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Introduction 

The purpose of the paper  
 

The purpose of the present working paper is to discuss a possibility of the 
existence of a discontinuity of Prelec’s (probability weighting) function  W(p)  at 
the probability  p = 1.   
 

This purpose is new and, in a sense, contradicts the accepted view.  So, in the 
first stage of its study, the general methods of the work are mainly qualitative.   

The data used are the well-established experimental results of other 
researchers. The techniques of analysis of the data are also mainly qualitative.   

Therefore, the conclusions of the paper are qualitative as well.   
 
 

Notation 
 

There are a number of theories concerned with one or another concept of 
utility.  They include, e.g., Bernoullian expected utility, von Neumann–Morgenstern 
expected utility, subjective expected utility, subjectively weighted utility theories 
(see, e.g., a review by Schoemaker, 1982); prospect theory (see Kahneman and 
Tversky, 1979) and cumulative prospect theory (see Tversky and Kahneman, 1992) 
or, in other terminology, original prospect theory and prospect theory; the salience 
theory of choice under risk (see Bordalo, Gennaioli, Shleifer, 2012); expected 
uncertain utility theory (Gul and Pesendorfer, 2014); etc. 

In the present paper these theories are referred to as  
utility and prospect theories. 

The paper deals with the probability weighting function  W(p)  necessarily and 
widely used in prospect theories.  Here, it will be usually referred to as Prelec’s 
weighting function (see Prelec, 1998) or, for short,  

Prelec’s function.   
 



3 

 

 
An invitation 

 
6 May 2015, I received a letter from the Society for Judgment and Decision 

Making:   
 

“The Society for Judgment and Decision Making is inviting submissions for 
the Hillel Einhorn New Investigator Award. The purpose of this award is to 
encourage outstanding work by new researchers. Individuals are eligible if they 
have not yet completed their Ph.D. or if they have completed their Ph.D. within the 
last five years (on or after July 1, 2010). To be considered for the award, please 
submit a journal-style manuscript on any topic related to judgment and decision 
making. …” 
 

I have not yet completed my Ph.D.  So, I may use this invitation to summarize 
and generalize the results of several my papers.   

A propos, my first refereed article in an international journal was published in 
2012.  To 6 May 2015 I have published three refereed articles in international 
journals, three reports on international foreign conferences and a number of 
working papers.   
 

The SJDM Einhorn Submission page in the Internet  
http://www.sjdm.org/awards/einhorn.upload.html  determines the following types 
of the Status of Paper:  

“Published or Published Online 
Submitted or Under Review 
Working Paper 
Unpublished Manuscript 
Other” 

 
So, my manuscript is presented in the form of this working paper.   
In this paper, I briefly review, summarize and generalize the considerations 

and results of my published articles, reports, articles under review, articles prepared 
for submission and working papers.   
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1.  The “Luce problem” and “Luce question” 

 
An essential part of problems of utility and prospect theories consists in the 

problems that are connected with a probability weighting (see, e.g., Tversky and 
Wakker, 1995). A probability weighting means that subjects treat the probability  p  
by a probability weighting function  W(p)  which is not equal to  p.  Prelec’s 
weighting function (Prelec, 1998) is one of the most popular probability weighting 
functions.   
 
 

1.1.  State of the art  
 

During many years, in a lot of works, at least the vast majority of authors 
assumed by default that Prelec’s weighting function  W(p)  is equal to  1  at  p = 1.  
One may agree that the assumption  W(1) = 1  is, indeed, quite evident and natural.   

For example, we see in Wakker (1994), page 9:  “DEFINITION 1. Rank-
dependent utility, (RDU) holds if there exist a strictly increasing continuous utility 
function  U" [0,M]  N  and a strictly increasing probability transformation  
φ:[0,1]  [0,1]  with  φ(0) = 0  and  φ(1) = 1,”   

We see in Prelec (1998) that Prelec’s formula  “w(p) = exp{-{-ln p}α}, 0<a<1”  
in itself assumes only  w(1) = 1.  ibid, page 515:  “unique, nondecreasing weighting 
functions, satisfying  w(0) = 0, w(1) = 1”   

Note, there is no assumption of  W(1) ≠ 1  in these works.   
 
 

1.2.  In spite of the accepted view.   
The “Luce problem” and “Luce question” 

1.2.1.  In spite of the accepted view.  Two articles 
 

In spite of the accepted view, R. Duncan Luce with Ragnar Steingrimsson and 
János Aczél had discovered a problem of a general mathematical and scientific 
nature.  The essence of the problem was:  “whether a well-known object is actually 
what it seems to the vast majority of people?”   

In 2007, R. Duncan Luce with Ragnar Steingrimsson and János Aczél 
published two articles:  Steingrimsson and Luce (2007) and Aczél and Luce (2007).   

The first article was essentially devoted to the analysis of weighting functions 
with  W(1) = 1  and without  W(1) = 1.  Two subchapters of the article are devoted 
to “function with W(1) = 1” and two subchapters of the article are devoted to 
“function without  W(1) = 1.”  Moreover, even the title of the second article 
contains the item “without assuming  W(1) = 1.”   
 
