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In this paper we discuss the basic procedures for the implementation of multivariate

statistical process control via control charting. Furthermore, we review multivariate

extensions for all kinds of univariate control charts, such as multivariate Shewhart-

type control charts, multivariate CUSUM control charts and multivariate EWMA

control charts. In addition, we review unique procedures for the construction of

multivariate control charts, based on multivariate statistical techniques such as

principal components analysis (PCA) and partial least squares (PLS). Finally,

we describe the most significant methods for the interpretation of an out-of-control

signal. Copyright c© 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In a discussion paper, Woodall and Montgomery1 stated that multivariate process control is one of the most

rapidly developing areas of statistical process control. They also emphasized the need for review papers because

such papers tend to spark new research ideas. Motivated by this, we present a review of the literature on

multivariate process control chart techniques.

Nowadays, in industry, there are many situations in which the simultaneous monitoring or control of two or

more related quality–process characteristics is necessary. Monitoring these quality characteristics independently

can be very misleading. Process monitoring of problems in which several related variables are of interest are

collectively known as multivariate statistical process control. The most useful tool of multivariate statistical

process control is the quality control chart.

Multivariate process control techniques were established by Hotelling in his 1947 pioneering paper.

Hotelling2 applied multivariate process control methods to a bombsights problem. Jackson3 stated that any

multivariate process control procedure should fulfill four conditions: (1) an answer to the question ‘Is the process

in control?’ must be available; (2) an overall probability for the event ‘Procedure diagnoses an out-of-control

state erroneously’ must be specified; (3) the relationships among the variables–attributes should be taken into

account; and (4) an answer to the question ‘If the process is out of control, what is the problem?’ should be

available.
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This paper is the result of an extended literature review of the most recent developments in the area of

multivariate statistical process control, using control charting in particular. In Section 2 the basic theory of

the multivariate Shewhart-type control charts is given. Section 3 describes the most significant multivariate

cumulative sum (CUSUM)- and exponentially weighted moving average (EWMA)-type control charts. The use

of principal components analysis (PCA) and partial least squares (PLS) in the field of multivariate statistical

process control is presented in Section 4, while, in Section 5, developments with respect to the interpretation of

an out-of-control signal are given. Finally, some concluding remarks are offered in Section 6.

2. MULTIVARIATE SHEWHART CONTROL CHARTS

In the literature, two distinct phases of control charting practice have been discussed (Woodall4).

• Phase I: charts are used for retrospectively testing whether the process was in control when the first

subgroups were being drawn. In this phase, the charts are used as aids to the practitioner, in bringing a

process into a state where it is statistically in control. Once this is accomplished, the control chart is used

to define what is meant by a process being statistically in control. This is referred to as the retrospective

use of control charts. In general, there is a great deal more going on in this phase than simply charting

some data. During this phase the practitioner is studying the process very intensively. The data collected

during this phase are then analyzed in an attempt to answer the question ‘Were these data collected from

an in-control process?’. According to Duncan5, Phase I also includes the establishment of the process

being statistically in control.

• Phase II: control charts are used for testing whether the process remains in control when future subgroups

are drawn. In this phase, the charts are used as aids to the practitioner in monitoring the process for any

change from an in-control state. At each sampling stage, the practitioner asks the question ‘Has the state

of the process changed?’. In this phase, the practitioner is monitoring the process regardless of whether

the parameters of the process, μ0 and �0, were known or estimated. Note that in this phase the data are

not taken to be from an in-control process, unless there is a clear indication of no change in the process.

Woodall4 states that much work, process understanding and process improvement are often required in the

transition from Phase I to Phase II. Sparks6, Wierda7, Lowry and Montgomery8, Fuchs and Kenett9, Ryan10

and other statisticians and engineers agree with the above definition, which is also followed in this paper. Alt11,

gives a somewhat different definition for the two distinct phases of control charting. According to Alt11, Phase I

consists of using the charts for:

(i) Stage 1 ‘Start-Up Stage’—retrospectively testing whether the process was in-control when the first

subgroups were being drawn; and

(ii) Stage 2 ‘Future Control Stage’—testing whether the process remains in control when future subgroups

are drawn.

According to Alt11, these are two separate and distinct stages of analysis. Phase II consists of using the control

chart to detect any departure of the underlying process of standard values μ0 and �0, when standard values μ0

and �0 are known, meaning that standard values are given by management or they have been estimated from a

large set of past data and are assumed to be the true parameters.

Another crucial matter is the sample size n of each rational subgroup. If n = 1, then special care must be

taken. As Lowry and Montgomery8 suggest, the appropriate use of a test statistic (χ2 or T 2) can be divided into

four categories:

(1) Phase I and n = 1, working with individual observations;

(2) Phase I and n > 1, working with rational subgroups;

(3) Phase II and n = 1, working with individual observations;

(4) Phase II and n > 1, working with rational subgroups.

At the time of writing we are not aware of any results in which sample sizes are taken to be unequal.

Copyright c© 2006 John Wiley & Sons, Ltd.
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Mason and Young12 give the basic steps for the implementation of multivariate statistical process control

using the T 2 statistic, and they recently published a textbook on the practical development and application of

multivariate control techniques using the T 2 statistic (Mason and Young13).

Control charts for the process mean (n > 1)

We first present multivariate control charts for controlling the process mean. Assume that the vector x follows

a p-dimensional normal distribution, denoted as Np(µ0, �0), and that there are m samples each of size n > 1

available from the process. Furthermore, assume that the vector observations x are not time dependent. A control

chart can be based on the sequence of the following statistic

D2
i = n(x̄i − µ0)

t�−1
0 (x̄i − µ0) for i = 1, 2, . . . , m

Here, x̄i is the vector of the sample means of the ith rational subgroup, where µ0 and �0 are the known vector

of means and the known variance–covariance matrix, respectively. The D2
i statistic represents the weighted

distance (Mahalanobis distance) of any point from the target µ0. Thus, if the value of the test statistic D2
i plots

above the control limit (Lu), the chart signals a potential out-of-control process. In general, control charts have

both upper (Lu) and lower control limits (Ll). However, in this case only an upper control limit is used, because

extreme values of the D2
i statistic correspond to points far remote from the target µ0, whereas small or zero

values of the D2
i statistic correspond to points close to the target µ0. The D2

i statistic follows a χ2-distribution

with p degrees of freedom. Thus, a multivariate Shewhart control chart for the process mean, with known mean

vector μ0 and variance–covariance matrix �0, has an upper control limit of Lu = χ2
p,1−α. This control chart is

called a Phase II X2-chart or χ2 control chart.

If µ0 is replaced by ¯̄x0, and �0 is replaced by S̄, with n > 1 and x̄i the mean of the ith rational subgroup,

then, according to Ryan10, the D2
i /c0(p, m, n) statistic follows an F -distribution with p and (mn − m − p + 1)

degrees of freedom. Here c0(p, m, n) = [p(m − 1)(n − 1)](mn − m − p + 1)−1, ¯̄x0 is the overall sample mean

vector and S̄ is the pooled sample variance–covariance matrix. Thus, a multivariate Shewhart control chart for

the process mean, with unknown parameters, has the following control limit

Lu =
[p(m − 1)(n − 1)]
(mn − m − p + 1)

F1−a,p,mn−m−p+1

This control chart is called a Phase I T 2-chart. We note that, for a Phase I T 2-chart, the statement ‘if the process

is in control the probability of at least one of the D2
i being outside the control limits is α’ does not hold, because

in this phase the D2
i are not independent (this is only valid for a given i). According to Woodall4 ‘To measure

the statistical performance of a control chart in Phase I applications one considers the probability of any out-

of-control signal with the chart. The false-alarm rate, for example, is the probability of at least one signal from

the chart given that the process is in statistical control with some assumed probability distribution’. In practical

problems, the T 2-chart is typically recommended for the preliminary analysis of multivariate observations in

process monitoring applications. Sullivan and Woodall14 discussed the problem of adapting control charts for the

preliminary analysis of multivariate observations. They also recommend a method for preliminary analysis of

multivariate observations that does not require simulation to determine the exact control limit, which is almost

as effective as the multivariate CUSUM (MCUSUM) and multivariate EWMA (MEWMA) control charts in

detecting a step shift. Nedumaran and Pignatiello15 considered the issue of constructing retrospective T 2 control

chart limits to control the overall probability of a false alarm at a specified value. Furthermore, Mason et al.16

used the T 2-chart for monitoring batch processes in both Phase I and Phase II operations. Recently, Kim et al.17

discussed the problem of Phase I analysis in the case where the quality of the process is characterized by a linear

function. The authors recommend the use of a bivariate T 2-chart in conjunction with a univariate Shewhart chart.

If µ0 is replaced by ¯̄x0 and �0 is replaced by S̄, with n > 1 and x̄f the mean of a future rational subgroup,

then the D2
f /c1(p, m, n) statistic follows an F -distribution with p and (mn − m − p + 1) degrees of freedom,

where c1(p, m, n) = [p(m + 1)(n − 1)](mn − m − p + 1)−1. Thus, a multivariate Shewhart control chart for

Copyright c© 2006 John Wiley & Sons, Ltd.
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the process mean, with unknown parameters, has the following control limit

Lu =
p(m + 1)(n − 1)

mn − m − p + 1
F1−a,p,mn−m−p+1

This control chart is called a Phase II T 2-chart.

The average run length

The average run length (ARL) of the multivariate Shewhart chart when the process is in control and µ0 and

�0 are known can be calculated as ARL0 = 1/α, where α is the probability that D2
i exceeds Lu under the

assumption that the process is in control. Furthermore, the out-of-control ARL (ARL1) of the multivariate

Shewhart chart depends on the mean vector and variance–covariance matrix only through the non-centrality

parameter λ2(µ1)

λ2(µ1) = n(µ1−µ0)
t�−1

0 (µ1−µ0) = nδt�−1
0 δ

where µ1 = µ0 + δ is a specific out-of-control mean vector, bearing in mind that the �0 is still in control.

Hence, it is possible to consider the ARL1 as a function of λ(µ1), the square root of λ2(µ1), and to construct an

ARL1 curve by using the equation ARL1 = 1/(1 − β), where β is the probability of the event ‘The procedure

fails to diagnose an out-of-control situation’. In the literature (see, e.g., Pigniatello and Runger18), in cases in

which it has been proven that the ARL depends only on the non-centrality parameter, the proofs were based on

the assumptions that (i) �0 is the known variance–covariance matrix, and (ii) random sampling is carried out

independently of a multivariate normal distribution.

The theory presented so far considers the case of a predefined and fixed n sample size. Jolayemi19 presented

a power function model for determining sample sizes for the operation of a multivariate process control chart.

Also, Aparisi20 gave a procedure for the construction of a control chart with adaptive sample sizes.

Control charts for the process mean (n = 1)

For charts constructed using individual observations (n = 1), the test statistic for the ith individual observation

has the form

D2
i = (xi − µ0)

t�−1
0 (xi−µ0)

where xi is the ith, i = 1, 2, . . . , m, observation following Np(µ0, �0), where µ0 and �0 are the known vector

of means and the known variance–covariance matrix, respectively. Moreover, we assume that the observations

xi are not time dependent. The D2
i statistic follows a χ2-distribution with p degrees of freedom (Seber21). Thus,

a multivariate Shewhart control chart for the process mean, with known mean vector µ0 and known variance–

covariance matrix �0, has a control limit Lu = χ2
p,1−α. This control chart is called a Phase II X2-chart.

If µ0 is replaced by x̄0, �0 is replaced by S0 and xi is the ith individual observation, which is not independent

of the estimators x̄0 and S0, then the D2
i /d0(m) statistic follows a β-distribution with p/2 and (m − p − 1)

degrees of freedom, where d0(m) = (m − 1)2m−1. Thus, a multivariate Shewhart control chart for the process

mean, with unknown parameters, has the following upper control limit (Tracy et al.22)

Lu =
(m − 1)2

m
B1−α,p/2,(m−p−1)/2

where x̄0 is the overall sample mean and S0 is the overall sample variance–covariance matrix. This control chart

is called a Phase I T 2-chart. Tracy et al.22 also provided an analogous lower control limit. Alternative estimators

of the variance–covariance matrix have been proposed by Sullivan and Woodall23 and Chou et al.24.

If µ0 is replaced by x̄0, �0 is replaced by S0 and xf is a future individual observation, which is independent of

the estimators x̄0 and S0, then the D2
f /d1(m, p) statistic follows an F -distribution with p and (m − p) degrees

Copyright c© 2006 John Wiley & Sons, Ltd.



