewed ones. Specifically, we
simulated observations in the skewed case from the Gamma�a� b� distribution with
probability density function

f�x
 	� b� =







b	

��	�
x	−1 exp�−bx� x > 0

0� x ≤ 0







�

where the mean is 	/b and the variance is 	/b2. In the sequel, we set b equal
to unity without loss of generality. Under this condition, as 	 increases, the
gamma distribution approaches the normal. In the symmetric case, we simulated
observations from the t�k� distribution with probability density function

f�x
 k� = ���k+ 1�/2�√
� ��k/2�

1

��x2/k�+ 1��k+1�/2
� −� < x < ��

where k are the degrees of freedom, the mean is 0, and the variance is k/�k− 2�.
The t distribution is symmetric about 0, but it has more probability in the tails
than the normal. Moreover, as the degrees of freedom increase, the t distribution
approaches the normal.
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In the simulation algorithm, the parameter values we simulated from, are
	 = 0
5, 2, 4 and b = 1 in the gamma case, and k = 4, 10, 30 in the t distribution
case. The in-control mean, when we are in the gamma case, is equal to 	/b and the
variance is 	/b2. When we have a t distribution, the in-control mean is 0 and the
variance is k/�k− 2�. The values under the normal distribution are calculated also
in each case for studying the non normality effect. The values of � chosen are 0.05,
0.1, and 0.2, which are usually the chosen values for studying the non normality
effect (see e.g., Borror et al., 1999; Reynolds and Stoumbos, 2001; Stoumbos and
Reynolds, 2000). The values of �hS� hV � hH� hA� are chosen so that, under normality,
they give the same in-control value for ARL approximately 370.4. The simulation
study was conducted using Fortran and the random deviates where generated using
the Microsoft IMSL Library routines RNNOR, for the normal, RNGAM, for
the gamma and RNSTT, for the t distribution. Also, in all the cases, results are
displayed for asymptotic control limits. Finally, all the out-of-control computations
performed in this paper are made under the assumption of immediate occurrence of
the shift at the beginning of the process.

4. Results

Tables 1 and 2 contain the results for the five EWMA charts for dispersion
(WR, SR, HO, DP1, and DP2). The results are displayed for three combinations
of � and the corresponding hS , hV , hH , and hA values. The second row of Table 1
gives the five different hS , hV , hH , and hA values, which are calculated so as to give,
under normality, an in-control value of ARL equal to 370.4. The same values for
these h constants are used in Table 2 and, for this reason, are not displayed.

Table 1 summarizes the results for the in-control case for the gamma and the t

distributions (ARL(0)), while Table 2 contains the results in the out-of-control case
for the Gamma and the t distributions (ARL(1)). In each table, the ARL, MRL,
and SDRL values for the normal distribution have also been included, in order to
identify the non normality effect. In Table 2, the out-of-control process variance
is computed by multiplying the in-control process variance by 1.2 for the first 5
columns and by 1.4 for the remaining 5 ones.

The conclusions drawn from these tables are the following. When the process is
in control, the HO chart, for � = 0
1� has a satisfactory non normality performance.
Additionally, the DP1 chart for, � = 0
2� gives also results comparable to the
normal ones when we are in control. One also may conclude that the other
charts are much less robust regarding non normality for every combination of the
smoothing parameter and the process parameters presented. Most of the time, they
lead to a larger number of false alarms than the nominal. However, the HO and
DP1 can give for certain parameters, very large ARL values. As the value of 	 in
the gamma case and k in the t, become larger so does the ARL and MRL for WR,
SR, and DP2. On the other hand, the ARL and MRL values for the HO and DP1
decrease when � = 0
05� � = 0
1, and increase for � = 0
2.

Although the ARL values in the cases of WR and SR in Stoumbos and
Reynolds (2000) are the same as the ones in this work, we propose the HO
chart as a better alternative to the SR that they propose. They also check the
performance of combined charts which are able to detect both increases in the mean
and variance. However, in this article we deal only with the EWMA charts for
dispersion. The fact that these charts can also detect an increase in the process
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Table 1