 



5 

 

 
1.2.2.  The “Luce problem” and “Luce question” 

 
The problem of Steingrimsson and Luce (2007) and Aczél and Luce (2007) 

was:  a special analysis of Prelec’s function at  p = 1  and  p ≈ 1.   
Prelec’s function has been much analyzed in the middle of the probability 

scale, but an analysis at  p = 1  or at  p ≈ 1  is still an undeservedly too rare event.   
One can name this problem after R. Duncan Luce as the “Luce problem,” or 

after Steingrimsson, Luce and Aczél as the “SLA problem,” etc.  Here, this problem 
is referred to as the “Luce problem.”   
 

The question of Steingrimsson and Luce (2007) and Aczél and Luce (2007) 
was:  whether Prelec’s weighting function is actually equal to  1  at  p = 1?   

Here, this question is referred to also as the “Luce question.”   
 
 

1.2.3.  An undeserved underestimation 
 

The above two articles are well cited.  As of 7 April 2015, Steingrimsson and 
Luce (2007) was cited by 23 and Aczél and Luce (2007) by 8 articles.   

Nevertheless, the “Luce problem” and the “Luce question” are still 
undeservedly underestimated.   

For example, we see in Diecidue, Schmidt, and Zank (2009), page 1105:  “the 
weighting function  w: [0, 1]→[0, 1]  is strictly increasing and continuous with  
w(0) = 0  and  w(1) = 1.”   

We see in Chechile and Barch (2013), page 16:  “Assumption 2. If p = 1, then 
w(p) = 1”   

We do not see an assumption like  “If p = 1, then w(p) ≠ 1”  in these works.   
We see also too few investigations of  W(p)  at  p ≈ 1,  even at  p > 0.9.   
However, we may note that the problem and question were considered by 

Luce with his co-authors not once.  They were considered twice (and in various 
memberships of the co-authors).  Therefore, one can conclude, in particular, the 
following:   

1)  The problem and question were not accidental.   
2)  The question was not a purely quantitative one.  That is, the question was 

not:  “whether Prelec’s function  W(p)  is a bit more or less than  1  at  p = 1.”   
 
 

1.3.  A modification of the “Luce question” 
and a possible discontinuity of Prelec’s function  W(p)  at  p = 1   

1.3.1.  A modification of the “Luce question” 
 

There is a deal of evidence for the existence of a difference between subjects’ 
treatment of the probabilities of uncertain (probable) and certain outcomes (see, 
e.g., Kahneman and Tversky, 1979; Halevy, 2008).  Therefore, in the general case, 
one should distinguish between the values of the probability weighting function  
W(p)  of a certain outcome and the limit of the probability weighting function  W(p)  
of uncertain outcomes as the probability of those uncertain outcomes tends to  1.   
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Let us specify a value  WCertain  of the probability weighting function  W(p)  

for a certain outcome.  At that,  WCertain  may be assumed to be equal to  1.  
Otherwise, other values of  W(p)  may be normalized by  WCertain.   

Let us also specify a value  W(1)  as the limit of the probability weighting 
function  W(p)  for a probable (uncertain) outcome as  p  tends to  1   

)(lim)1(
1

pWW
p→

≡  .  

If  WImpossible  is defined for the impossible case (for  p = 0), then, similar to 
Aczél and Luce (2007), one can write  









=
∈
=

=
1

[1,0]

0

)()(

Im

p

p

p

W

pW

W

pW

Certain

possible

 .  

So, one may modify the “Luce question” whether  W(1) = 1  into the modified 
“Luce question”  

?)1( =−WWCertain    

 
 

1.3.2.  A possible discontinuity of Prelec’s function at  p = 1   
and the crucial importance of the “Luce problem” 

 
The question of the continuity of Prelec’s function has been already 

considered mainly among other questions (see, e.g., Wakker, 1994, (see also 
Masson, 1974)).  Let us highlight it and make a special consideration of it.   

The question  WCertain - W(1) = ?  or whether  W(1) = WCertain  is the question 
whether  W(p)  is continuous at  p = 1.   

If  W(1) = WCertain  then  W(p)  is continuous (at  p = 1).  This is usually 
assumed by default.  Nevertheless, this has not been proven for the general case.  
The answer   

0)1( ≠−WWCertain      

or     

CertainWW ≠)1(    

to the modified “Luce question” means that  W(p)  has a discontinuity at  p=1.   
A discontinuity is not a quantitative but a qualitative, moreover, a topological 

feature.  Therefore, the possible discontinuity of Prelec’s function can qualitatively 
change prospect theories, at least in their mathematical aspects.   

So, the “Luce problem” can be of crucial importance for prospect theories.   
 

This section has reviewed and generalized my elder works, e.g., Harin (2014). 
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2.  Illustrative examples 

 

Kahneman and Thaler (2006) pointed out that the problems of the utility and 

prospect theories have still not been adequately overcome.   
 

One possible way to explain these problems has been widely discussed, e.g., 
in Schoemaker and Hershey (1992), Butler and Loomes (2007).  Its essence consists 
in a proper attention to the widespread noise, imprecision, and other reasons that 
may cause scattering of real data.   

The essential feature of these problems is their intense manifestation near the 
borders of the scale of probability (see, e.g., Tversky and Wakker, 1995).   

The above mentioned Steingrimsson and Luce (2007) and Aczél and Luce 
(2007) have opened one more way which consists in paying proper attention to 
borders, boundaries and interfaces.   
 