521

Qual. Reliab. Engng. Int. 2007; 23:517–543

DOI: 10.1002/qre

MULTIVARIATE STATISTICAL PROCESS CONTROL CHARTS

of freedom, where d1(m, p) = p(m + 1)(m − 1)[m(m − p)]−1. Thus, a multivariate Shewhart control chart for

the process mean, with unknown parameters, has the following upper control limit (Tracy et al.22)

Lu =
p(m + 1)(m − 1)

m(m − p)
F1−α,p,m−p

This control chart is called a Phase II T 2-chart. Tracy et al.22 also provide an analogous lower control limit.

Control charts for the process dispersion

In the following, multivariate control charts for controlling process dispersion are presented. In the previous

two sections, it was assumed that process dispersion remained constant and was equal to �. This assumption is

generally not true and must be validated in practice. Process variability is summarized in the p × p variance–

covariance matrix �, which contains p × (p + 1)/2 parameters. There are two single-number quantities for

measuring the overall variability of a set of multivariate data. These are: (1) the determinant of the variance–

covariance matrix, |�|, which is called the generalized variance—the square root of this quantity is proportional

to the area or volume generated by a set of data; (2) the trace of the variance–covariance matrix, tr�, which is

the sum of the variances of the variables. In this section, two different control charts for the process dispersion

are presented since different statistics can be used to describe variability.

Assume that the vector x follows a Np(µ0, �0) distribution, and that there are m samples of size n > 1

available. The first multivariate chart for the process dispersion, presented by Alt11, can be based on the sequence

of the following statistic

Wi = −pn + pn ln n − n ln[|Ai | |�0|−1] + tr(�−1
0 Ai)

for the ith, i = 1, 2, . . . , m, sample, where Ai = (n − 1)Si and Si is the sample variance–covariance matrix of

the ith rational subgroup. The Wi statistic follows an asymptotic χ2-distribution with p × (p + 1)/2 degrees

of freedom. Thus, a multivariate Shewhart control chart for the process dispersion, with known mean vector

µ0 and known variance–covariance matrix �0, has an upper control limit of Lu = χ2
p(p+1)/2,1−α. Hence, if the

value of the test statistic Wi plots above Lu, the chart signals a potential out-of-control process. This control

chart is called a Phase II W -chart.

The second chart is based on the sample generalized variance |S|, where S is the p × p sample variance–

covariance matrix. One approach in developing an |S|-chart is to utilize its distributional properties. Alt11 and

Alt and Smith25 stated that if there are two quality characteristics, then

[2(n − 1)|S|1/2]|�0|−1/2
∽ χ2

2n−4

Thus, the control limits for an |S|-chart are

Lu = [|�0|(χ2
2n−4,1−α/2 )2][2(n − 1)]−2

Ll = [|�0|(χ2
2n−4,α/2 )2][2(n − 1)]−2

In a paper by Aparisi et al.26, the distribution of the |S|-chart is studied and suitable control limits are obtained

for the situation in which there are more than two variables. In addition, Alt11 proposed a second approach in

developing an |S|-chart by using only the first two moments of |S| and the property that most of the probability

distribution of |S| is contained in the interval

E[|S|] ± 3
√

V [|S|]

Also, Alt and Smith25 proposed the |S|1/2-chart. Furthermore, Alt11 gave a proper unbiased estimator for

|�0|, in order to define a Phase I control chart for controlling process dispersion. Aparisi et al.27 proposed the

design of the |S|-chart with adaptive sample size to control process defined by two quality characteristics.

Copyright c© 2006 John Wiley & Sons, Ltd.
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Although |S| is a widely used measure of multivariate variability, it is a relative simplistic scalar representation

of a complex multivariate structure. Therefore, its use can be misleading in some cases. Lowry and

Montgomery8 presented three sample covariance matrices for bivariate data that all have the same generalized

variance and yet have different correlations. Thus, it is often desirable to provide more than the single number

|S| as a summary of S. The use of univariate dispersion charts as supplementary to a control chart for |S| was

proposed by Alt11. In detecting changes in one or more of the variances (standard deviations), the |S| procedure

would not perform as well as when using separate univariate dispersion charts. However, the question ‘How

would one examine the data to see whether the signal may have occurred because of a change in one or more

covariances/correlations between quality measurements?’ still remains. Mason et al.28 examined the process

conditions that lead to the occurrence of certain non-random patterns in a T 2 control chart while Low et al.29

proposed a neural network procedure for detecting variations in the variances, with the assumption that the mean

value of the multiple quality characteristics of a process is under control. Surtihadi et al.30 considered several

special cases of a process displacement affecting the covariance matrix and have developed control charts (both

Shewhart-type and CUSUM) to detect these process changes.

Alternative charts

In this section, some alternative charts for controlling the mean or the dispersion of the process are pointed

out. Hayter and Tsui31 proposed the use of independent control charts with exact simultaneous limits for

monitoring the process mean. Guerrero32 has developed a control chart to determine the correlation structure of

a multivariate process, by using the concept of ‘mutual information’. Also, Guerrero33, proposed a ‘conditional

entropy approach’ in which the correlation matrix is known or fixed. Two new overall variability measures

have been defined based on the sample variances and ranges of the variables under consideration. Tang and

Barnett34 proposed the decomposition of the real variance–covariance matrix �0 or the sample variance–

covariance matrix S̄ into various statistically independent components each having a physical interpretation

and known distribution. The problem with this method is that the ordering of the variables is not unique, so for

a large p there are p! possible permutations. Also, Tang and Barnett35 compared their methods with various

competing procedures. Moreover, Spiring and Cheng36 demonstrated the use of an alternative control chart

for controlling both the mean and the dispersion of a process. Sullivan and Woodall37 introduced a preliminary

control chart for detecting a shift in the mean vector, the covariance matrix or both, when multivariate individual

observations are available, while Vargas38 proposed a T 2 control chart based on robust estimators of location

and dispersion, working with individual observations. Feltz and Shiau39 proposed a control chart based on the

empirical Bayesian approach. Wurl et al.40 have developed a methodology to monitor a batch process during

the start-up stage to reduce the length of this stage. Based on the problem of intrusion into an information

system, Ye and Chen41, in order to overcome the scalability problem of Hotelling’s T 2 test when it is applied

to large amounts of data, proposed an alternative to the T 2 control chart which is based on a χ2 distance metric

statistic, while Emran and Ye42 discussed the robustness of the χ2 distance metric. Ye et al.43 also compared

the effectiveness of the scalable χ2 procedure introduced by Ye and Chen41 with Hotelling’s T 2 control chart

for monitoring processes with uncorrelated data variables. Chang and Bai44 proposed a method for constructing

multivariate T 2 control charts for skewed populations based on weighted standard deviations. Kim et al.17

proposed control chart methods for process monitoring when the quality of a process is characterized by a linear

function.

Aparisi et al.45 have recently investigated the performance of Hotelling’s X2-chart with supplementary runs

rules. Specifically, in addition to the classical out-of-control criterion (one point above the Lu), they suggested

using three additional rules based on two out of three scans and runs of length 7 and 8. As indicated, for moderate

shifts, the combined use of all supplementary rules improves the ARL1 value of the X2-chart by approximately

25% (when ARL0 is kept fixed). Furthermore, Koutras et al.46 combined the theory of success runs and

Hotelling’s X2-chart, and have arrived at a procedure which improves the (weak) performance of Hotelling’s

X2-chart in the case of relatively small mean vector shifts. The smooth performance of the suggested variation

may be attributed, on the one hand, to the increased sensitivity of the runs statistic in detecting clustering of

similar results and, on the other hand, to the substantial descriptive power of the X2-chart. He and Grigoryan47

Copyright c© 2006 John Wiley & Sons, Ltd.
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have proposed a multivariate extension of a double-sampling X̄ control chart with at least two sampling stages

while Grigoryan and He48 have introduced a multivariate double-sampling |S| control chart for controlling shifts

in the variance–covariance matrix.

Multiattributes control charts

In the literature, little work has been carried out that deals with multivariate attributes processes, which are very

important in practical production processes. The first paper to deal with the methods of quality control, when

the p-dimensional observations are coming from a multivariate binomial or multivariate Poisson population,

was presented by Patel49. Patel49, assuming approximate normality, proposes an X2-chart. Lu et al.50 gave a

multivariate attribute control chart (MACC) which is a straightforward extension of the univariate np-chart and

is called the MNP-chart. Also, Jolayemi51 gave a MACC that is based on an approximation for the convolution

of independent binomial variables and on an extension of the univariate np-chart. Recently, Skinner et al.52 have

developed a procedure for monitoring multiple discrete counts. This procedure is based on the likelihood ratio

statistic for Poisson counts when input variables are measurable.

Autocorrelated multivariate processes

A process with serially correlated data may signal incorrectly and weaken the effectiveness of a control chart.

On the other hand, detection and evaluation of the form of multivariate autocorrelation is quite difficult.

A solution to this problem is to fit a time-series model to the multivariate data. Chan and Li53 and Charnes54

presented extensions of multivariate Shewhart charts that account for both autocorrelation within the process

and correlation across the variables of a multivariate process.

A special type of autocorrelation that occurs in multivariate data is referred to as the multivariate step process.

This occurs with decay processes such as continuous wear on equipment, with environmental contamination

of equipment and with the depletion of certain components in a process. This type of autocorrelation, which

is discussed by Mason et al.55, may initially appear to be a location shift of the distribution, but on closer

examination is a stage or step-change autocorrelation.

In many situations, the presence of measurement error arises when implementing process control. Fong

and Lawless56 and Lina et al.57 presented models for correlated process variables with measurement error.

Mastrangelo and Forrest58 presented a program that can be used to generate multivariate data from a first-order

vector autoregressive model with a shift in the mean vector of the noise series. The data can then be used to

compare the shift detection properties of the multivariate control chart methods. Krogstad59 also gave a method

for simulating a multivariate Gaussian time series. Apley and Tsung60 examined the use of Hotelling’s T 2-chart

to monitor an autocorrelated process, while Dyer et al.61 provided a simulation study and evaluation of several

multivariate approaches with regard to various autoregressive moving average ARMA(1,1) and autoregressive

AR(1) processes, and a comparison with their univariate counterparts. Jiang62 gives a multivariate control chart

for monitoring autocorrelated processes, which has an intrinsic relationship with the residuals-based generalized

likelihood ratio test procedure discussed in the literature. Mahmoud and Woodall63 studied the Phase I analysis

of data when the quality of a process or product is characterized by a linear function. They assumed that simple

linear regression data are available for a fixed number of samples collected over time, a situation common in

calibration applications. Using a simulation study, they compared the performance of some of the recommended

approaches used to assess the stability of the process. They also proposed a method based on using indicator

variables in a multiple regression model. Woodall et al.64 discussed the general issue involved in using control

charts to monitor processes, which is better characterized by a relationship between a response variable and one

or more explanatory variables. Also, Kalgonda and Kulkarni65 proposed a multivariate quality control chart for

autocorrelated processes in which observations can be modeled as a first-order autoregressive process.

Non-parametric schemes

Shewhart-type control charts require the assumption of multivariate normality. If the multivariate normal is

not an appropriate model, there is very little literature available on alternative multivariate charting techniques.

Copyright c© 2006 John Wiley & Sons, Ltd.
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An exception is the non-parametric control chart procedures put forward by Liu66, who introduced several

control charts using the concept of data depth. These charts are in the form of two-dimensional graphs for any

p-dimensional observation. They can detect both shifts in the process mean and shifts of the process dispersion.

According to Mason et al.67, the methods introduced by Liu66 assume that no standards are given, but the

procedure may suffer some loss in the effectiveness of detecting a signal if the data follow a multivariate normal

distribution.

Furthermore, the use of simulation to obtain accurate limits is an option in the absence of multivariate

normality. Given a sufficiently large historical data set, one should be able to obtain reasonably accurate control

limits by fitting a distribution to the variables. The use of simulation and bootstrap methods in process control

has been discussed by Liu and Tang68. A new robust Shewhart-type control chart for monitoring the location of

a bivariate process using Hodges–Lehmann and Shamos–Bickel–Lehmann estimators has been introduced by

Abu-Shawiesh and Abdullah69.

Chou et al.70 proposed a method to determine control limits, working with individual observations, in the case

where the data come from a non-normal distribution. Sun and Tsung71 introduced a kernel-based multivariate

control chart using support vector methods when the underlying distribution of the quality characteristics

departs from normality. Also, Stoumbos and Sullivan72 investigated the effects of non-normality on the

statistical performance of the MEWMA, and its special case, the X2-chart, while Qiu and Hawkins73 propose a

distribution-free CUSUM-type control chart. This chart is based on the ranks of the measurements, while Qiu

and Hawkins74 introduced a non-parametric CUSUM procedure which is based both on the order of information

within the measurement components and on the order of information between the measurement components

and their in-control means. Thissen et al.75 used a combination of mixture modeling and multivariate statistical

process control as a method for process monitoring in case of non-normality.

Chakraborti et al.76 noted that, although multivariate process control problems are important, multivariate

non-parametric statistical process techniques are not sufficiently well developed. From the above it is obvious

that there is much more work to do in this area.