In-control ARL, MRL, and SDRL values for upward shifts

WR SR HO DP1 DP2

when � = 0
05
h 2.876 2.604 2.436 2.1492 2.495

N(�� �2) ARL 370
4 370
4 370
4 370
4 370
4
MRL 260 260 264 259 257
SDRL 361
3 358
1 353
6 361
8 368
3

G(4� 1) ARL 151
3 304
2 444
1 490
5 181
2
MRL 106 213 312 340 124
SDRL 148
0 296
3 431
7 486
5 183
0

G(2� 1) ARL 112
4 267
5 522
5 641
5 140
3
MRL 79 187 365 444 95
SDRL 110
0 262
1 511
3 640
5 144
1

G(0
5� 1) ARL 67
8 185
8 840
3 2449
9 94
8
MRL 47 130 583 1679 63
SDRL 66
8 184
3 837
1 2489
1 99
9

t4 ARL 112
6 271
0 792
9 2208 147
4
MRL 79 189 549 1515 100
SDRL 110
8 267
4 787
3 2251 151
4

t10 ARL 186
0 329
9 476
8 591
8 216
2
MRL 131 231 336 411 149
SDRL 180
9 321
1 462
4 588
2 218
0

t30 ARL 258
8 358
8 401
2 424
1 303
1
MRL 200 252 282 296 211
SDRL 279
8 346
4 389
3 417
6 301
4

when � = 0
1
h 3.432 2.916 2.628 2.409 3.094

N(�� �2) ARL 370
4 370
4 370
4 370
4 370
4
MRL 259 257 260 259 258
SDRL 365
9 360
8 359
2 363
6 367
4

G(4� 1) ARL 129
7 237
0 380
8 421
1 147
2
MRL 91 166 265 293 102
SDRL 127
7 231
7 374
1 418
8 147
3

G(2� 1) ARL 95
6 191
6 388
3 472
1 111
8
MRL 66 133 271 328 77
SDRL 94
8 188
9 382
1 469
3 112
7

G(0
5� 1) ARL 59
2 120
2 399
4 816
4 73
1
MRL 41 83 278 564 50
SDRL 58
6 119
1 395
1 822
3 74
7

t4 ARL 97
7 187
4 441
5 882
4 116
4
MRL 68 131 307 609 80
SDRL 96
1 185
5 438
1 890
9 117
5

t10 ARL 167
7 269
7 394
1 470
4 185
0
MRL 117 189 275 326 128
SDRL 165
0 264
5 388
0 467
3 184
9

t30 ARL 270
6 334
3 378
3 397
1 283
2
MRL 190 234 264 277 196
SDRL 264
6 326
7 371
1 392
2 283
8

(continued)



1076 Maravelakis et al.

Table 1

Continued

WR SR HO DP1 DP2

when � = 0
2
h 4.112 3.215 2.742 2.584 3.821

N(�� �2) ARL 370
4 370
4 370
4 370
4 370
4
MRL 256 257 257 259 258
SDRL 368
9 363
4 363
3 366
4 368
8

G(4� 1) ARL 113
4 171
8 281
2 319
7 121
9
MRL 79 120 196 221 84
SDRL 112
6 169
0 277
9 318
3 121
4

G(2� 1) ARL 83
5 131
4 240
8 296
4 91
3
MRL 58 92 167 205 63
SDRL 82
7 129
5 238
0 294
4 91
3

G(0
5� 1) ARL 52
5 81
0 179
6 291
4 59
4
MRL 36 57 125 201 41
SDRL 51
8 80
3 178
3 293
2 59
4

t4 ARL 86
7 130
1 238
3 383
0 96
0
MRL 60 91 166 266 67
SDRL 86
4 128
7 235
7 383
1 95
8

t10 ARL 152
1 212
3 302
6 353
4 162
0
MRL 106 148 211 246 112
SDRL 150
3 210
0 298
0 352
3 162
5

t30 ARL 257
1 303
7 347
4 365
5 264
7
MRL 178 212 243 255 184
SDRL 255
4 299
4 343
2 362
4 262
3

mean, as already pointed out in Sec. 3, is of no concern to us here. Another reason
for not considering combined schemes is the extra complexity in these charts for
practitioners.

In the out of control cases, as the shift increases, the non normality effect
decreases. Note that a direct comparison of the different schemes is not possible
because they do not have the same in control ARL or MRL values. We observe
that the out of control ARL performance of the HO when � = 0
1 and DP1
when � = 0
2, is not that close to the normal in the case of extreme non normal
situations like the gamma�0
5� 1� and t�4�. For observations coming from less
extreme distributions the performance of these two charts is acceptable especially if
we take into consideration that the other charts seem to have a great sensitivity to
the normality assumption in the in control case.

Consequently, the HO and DP1 charts may be recommended when normality
is questionable for specific values of the smoothing parameter �. The WR and
DP2 charts are not recommended since their performance in both in-control and
out-of-control situations is far from the results under normality. The SR chart
appears not to be performing well for skewed distributions but leads to better results
for small values of � in the symmetric case.
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Table 2

Out-of-control ARL, MRL, and SDRL values for control limits

1.2 1.4

Shift WR SR HO DP1 DP2 WR SR HO DP1 DP2

� = 0
05
N(�� �2) ARL 113
3 116
2 126
1 114
4 100
8 55
6 58
4 65
9 58
6 48
8

MRL 81 84 92 82 7 41 44 50 44 37
SDRL 105
5 105
1 113
1 104
5 94
2 48
2 48
5 54
2 48
7 42
5

G(4� 1) ARL 66
0 111
0 167
3 171
9 68
8 36
2 54
5 80
2 77
6 35
5
MRL 47 80 120 121 48 27 40 59 56 26
SDRL 62
6 103
0 155
7 164
8 67
5 32
9 47
8 70
2 70
0 33
3