A purely mathematical investigation (see, e.g., Harin 2012b) has synthesized 
these two different ways. That is, it considers the dispersion of the data (or the 
influence of this dispersion) near the borders of the probability scale.   

Purely mathematical theorems prove that the probability  p  cannot attain  1  
under the condition of a non-zero dispersion of the data.   
 
 

A mechanical analogy of vibrations near a rigid wall:   
Suppose an electro-drill or any similar device, e.g., sewing-machine, 

vibrosieve, machine-gun, electric hammer etc. which (when working) can vibrate 
quickly.  Presume the device has rigid flank sides and vibrates with a non-zero 
amplitude of, say,  1  mm.   

Can we approach a flank side of the NON-WORKING drill (or of the device) 
to a rigid wall or ledge tightly?  Yes.  Surely.   

And now turn the drill on.  What will be the distance from the rigid wall to the 
working drill?  Vibrations will repulse, shift the drill from the wall.   

Can we approach a flank side of the WORKING drill to a rigid wall or ledge 
tightly?  No.   

The mean distance from the drill to the wall will be about a half of the non-
zero amplitude of vibrations, that is about  0.5  mm (if we do not apply an essential 
force to specially press the drill to the wall).   
 
 

This section illustrates the essence of the theorems.   
Its first subsection presents a simple pictorial two-point example of 

restrictions on the mean in the presence of the non-zero dispersion.   
Its second subsection presents a simple pictorial example of a restriction on 

the probability for a classical aiming firing at a target.   
Its third subsection presents an example of the normal distribution.   
This section has reviewed and generalized my elder works, e.g., Harin 

(2012a). 
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2.1.  An illustrative example of restrictions on the mean 

 
Let us consider briefly an illustrative example of restrictions on the mean.   

 
 

2.1.1.  Two points 
 

Let us suppose given an interval  [A, B]  (see Figure 1).  Let us suppose that 
two points are determined on this interval:   a left point  xLeft  and a right point     
xRight : xLeft<xRight.  The coordinates of the middle, mean point may be calculated as  
M=(xLeft+xRight)/2.   

 

Figure 1. An interval  [A, B].  Left  xLeft,  right  xRight   
and middle,  mean  M  points on it 

 
Let us suppose that  xRight-xLeft≥2σ=2Constσ>0.  So, of course,  xRight≥xLeft+2σ  

and  xLeft≤xRight-2σ.   For the sake of simplicity,  Figures 1-3 represent the case of the 
equality  xRight-xLeft=2σ  and also, of course,   xRight=xLeft+2σ  and  xLeft=xRight-2σ  and  
M-xLeft=xRight-M=σ=Constσ>0.   

So,  M=xLeft+σ>xLeft  and  M=xRight-σ<xRight.   
Suppose further that  xLeft≥A  and  xRight≤B.   
One can easily see that two types of zones for  M  can exist in the interval:   
1)  The mean point  M  can be located only in the zone which will be referred 

to as “allowed” (see Figure 2).   
2)  The mean point  M  cannot be located in the zones which will be referred 

to as “forbidden” (see Figure 3).   
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2.1.2.  Allowed zone 

 
Due to the conditions of the example, the left point  xLeft  may not be located 

further left than the left border of the interval  xLeft≥A  and the right point  xRight  may 
not be located further right than the right border of the interval  xRight≤B.   

For  M,  we have  M=xLeft+σ≥A+σ>A  and  M=xRight-σ≤B-σ<B  (see Figure 2).   

 
Figure 2.  The allowed zone for  M   

 
The width of the allowed zone for  M  is equal to   

σσσ 2)()( −−=+−− ABAB  .  

It is less than the width  (B-A)  of the total interval  [A, B]  by 2σ.  Also, the allowed 
zone is a proper subset of the total interval.   

If the distance  2σ  between the left  xLeft  and right  xRight  points is non-zero, 
then the difference between the width of the allowed zone and the width of the 
interval is non-zero also.  If this distance is greater than 2σ, then the difference is 
greater than 2σ  also.   
 

So, the mean point  M  can be located only in the allowed zone of the interval.   
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2.1.3.  Restrictions, forbidden zones 

 
Let us define the term “restriction” for the purposes of this paper:   
Definition.  A restriction (more exactly, a restriction on the mean) signifies 

the impossibility for the mean to be located closer to a border of the interval than 
some fixed distance.  In other words, a restriction implies here a forbidden zone for 
the mean near a border of the interval.   

The value of a restriction or the width of a forbidden zone signifies the 
minimal possible distance between the mean and a border of the interval.  For 
brevity, the term “the value of a restriction” may be shortened to “restriction”.   
 

If  A≤xLeft,  xRight≤B  and  xRight-xLeft=2σ,  then restrictions, forbidden zones 
with the width of one sigma  σ  exist between the mean point and the borders of the 
interval (see Figure 3).  So there are two forbidden zones, located near the borders 
of the interval.  The mean point M cannot be located in these forbidden zones.   

 
Figure 3.  The forbidden zones, restrictions on  M   

 
The restrictions, the forbidden zones are shown by two dotted lines and by 

painting in the bottom part of Figure 3.   
As one can easily see, restrictions on the mean (or forbidden zones) exist 

between the allowed zone of the mean  M  and the borders  A  and  B  of the interval  
[A; B]. The value of the restriction, or, equivalently, the width of the forbidden 
zone, is equal to  σ.   
 