Economic models

Jolayemi and Berretoni77 proposed an economic model that can be optimized to obtain the sample size, the

intersample interval and the upper control limit, which minimizes the cost of operating a multivariate control

chart. In addition, Jolayemi and Berretoni78 presented another economic model for the optimal design of

multivariate control charts in the presence of multiple assignable causes. Jolayemi79 has developed a statistical

model for the design of multivariate control charts with multiple control regions. The model produces the sample

size and values of the control limits needed for the operation of a multivariate control chart with multiple

control regions. Serel et al.80 proposed the use of independent X̄-charts, one for each of the p variables, with

unequal probabilities, which the test statistic plots beyond the control limits under an in-control state, while

Molnau et al.81 showed that the economic statistical design of a MEWMA gives better statistical properties

without significantly increasing optimal total costs. Chou et al.82 have developed a procedure for the economic–

statistical design of multivariate control charts by using a quality-loss function for monitoring the process

mean vector and covariance matrix simultaneously. Noorossana et al.83 summarized the assumptions as well

as the consequences made regarding the out-of-control process shift in the economic design of multivariate

control charts, while Love and Linderman84 discussed the economic design of the MEWMA control chart.

They concluded that the cost of the economic design of the MEWMA chart is not substantially affected by

misspecification of the shape of the distribution of the process failure mechanism.

3. MCUSUM AND MEWMA CONTROL CHARTS

Multivariate Shewhart-type control charts use information only from the current sample and they are relatively

insensitive to small and moderate shifts in the mean vector. MCUSUM and MEWMA control charts have been

developed to overcome this problem.
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CUSUM-type control charts

MCUSUM control charts are placed into two major categories. In the first, the direction of the shift (or shifts)

is considered to be known (direction-specific schemes), whereas in the second the direction of the shift is

considered to be unknown (directionally invariant schemes).

We first present CUSUM control charts, for which we assume that the direction of the shift (or shifts) is

known. Woodall and Ncube85 describe how a p-dimensional multivariate normal process can be monitored by

using p univariate CUSUM charts for the p original variables or by using p univariate CUSUM charts for the p

principal components. This multiple univariate CUSUM scheme is called the MCUSUM. The MCUSUM gives

an out-of-control signal whenever any of the univariate CUSUM charts does likewise. ARL performance in a

multivariate process is studied in relation to independent and dependent quality characteristics.

Healy86 uses the fact that CUSUM charts can be viewed as a series of sequential probability ratio tests, in

order to develop a MCUSUM chart. Let xi be the ith observation, which derives from Np(µ0, �0) with an

in-control p × 1 mean vector µ0 and a known p × p common variance–covariance matrix �0. Let µ1 be the

out-of-control p × 1 vector of means. The CUSUM for detecting a shift in μ0 towards μ1 may be written as

Si = max[(Si−1 + a
t(xi − µ0) − 0.5λ(µ1)), 0]

where λ(µ1) is the square root of the non-centrality parameter and at = [(µ1 − µ0)
t�−1

0 ]/λ(µ1).

This CUSUM scheme signals when Si ≥ H . As is clear, this CUSUM procedure reduces to a univariate

procedure for detecting a shift in the mean of a normal variable. That is, all of the available theory for

calculating ARL, H and S0 for a univariate normal CUSUM can also be used for this multivariate normal

CUSUM. A similar procedure is proposed by Healy86 for controlling process dispersion. The CUSUM for

detecting a change in the variance–covariance matrix, of the form �1 = C�0 (C is a real constant), may be

written as

Si = max[(Si−1 + D2
i − K), 0]

where K = p log C(C/(C − 1)) and D2
i = (xi − µ0)

t�−1
0 (xi − µ0). This CUSUM scheme signals when Si ≥

H . We have been unable to find any proposal in the literature for an analogous charting procedure in the case

where the mean vector and the variance–covariance matrix have to be estimated. Healy86 has also proposed a

lower-sided version of this CUSUM chart.

Hawkins87 introduced CUSUMs for regression-adjusted variables based on the idea that the most common

situation found in practice is departures from control having some known structure. In particular, it is assumed

that the mean shifts with magnitude δ in only one variable.

Consider the multiple regression of Xj , the j th variable of x, on all other variables of x. Let Zj be the residual

corresponding to the linear regression of the j th variable on the rest of the variables, and suppose that Zj has

been rescaled to have unit variance. The Zj may be used to determine whether there is a shift in the μj .

The regression residual Zj is given by z = [diag(�−1)]−1/2�−1(x − µ0), whose in-control distribution is

N(0, 1). Hawkins87,88 proposed to chart each Zj using a CUSUM procedure because, in general, it is not

known which of the p variables is out of control. For studying p individual charts simultaneously, Hawkins87

proposed the following overall group diagnostics

MCZ = max(L+
i,j , −L−

i,j ) and ZNO =
p∑

j=1

(L+
i,j + L−

i,j )
2

where L+
i,j = max(0, L+

i−1,j + Zi,j − k), L−
i,j = min(0, L−

i−1,j + Zi,j + k), L+
0,j = L−

0,j , for i = 1, 2, . . . , m.

MCZ is the MCUSUM statistic, introduced by Woodall and Ncube85, applied to the CUSUM for z. ZNO is the

squared Euclidean norm of the resultant vectors of the CUSUM for upward and downward shifts in the mean.

The CUSUMs L+, L− test for shifts in location in the upward and downward directions, respectively. The plot

of these CUSUMs on a common chart gives a better-performing CUSUM control chart for location. An out-of-

control signal occurs when any of these four CUSUMs exceeds the decision interval h. The values of h and k

are selected as in any univariate CUSUM chart because each is based on a single random variable that follows
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the N(0, 1) distribution. An out-of-control signal is indicated when MCZ and ZNO exceed a threshold value set

to fix the in-control ARL. Hauck et al.89 applied multivariate statistical process monitoring and diagnosis with

grouped regression-adjusted variables.

Crosier90 proposed two new multivariate CUSUM schemes. The first scheme is based on the square root

of Hotelling’s T 2 statistic, while the second can be derived by replacing the scalar quantities of a univariate

CUSUM scheme with vectors. Moreover, Pignatiello and Runger18 introduced two new MCUSUM schemes.

They refer to these MCUSUM charts as MCUSUM #1 and MCUSUM #2. Crosier90 and Pignatiello and

Runger18 have established MCUSUM schemes for cases where the direction of the shift is considered to be

unknown.

The first CUSUM proposed by Crosier90 is a CUSUM of the scalar Di , the square root of the D2
i statistic,

and is given by

Si = max[(Si−1 + Di − K), 0], i = 1, 2, 3, . . .

where S0 ≥ 0 and K ≥ 0. This scheme signals when Si ≥ H , which is determined using the Markov chain

approach. Crosier90 noted that a search for the optimal K produces a sequence that closely resembles the square

root of the number of variables.

A similar CUSUM was proposed by Pignatiello and Runger18, defined as

Si = max[0, Si−1 + D2
i − k], i = 1, 2, 3, . . .

with S0 = 0, and k chosen to be 0.5λ2(µ1) + p. The process is out of control if Si exceeds an upper control

limit H . Pignatiello and Runger18 used a Markov chain approach to determine the values of H .

Crosier90 and Pignatiello and Runger18 found that ordinary one-sided univariate CUSUMs based on

successive values of the D2
i or Di statistic, respectively, do not have good ARL properties.

The second CUSUM proposed by Crosier90 is a CUSUM of vectors. A vector-valued scheme can be derived

by replacing the scalar quantities of a univariate CUSUM scheme with vectors and is given by

γi = [St
i�

−1
0 Si ]1/2, i = 1, 2, 3, . . .

where Si = (Si−1 + xi − µ0)(1 − kC−1
i ), if Ci > k and Si = 0 otherwise and Ci = [(Si−1 + xi −

µ0)
t�−1

0 (Si−1 + xi − µ0)]1/2. This scheme signals when γi > h, which is chosen to provide a predefined

in-control ARL by simulation. Owing to the fact that ARL performance of this chart depends on the non-

centrality parameter, Crosier90 recommended that k = λ(µ1)/2 and S0 = 0. Both CUSUMs, as proposed by

Crosier90, allow the use of recent enhancements in CUSUM schemes. Among the CUSUM schemes proposed

by Crosier90, the vector-valued scheme has a better ARL performance than the scalar scheme.

The second CUSUM proposed by Pignatiello and Runger18 can be constructed by defining MCi as

MCi = max{[Dt
i�

−1
0 Di]1/2 − kni, 0}, i = 1, 2, 3, . . .

where MC0 = 0, k is chosen to be 0.5λ(µ1), µ1 is a specified out-of-control mean

Di =
i∑

l=i−ni+1

(xi − µ0)

and ni is the number of subgroups since the most recent renewal (i.e. zero value) of the CUSUM chart, formally

defined as

ni =
{

ni−1 + 1 if MCi−1 > 0

1 otherwise

This chart operates by plotting MCi on a control chart with an upper control limit of H (H is investigated by

simulation). If MCi exceeds H , then the process is out of control. Pigniatello and Runger18 proved that the ARL
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performance of the MCi-chart depends only on the square root of the non-centrality parameter and that it is

better in relation to γi .

Ngai and Zhang91 gave a natural multivariate extension of the two-sided cumulative sum chart for controlling

the process mean. Also, Chan and Zhang92 propose cumulative sum charts for controlling the covariance matrix.

Finally, as has already been mentioned, Qiu and Hawkins73,74 proposed non-parametric CUSUM-type control

chart procedures.

Runger and Testik93 provided a comparison of the advantages and disadvantages of MCUSUM schemes, as

well as performance evaluations and a description of their interrelationships. A new derivation was also provided

and extensive simulation results that include initial and steady-state conditions were presented. Geometric

descriptions were used, and names were proposed based on these geometric characteristics.

MEWMA charts

MEWMA charts are the second category of charts examined. Let xt
i be the ith, p-dimensional observation. Also,

assume that xi follows a Np(µ0, �0) with a known variance–covariance matrix � and a known p-dimensional

mean vector µ0. A MEWMA control chart is proposed by Lowry et al.94 as follows

zi = Rxi + (I − R)zi−1 =
i∑

j=1

R(I − R)i−j
xj , i = 1, 2, 3, . . .

where R = diag(r1, r2, . . . , rp) and 0 ≤ rk ≤ 1 for k = 1, 2, 3, . . . , p, and I is the identity matrix. If there is

no a priori reason to weight past observations differently for the p quality characteristics being monitored,

then r1 = r2 = · · · = rp = r . The initial value z0 is usually obtained as equal to the in-control mean vector

of the process. It is obvious that if R = I, then the MEWMA control chart is equivalent to the T 2-chart.

The MEWMA chart gives an out-of-control signal if zt
i�

−1
zi

zi > h, where �zi is the variance–covariance matrix

of zi . The value h is calculated by simulation to achieve a specified in-control ARL. The ARL performance of the

MEWMA control chart depends only on the non-centrality parameter, but in the case where unequal weighting

constants are used, the ARL depends on the direction of the shift. This means that the MEWMA has the property

of directional invariance. The variance–covariance matrix of zi is calculated via the following formula

�zi =
i∑

j=1

Var[R(I − R)i−j
xj ] =

i∑

j=1

R(I − R)i−j�(I − R)i−j
R

or when r1 = r2 = · · · = rp = r

�zi = (1 − (1 − r)2i)r/(2 − r)�

An approximation of the variance–covariance matrix �zi for i approaches +∞ as follows

�zi = r/(2 − r)�

However, the use of the exact variance–covariance matrix of the MEWMA leads to a natural fast initial

response for the MEWMA chart. Inertia problems may occur with the MEWMA chart and the simultaneous use

of a Shewhart-type chart is proposed.

Lowry et al.94 studied the ARL of the MEWMA. The ARL performance of the MEWMA procedure depends

only on µ0 and �0 through the value of the non-centrality parameter. Since the MEWMA, the MCUSUM #1 and

the vector CUSUM are all directionally invariant, these three charts can be compared with each other and with

Hotelling’s2 T 2-chart. Such a comparison shows that the ARL performance of the MEWMA is at least as good

as that of the vector-valued CUSUM and MCUSUM #1. Testik et al.95 discussed the robustness properties of

MEWMA control charts in the case where the data follow multivariate t and multivariate gamma distributions.

Their study is an extension of the work by Borror et al.96 for the univariate EWMA control chart.
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Rigdon97,98 gave an integral and a double-integral equation for the calculation of in-control and out-of-control

ARLs, respectively. Moreover, Bodden and Rigdon99 have developed a computer program for approximating the

in-control ARL of the MEWMA chart. Runger and Prabhu100 use a Markov chain approximation to determine

the run-length performance of the MEWMA chart. In addition, Prabhu and Runger101 provide recommendations

for the selection of parameters for a MEWMA chart. Molnau et al.102 presented a program that enables the

calculation of the ARL for the MEWMA when the values of the shift in the mean vector, the control limit and

the smoothing parameter are known.

