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Abstract

We derive the limit of the expected periodogram in the unit-root case under general

conditions. This function is seen to be time-independent, thus sharing a fundamental

property with the stationary case equivalent. We discuss the consequences of this result to

the frequency domain interpretation of filtered integrated time series.
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1 Motivation

Solo (1992) has shown that certain continuous-time stationary increment processes possess many

of the frequency domain properties of stationary processes. Crucially, although their variance is
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infinite or time-varying (depending on the specification of initial conditions), they have a time-

invariant spectrum, defined there as the limit of the expected periodogram. This more general

definition of spectrum helps us understand the frequency domain properties of certain non-

stationary processes, circumventing the restrictive nature of the standard spectral representation

theorems for stationary processes. Crucially, and this is ou main concern, it sheds light on the

frequency domain interpretation of the effects of applying trend extraction filters to integrated

time series.

We show in this paper that Solo’s (1992) main result holds in the case of (discrete-time)

time series processes containing one unit root. Under very general conditions, we provide exact

expressions for the time-invariant spectrum of an integrated time series, defined as the limit

of the expected periodogram. It is shown that this limit differs from the commonly defined

(pseudo-) spectrum of an integrated time series (e.g., as in Harvey 1993; Hurvich and Ray 1995;

Young, Pedregal and Tych 1999; Velasco 1999; Phillips 1999; Den Haan and Sumner 2004). We

will discuss the nuisance that this fact represents to the interpretation of the consequences of

applying linear filters that render the series stationary.

2 Result

Denote IT,x(ωj) as the periodogram of the sequence {xt}
T
t=1, where ωj = 2πj/T are the integer

multiples of 2π/T that fall in the interval ] − π, π]. Restricting ourselves to real sequences and

noting that IT,x(ωj) = IT,x(−ωj) in this case, we extend as usual the periodogram for every

frequency in the interval [−π, π] in the following way:

IT,x(ω) =











IT,x(ωk), ωk − π/T < ω ≤ ωk + π/T

IT,x(−ω), 0 < ω ≤ π
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For ω ∈ [0, π], let g(T, ω) be the multiple of 2π/T closest to ω. If ω ∈ [−π, 0[, let g(T, ω) =

g(T,−ω). Then,

IT,x(ω) = IT,x(g(T, ω)) (1)

If {xt}
T
t=1 is a sample from a stationary time series with mean µ and the autocovariance function

γ(.) is absolutely summable, it can be shown (see, e.g., Brockwell and Davis,1991, p.343) that:

E[IT,x(0) − Tµ2] → 2πSx(0) as T → ∞ (2)

E[IT,x(ω)] → 2πSx(ω) as T → ∞, ω 6= 0

where Sx(ω) is the spectrum of xt. That is, when the sample size grows the periodogram converges

to the distribution of variance as revealed by the spectral representation theorem. As Solo (1992),

in the analysis of the spectrum of continuous-time, stationary increments processes, we argue

that the result in (2) is a less restrictive inversion relation than that implied by the spectral

representation theorem. The question that we address is whether or not the relation in (2)

remains valid in the case of integrated processes. Does the expected value of the periodogram of

an integrated series, which can be seen as a distribution of power, converge to a time-invariant

function? The surprising answer is that it does, at least if the order of integration is 1 and for a

very broad class of stationary increments. This is summarised in theorem 1.

Theorem 1. Let ut = ψ(L)εt =
∞
∑

j=−∞

ψjεt−j, where
∞
∑

j=−∞

|ψj||j|
1

2 < ∞ and {εt} is a white

noise sequence such that E[εt] = 0 and V ar[εt] = σ2
ε < ∞. Consider the process {xt} verifying

xt − xt−1 = ut,∀t. Then, the periodogram of xt, IT,x(ω), has the following properties:

i) T−2E[IT,x(0)] →
2π

3
S∆x(0) as T → ∞, assuming x0 = 0

ii) E[IT,x(ω)] → 2πSx(ω) as T → ∞, ω 6= 0 (3)
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where S∆x(0) is the spectrum of xt − xt−1 = ut at zero frequency and

Sx(ω) =
σ2

ε

2π

|ψ(e−iω)|2 + |ψ(1)|2

|1 − e−iω|2
, ω 6= 0 (4)