So, the restrictions of the value  σ  on the mean point  M  exist near the 
borders of the interval in the presence of a non-zero dispersion.   
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2.2.  An illustrative example of restrictions on the probability 

 
Let us consider an illustrative example of restrictions on the probability. 

 
 

2.2.1.  A classical round target 
 

Consider a classical example:  an aiming firing at a target.  Suppose a classical 
round target (Figure 4) of the diameter  2L.   

 
Figure 4.  A target for firing 

 
Suppose Mr. Somebody performs an aiming firing by batches of pellets or 

small shots at a target.   
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2.2.2.  Two types of dispersion 

 
For the obviousness suppose (Figure 5) the dispersion of pellets hits is 

uniformly distributed in a zone of the diameter  2σ  (See an example of the normal 
distribution below).   

 
Figure 5. Dispersion of hits is uniformly distributed  

in a zone of the diameter 2σ   
 
Notes about this figure: 
Note 1: This is only a simplified example (See an example of the normal 
distribution below). 
Note 2: The case 1) represents the case of small diameter 2σSmall of the zone of 
dispersion of pellets hits.   
The case 2) represents the case of large diameter 2σLarge of the zone of dispersion of 
pellets hits.   
 

Suppose the point of aiming may be varied between the center of the target 
and a point which is outside the target. 
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2.2.3.  Small dispersion 

 
The case, when the diameter 2σSmall of the zone of dispersion of hits is 

considerably less than the diameter 2L of the target, is drawn on the figure 6.   

 
Figure 6. Firing for the small dispersion of hits 

 
Note: The diameter 2σSmall of the zone of dispersion of hits is considerably less than 
the diameter 2L of a target. 
 

At the condition of the small dispersion of hits, the maximum possible 
probability of hit in the target can be equal to 1 (can reach the boundary of the 
probability scale). 

When the point of aiming is varied between the center of the target and a point 
which is outside the target, the probability of hit in the target is varied from 1 to 0. 
There are no restrictions in the probability scale. 
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2.2.4.  Large dispersion 

 
The case, when the diameter 2σLarge of the zone of dispersion of hits is 

considerably more than the diameter 2L of the target, is drawn on the figure 7. 

 
Figure 7. Firing for the large dispersion of hits 

 
Note: The diameter 2σLarge of the zone of dispersion of hits is considerably more 
than the diameter 2L of the target. 
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2.2.5.  Restriction on the probability 

 
At the condition of the large dispersion of hits (exactly speaking at the 

condition the diameter 2σLarge of the zone of dispersion of hits is more than the 
diameter 2L of a target), the maximum possible probability of hit in the target 
cannot be equal to 1. 

So, the situation for the probability for this case is drawn on the figure 8. 

 
Figure 8. Restriction on the probability: Allowed zone and forbidden zone 

 
Note: See the example of two restrictions for two boundaries below.   
 

The value PAllowedMax of the maximal allowed probability of the allowed zone 
[0, PAllowedMax] may be estimated as the ratio of the mean number of the hits in the 
target to the total number of the hits. In this particular case, when the distribution of 
hits is supposed to be uniform, this ratio equals to the ratio of the area of hits 
scattering to the area of the target 

eLeLeHitsLetTAllowedMax LLSSP arg
22

arg
22

argarg /// σπσπ ===  .  

If  L<σLarge,  then  PAllowedMax<1.  In this particular case, the probabilities of hit in 
the target, that are larger than PAllowedMax, are impossible. The allowed probabilities 
of hit in the target belong to the allowed zone [0, PAllowedMax]. The value of the 
restriction RRestriction may be estimated as the difference between unit and the 
maximal allowed probability PAllowedMax of hit in the target 

01Re >−= AllowedMaxstriction PR  ,  

and, if L<σLarge, then RRestriction is a positive nonzero quantity. At the conditions of 
the figure 6, it is evident the probability PAllowedMax can not be more, then 0.5-0.7 
(50%-70%) and the restriction RRestriction is as more as 0.3-0.5 (30%-50%). 
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2.3.  An example of the normal distribution and  

of two restrictions for two boundaries 
 

Let us consider concisely an example of the normal distribution and of two 
restrictions for two boundaries.   
 
 

Conditions 
 

Let us consider firing at a target in the one-dimensional approach. Let the 
dimension of the target be equal to 2L>0  and the scatter of hits, when aim is 
precise, obeys the normal law with the dispersion  σ2.  Then (see, e.g., Abramowitz 
and Stegun, 1972) the maximal probability  Pin_Max  of hitting the target and the 
minimal probability  Pout_min=1-Pin_Max  of missing it are equal to:   
 
 

Results 
 

For  σ=0:   
Pin_Max=1  and  Pout_min=0.   
That is, there are no restrictions in the probability scale for hits and misses, 

that is  rexpect=1-Pin_Max=Pout_min=0.   
 

For  L=3σ:   
0≤Pin≤Pin_Max=0,997<1  and  0<0,003=Pout_min≤Pout≤1.   
For this case, the restrictions  rexpect  in the probability scale for hits and misses 

are equal to  rexpect=0,003>0.   
 