Kramer and Schmid103 proposed a generalization of the MEWMA control scheme of Lowry et al.94 for

multivariate time-dependent observations. Sullivan and Woodall14 recommended the use of a MEWMA for the

preliminary analysis of multivariate observations. Fasso104 has developed a one-sided MEWMA control chart

based on the restricted maximum likelihood estimator.

Yumin105 proposed the construction of a MEWMA using the principal components of the original variables.

Choi et al.106 proposed a general MEWMA chart in which the smoothing matrix is full instead of one having

only diagonal. The performance of this chart appears to be better than that of the MEWMA proposed by

Lowry et al.94. Choi and colleagues have also provided a computer program for the estimation of control limits

(Hawkins et al.107). Yeh et al.108 introduced a MEWMA which is designed to detect small changes in the

variability of correlated multivariate quality characteristics, while Chen et al.109 proposed a MEWMA control

chart that is capable of monitoring simultaneously the process mean vector and process covariance matrix.

Runger et al.110 showed how the shift detection capability of the MEWMA can be significantly improved

by transforming the original process variables to a lower-dimensional subspace through the use of the

U -transformation. The U -transformation is similar to principal components transformation. Tseng et al.111

proposed a MEWMA controller under a linear multiple-input–multiple-output model, while Castillo and

Rajagopal112 gave a multiple-input–multiple-output extension to the univariate double EWMA, which was first

used by Butler and Stefani113. In general, there are several different approaches to the design of MEWMA

control charts: (i) statistical design; (ii) economic-statistical design; and (iii) robust design. A review and a com-

parison of these design strategies is provided by Testik and Borror114. Yeh et al.115 gave a likelihood-ratio-based

EWMA control chart that effectively monitors small changes of variability of multivariate normal processes.

Margavio and Conerly116 have developed two alternatives to the MEWMA chart. The first of these is an

arithmetic multivariate moving average; the second is a truncated version of the MEWMA. Sullivan and Jones117

proposed a self-starting control chart for individual observations. The use of this chart is advantageous when

production is slow. Reynolds and Kim118 proposed MEWMA charts based on sequential sampling in which

the total sample size taken at a sampling point depends on current and past data, while Kim and Reynolds119

discussed the use of the MEWMA control chart for monitoring the process mean when sample sizes are unequal.

4. MULTIVARIATE STATISTICAL PROJECTION METHODS

The use of traditional multivariate Shewhart charts or MCUSUM and MEWMA schemes may be impractical

for high-dimensional systems with collinearities. A common procedure for reducing the dimensionality of the

variable space is the use of projection methods such as PCA and PLS. These two methods are based on building

a model from a historical data set, which is assumed to be in control. After the model has been built, the future

observation is checked as to whether it fits well in the model. These multivariate methods have the advantage

that they can handle process variables and product quality variables. The PCA approach for monitoring process

variables (Xn×q ) is used when product quality data (Yn×p) are not available in the historical data set. The PLS

approach for monitoring process variables has been developed from historical data sets, with measurements

from both the process (Xn×q ) and the quality variables (Yn×p) obtained during in-control operation.

Using PCA

The principal components method is a common multivariate procedure for reducing the dimensionality of the

quality variable space (Jackson3). This method is based on a key result from matrix algebra: a p × p symmetric,
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non-singular matrix, such as the sample variance–covariance matrix S, may be reduced to a diagonal matrix L by

premultiplying and postmultiplying it by a particular orthonormal matrix U such that UtSU = L. The diagonal

elements of L, l1 ≥ l2 ≥ · · · ≥ lp are the characteristic roots, or eigenvalues, of S. The columns of U are the

characteristic vectors, or eigenvectors, of S.

Furthermore, let x and x̄ be p × 1 vectors of observations of the original variables and their means,

respectively. The transformed variables are the principal components of x. The ith principal component is

Zi = u
t
i [x − x̄]

and has mean zero and variance li under the assumption that the eigenvectors ui are normalized, that is ut
iui = 1

for i = 1, 2, . . . , p. The quantity li × (l1 + l2 + · · · + lp)−1 is the proportion of variability in the original

data explained by the ith principal component, owing to the valid relationship trS = trL = l1 + l2 + · · · + lp.

The great advantage of this method is the reduction of the dimensionality. Since the first k (k < p) principal

components explain the majority of the process variance they can be used for inferential purposes. In addition,

the residual term Q = (x − x̂)t(x − x̂) exists because of the use of only the first k significant principal

components, where x̂ is the estimated value of x using the PCA model. Thus, the value k must be decided.

A number of different methods for choosing k exist. In addition, Runger and Alt120 presented a method for

choosing k specifically for process control problems.

The method of principal components is very useful in multivariate quality control. Jackson3 presented three

types of principal components control charts: (1) a T 2 control chart obtained from principal components scores;

(2) a control chart for principal components residuals; and (3) a control chart for each independent principal

component’s scores. Thus, having established a PCA model based on historical data collected only when a

common cause of variation was present, future multivariate observations can be projected onto the plane defined

by the principal components loading vectors (U ), to obtain their scores and the residuals.

In this section we are assuming that xi derives from a Np(µ0, �0) distribution.

Control chart of principal components scores—working with individual observations (n = 1)

Principal components charts based on Hotelling’s D2
i can be plotted for either all of the p principal components

or the first k principal components. Using PCA, the original form of D2
i statistic, as can be easily derived from

Jackson3, is transformed to

D2
i =

k∑

i=1

Z2
i l

−1
i +

p∑

i=k+1

Z2
i l

−1
i

If all p principal components are used, the critical value for D2
i , as given by Jackson3, is

Lu = p(m + 1)(m − 1)[m(m − p)]−1F1−α,p,m−p

where the total number of independent individual observations is m. On the other hand, if the first k principal

components are used, the critical value for D2
i is given by the same formula replacing p with k. Thus, if a D2

i

value is greater than Lu, then the process is said to be out of control.

Control chart of PCs scores—working with rational subgroups (n > 1)

In the case where a number, m, of rational subgroups, each of size n > 1, are taken in a homogeneous time

interval, the D2
i statistic for use with principal components has the following form

D2
i = n

( k∑

i=1

Z̄2
i l

−1
i +

p∑

i=k+1

Z̄2
i l

−1
i

)

where Z̄i is the average of each of the p z-scores over the n observations in the subgroup. Thus, the critical

value as given by Jackson3 is

Lu = p(m − 1)(n − 1)(mn − m − p + 1)−1F1−a,p,mn−m−p+1
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In the case where the first k principal components are used, the critical value is given by the same formula,

replacing p with k. Consequently, if a D2
i value is greater than Lu then the process is said to be out of control.

Control chart of principal components residuals

The residual term Q can be tested by means of the sum of squares of the residuals (Jackson3)

Q = (x − x̂)t(x − x̂) =
p∑

i=k+1

liy
2
i =

p∑

i=k+1

z2
i

where x̂ = x̄ + Uz, U is p × k and z is k × 1. The critical value for Q is

Qα = ϑ1[cα(2ϑ2h
2
0)

1/2ϑ−1
1 + ϑ2h0(h0 − 1)ϑ−2

1 + 1]1/h0

where ϑT =
∑p

i=k+1 lT
i , h0 = 1 − 2ϑ1ϑ3/ϑ

2
2 and cα is the normal deviate cutting off an area of α under the

upper tail of the distribution if h0 is positive and under the lower tail if h0 is negative. This distribution holds

whether or not all of the significant components are used, even when some non-significant components are

employed. The quantity c is approximately normally distributed with zero mean and unit variance, and is given

by the formula

c = ϑ1 × [(Qϑ−1
1 )h − (ϑ2h0(h0 − 1)ϑ−2

1 ) − 1](2ϑ2h
2
0)

−1/2

Another test statistic for the residuals has been proposed by Hawkins87 using the unweighted sums of

squares of the unretained principal components D2
i = y2

k+1 + · · · + y2
p, which is distributed as k(m − 1)(n − 1)

(mn − m − k + 1)−1F1−a,p−k,n−p+k.

In the case of m rational subgroups, each of size n > 1, the residual term can be tested by means of the sum

of squares of the residuals QM = n(x̄ −̂̄x)t(x̄ −̂̄x), where ̂̄x is the predicted average vector. The QM statistic

has the same distribution with the same degrees of freedom as for Q itself.

Univariate control charts of principal components scores

In the case where n = 1, the independent Zi principal components can be charted for controlling the process

in single univariate charts for each i. The control limits are ±Z1−α/2

√
li with Lc = 0 (center line), where

Z1−α/2 is the corresponding 1 − α/2 percentile of the standard normal distribution. Moreover, in the case of

rational subgroups, the independent Zi principal components can be charted for controlling the process in single

univariate charts for each i and the control limits are L = ±Z1−α/2

√
li/n with Lc = 0 (Jackson3).

PCA and autocorrelated data

The PCA method is also widely used in cases where data are autocorrelated. Ku et al.121 extended the use

of PCA models in process monitoring to account for autocorrelation. Likewise, Runger122 proposed a model

which allows autocorrelation and crosscorrelation in the data. Mastrangelo et al.123 explored the use of PCA in

autocorrelated processes. Wilkstrom et al.124 applied ARMA models in principal components.

Alternative control charts using PCA

Several control charts using PCA have been proposed in the literature. The first is the U2-chart

(U transformation is similar to PCA transformation) proposed by Runger125.

Chen et al.126 proposed a robust PCA approach via hybrid projections pursuit. Nijhuis et al.127 demonstrated

the use of PCA by applying process control in chromatography, while Nijhuis et al.128 proposed a new

control chart based on PCA that is called the (T C)2-chart; it is used for applying process control in

gas chromatography. Furthermore, Wilkstrom et al.129 applied multivariate statistical process control to an

electrolysis process. A mixed control chart is presented which permits the simultaneous monitoring of principal

component scores and principal component residuals; it is called the SMART-chart (Simultaneous Monitoring

And Residuals Tracking). Wilkstrom et al.124 apply multivariate statistical process control to an electrolysis

process, incorporating PCA, PLS and ARMA techniques into the analysis.
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Tsung130 presented a method focused on process control schemes that are based on a combination of the

process outputs and automatic control actions using adaptive PCA. Chiang et al.131 discussed the use of

discriminant analysis, PCA and PLS for fault diagnosis in chemical processes. Norvilas et al.132 have developed

an intelligent process-monitoring and fault-diagnosis environment by interfacing multivariate statistical process

control monitoring techniques and knowledge-based systems for monitoring multivariate process operation.

Lane et al.133 proposed an extension to PCA which enables the simultaneous monitoring of a number of

product grades or recipes. Schippers134 proposed an integrated process control model using statistical process

control, total productivity management and automated process control. Kano et al.135 proposed a novel statistical

monitoring method which is based on PCA, called moving PCA, in order to improve process-monitoring

performance. The aim of this method is to identify changes in the correlation structure. Chen and Liu136

proposed on-line batch process monitoring using dynamic PCA and dynamic PLS models. Finally, Arteaga and

Ferrer137 dealt with the missing-data problem in the estimation of latent variables scores from an existing PCA

model. Badcock et al.138 proposed two alternative projection techniques that focus on the temporal structure

of multivariate data. Ramaker et al.139, using simulation, studied the effect of the size of the training set and

number of principal components on the false-alarm rate in statistical process monitoring.

Multi-way PCA

Multi-way PCA is used to analyze a historical set of batch trajectory data. In a typical batch run, p variables

are measured at k time intervals through the batch. Similar data will exist on m similar process batch runs.

The vast amount of data involved can be organized into a three-way array Xm×p×k . In general, multi-way

PCA is equivalent to unfolding the three-dimensional array Xm×p×k slice by slice, rearranging the slices into a

large two-dimensional matrix X, and then performing a regular PCA. Four multidimensional statistical methods

(Tucker model, PARAFAC (parallel factor) model, canonical decomposition, three mode factor analysis) have

been proposed for decomposing such data arrays into the sum of a few products of vectors and matrices and

for summarizing the variation of the data in the reduced dimensions of the spaces. A presentation of the Tucker

model and the PARAFAC model and a comparison of these methods with the method multi-way PCA were

given by Louwerse and Smilde140. Nomikos and MacGregor141,142 gave a detailed presentation of multi-way

PCA. Wise et al.143 presented an application of PARAFAC2 to fault detection and diagnosis in semiconductors.

Cho and Kim144 proposed a new method for predicting future observations in the monitoring of the batch that

is currently being operated. This method makes extensive use of past batch trajectories.