G(2� 1) ARL 61
1 119
3 214
1 237
9 67
6 39
2 67
0 111
9 116
8 40
6
MRL 43 85 152 166 46 28 48 81 83 28
SDRL 58
6 113
4 203
1 233
4 68
0 36
8 61
2 101
9 110
5 39
5

G(0
5� 1) ARL 49
4 117
1 420
7 910
3 62
7 38
5 82
9 252
4 444
3 46
0
MRL 35 82 293 623 41 27 58 177 304 31
SDRL 48
2 114
3 413
2 933
2 65
9 37
3 80
2 245
3 454
7 47
8

t4 ARL 75
5 159
5 417
6 930
3 91
0 59
5 116
2 283
6 556
6 68
4
MRL 53 112 291 638 62 42 82 199 381 46
SDRL 73
6 155
8 410
6 946
7 92
9 57
7 113
1 277
1 569
0 69
6

t10 ARL 78
7 131
2 212
2 244
2 82
5 51
6 81
4 133
4 147
1 52
4
MRL 56 93 151 170 57 37 59 96 103 37
SDRL 75
2 124
4 201
6 240
1 81
3 48
5 75
3 123
4 141
9 50
9

t30 ARL 86
1 125
1 171
6 175
4 85
8 50
7 73
6 106
6 107
1 49
6
MRL 61 90 123 123 60 37 54 77 77 35
SDRL 81
2 116
9 159
2 168
4 83
2 46
7 66
1 96
1 99
9 47
0

� = 0
05
N(�� �2) ARL 124
1 123
3 131
8 123
2 113
0 60
7 61
7 68
2 62
2 54
6

MRL 88 88 94 88 80 44 45 50 45 39
SDRL 119
8 116
6 123
5 116
2 109
1 56
3 55
6 60
7 55
6 50
5

G(4� 1) ARL 60
5 94
9 147
9 156
7 62
8 34
3 48
7 71
9 73
6 34
2
MRL 43 67 105 110 44 25 35 52 53 24
SDRL 58
9 91
0 140
8 152
0 61
8 32
4 45
0 66
2 68
6 32
8

G(2� 1) ARL 54
8 94
4 171
7 195
0 59
8 36
0 55
9 94
3 102
0 37
4
MRL 38 66 120 136 42 25 40 67 72 26
SDRL 53
5 91
5 165
8 191
4 59
5 34
5 52
7 88
5 98
1 36
6

G(0
5� 1) ARL 43
5 81
7 230
3 400
3 51
6 34
6 60
6 151
6 237
8 39
3
MRL 30 57 161 276 35 24 42 106 164 27
SDRL 42
8 80
3 226
4 404
6 52
5 33
7 59
4 147
7 240
1 39
9

t4 ARL 67
4 116
8 254
6 449
8 76
3 53
8 88
6 182
3 300
3 59
6
MRL 47 82 178 310 53 38 62 127 207 41
SDRL 66
0 114
7 250
4 454
0 76
7 52
5 86
9 179
2 302
4 59
6

t10 ARL 73
0 111
1 175
9 203
6 76
4 48
5 70
1 111
2 126
4 49
5
MRL 51 79 124 142 53 34 50 79 89 35
SDRL 70
9 107
2 169
2 200
5 75
6 46
7 66
6 105
4 122
7 48
3

t30 ARL 82
9 114
0 156
5 164
2 83
5 48
7 66
6 95
6 100
3 48
6
MRL 58 81 111 116 59 35 48 68 71 34
SDRL 80
5 109
1 149
4 159
0 81
4 46
1 62
4 89
3 95
7 47
0

(continued)
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Table 2

Continued

1.2 1.4

Shift WR SR HO DP1 DP2 WR SR HO DP1 DP2

� = 0
05
N(�� �2) ARL 136
7 133
4 137
7 132
0 128
8 69
1 67
0 71
1 67
6 63
5

MRL 95 94 97 93 90 49 48 51 48 45
SDRL 134
5 129
8 133
1 128
0 127
1 67
1 63
6 66
6 63
4 61
4

G(4� 1) ARL 56
0 76
9 116
3 128
7 57
6 33
1 42
1 59
8 63
8 32
9
MRL 39 54 82 90 40 23 30 42 45 23
SDRL 54
9 74
7 113
1 126
5 56
8 32
0 40
1 56
7 61
2 32
0

G(2� 1) ARL 49
6 71
4 119
6 140
2 52
3 33
5 45
4 70
2 79
4 34
5
MRL 35 50 84 97 36 24 32 49 56 24
SDRL 48
7 69
9 116
4 138
7 51
9 32
6 44
0 67
5 77
1 34
0