For  L=2σ:   
0≤Pin≤Pin_Max=0,95<1  and  0<0,05=Pout_min≤Pout≤1.   
For this case, the restrictions  rexpect  in the probability scale for hits and misses 

are equal to  rexpect=0,05>0.   
 

For  L=σ:   
0≤Pin≤Pin_Max=0,68<1  and  0<0,32=Pout_min≤Pout≤1.   
For this case, the restrictions  rexpect  in the probability scale for hits and misses 

are equal to  rexpect=0,32>0.   
 
 

Deductions 
 

For zero  σ=0  there are no restrictions  (rexpect=0).   
For non-zero  σ>0:  The non-zero restriction  rexpect>0  appears between the 

zone of possible values of the probability of hitting  0≤Pin≤Pin_Max=1-rexpect<1  and  
1.  The same non-zero restriction  rexpect>0  appears between the zone of possible 
values of the probability of missing  0<rexpect=Pout_min≤Pout≤1  and  0.   
 



17 

 

 
3.  Theorems 

3.1.  A short review of an existence theorem for restrictions  
on the mean 

 
Let us consider briefly (see, e.g., Harin, 2012b) existence theorems, from 

restrictions on the mean to restrictions on the probability.   
 
 

3.1.1.  Preliminary notes 
 

Definition 3.1.1.  Let us suppose given:   
a)  an interval  X=[A, B]  satisfying   

ABMaxABMin ConstABConst .. )(0 ≤−≤<  ,  

b)  a set of points  {xk} : A≤xk≤B,  k=1, 2, … K : 2≤K≤∞,   
c)  a function  fK  (a set of values  {fK(xk)}),  defined on  {xk},  satisfying   

)(0 kK xf≤      

and     

K

K

k

kK Wxf =∑
=1

)(  ,  

where  WK  (the total weight of  fK)  is  a constant satisfying   

KW<0  .  

Without loss of generality,  fK  may be and is normalized so that  WK=1.  
Under this condition, this function is referred to as a unitary function.   
 

Let us define an analog of a moment.   
Definition 3.1.2.  An analog of the moment of  nth  order of the function  fK  

relative to a point  x0  is the expression 

∑∑
==

−=−≡−
K

k
kK

n
k

K

k
kK

n
k

K

n xfxxxfxx
W

XXE
1

0
1

00 )()()()(
1

)(  .  

From now on, for brevity, I refer to this analog of the moment of  nth  order as 
simply the moment of  nth  order.   
 
 

3.1.2.  Maximality 
 

One may prove (see, e.g., Harin, 2015), that a function, which attains the 
maximal possible central moment, is concentrated at the borders of the interval.  At 
that, the moduli of the central moments of such a function are not greater than the 
estimate  

AB

AM
MB

AB

MB
AMMXEMax nnn

−
−

−+
−
−

−≤− )()(|))((|            (3.1).  
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3.1.3.  Lemma about the tendency to zero for central moments 

 
Lemma.  If, for the nonnegative function  fK  defined in Sub-subsection 3.1.1,  

M≡E(X)  tends to  A  or to  B,  then, for  n : 2≤n<∞,  E(X-M)n  tends to  zero.   
 

Proof 1.  For  MA,  the estimate (3.1) gives   

<
−
−

−+
−
−

−≤−
AB

AM
MB

AB

MB
AMMXE nnn )()(|)(|    

≤
−

−−
−+−< −−

AB

MBAM
ABAB nn ))((
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This rough estimate is already sufficient for the purpose of this paper.  But a more 
precise estimate may be obtained.   
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Let us consider the terms  (M-A)/(B-A)  and  (B-M)/(B-A).  Keeping in mind that  
A≤M≤B  we obtain  0≤(M-A)/(B-A)≤1  and  0≤(B-M)/(B-A)≤1.  For  n≥2  we have   
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So,   
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For  MB,  the proof is similar and gives   
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So, if  (B-A)  and  n  are finite and  MA  or  MB,  then  E(X-M)n0.   
The lemma has been proved.   
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3.1.4.  Existence theorem for restrictions on the mean  

 
Definition.  A “non-zero restriction on the mean  rMean”  (or, simply, a 

“non-zero restriction”) signifies the impossibility for the mean to be located closer 
to a border of the interval than some non-zero distance.   

In other words, a non-zero restriction designates the existence of a non-zero 
distance from a border of the interval.  Within this distance, it is impossible for the 
mean to be located.   

This restriction may be denoted also as a “forbidden zone” for the mean near a 
border of the interval.   

The “restriction” for one border and the “restriction” for another border 
constitute the “restrictions” for the borders.   

The value of a non-zero restriction (or the width of a non-zero “forbidden 
zone”) signifies the minimal possible distance between the mean and a border of the 
interval.  For brevity, the term “the value of a restriction” may be shortened to “the 
restriction.”   
 

Definition.  At the beginning, let us define a “non-zero restriction on the 
dispersion  r2

Dispersion.2≡r2
Disp.2=σ2

Min”  to be the minimal value of the analog of the 
dispersion  E(X-M)2  satisfying  E(X-M)n≥r2

Disp.2>0.   
Let us define analogously a general “non-zero restriction on the  n

th
  order 

central moment  |rn
Disp.n|”  to be the minimal absolute value of the analog of the  nth  

order central moment  E(X-M)n  satisfying  |E(X-M)n| ≥ |rn
Disp.n|>0.   