Using PLS

In general, PLS is a method, or rather a class of methods, which accomplishes dimension reduction by working

on the sample variance–covariance matrix (XtY)(YtX), where Xn×q is the matrix of process characteristics

and Yn×p is the matrix of quality variables. The use of PLS as a regression technique has been promoted

primarily within the area of chemometrics, although PLS would be equally useful in any application that has

multiple predictors. MacGregor et al.145, Nomikos and MacGregor146, MacGregor and Kourti147 and Kourti and

MacGregor148 presented the use of PLS in multivariate statistical process control, while Wang et al.149 presented

the use of the recursive PLS modeling technique in the multivariate statistical process control framework.

The multivariate control chart is, again, a T 2-chart on the first k latent variables.

Multi-way PLS

Nomikos and MacGregor146 gave a detailed presentation of multi-way PLS, which is an extension of PLS for

handling data in three-dimensional arrays. The relation between multi-way PLS and PLS is that multi-way PLS

is equivalent to performing PLS on a large two-dimensional matrix Xm×pk formed by unfolding Xm×p×k .

Multi-block PLS

In the multi-block PLS approach, sets of process variables X are broken into meaningful blocks X1, X2, . . . ;

each block usually corresponds to a process unit or a section of a unit. These blocks are then related

simultaneously to Y. Multi-block PLS is not equivalent to performing PLS on each block separately;
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all of the blocks are considered together. MacGregor et al.145 and Kourti et al.150 discussed applications of

multi-block PLS to process monitoring and diagnosis. In addition, they presented an algorithm for performing

multi-block PLS. Martin et al.151 used an industrial ethylene propylene rubber compounding process in order

to illustrate some of the issues that arise in the monitoring of the manufacturing performance of a process

comprised of both batch and continuous unit operations.

Applications of PCA and PLS

Several applications of PCA and multi-way PCA, or modifications thereof, in real or in simulated processes,

have been discussed by numerous authors including Zullo152, Gallagher et al.153, Runger et al.154, Stover and

Brill155, Tates et al.156, Howarth et al.157, Chen and Liu158, Marengo et al.159, Wang et al.160, Yoon and

MacGregor161, Albazzaz and Wang162, Skoglund et al.163 and Garcia-Munoz et al.164. Applications of PLS,

multi-way PLS, PCA and multi-way PCA, or their modifications in real or in simulated processes, have also been

discussed by numerous authors. Among these are Kourti et al.150,165, Wise and Gallagher166, Martin et al.167,168,

Martin and Morris169 and Simoglou et al.170. Kourti171 also provided a discussion on multi-block, multi-way

PCA/PLS. Some of the methods that have appeared in the literature are examined as to their assumptions,

their advantages and disadvantages and their range of applicability. Kourti172 gave an overview of the latest

developments of multivariate monitoring based on latent variable methods for fault detection and isolation in

industrial processes.

Neural networks and non-linear models

Neural networks are well suited for solving the same types of problem as those confronting human brains, such

as recognition and classification (see Bose and Liang173). Dayal et al.174 used feedforward neural networks

and PLS for modeling the ‘kappa number’ in a continuous Kamyr digester. In their study, inferential models

for the kappa number were developed using PLS and neural networks. The advantages and limitations of each

method were evaluated followed by a comparison with other modeling approaches. A novel nonlinear PCA

method based on the input-training neural network was proposed by Jia et al.175, together with non-parametric

control charts. Another nonlinear PCA algorithm was proposed by Shao et al.176 for process performance

monitoring based on an input-training neural network. Prior to assessing the capabilities of the monitoring

scheme in relation to the use of an industrial dryer, the data were first pre-processed to remove noise and

spikes through wavelet de-noising. The wavelet coefficients obtained were used as the inputs for the nonlinear

PCA algorithm. Performance monitoring charts with non-parametric control limits were then applied to identify

the occurrence of non-conforming operation. Ganesan et al.177 presented a literature review of wavelet-based,

multiscale statistical process monitoring. In their paper, over 150 published and unpublished papers are cited

for this important subject, and some extensions of the current research are discussed.

5. INTERPRETATION OF AN OUT-OF-CONTROL SIGNAL

In the previous sections, multivariate Shewhart, MCUSUM and MEWMA control charts, as well as PCA

and PLS, procedures were reviewed in relation to monitoring the process mean and the process variability.

These control charts are able to recognize an out-of-control process. If a univariate control chart gives an out-

of-control signal, then someone can easily detect the problem and find a solution since a univariate chart is

associated with a single variable. This is not valid for a multivariate control chart, as a number of variables are

involved and, also, correlations exist among them. The identification of an out-of-control variable or variables

after a multivariate control chart signals has been an interesting topic for many researchers over the last few

years. In this section, methods for detecting which of the p different variables are out-of-control are presented.

Using univariate control charts with standard or Bonferroni control limits

An obvious idea is to consult the corresponding univariate control charts. The use of p univariate control

charts gives the first evidence for which of the p variables are responsible for an out-of-control signal.
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However, as already stated, the use of p independent univariate control charts can be very misleading if they

have not been properly designed. The use of the Bonferroni inequality was proposed by Alt11. Thus, p individual

control charts would be constructed, each with a probability that the test statistic plots beyond the control limits

under an in-control state equal to α/p and not α.

Hayter and Tsui31 extended the idea of Bonferroni-type control limits by giving a procedure for exact

simultaneous control intervals for each of the variable means, using simulation. Hence, for a known variance–

covariance matrix � and a chosen probability that the test statistic plots beyond the control limits under an in-

control state, equal to α, the experimenter first evaluates the critical point CR,α . The choice of CR,α depends on

the correlation matrix R. The authors give guidance and various tables for choosing the critical point CR,α . Then,

following any observation xt, the experimenter constructs intervals for the statistic (Xi − σiCR,α, Xi + σiCR,α),

where σi is the standard deviation of the ith variable, for each of the p variables. This procedure ensures

that an overall probability α is achieved. The new procedure can be thought of as triggering an alarm when

M = max[|Xi − μ0i |/σi] > CR,α , i = 1, 2, . . . , p. A graphical control display can be created by charting the

M statistic for each multivariate observation.

The next method that is discussed is the use of an elliptical control region. This method is discussed by Alt11

and Jackson3 and can be applied only in the special case of two quality characteristics distributed as a bivariate

normal. In this specific case, an elliptical control region can be constructed. This elliptical region is centered at

µt
0 = (μ1, μ2) and can be used in place of the Phase II X2-chart. All points lying on the ellipse have the same

value of X2. The X2-chart gives a signal every time the process is out of control, while the elliptical region is

useful for indicating which of the variables led to an out-of-control signal. An extension of the elliptical control

region as a solution to the interpretation problem was given by Chua and Montgomery178. They use a MEWMA

control chart for identifying out-of-control observations and the hyperplane method for identifying the variable

or variables that caused the problem. Mader et al.179 presented the use of the elliptical control region for power

supply calibration as a process-monitoring technique.

Another control chart that gives evidence about which variable caused the out-of-control signal is that

presented by Sepulveda and Nachlas180. This chart, called the simulated minimax control chart, monitors the

maximum and minimum standardized sample mean of samples taken from a multivariate process. It is assumed

that the data are normally distributed and that the variance–covariance matrix is known and constant over

time. Hence, by monitoring the maximum and minimum standardized sample mean, an out-of-control signal

is directly connected with the corresponding out-of-control variable. Sepulveda and Nachlas180 also discussed

the statistical properties and the ARL performance of the minimax control chart.

Using T 2 decomposition

Many authors have suggested using decomposition techniques for identifying particular subsets that cause an

out-of-control signal.

The most promising method is T 2 decomposition, proposed by Mason et al.181. The main idea behind

this method is to decompose the T 2 statistic into independent parts, each of which reflects the contribution

of an individual variable. The main drawback of this method is that the decomposition of the T 2 statistic

into p independent T 2 components is not unique as p! different non-independent partitions are possible.

An appropriate computing scheme that can greatly reduce the computational effort required was given by Mason

et al.182. This method was developed to deal with individual observations, but it can easily be generalized to

handle rational subgroups. Mason et al.55 presented an alternative control procedure for monitoring a step

process, which is based on a double decomposition of Hotelling’s T 2 statistic. Mason and Young183 showed

(using T 2 decomposition) that by improving model specification at the time that the historical data set is

constructed, it may be possible to increase the sensitivity of the T 2 statistic to signal detection.

Murphy184 proposed a method that stems from the idea of discriminant analysis and uses the overall T 2

value, comparing it with a T 2
p1

value based on a subset of p1 variables, which are suspect as regards the

out-of-control signal. Then, T 2
p is the full squared distance and T 2

p1
is the reduced distance corresponding

to the subset of the p1 variables which are suspected of being associated with the out-of-control signal.
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Finally, the difference D = T 2
p − T 2

p1
is calculated, following a χ2-distribution with p1 degrees of freedom,

under the null hypothesis that the subvector x̄p1
follows a p1-dimensional distribution with mean µ01 and

variance–covariance matrix �01.

The main idea of the method proposed by Doganaksoy et al.185 is the univariate t ranking procedure using

the test statistic

t = (X̄f − ¯̄X)[s(n−1
f + n−1)]−1/2

where f stands for the observation that gave the out-of-control signal, n is the sample size and ¯̄X, s are the mean

and the standard deviation of the reference data set, respectively. This method is based on use of p unconditional

T 2 terms. The diagnostic approach is triggered by an out-of-control signal from a T 2-chart.

Wierda7 recommended a step-down procedure, assuming that there is an a priori ordering (which variable

is the most sensitive to shifts) among the means of the p variables and sequentially tested subsets using this

ordering to determine the sequence. The test statistic has the form

Fj = (T 2
j − T 2

j−1){1 + [T 2
j−1/(n − 1)]}−1

where the T 2
j represents the unconditional T 2 for the first j variables in the chosen group. In the setting of

a multivariate control chart, Fj would be the charting statistic which, under the null hypothesis, follows an

(nf − 1)j (nf − j)−1Fpj ,nf −j distribution. This procedure can be considered as an alternative to using the

regular T 2-chart and not only as a supplement because the numerator of Fj is a conditional T 2 value.

Timm186 proposed the use of finite intersection tests (FITs). He assumes that there is an a priori ordering

among the means of the p variables. Although T 2 is optimal for finding a general shift in the mean vector, it is

not optimal for shifts that occur for certain subsets of variables. Timm186 states that when this occurs the optimal

procedure is to utilize a FIT. In the same paper, Timm186 described a stepdown FIT procedure for the situation

where the variance–covariance matrix � is unknown. Runger et al.187 simplified previous recommendations

given by Wierda7 and Timm186, considering all subsets of variables.

Cause-selecting control chart and regression adjusted variables

Wade and Woodall188 considered a two-step process in which the steps are not independent. In particular, when

the incoming variable X1 (the first step of the process) is charted in its own right, the outgoing quality X2

(the second step of the process) is monitored after adjusting for the incoming quality X1. A chart for X1 and

Z = X2 − X̂2 respectively, where X̂2 is the predicted value for X2 based on the regression line, connecting

X1 and X2, is used. Thus, the Zi are independent normal. If controllable, assignable causes are present, the

distribution of Zi shifts from the normal distribution for some values of i.

Another chart that uses the concept of regression adjustment is that of Hawkins. Hawkins87,88, as already

mentioned, defined a set of regression-adjusted variables in which he regressed each variable on all of the

others. Hawkins87,88 proposed charting each Zj using a CUSUM procedure because, in general, it is not known

which of the p variables is out of control. His test statistic involves p-adjusted values, which can be shown to

be related to the statistics presented in Mason et al.181 decompositions. Kalagonda and Kulkarni189 recently

proposed a diagnostic procedure using the dummy variable regression technique. This technique enables the

identification of the causative factors, such as the mean and/or relationship shift, responsible for out-of-control

signalling. The technique also indicates the direction of the shift, i.e. whether the mean is increased or decreased.

Using principal components

Principal components can be used to investigate which of the p variables are responsible for the creation of

an out-of-control signal. Writers have proposed various methods for using principal components to interpret an

out-of-control signal.

The most common practice is to use the first k most significant principal components, in these cases where

T 2 control charts show an out-of-control signal. The principal components control charts that were analyzed in
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the corresponding section can be used. The basic idea is that the first k principal components can be physically

interpreted and named. Therefore, if the T 2-chart shows an out-of-control signal and, for example, the chart

for the second principal component also gives an out-of-control signal, then from the interpretation of this

component, a direction can be taken as regards which variables are out-of-control suspects. This transforms

the variables into a set of attributes. The discovery of the assignable cause that led to the problem, using this

method, demands further knowledge of the process itself on the part of the practitioner. The basic problem is

that the principal components do not always lead themselves to physical interpretation.