G(0
5� 1) ARL 39
5 57
8 117
1 174
9 43
4 31
5 44
6 83
7 118
3 34
3
MRL 28 40 81 121 30 22 31 59 82 24
SDRL 38
8 57
2 115
6 175
8 43
4 30
9 43
6 82
1 118
5 34
2

t4 ARL 61
2 87
0 149
0 223
9 65
8 49
4 68
1 112
3 162
1 52
7
MRL 43 61 104 155 46 35 48 79 113 37
SDRL 60
3 85
8 146
8 224
1 65
6 48
6 66
7 110
2 161
8 52
4

t10 ARL 68
8 91
0 133
8 156
3 71
5 46
2 59
5 85
7 98
4 47
1
MRL 48 64 94 109 50 32 42 61 69 33
SDRL 67
5 89
0 130
2 154
6 70
5 45
1 57
7 82
3 96
4 46
2

t30 ARL 80
6 100
7 134
1 144
6 81
0 47
9 59
0 80
1 86
6 47
9
MRL 56 70 94 101 56 34 41 57 61 34
SDRL 79
2 98
7 130
4 141
2 80
0 46
7 56
8 76
8 84
3 46
9

5. Discussion

In this article, the effect of non normality on the EWMA charts for the process
dispersion was examined in the case of individual observations �n = 1�. A detailed
simulation study based on the ARL, MRL, and SDRL was presented and
conclusions were drawn. Two of the presented EWMA charts for the dispersion
have an acceptable performance when the non normality effect is not extreme for
certain values of the smoothing parameter � and they are recommended for use in
such a cases.

References

Acosta-Mejia, C. A., Pignatiello, J. J. Jr. (2000). Monitoring process dispersion without
subgrouping. J. Qual. Technol. 32:89–102.

Barnard, G. A. (1959). Control charts and stochastic processes. J. Roy. Statist. Soc. B

21:239–271.
Bissell, A. F. (1969). Cusum techniques for quality control. Appl. Statist. 18:1–30.
Borror, C. M., Montgomery, D. C., Runger, G. C. (1999). Robustness of the EWMA control

chart to non normality. J. Qual. Technol. 31:309–316.
Brook, D., Evans, D. A. (1972). An approach to the probability distribution of CUSUM

run length. Biometrika 59:539–549.



Robustness to Non Normality of the EWMA Control Charts 1079

Domangue, R., Patch, S. C. (1991). Some omnibus exponentially weighted moving average
statistical process monitoring schemes. Technometrics 33:299–313.

Gan, F. F. (1993). An optimal design of EWMA control charts based on median run length.
J. Statist. Computat. Simul. 45:169–184.

Gan, F. F. (1994). An optimal design of cumulative sum control chart based on median run
length. Commun. Statist. Simul. Computat. 23:485–503.

Hawkins, D. M., Olwell, D. H. (1998). Cumulative Sum Charts and Charting for Quality

Improvement. New York: Springer-Verlag.
Lucas, J. M., Saccucci, M. S. (1990). Exponentially weighted moving average control

schemes: properties and enhancements. Technometrics 32:1–12.
MacGregor, J. F., Harris, T. J. (1993). The exponentially weighted moving variance. J. Qual.

Technol. 25:106–118.
Montgomery, D. C. (2001). Introduction to Statistical Quality Control. 4th ed. New York: John

Wiley & Sons.
Page, E. S. (1954). Continuous inspection schemes. Biometrika 41:100–115.
Reynolds, M. R. Jr., Stoumbos, Z. G. (2001). Monitoring the process mean and

variance using individual observations and variable sampling intervals. J. Qual. Technol.
33:181–205.

Roberts, S. W. (1959). Control chart tests based on geometric moving averages.
Technometrics 1:239–250.

Stoumbos, Z. G., Reynolds, M. R. Jr. (2000). Robustness to non normality and
autocorrelation of individual control charts. J. Statist. Computat. Simul. 66:145–187.

Stoumbos, Z. G., Sullivan, J. H. (2002). Robustness to non normality of the multivariate
EWMA control chart. J. Qual. Technol. 34:260–276.

Sullivan, J. H., Woodall, W. H. (1996). A control chart for preliminary analysis of individual
observations. J. Qual. Technol. 28:265–278.

Testik, M. C., Runger, G. C., Borror, C. M. (2003). Robustness properties of multivariate
EWMA control charts. Qual. Reliabil. Eng. Int. 19:31–38.

Woodall, W. H. (1983). The distribution of the run length of one-sided CUSUM procedures
for continuous random variables. Technometrics 25:295–301.

Wortham, A. W., Ringer, L. J. (1971). Control via exponential smoothing. Transportation
and Logistic Rev. 7:33–39.