 
Theorem.  If, for a nonnegative function  fK  as in Sub-subsection 3.1.1,  such 

that its mean  M≡E(X)  and its analog of the  nth : 2≤n<∞,  order central moment  
E(X-M)n  exist,  there exists a non-zero restriction on this analog of the  nth  order 
central moment  |rn

Disp.n| = ConstDisp.n > 0 : |E(X-M)n| ≥ |rn
Disp.n|,  then a non-zero 

restriction on the mean  rMean=ConstMean>0  exists and   

BrBXEMrAA MeanMean <−≤≡≤+< )()()(  .  

 
Proof.  From the conditions of the theorem and from Lemma (3.1.3), for  

MA,  we have   
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For  MB,  the proof is similar and gives   
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So, as long as  (B-A)  and  n  are finite  and  |rn
Disp.n|=ConstDisp.n>0,  then  

rMean=ConstMean>0  and  A<(A+rMean)≤M≤(B-rMean)<B,  which proves the theorem.   
 
 

Remark 1 

 
For  n=2  the analog of the central moment is the analog of the dispersion,  

and  rMean  at  A  may be rewritten for the minimum  σMin  of the analog of the 
standard deviation  σ,  i.e.,  σ≥σMin≡rDisp.2>0,  as   
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The value of the restriction  rMean  at  B  may be also rewritten for the minimum  
σMin  of the analog of the standard deviation  σ  as   
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Remark 2 

 
The estimates of the theorem are rather reliable ones, especially for  

0→
− AB
Minσ

.  They are, in a sense, as reliable as the Chebyshev inequality.  

Preliminary calculations (see, e.g., Harin, 2009) which were performed for real 
cases such as the normal, uniform and exponential distributions with the minimal 
values  σ2

Min  of the analog of the dispersion, gave much stronger restrictions  rMean  

on the mean of the function (for  0→
− AB
Minσ

,  for the unitary interval  [A, B] : (B-

A)=1)  which are not worse than   

3
Min

Meanr
σ

≥  .  

So, the inequalities  A<(A+rMean)≤M≤(B-rMean)<B  for these cases may be 
rewritten as   
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3.2.  A short review of an existence theorem for restrictions  
on the probability 

3.2.1.  Lemma for the probability estimation 
 

Definition.  For a series of tests of number  K,  including  K∞,  let the 
density  f  of a probability estimation, frequency  F :  F≡M≡E(X),  have the 
characteristics of  fK;  in particular  f  is defined for  [0, 1]  and  Constf=1.   

Lemma.  If  f  is defined as in Sub-subsection 3.1.1, and either E[X]→0 or 
E[X]→1, then, for 1<n<∞, we have  |E(X-M)n|→0.  

Proof.  As long as the conditions of this lemma satisfy the conditions of the 
lemma 3.1.3, then the statement of this lemma is as true as the statement of the 
lemma 3.1.3. 
 

3.2.2.  Theorem for the probability estimation 
 

Theorem.  If a probability estimation, frequency FK, and {xk} are defined as in 
subsection 3.1.1, such that M≡E[X]≡FK, there are n : 1<n<∞, and rDispers>0 : E[(X-
M)n]≥rDispers>0, then, for the probability estimation, frequency FK≡M≡E[X], a 
restriction rmean exists such as 0<rMean≤FK≤(1-rMean)<1.   

Proof.  As long as the conditions of this theorem satisfy the conditions of the 
theorem 3.1.4, then the statement of this theorem is as true as the statement of the 
theorem 3.1.4. 
 

3.2.3.  Theorem for the probability  
 

Theorem.  If, for the probability scale [0; 1], a probability P and the 
probability estimation, frequency FK, for a series of tests of number K : K>>1, are 
determined such that when the number K of tests tends to infinity, the frequency FK 
tends at that to the probability P, that is   

K
K

FP
∞→

= lim  ,  

non-zero restrictions rmean : 0<rMean≤FK≤(1-rMean)<1 exist between the zone of the 
possible values of the frequency and every boundary of the probability scale, then 
the same non-zero restrictions rMean  exist between the zone of the possible values of 
the probability P and every boundary of the probability scale.   

Proof.  Consider the left boundary 0 of the probability scale [0; 1]. The 
frequency FK is not less than rMean:   

meanK rF ≥  .  

Hence, we obtain for P:   

meanmean
K

K
K

rrFP =≥=
∞→∞→

limlim  .  

For the right boundary 1 of the probability scale the proof is similar to that 
above.  So, the theorem has been proved.  For  rMean=σ2≥σ2

Min>0,  one can write   

( ) 110 22 <−≤≤< MinMin p σσ  .  

or, at  σ2
Min → 0,  taking into account Remark 2,  
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4.  A “certain–uncertain” inconsistency  

of the random–lottery incentive system 

 
A natural question is bound to arise: Why was not this discontinuity 

discovered in numerous experiments?   
This question is answered by Harin (2014).  Here is a very brief review of this 

answer:   
The random incentive procedure is usually referred to as the random–lottery 

incentive system (or the random lottery incentive system or random incentive 
system (RIS), etc.).   

The random–lottery incentive system is the prevailing experimental procedure 
employed in the utility and prospect theories (see, e.g., Starmer and Sugden, 1991, 
Starmer, 2000, Andreoni and Sprenger, 2012, Baltussen et al., 2012, etc.).   
 