According to Jackson3, the procedure for monitoring a multivariate process using PCA can be summarized

as follows. For each observation vector, obtain the z-scores of the principal components and from these

compute T 2. If this is in control, continue processing. If it is out of control, examine the z-scores. As the

principal components are uncorrelated, they may provide some insight into the nature of the out-of-control

condition, which may then lead to the examination of certain original observations.

Kourti and MacGregor148 provided a different approach based on PCA. T 2 is expressed in terms of

normalized principal components scores of the multinormal variables. When an out-of-control signal is received,

the normalized score with high values is detected, and contribution plots are used for finding the variables

responsible for the signal. A contribution plot indicates how each variable involved in the calculation of that

score contributes to it. This approach is particularly applicable to large, ill-conditioned data sets owing to the

use of principal components. Contribution plots were also explored by Wasterhuis et al.190.

Maravelakis et al.191 have proposed a new method based on PCA. Theoretical control limits were derived and

a detailed investigation of the properties and limitations of the new method was given. Furthermore, a graphical

technique which can be applied in these limiting situations was also provided. Choi et al.192 have developed a

fault-detection method based on a maximum likelihood–PCA mixture.

Graphical techniques

Fuchs and Benjamini193 presented a method for simultaneously controlling a process and interpreting out-of-

control signals. The new chart (graphical display) used emphasizes the need for fast interpretation of an out-of-

control signal. The multivariate profile (MP) chart is a symbolic scatterplot. Summaries of data for individual

variables are displayed via a symbol, and global information about the group is displayed by means of the

location of the symbol on the scatterplot. A symbol is constructed for each group of observations, the symbol

used representing the adoption of a profile plot that encodes visually the size and sign of each variable from its

reference value. Fuchs and Kenett9 have developed a Minitab macro for creating MP charts.

Sparks et al.194 presented a method for monitoring multivariate process data based on the Gabriel biplot.

In contrast with existing methods that are based on some form of dimension reduction, Sparks and colleagues

used reduction to two dimensions for displaying the state of statistical control. This approach allows them

to detect changes in location, variation and correlation structure accurately but still display concisely a large

amount of information. They illustrated the use of the biplot using an example involving industrial data.

Nottingham et al.195 have developed radial plots as an SAS-based data visualization tool that can enhance

the ability of the process controller to monitor, analyze and control a process.

6. CONCLUSIONS

Today, multivariate Shewhart are the most commonly used control charts in industry. Owing to this, the need for

further research on these kinds of chart is considered to be of great importance. In this paper, we have extended

the review carried out by Mason et al.67. The most crucial points of interest in this area are robust design of

the T 2-chart and non-parametric control charts. Autocorrelation and measurement error is an area that must be

further investigated. The construction of a T 2-chart with supplementary run rules may be a promising research

area, and research into MACCs also shows promise. In general, MEWMA control charts perform better than

classical Shewhart charts. Likewise, MCUSUM charts perform better than Shewhart charts, while having a

performance similar to that of the MEWMA. An extensive comparison covering all possible scenarios between
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MCUSUM, MEWMA and multivariate Shewhart control charts may be useful. The extension of MCUSUM

techniques to autocorrelated observations is also an important area of research. Furthermore, economic models

for MCUSUM should be investigated. Finally, a challenging area for research is the development of non-

parametric MEWMA and MCUSUM control charts. Techniques such as PCAs and PLS are used primarily in the

area of chemometrics, but they seem to be very promising in relation to any kind of multivariate process. Of the

interpretation methods that have been reviewed, the most promising is the T 2 decomposition. The problem of

interpreting an out-of-control signal is an open one which needs further investigation. In general, there are many

examples of methods to be found in the literature that involve the graphically display of multivariate data by the

use of symbols. Graphical methods such as polyplots, starplots, Andrews’ curves, Chernoff faces and others can

be used in the field of process control and their performance can be evaluated.

Acknowledgements

The authors wish to thank the editor and the referee for their thoughtful and detailed suggestions that improved

the final version of the paper.

REFERENCES

1. Woodall WH, Montgomery DC. Research issues and ideas in statistical process control. Journal of Quality Technology

1999; 31:376–386.

2. Hotelling H. Multivariate quality control—illustrated by the air testing of sample bombsights. Techniques of Statistical

Analysis, Eisenhart C, Hastay MW, Wallis WA (eds.). McGraw-Hill: New York, 1947; 111–184.

3. Jackson JE. A User Guide to Principal Components. Wiley: New York, 1991.

4. Woodall WH. Controversies and contradictions in statistical process control. Journal of Quality Technology 2000;

32:341–350.

5. Duncan AJ. Quality Control and Industrial Statistics (5th edn). Irwin: Homewood, IL, 1986.

6. Sparks RS. Quality control with multivariate data. Australian Journal of Statistics 1992; 34:375–390.

7. Wierda SJ. Multivariate statistical process control—recent results and directions for future research. Statistica

Neerlandica 1994; 48:147–168.

8. Lowry CA, Montgomery DC. A review of multivariate control charts. IIE Transactions 1995; 27:800–810.

9. Fuchs C, Kenett RS. Multivariate Quality Control. Marcel Dekker: New York, 1998.

10. Ryan TP. Statistical Methods for Quality Improvement. Wiley: New York, 2000.

11. Alt FB. Multivariate quality control. The Encyclopedia of Statistical Sciences, Kotz S, Johnson NL, Read CR (eds.).

Wiley: New York, 1985; 110–122.

12. Mason RL, Young JC. Implementing multivariate process control using Hotelling’s T2 statistic. Quality Progress

2001; 34(4):71–73.

13. Mason RL, Young JC. Multivariate Statistical Process Control with Industrial Applications. ASA/SIAM:

Philadelphia, PA, 2002.

14. Sullivan JH, Woodall WH. Adapting control charts for the preliminary analysis of multivariate observations.

Communications in Statistics—Simulation and Computation 1998; 27:953–979.

15. Nedumaran G, Pignatiello JJ. On constructing T 2 control charts for retrospective examination. Communications in

Statistics—Simulation and Computation 2000; 29:621–632.

16. Mason RL, Chou Y-M, Young JC. Applying Hotelling’s T 2 statistic to batch processes. Journal of Quality Technology

2001; 33:466–479.

17. Kim K, Mahmoud MA, Woodall WH. On the monitoring of linear profiles. Journal of Quality Technology 2003;

35:317–328.

18. Pignatiello JJ, Runger GC. Comparisons of multivariate CUSUM charts. Journal of Quality Technology 1990;

22:173–186.

19. Jolayemi JK. A power function model for determining sample sizes for the operations of multivariate control charts.

Computational Statistics and Data Analysis 1995; 20:633–641.

20. Aparisi F. Hotelling’s T 2 control chart with adaptive sample sizes. International Journal of Production Research

1996; 34:2853–2862.

Copyright c© 2006 John Wiley & Sons, Ltd.



537

Qual. Reliab. Engng. Int. 2007; 23:517–543

DOI: 10.1002/qre

MULTIVARIATE STATISTICAL PROCESS CONTROL CHARTS

21. Seber GAF. Multivariate Observations. Wiley: New York, 1984.

22. Tracy ND, Young JC, Mason RL. Multivariate control charts for individual observations. Journal of Quality

Technology 1992; 24:88–95.

23. Sullivan JH, Woodall WH. A comparison of multivariate control charts for individual observations. Journal of Quality

Technology 1996; 28:398–408.

24. Chou Y-M, Mason RL, Young JC. Power comparisons for a Hotelling’s T 2 statistic. Communications in Statistics—

Simulation and Computation 1999; 28:1031–1050.

25. Alt FB, Smith ND. Multivariate process control. Handbook of Statistics, vol. 7, Krishnaiah PR, Rao CR (eds.).

Elsevier: Amsterdam, 1988; 333–351.

26. Aparisi F, Jabaloyes J, Carrion A. Statistical properties of the |S| multivariate control chart. Communications in

Statistics—Theory and Methods 1999; 28:2671–2686.

27. Aparisi F, Jabaloyes J, Carrion A. Generalized variance chart design with adaptive sample sizes. The bivariate case.

Communications in Statistics—Simulation and Computation 2001; 30:931–948.

28. Mason RL, Chou Y, Sullivan JH, Stoumbos ZG, Young JC. Systematic patterns in T 2 charts. Journal of Quality

Technology 2003; 35:47–58.

29. Low C, Hsu CM, Yu FJ. Analysis of variations in a multi-variate process using neural networks. International Journal

of Advanced Manufacturing Technology 2003; 22:911–921.

30. Surtihadi J, Raghavachari M, Runger G. Multivariate control charts for process dispersion. International Journal of

Production Research 2004; 42:2993–3009.

31. Hayter AJ, Tsui K-L. Identification and quantification in multivariate quality control problems. Journal of Quality

Technology 1994; 26:197–208.

32. Guerrero JL. Multivariate mutual information. Communications in Statistics—Theory and Methods 1994;

23:1319–1339.

33. Guerrero JL. Testing variability in multivariate quality control: A conditional entropy measure approach. Information

Sciences 1995; 86:179–202.

34. Tang PF, Barnett NS. Dispresion control for multivariate process. Australian Journal of Statistics 1996; 38:235–251.

35. Tang PF, Barnett NS. Dispersion control for multivariate process—some comparisons. Australian Journal of Statistics

1996; 38:253–273.

36. Spiring FA, Cheng SW. An alternate variables control chart: The univariate and multivariate case. Statistica Sinica

1998; 8:273–287.

37. Sullivan JH, Woodall WH. Change-point detection of mean vector or covariance matrix shifts using multivariate

individual observations. IIE Transactions 2000; 32:537–549.

38. Vargas JA. Robust estimation in multivariate control charts for individual observations. Journal of Quality Technology

2003; 35:367–376.

39. Feltz CJ, Shiau JJH. Statistical process monitoring using an empirical Bayes multivariate process control chart.

Quality and Reliability Engineering International 2001; 17:119–124.

40. Wurl RC, Albin SL, Shiffer IJ. Multivariate monitoring of batch process startup. Quality and Reliability Engineering

International 2001; 17:269–278.

41. Ye N, Chen Q. An anomaly detection technique based on a chi-squared statistic for detecting intrusions into

information systems. Quality and Reliability Engineering International 2001; 17:105–112.

42. Emran SM, Ye N. Robustness of chi-square and Canberra distance metrics for computer intrusion detection. Quality

and Reliability Engineering International 2002; 18:19–28.

43. Ye N, Borror CM, Parmar D. Scalable chi-square distance versus conventional statistical distance for process

monitoring with uncorrelated data variables. Quality and Reliability Engineering International 2003; 19:505–515.

44. Chang YS, Bai DS. A multivariate T 2 control chart for skewed populations using weighted standard deviations.

Quality and Reliability Engineering International 2004; 20:31–46.

45. Aparisi F, Champ CW, Garcia Diaz JC. A performance Hotelling’s T 2 control chart with supplementary run rules.

Quality Engineering 2004; 16:359–368.

46. Koutras MV, Bersimis S, Antzoulakos DL. Improving the performance of the chi-square control chart via runs rules.

Methodology and Computing in Applied Probability 2006; 8:409–426.

47. He D, Grigoryan A. Multivariate multiple sampling charts. IIE Transactions 2005; 37:509–521.

48. Grigoryan A, He D. Multivariate double sampling |S| charts for controlling process variability. International Journal

of Production Research 2005; 43:715–730.

49. Patel HI. Quality control methods for multivariate binomial and Poisson distributions. Technometrics 1973;

15:103–112.

Copyright c© 2006 John Wiley & Sons, Ltd.



538

Qual. Reliab. Engng. Int. 2007; 23:517–543

DOI: 10.1002/qre

S. BERSIMIS, S. PSARAKIS AND J. PANARETOS

50. Lu XS, Xie M, Goh TN, Lai CD. Control charts for multivariate attribute processes. International Journal of

Production Research 1998; 36:3477–3489.

51. Jolayemi JK. A statistical model for the design of multiattribute control charts. The Indian Journal of Statistics 1999;

61:351–365.

52. Skinner KR, Montgomery DC, Runger GC. Process monitoring for multiple count data using generalized linear

model-based control charts. International Journal of Production Research 2003; 41:1167–1180.

53. Chan LK, Li GY. A multivariate control chart for detecting linear trends. Communications in Statistics—Simulation

and Computation 1994; 23:997–1012.

54. Charnes JM. Tests for special causes with multivariate autocorrelated data. Computers and Operational Research

1995; 22:443–453.

55. Mason RL, Tracy ND, Young JC. Monitoring a multivariate step process. Journal of Quality Technology 1996;

28:39–50.

56. Fong DYT, Lawless JF. The analysis of process variation transmission with multivariate measurements. Statistica

Sinica 1998; 8:151–164.

57. Lina WK, Woodall HW, Busby LK. The performance of multivariate control charts in the presence of measurement

error. Journal of Quality Technology 2001; 33:349–355.