Proof: Consider first the case ω 6= 0. Fix any ω ∈]0, π]. Then by (1) IT,x(ω) = IT,x(ωj)

for some Fourier frequency ωj. The discrete Fourier transform of xt − xt−1 = ∆xt, denoted by

JT,∆x(ωj), can be decomposed in the following way (as in Phillips 1999, but not fixing x0 = 0 ):

JT,∆x(ωj) = T− 1

2

T
∑

t=1

∆xte
−iωjt =

= T− 1

2 (1 − e−iωj)
T

∑

t=1

xte
−iωjt + T− 1

2

T
∑

t=1

xte
−iωj(t+1) − T− 1

2

T
∑

t=1

xt−1e
−iωjt =

= (1 − e−iωj)JT,x(ωj) + T− 1

2 (xT e−iωj(T+1) − x0e
−iωj). (5)

where JT,x(ωj) denotes the discrete Fourier transform of xt. Now, the periodogram of ∆xt can be

written as IT,∆x(ωj) = JT,∆x(ωj)JT,∆x(−ωj). Multiplying both sides of (5) by JT,∆x(−ωj), using

the fact that e−iωj(T+1) = e−iωj for the Fourier frequencies ωj and rearranging terms we get:

|1 − e−iωj |2IT,x(ωj) = IT,∆x(ωj) + T−1(xT − x0)
2−

−JT,∆x(ωj)T
− 1

2 (xT − x0)e
−iωj − JT,∆x(−ωj)T

− 1

2 (xT − x0)e
iωj (6)

Now put RT (ωj) = JT,∆x(ωj)T
− 1

2 (xT − x0)e
−iωj . Taking expectations we get:

E[RT (ωj)] = T−1e−iωjE[(
T

∑

t=1

ute
−iωjt)

T
∑

t=1

ut] = T−1e−iωj1′E[uu′]e

where 1 is a vector of ones, e = (e−iωj , e−2iωj , ..., e−T iωj)′ and u = (u1, u2, ..., uT )′. Since E[uu′] =
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[γ∆x(j − i)]Ti,j=1, where γ∆x(.) is the autocovariance function of ∆xt, we get finally:

E[RT (ωj)] = T−1e−iωj

T
∑

l=1

T
∑

h=1

γ∆x(h − l)e−iωjh

This can be decomposed as follows:

E[RT (ωj)] = T−1e−iωj(
T−1
∑

h=0

γ∆x(h)e−iωjh

T−h
∑

l=1

e−iωj l +
−1
∑

h=−T+1

γ∆x(h)e−iωjh

T
∑

l=1−h

e−iωj l) (7)

Now, for 0 ≤ h ≤ T − 1 we have:

|

T−h
∑

l=1

e−iωj l| = |

T
∑

l=1

e−iωj l −

T
∑

l=T−h+1

e−iωj l| = |0 −

T
∑

l=T−h+1

e−iωj l| ≤ h

since
T
∑

h=1

e−iωjh = 1−e
−iωjT

1−e
−iωj

e−iωj = 0, as e−iωjT = 1 for the Fourier frequencies ωj. The inequality

follows from the fact that ωj 6= 0 or 2π. Also, for −T + 1 ≤ h ≤ −1 we can conclude that:

|

T
∑

l=1−h

e−iωj l| ≤ |h|

All this means that we can bound (7) by

T−1
∑

|h|<T

|γ∆x(h)||h| ≤ T−1
∑

|h|<T

∞
∑

j=−∞

|ψjψj+h||h|

≤ T− 1

2

∑

|h|<T

∞
∑

j=−∞

|ψjψj+h||h|
1

2 ≤ T− 1

2 (
∞

∑

h=−∞

∞
∑

j=−∞

|ψjψj+h||h + j|
1

2 +
∞

∑

h=−∞

∞
∑

j=−∞

|ψjψj+h||j|
1

2 )

= 2T− 1

2 (
∞

∑

h=−∞

|ψh||h|
1

2 )(
∞

∑

j=−∞

|ψj|) → 0 as T → ∞

since both series are convergent. Performing the same exercise for RT (−ωj) we conclude that
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the expected value of the last two terms in (6) converges to 0:

E[RT (ωj) + RT (−ωj)] → 0 as T → ∞ (8)

As for the second term in (6) we get:

E[T−1(xT − x0)
2] = T−1V ar[

T
∑

t=1

∆xt] =

=
∑

|k|<T

(1 −
|k|

T
)γ∆x(k) →

∞
∑

k=−∞

γ∆x(k) = 2πS∆x(0) as T → ∞ (9)

by the dominated convergence theorem. Using (8), (9), the fact that IT,∆x(ω) → 2πS∆x(ω) as

T → ∞ (see (2)) and finally the fact that |1 − e−ig(T,ω)|2 → |1 − e−iω|2 as T → ∞ (since

g(T, ω) → ω) we conclude that:

E[
1

2π
IT,x(ω)] →

S∆x(ω) + S∆x(0)

|1 − e−iω|2
=

σ2
ε

2π

|ψ(e−iω)|2 + |ψ(1)|2

|1 − e−iω|2
, as T → ∞, ω 6= 0

which is time-invariant. For ω = 0, we need to normalise the periodogram by T 3 instead of T ,

and also to take into account the initial condition x0 = 0, which is equivalent to analyse the

periodogram for {xt − x0} instead of {xt}. We get:

T−2E[IT,x(0)] = E[T−3

T
∑

t=1

(xt − x0)
T

∑

t=1

(xt − x0)] = E[T−3

T
∑

t=1

t
∑

l=1

ul

T
∑

t=1

t
∑

l=1

ul] = 1′E[ucu
′
c]1

where 1 is a vector of ones and uc = (u1, u1 +u2, ...,
T
∑

l=1

ul). Evaluating E[ucu
′
c] we conclude that:

T−2E[IT,x(0)] = T−3
∑

|k|<T

γ∆x(k)

T−|k|
∑

h=1

(|k| + h)h
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But:
T−|k|
∑

h=1

(|k| + h)h =

T−|k|
∑

h=1

h2 + |k|

T−|k|
∑

h=1

h =

=
(T − |k|)(T − |k| + 1)(2(T − |k|) + 1)

6
+

(T − |k|)(T − |k| + 1)|k|

2

Thus,

T−2E[IT,x(0)] =
1

3

∑

|k|<T

γ∆x(k)R(T, |k|)

where, for fixed |k|, lim
T→∞

R(T, |k|) = 1. From the dominated convergence theorem, we finally

conclude:

T−2E[IT,x(0)] →
2π

3
S∆x(0) as T → ∞

¥

Example: Random walk. If {xt} verifies xt − xt−1 = εt,∀t where {εt} is a white noise

sequence such that E[εt] = 0 and V ar[εt] = σ2
ε we have, since ψ(e−iω) = ψ(1) = 1 :

Sx(ω) =
σ2

ε

π|1 − e−iω|2
, ω 6= 0

which shows that the pseudo-spectrum, defined as in theorem 1, is just proportional to the

inverse of the Fourier transform of the differencing operator (1−L) where L is the lag operator.

However, if we apply the first difference filter to {xt} the spectrum of (1 − L)xt = εt is given by

Sε(ω) = σ2
ε/2π. To perfectly maintain the relation Sε(ω) = |1− e−iω|2Sx(ω) as in the stationary

case we would need to define the pseudo-spectrum of xt as:

Sx(ω) =
σ2

ε

2π|1 − e−iω|2
, ω 6= 0

which seems a neutral normalization of the (non-integrable) power distribution of xt. In this case

the first difference filter maintains the usual interpretation, summarised by the function |1−e−iω|2.
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It attenuates low frequencies and amplifies high frequencies, thus producing a ”noisier” output

series. Now fix x0 = 0 and σ2
ε = 1. The periodogram of xt can be written as follows:

Ix,T (ωj) = T−1|

T
∑

t=1

xte
itwj |2 =

∑

|k|<T

T−1

T−|k|
∑

t=1

xtxt+|k|e
−ikωj

Next, fix any frequency ω ∈]0, π]. Theorem 1 shows that:

E[IT,x(ω)] =
∑

|k|<T

T−1 cos[g(T, ω)k]

T−|k|
∑

t=1

t =

=
1

2

∑

|k|<T

T−1 cos[g(T, ω)k](T − |k|)(T − |k| + 1) →
1

π|1 − e−iω|2
as T → ∞

¥

Remark 1. Except for ω = 0, the convergence result of theorem 1 does not depend on any

initial condition for x0. The condition
∞
∑

j=−∞

|ψj||j|
1

2 < ∞ is almost always used in a unit-root

context to guarantee that the partial sums of ut satisfy a functional central limit theorem but

can be relaxed. It is easy to check that the proof works with
∞
∑

j=−∞

|ψj||j|
α < ∞ for some (small)

α > 0.