 

4.1.  Random (uncertain) incentives 
 

Let us analyze one usual feature of experiments in utility and prospect 
theories. Let us consider some typical descriptions of the utility experiments. One 
can see in the literature (the boldface is my own): 

Loewenstein and Thaler (1989), page 188: “The students … were told that the 
experimenter would select and implement one of their choices at random.” 

Baltussen et al. (2012), page 424: “In the WRIS treatment, subjects play the 
game ten times, one of which for real payment. In the BRIS treatment, subjects play 
the game only once with a one-in-ten chance of real payment.” Page 425: “In both 
RIS treatments, a ten-sided die was thrown individually by each subject to 
determine her payment.” 

Other sources such as Kahneman, Knetsch and Thaler (1991), Vossler, Doyon 
and Rondeau (2012), etc. give similar descriptions. 

Such a procedure can be seen not only in the utility and prospect theories but 
also in other fields of the economics, see, e.g., Larkin and Leider (2012), page 193: 
“Subjects made fifteen choices between a lottery and a fixed payment. … Subjects 
were paid for one randomly selected decision.” 

So, subjects are stimulated by random incentives. This is a well-known feature 
of the experiments, including in the field of utility and prospect theories. 
 
 

4.2.  Uncertain incentives and certain outcomes 
 

Let us consider this feature more closely. One can see a detail in the literature 
(the boldface and underlining is my own): 

Starmer and Sugden (1991), page 974: “subjects in groups B and C knew that 
they were taking part in a random–lottery experiment in which questions 21 and 22 
had equal chances of being for real.” and “One problem, which we shall call P', 
required a choice between two lotteries R' (for "riskier") and S' (for “safer”). R' 
gave a 0.2 chance of winning ₤10.00 and a 0.75 chance of winning ₤7.00 (with the 
residual 0.05 chance of winning nothing); S' gave ₤7.00 for sure.” 
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Andreoni and Sprenger (2012), page 3365: “One choice for each subject was 

selected for payment by drawing a numbered card at random. Subjects were told to 
treat each decision as if it were to determine their payments.” and page 3366: 
“Section I provided a testable hypothesis for behavior across certain and uncertain 
intertemporal settings.” 

Other sources such as Holt and Laury (2002), Harrison et al. (2005), 
Abdellaoui et al. (2011), etc. give the same detail. 

So, the random incentive procedures are used not only in the uncertain but in 
the certain situations too. Let us consider this detail more closely. 
 
 

4.3.  The “certain–uncertain” inconsistency 
 

So, a well-known feature of the experiments, including in the field of utility 
and prospect theories, is that subjects are stimulated by random incentives. For the 
purposes of this article, let us call this process as the stimulation by random 
incentives. 

First, let us note that the stimulation (incentive) by a random payment selected 
from two or more alternatives may be called a random, uncertain stimulation. One 
may refer to it also as a stimulation by an uncertain incentive. 

Further, let us consider a stimulation by this uncertain incentive for uncertain 
and certain choices. 

Suppose, that subjects choose an uncertain choice, that is, a choice whose 
probability is strictly less than  1  (and strictly more than  0).  In this case, the 
choice and the incentive are of the same type.  

Suppose, that the subjects choose a certain choice, that is, a choice whose 
probability is strictly equal to  1.  In this case, the choice and the incentive are of the 
essentially different types.  The choice is certain but the incentive is uncertain. 
Moreover, this uncertain incentive can call into question the certain outcome.  

Therefore, there is an evident inconsistency between the certain type of the 
choice and the uncertain type of the incentive.  

Therefore, the correctness of the use of uncertain incentives for certain 
outcomes cannot be unquestionable. One may call this problem the “certain–
uncertain” inconsistency.  

This inconsistency is evident but I have found no mention about it in the 
literature: see, e.g., Andreoni and Sprenger (2012); Vossler, Doyon and Rondeau 
(2012); Baltussen et al. (2012); and also the “New Economics Papers. Utility 
Models & Prospect Theory” at  
http://econpapers.repec.org/scripts/nep.pf?list=nepupt  for the period 2005–2014. 
The inconsistency was revealed in the report Harin (2014).  
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5.  Experimental evidence 

Conditions 
 

One can see the following in the description of the well-known experiment of 
Starmer and Sugden (1991): 

Page 974: “For groups A and D, this page began with an underlined text 
stating that question 22 would be played for real. For groups B and C, the 
corresponding text stated that one of the two questions would be played for real and 
that which question was to played out would be decided at the end of the 
experiment in the following way. The subject would roll a six-sided die. If the 
number on the die was 1, 2, or 3, then question 21 would be played; if the number 
was 4, 5, or 6, question 22 would be played.” 

“One problem, which we shall call P', required a choice between two lotteries 
R' (for "riskier") and S' (for "safer"). R' gave a 0.2 chance of winning ₤10.00 and a 
0.75 chance of winning ₤7.00 (with the residual 0.05 chance of winning nothing); S' 
gave ₤7.00 for sure.” 
 
 

Results 
 

So, in the R'-S' problem, R' gives  ₤10.00*0.2+₤7.00*0.75 = ₤7.25.  S' gives  
₤7.00*1 = ₤7.00.  Here  R' = ₤7.25>S' = ₤7.00.   