58. Mastrangelo CM, Forrest DR. Multivariate autocorrelated processes: Data and shift generation. Journal of Quality

Technology 2002; 34:216–220.

59. Krogstad HE. Simulation of multivariate Gaussian time series. Communications in Statistics—Simulation and

Computation 1989; 18:929–941.

60. Apley DW, Tsung F. The autoregressive T 2 chart for monitoring univariate autocorrelated processes. Journal of

Quality Technology 2002; 34:80–96.

61. Dyer JN, Conerly MD, Adams BM. A simulation study and evaluation of multivariate forecast based control charts

applied to ARMA processes. Journal of Statistical Computations and Simulation 2003; 73:709–724.

62. Jiang W. Multivariate control charts for monitoring autocorrelated processes. Journal of Quality Technology 2004;

36:367–379.

63. Mahmoud MA, Woodall WH. Phase I analysis of linear profiles with calibration applications. Technometrics 2004;

46:380–391.

64. Woodall WH, Spitzner DJ, Montgomery DC, Gupta S. Using control charts to monitor process and product quality

profiles. Journal of Quality Technology 2004; 36:309–320.

65. Kalgonda AA, Kulkarni SR. Multivariate quality control chart for autocorrelated processes. Journal of Applied

Statistics 2004; 31:317–327.

66. Liu RY. Control charts for multivariate processes. Journal of the American Statistical Association 1995;

90:1380–1387.

67. Mason RL, Champ CW, Tracy ND, Wierda RJ, Young JC. Assessment of multivariate process control techniques.

Journal of Quality Technology 1997; 29:140–143.

68. Liu RY, Tang J. Control charts for dependent and independent measurements based on bootstrap methods. Journal of

the American Statistical Association 1996; 91:1694–1700.

69. Abu-Shawiesh MO, Abdullah MB. A new robust bivariate control chart for location. Communications in Statistics—

Simulation and Computation 2001; 28:2671–2686.

70. Chou Y-M, Mason RL, Young JC. The control chart for individual observations from a multivariate non-normal

distribution. Communications in Statistics—Theory and Methods 2001; 30:1937–1949.

71. Sun R, Tsung F. A kernel-distance-based multivariate control chart using support vector methods. International

Journal of Production Research 2003; 41:2975–2989.

72. Stoumbos GZ, Sullivan JH. Robustness to non-normality of the multivariate EWMA control chart. Journal of Quality

Technology 2002; 34:304–315.

73. Qiu PH, Hawkins DM. A rank-based multivariate CUSUM procedure. Technometrics 2001; 43:120–132.

74. Qiu PH, Hawkins DM. A nonparametric multivariate cumulative sum procedure for detecting shifts in all directions.

Journal of the Royal Statistical Society Series D—The Statistician 2003; 52:151–164.

75. Thissen U, Swierenga H, Wehrens R, Melssen WJ, Buydens MC. Multivariate statistical process control using mixture

modelling. Journal of Chemometrics 2005; 19:23–31.

76. Chakraborti S, van der Laan P, Bakir ST. Nonparametric control charts: An overview and some results. Journal of

Quality Technology 2001; 33:304–315.

77. Jolayemi JK, Berrettoni NJ. Multivariate control charts: An optimization approach to the effective use and

measurement of performance. Applied Mathematics and Computation 1989; 32:1–15.

Copyright c© 2006 John Wiley & Sons, Ltd.



539

Qual. Reliab. Engng. Int. 2007; 23:517–543

DOI: 10.1002/qre

MULTIVARIATE STATISTICAL PROCESS CONTROL CHARTS

78. Jolayemi JK, Berrettoni NJ. An optimal design of multivariate control charts in the presence of multiple assignable

causes. Applied Mathematics and Computation 1989; 32:17–33.

79. Jolayemi JK. A model for the statistical design of multivariate control charts with multiple control regions. Applied

Mathematics and Computation 2000; 109:73–91.

80. Serel AD, Moskowitz H, Tang J. Univariate X̄ control charts for individual characteristics in a multinormal model.

IIE Transactions 2000; 32:1115–1125.

81. Molnau WE, Montgomery DC, Runger GC. Statistically constrained economic design of the multivariate

exponentially weighted moving average control chart. Quality and Reliability Engineering International 2001;

17:39–49.

82. Chou CY, Liu HR, Chen CH, Huang XR. Economic-statistical design of multivariate control charts using quality loss

function. International Journal of Advanced Manufacturing Technology 2002; 20:916–924.

83. Noorossana R, Woodall WH, Amiriparian S. On the economic design of multivariate control charts. Communications

in Statistics—Theory and Methods 2002; 31:1665–1673.

84. Love TE, Linderman K. A Weibull failure mechanism for the economic design of MEWMA control charts. Journal

of Statistical Computations and Simulation 2003; 73:195–202.

85. Woodall WH, Ncube MM. Multivariate CUSUM quality control procedures. Technometrics 1985; 27:285–292.

86. Healy JD. A note on multivariate CUSUM procedures. Technometrics 1987; 29:409–412.

87. Hawkins DM. Multivariate quality control based on regression-adjusted variables. Technometrics 1991; 33:61–75.

88. Hawkins DM. Regression adjustment for variables in multivariate quality control. Journal of Quality Technology

1993; 25:170–182.

89. Hauck DJ, Runger GC, Montgomery DC. Multivariate statistical process monitoring and diagnosis with grouped

regression-adjusted variables. Communications in Statistics—Simulation and Computation 1999; 28:309–328.

90. Crosier RB. Multivariate generalizations of cumulative sum quality-control schemes. Technometrics 1988;

30:291–303.

91. Ngai HM, Zhang J. Multivariate cumulative sum control charts based on projection pursuit. Statistica Sinica 2001;

11:747–766.

92. Chan LK, Zhang J. Cumulative sum control charts for the covariance matrix. Statistica Sinica 2001; 11:767–790.

93. Runger GC, Testik MC. Multivariate extensions to cumulative sum control charts. Quality and Reliability Engineering

International 2004; 20:587–606.

94. Lowry CA, Woodall WH, Champ CW, Rigdon SE. A multivariate EWMA control chart. Technometrics 1992;

34:46–53.

95. Testik MC, Runger GC, Borror CM. Robustness properties of multivariate EWMA control charts. Quality and

Reliability Engineering International 2003; 19:31–38.

96. Borror CM, Montgomery DC, Runger GC. Robustness of the EWMA control chart to non-normality. Journal of

Quality Technology 1999; 31:309–316.

97. Rigdon SE. A double-integral equation for the average run length of a MEWMA control chart. Statistics and

Probability Letters 1995; 24:365–373.

98. Rigdon SE. An integral equation for the in-control average length of a MEWMA control chart. Journal of Statistical

Computations and Simulation 1995; 52:351–365.

99. Bodden KM, Rigdon SE. A program for approximating the in-control ARL for the MEWMA chart. Journal of Quality

Technology 1999; 31:120–123.

100. Runger GC, Prabhu SS. A Markov chain model for the multivariate EWMA control chart. Journal of the American

Statistical Association 1996; 91:1701–1706.

101. Prabhu SS, Runger GC. Designing a multivariate EWMA control chart. Journal of Quality Technology 1997;

29:8–15.

102. Molnau WE, Runger GC, Montgomery DC, Skinner KR, Loredo EN, Prabhu SS. A program for ARL calculation for

multivariate EWMA charts. Journal of Quality Technology 2001; 33:515–521.

103. Kramer HG, Schmid W. EWMA charts for multivariate time series. Sequential Analysis 1997; 16:131–154.

104. Fasso A. One-sided MEWMA control charts. Communications in Statistics—Theory and Methods 1999; 28:381–401.

105. Yumin L. An improvement for MEWMA in multivariate process control. Computers and Industrial Engineering 1996;

31:779–781.

106. Choi S, Lee S, Hawkins DM. A general multivariate exponentially weighted moving average control chart. Technical

Report 640, School of Statistics, University of Minnesota, May 2002.

107. Hawkins DM, Choi S, Lee S. A program for design and performance evaluation of multivariate exponentially weighted

moving average control chart. Technical Report 641, School of Statistics, University of Minnesota, May 2002.

Copyright c© 2006 John Wiley & Sons, Ltd.



540

Qual. Reliab. Engng. Int. 2007; 23:517–543

DOI: 10.1002/qre

S. BERSIMIS, S. PSARAKIS AND J. PANARETOS

108. Yeh AB, Lin DKJ, Zhou H, Venkataramani C. A multivariate exponentially weighted moving average control chart

for monitoring process variability. Journal of Applied Statistics 2003; 30:507–536.

109. Chen GM, Cheng SW, Xie HS. A new multivariate control chart for monitoring both location and dispersion.

Communications in Statistics—Simulation and Computation 2005; 34:203–217.

110. Runger GC, Keats JB, Montgomery DC, Scranton RD. Improving the performance of a multivariate EWMA control

chart. Quality and Reliability Engineering International 1999; 15:161–166.

111. Tseng S, Chou R, Lee S. A study on a multivariate EWMA controller. IIE Transactions 2002; 34:541–549.

112. Castillo E, Rajagopal R. A multivariate double EWMA process adjustment scheme for drifting processes.

IIE Transactions 2002; 34:1055–1068.

113. Butler SW, Stefani JA. Supervisory run-to-run control of a polysilicon gate etch using in-situ ellipsometry.

IEEE Transactions on Semiconductor Manufacturing 1994; 7:193–201.

114. Testik MC, Borror CM. Design strategies for the multivariate exponentially weighted moving average control chart.

Quality and Reliability Engineering International 2004; 20:571–577.

115. Yeh AB, Huwang LC, Wu YF. A likelihood-ratio-based EWMA control chart for monitoring variability of

multivariate normal process. IIE Transactions 2004; 36:865–879.

116. Margavio TM, Conerly MD. A comparison of multivariate moving average control charts for the process mean.

International Journal of Production Research 1995; 33:1313–1321.

117. Sullivan JH, Jones LA. A self-starting control chart for multivariate individual observations. Technometrics 2002;

44:24–33.

118. Reynolds MR, Kim K. Multivariate monitoring of the process mean vector with sequential sampling. Journal of

Quality Technology 2005; 37:149–162.

119. Kim K, Reynolds MR. Multivariate monitoring using an MEWMA control chart with unequal sample sizes. Journal

of Quality Technology 2005; 37:267–281.

120. Runger GC, Alt FB. Choosing principal components for multivariate SPC. Communications in Statistics—Theory and

Methods 1996; 25:909–922.

121. Ku W, Storer RH, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis.

Chemometrics and Intelligent Laboratory Systems 1995; 30:179–196.

122. Runger GC. Multivariate statistical process control for autocorrelated processes. International Journal of Production

Research 1996; 34:1715–1724.

123. Mastrangelo MC, Runger GC, Montgomery DC. Statistical process monitoring with principal components. Quality

and Reliability Engineering International 1996; 12:203–210.

124. Wilkstrom C, Albano C, Eriksson L, Friden H, Johansson E, Nordahl A, Rannar S, Sandberg M, Kettaneh-Wold N,

Wold S. Multivariate process and quality monitoring applied to an electrolysis process: Part II. Multivariate time-series

analysis of lagged latent variables. Chemometrics and Intelligent Laboratory Systems 1998; 42:233–240.

125. Runger GC. Projections and the U2 multivariate control chart. Journal of Quality Technology 1996; 28:313–319.

126. Chen J, Bandoni A, Romagnoli JA. Robust statistical process monitoring. Computers and Chemical Engineering

1996; 20:S497–S502.

127. Nijhuis A, De Jong S, Vandeginste BGM. Multivariate statistical process control in chromatography. Chemometrics

and Intelligent Laboratory Systems 1997; 38:51–62.

128. Nijhuis A, De Jong S, Vandeginste BGM. The application of multivariate quality control in gas chromatography.

Chemometrics and Intelligent Laboratory Systems 1999; 47:107–125.

129. Wilkstrom C, Albano C, Eriksson L, Friden H, Johansson E, Nordahl A, Rannar S, Sandberg M, Kettaneh-Wold N,

Wold S. Multivariate process and quality monitoring applied to an electrolysis process: Part I. Process supervision

with multivariate control charts. Chemometrics and Intelligent Laboratory Systems 1998; 42:233–240.

130. Tsung F. Improving automatic-controlled process quality using adaptive principal component monitoring. Quality

and Reliability Engineering International 1999; 15:135–142.

131. Chiang HL, Russell EL, Braatz DR. Fault diagnosis in chemical processes using fisher discriminant analysis,

discriminant partial least squares, and principal components analysis. Chemometrics and Intelligent Laboratory

Systems 2000; 50:243–252.

132. Norvilas A, Negiz A, DeCicco J, Cinar A. Intelligent monitoring by interfacing knowledge-based systems and

multivariate statistical monitoring. Journal of Process Control 2000; 10:341–350.