Let us consider the results from table 2 on Page 976, those are of interest here 
(the boldface is my own): 

• Group = B, Incentive = Random lottery, R':S' = 19:21 
• Group = C, Incentive = Random lottery, R':S' = 22:18 
• Group = D, Incentive = P' real,  R':S' = 13:27 

So, the results for P' real incentive  (13:27)  differ evidently and essentially 
from the results for random lottery incentive  (19:21  and  22:18).  

Let us evaluate the percentage of the subjects choosing the uncertain outcome 
and the direction of the modification of  W(p).  The total number of the subjects in 
each group is equal to  40=19+21=22+18=13+27.  So, the percentage is equal to  
19/40=48%,  22/40=55%  and  13/40=33%.  One may see that the modification of  
W(p)  by the random lottery incentives is directed from  13/40=33%  to  
19/40=48%  and 22/40=55%.  That is it is directed from  0  to  1.   
 
 

Deductions 
 

One can easily see that the experiment shows that the random lottery 
incentives can essentially modify subjects’ choices in comparison with the real 
incentives, when these choices include certain outcomes and the probability  (0.2 + 
0.75 = 0.95 ~ 1)  of the uncertain choices is near the border of the probability scale.  

The modification of  W(p)  by the random lottery incentives is directed from  0  
to  1.  Therefore, the real unbiased probability weighting function  W(p)  is located 
farther from  1  and nearer to  0  (at  p ~ 1) than the function biased by the random 
lottery incentives. 
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6.  A discontinuity of Prelec’s function at the probability  p = 1    

 
So, this working paper allows to formulate: 

 
1)  The modified “Luce question” states that a possibility of the existence of a 

discontinuity of Prelec’s function at the probability  p = 1  should be considered.   
 

2)  The purely mathematical theorems prove that this discontinuity must take 
place in the presence of a non-zero dispersion of data.  
 

3)  The “certain–uncertain” inconsistency of the prevailing experimental 
procedure explains why this discontinuity has not still been detected.   
 

4)  The well-known experiment of Starmer and Sugden (1991) shows that this 
discontinuity can take place and that the random lottery incentives can hide it.   
 
 

7.  Possible consequences of the discontinuity  

 
A discontinuity is not a quantitative but a qualitative, moreover, a topological 

feature.  Therefore, the possible discontinuity of Prelec’s function can qualitatively 
change prospect theories, at least in their mathematical aspects.   
 

It may be supposed that such basic and useful tools as the random incentive 
systems, the overwhelming majority of the data already obtained by means of them, 
and the deductions from the data may and should continue to be used.   

Apparently, the farther from  p = 1  the less relevant is a possible 
discontinuity at  p = 1  and the smaller can be corrections of the data and 
deductions. Note, that the experiments (see, e.g., Cubitt, Starmer and Sugden, 1998; 
Beattie and Loomes, 1997) at the probabilities that are less than  0.9  are not so 
sensitive to the “certain–uncertain” inconsistency as that of Starmer and Sugden 
(1991). 

The following may be supposed:   
In the narrow middle of the probability scale (where the probability weighting 

function intercepts the line  W(p) = p)  and in the obvious cases, the data and 
deductions may be used “as is”.   

In the wide middle of the probability scale, the data and deductions may be the 
same or slightly corrected.  This may be true when the probability  p  is located 
sufficiently far from  p = 1-rmean  (see, e.g., Subsections 3.1 and 3.2 and Harin, 
2012b). 

When the probability tends to the restriction  p1-rmean,  the data should be 
used with non-linear corrections and the deductions should be recalculated by non-
linear functions.   

At the probabilities that are in the forbidden zone  1-rmean≤p≤1,  a new 
approach may be needed to make the deductions correct.   
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Conclusions 

 
So, this working paper reviews, summarizes and generalizes my elder works.   
It states that a discontinuity of Prelec’s function can take place at the 

probability  p = 1.   
In particular, this working paper formulates: 

 
1)  The modified “Luce question” states that a possibility of the existence of a 

discontinuity of Prelec’s function at the probability  p = 1  should be considered.   
 

2)  The purely mathematical theorems prove that this discontinuity must take 
place in the presence of a non-zero dispersion of data.  
 

3)  The “certain–uncertain” inconsistency of the prevailing experimental 
procedure explains why this discontinuity has not still been detected.   
 

4)  The well-known experiment of Starmer and Sugden (1991) shows that this 
discontinuity can take place and that the random lottery incentives can hide it.   
 
 

A discontinuity is not a quantitative but a qualitative, moreover, a topological 
feature.  Therefore, the possible discontinuity of Prelec’s function can qualitatively 
change prospect theories, at least in their mathematical aspects.   
 
 

So, one can conclude:   
There is a need of investigations of the “Luce problem” of a special analysis 

of Prelec’s function at  p = 1  and  p ≈ 1.   
There is a need of investigations of the “Luce question” whether Prelec’s 

weighting function is actually equal to  1  at  p = 1?   
There is a need of an independent analysis of the “certain–uncertain” 

inconsistency of the random–lottery incentive experiments.   
There is a need of an independent investigations of the modified “Luce 

question” whether Prelec’s weighting function has a discontinuity at  p=1.   
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