133. Lane S, Martin EB, Kooijmans R, Morris AJ. Performance monitoring of a multi-product semi-batch process. Journal

of Process Control 2001; 11:1–11.

134. Schippers AJW. An integrated approach to process control. International Journal of Production and Economics 2001;

69:93–105.

Copyright c© 2006 John Wiley & Sons, Ltd.



541

Qual. Reliab. Engng. Int. 2007; 23:517–543

DOI: 10.1002/qre

MULTIVARIATE STATISTICAL PROCESS CONTROL CHARTS

135. Kano M, Hasebe S, Hashimoto I, Ohno H. A new multivariate statistical monitoring method using principal

component analysis. Computers and Chemical Engineering 2001; 25:1103–1113.

136. Chen JH, Liu KC. On-line batch process monitoring using dynamic PCA and dynamic PLS models. Chemical

Engineering Science 2002; 57:63–75.

137. Arteaga F, Ferrer A. Dealing with missing data in MSPC: Several methods, different interpretations, some examples.

Journal of Chemometrics 2002; 16:408–418.

138. Badcock J, Bailey TC, Jonathan P, Krzanowski WJ. Two projection methods for use in the analysis of multivariate

process data with an illustration in petrochemical production. Technometrics 2004; 46:392–403.

139. Ramaker HJ, van Sprang ENM, Westerhuis JA, Smilde AK. The effect of the size of the training set and the number

of principal components on the false alarm rate in statistical process monitoring. Chemometrics and Intelligent

Laboratory Systems 2004; 73:181–187.

140. Louwerse DJ, Smilde AK. Multivariate statistical process control of batch processes based on three-way models.

Chemical Engineering Science 2000; 55:1225–1235.

141. Nomikos P, MacGregor JF. Monitoring batch processes using multiway principal component analysis. American

Institute of Chemical Engineers Journal 1994; 40:1361–1375.

142. Nomikos P, MacGregor JF. Multivariate SPC charts for monitoring batch processes. Technometrics 1995;

37:41–59.

143. Wise BM, Gallagher NB, Martin EB. Application of PARAFAC2 to fault detection and diagnosis in semiconductor

etch. Journal of Chemometrics 2001; 15:285–298.

144. Cho H, Kim K. A method for predicting future observations in the monitoring of a batch process. Journal of Quality

Technology 2003; 35:59–69.

145. MacGregor JF, Jaeckle C, Kiparissides C, Koutoudi M. Process monitoring and diagnosis by multiblock PLS method.

American Institute of Chemical Engineers Journal 1994; 40:826–838.

146. Nomikos P, MacGregor JF. Multi-way partial least squares in monitoring batch processes. Chemometrics and

Intelligent Laboratory Systems 1995; 30:97–108.

147. MacGregor JF, Kourti T. Statistical process control of multivariate processes. Control Engineering Practice 1995;

3:403–414.

148. Kourti T, MacGregor JF. Multivariate SPC methods for process and product monitoring. Journal of Quality

Technology 1996; 28:409–428.

149. Wang X, Kruger U, Lennox B. Recursive partial least squares algorithms for monitoring complex industrial processes.

Control Engineering Practice 2003; 6:613–632.

150. Kourti T, Nomikos P, MacGregor JF. Analysis, monitoring and fault diagnosis of batch process using multiblock and

multiway PLS. Journal of Production Control 1995; 5:277–284.

151. Martin EB, Bettoni A, Morris AJ. Monitoring of a batch continuous process using mass re-sampling. Journal of

Quality Technology 2002; 34:171–186.

152. Zullo L. Validation and verification of continuous plants operating modes using multivariate statistical methods.

Computers and Chemical Engineering 1996; 20:S683–S688.

153. Gallagher NB, Wise BM, Stewart CW. Application of multi-way principal components analysis to nuclear waste

storage tank monitoring. Computers and Chemical Engineering 1996; 20:S739–S744.

154. Runger GC, Alt FB, Montgomery DC. Controlling multiple stream processes with principal components.

International Journal of Production Research 1996; 34:2991–2999.

155. Stover FS, Brill RV. Statistical quality control applied to ion chromatography calibrations. Journal of Chromatography

A 1998; 804:37–43.

156. Tates AA, Louwerse DJ, Smilde AK, Koot GLM, Berndt H. Monitoring a PVC batch process with multivariate

statistical processes control charts. Industrial Engineering and Chemical Research 1999; 38:4769–4776.

157. Howarth RJ, Coles BJ, Ramsey MH. The potential of multivariate quality control as a diagnostic tool in geoanalysis.

Analyst 2000; 125:2032–2037.

158. Chen J, Liu J. Post analysis on different operating time processes using orthonormal function approximation and

multiway principal component analysis. Journal of Process Control 2000; 10:411–418.

159. Marengo E, Gennaro MC, Gianoti V, Robotti E. Monitoring of a industrial process by multivariate control charts

based on principal components analysis. Annali di Chimica 2003; 93:525–538.

160. Wang XZ, Medasani S, Marhoon F, Albazzaz H. Multidimensional visualization of principal components scores for

process historical data analysis. Industrial and Engineering Chemistry Research 2004; 43:7036–7048.

161. Yoon S, MacGregor JF. Principal-component analysis of multiscale data for process monitoring and fault diagnosis.

AICHE Journal 2004; 50:2891–2903.

Copyright c© 2006 John Wiley & Sons, Ltd.



542

Qual. Reliab. Engng. Int. 2007; 23:517–543

DOI: 10.1002/qre

S. BERSIMIS, S. PSARAKIS AND J. PANARETOS

162. Albazzaz H, Wang XZ. Statistical process control charts for batch operations based on independent component

analysis. Industrial and Engineering Chemistry Research 2004; 43:6731–6741.

163. Skoglund A, Brundin A, Mandenius CF. Monitoring a paperboard machine using multivariate statistical process

control. Chemometrics and Intelligent Laboratory Systems 2004; 73:3–6.

164. Garcia-Munoz S, Kourti T, MacGregor JF. Model predictive monitoring for batch processes. Industrial and

Engineering Chemistry Research 2004; 43:5929–5941.

165. Kourti T, Lee J, MacGregor JF. Experiences with industrial applications of projection methods for multivariate SPC.

Computers and Chemical Engineering 1996; 20:S745–S750.

166. Wise BM, Gallagher NB. The process chemometrics approach to process monitoring and fault detection. Journal of

Production Control 1996; 6:329–348.

167. Martin EB, Morris AJ, Papazoglou MC, Kiparissides C. Batch process monitoring for consistent production.

Computers and Chemical Engineering 1996; 20:S599–S604.

168. Martin EB, Morris AJ, Kiparissides C. Manufacturing performance enhancement through multivariate statistical

process control. Annual Reviews in Control 1999; 23:35–44.

169. Martin EB, Morris AJ. Non-parametric confidence bounds for process performance monitoring charts. Journal of

Process Control 1996; 6:349–358.

170. Simoglou A, Martin EB, Morris AJ. Multivariate statistical process control of an industrial process fluidised-bed

reactor. Control Engineering Practice 2000; 8:893–909.

171. Kourti T. Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start-ups

and grade transitions. Journal of Chemometrics 2003; 17:93–109.

172. Kourti T. Application of latent variable methods to process control and multivariate statistical process control in

industry. International Journal of Adaptive Control and Signal Processing 2005; 19:213–246.

173. Bose NK, Liang P. Neural Networks Fundamentals with Graphs, Algorithms and Applications. McGraw-Hill:

New York, 1996.

174. Dayal BS, MacGregor JF, Taylor PA, Kildaw R, Marcikic S. Application of feedforward neural networks and

PLS regression for modelling kappa number in a continuous Kamyr digester. Pulp and Paper Canada 1994;

95:26–32.

175. Jia F, Martin EB, Morris AJ. Non-linear principal components analysis for process fault diagnosis. Computers and

Chemical Engineers 1998; 22:S851–S854.

176. Shao R, Jia F, Martin EB, Morris AJ. Wavelets and non-linear principal components analysis for process monitoring.

Control Engineering Practice 1999; 7:865–879.

177. Ganesan R, Das TK, Venkataraman V. Wavelet-based multiscale statistical process monitoring: A literature review.

IIE Transactions 2004; 36:787–806.

178. ChuaM-K, Montgomery DC. Investigation and characterization of a control scheme for multivariate quality control.

Quality and Reliability Engineering International 1992; 8:37–44.

179. Mader DP, Glycenfer JJ, Prins J. An application in multivariate statistical process control for power supply calibration.

Quality Engineering 1996; 9:99–106.

180. Sepulveda A, Nachlas JA. A simulation approach to multivariate quality control. Computers and Industrial

Engineering 1997; 33:113–116.

181. Mason RL, Tracy ND, Young JC. Decomposition of T 2 for multivariate control chart interpretation. Journal of Quality

Technology 1995; 27:99–108.

182. Mason RL, Tracy ND, Young JC. A practical approach for interpreting multivariate T 2 control chart signals. Journal

of Quality Technology 1997; 29:396–406.

183. Mason RL, Young JC. Improving the sensitivity of the T 2 statistic in multivariate process control. Journal of Quality

Technology 1999; 31:155–165.

184. Murphy BJ. Selecting out-of-control variables with T 2 multivariate quality procedures. The Statistician 1987;

36:571–583.

185. Doganaksoy N, Faltin FW, Tucker WT. Identification of out-of-control multivariate characteristic in a multivariable

manufacturing environment. Communications in Statistics—Theory and Methods 1991; 20:2775–2790.

186. Timm NH. Multivariate quality control using finite intersection tests. Journal of Quality Technology 1996;

28:233–243.

187. Runger GC, Alt FB, Montgomery DC. Contributors to a multivariate SPC chart signal. Communications in Statistics—

Theory and Methods 1996; 25:2203–2213.

188. Wade MR, Woodall WH. A review and analysis of cause-selecting control charts. Journal of Quality Technology

1993; 25:161–170.

Copyright c© 2006 John Wiley & Sons, Ltd.



543

Qual. Reliab. Engng. Int. 2007; 23:517–543

DOI: 10.1002/qre

MULTIVARIATE STATISTICAL PROCESS CONTROL CHARTS

189. Kalagonda AA, Kulkarni SR. Diagnosis of multivariate control chart signal based on dummy variable regression

technique. Communications in Statistics—Theory and Methods 2003; 32:1665–1684.

190. Wasterhuis JA, Gurden SP, Smilde AK. Generalized contribution plots in multivariate statistical process monitoring.

Chemometrics and Intelligent Laboratory Systems 2000; 51:95–114.

191. Maravelakis PE, Bersimis S, Panaretos J, Psarakis S. On identifying the out of control variable in a multivariate

control chart. Communications in Statistics—Theory and Methods 2002; 31:2391–2408.

192. Choi SW, Martin EB, Morris AJ. Fault detection based on a maximum-likelihood principal component analysis

mixture. Industrial and Engineering Chemistry Research 2005; 44:2316–2327.

193. Fuchs C, Benjamini Y. Multivariate profile charts for statistical process control. Technometrics 1994; 36:182–195.

194. Sparks RS, Adolphson A, Phatak A. Multivariate process monitoring using the dynamic biplot. International

Statistical Review 1997; 65:325–349.

195. Nottingham QJ, Cook DF, Zobel CW. Visualization of multivariate data with radial plots using SAS. Computers and

Industrial Engineering 2001; 41:17–35.

Authors’ biographies

Sotiris Bersimis holds a PhD in Statistics and Applied Probability from the University of Piraeus, Department

of Statistics and Insurance Science, Greece, a MSc in Statistics from the Athens University of Economics and

Business and a BSc in Statistics and Insurance Science from the University of Piraeus. His interests are in

statistical process monitoring and multivariate statistical analysis. Currently he is a visiting Assistant Professor

at the ‘Department of Informatics and Applications in Biomedicine’ of the University of Central Greece.

Stelios Psarakis is Assistant Professor at the Department of Statistics of the Athens University of Economics

and Business. He holds a PhD in Statistics from the Department of Statistics of the Athens University of

Economics and Business. His interests lie in statistical process control and distribution theory.

John Panaretos is Professor of Probability and Statistics at the Department of Statistics of the Athens University

of Economics and Business (AUEB). He is currently a visiting Professor at the Department of Statistics,

University of California at Berkeley. Before joining AUEB, he was a faculty member of the University of Patras,

Greece and the Departments of Statistics of the University of Iowa, of the University of Missouri–Columbia,

and of Trinity College Dublin. He is an elected member of the International Statistical Institute and a Fellow

of the Royal Statistical Society. His research interests include statistical process control, model evaluation and

selection and distribution theory. He recently edited a book entitled Stochastic Musings: Perspectives from the

Pioneers of the Late 20th Century, published by Lawrence Erlbaum.

Copyright c© 2006 John Wiley & Sons, Ltd.