¥

Remark 2. A different normalisation is needed for convergence if the order of integration

is greater than 1. Consider the simplest case (1 − L)2xt = εt, ∀t where {εt} is a white noise

sequence. Performing the same calculations as in Example 1, again with x0 = 0 and σ2
ε = 1, we

obtain:

E[IT,x(ω)] =
∑

|k|<T

T−1 cos[g(T, ω)k]

T−|k|
∑

t=1

t(|k| + t)

which diverges since
T−|k|
∑

t=1

t(|k| + t) is a polynomial of order 3 in T . We shall not pursue any

frequency domain characterisation in this case.
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¥

Theorem 1 is an adaptation of the continuous-time result in Solo (1992). Also, it sharpens

the result of theorem 4 in Crato (1996) which gives an upper bound greater than 0 to the limit

of (7). In a fractional integration context including unit roots, Hurvich and Ray (1995) have

studied the behaviour of the expectation of the periodogram at Fourier frequencies close to the

origin, obtaining also a time-invariance result. Specifically, theorem 1 in Hurvich and Ray (1995)

shows the following, for a unit-root process:

E[
1

2π
IT,x(ωj)/S

∗
x(ωj)] → 2 as T → ∞, ωj = 2πj/T (10)

where

S∗
x(ω) =

σ2
ε

2π

|ψ(e−iω)|2

|1 − e−iω|2
, ω 6= 0 (11)

S∗
x(ω), which differs from Sx(ω) in theorem 1 (see discussion below), is interpreted as the spectrum

of the integrated series as is in Velasco (1999) and Phillips (1999). Phillips (1999) argues that

S∗
x(ω) has such interpretation in view of Solo’s (1992) argument (i.e., S∗

x(ω) would be the limit

of the expectation of the periodogram, which is not exactly true). It should be noted that j is

held fixed, whereas our result is valid for any fixed ω 6= 0. It is easy to reconcile the two results.

Heuristically, once T grows, ωj approaches 0 and hence |ψ(e−iωj)|2 approaches |ψ(1)|2. Therefore

1
2π

IT,x(ωj) approaches 2S∗
x(ωj). In the stationary case the limit in (10) is just 1.

3 Interpreting filtered integrated time series

If we apply to the stationary sequence {xt} a time-invariant linear filter h(L) =
∞
∑

j=−∞

hjL
j , such

that
∞
∑

j=−∞

|hj| < ∞ we obtain a filtered sequence yt =
∞
∑

k=−∞

hjxt−j. It is easy to verify that the
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spectrum of {yt} is given by:

Sy(ω) = |h(e−iω)|2Sx(ω) (12)

where Sx(ω) is the spectrum of {xt} and h(e−iω) is the transfer function of the filter. Can

we extend the relation in (12) to integrated time series? This question is crucial when we

want to interpret the effects of applying commonly used moving averages or simply the first

difference filter to integrated time series. Common practice within this context is first to define

the spectrum of an integrated process as the limit of the spectrum of a stationary process when

the smallest autoregressive roots converge to 1 (e.g., Harvey 1993; Den Haan and Sumner 2004;

Young, Pedregal and Tych, 1999). For a general ARIMA process the spectrum is defined as:

S∗
x(ω) =

σ2
ε

2π

|φ−1(e−iω)|2|θ(e−iω)|2

|1 − e−iω|2s
=

σ2
ε

2π

|ψ(e−iω)|2

|1 − e−iω|2s
, ω 6= 0 (13)

where xt satisfies:

φ(L)(1 − L)sxt = θ(L)εt, ∀t

σ2
ε is the variance of the white-noise innovations εt, we assume the roots of φ(L) lie outside the

unit circle and are different from those of θ(L), ψ(L) = φ(L)−1θ(L) and s > 0 the order of

integration of the series. This limit is a time-invariant function at all frequencies except at those

associated with autoregressive roots with unit modulus1 and equals S∗
x(ω) in (11) when s = 1.

An extension of the relation in (12) holds given the definition in (13), particularly when the filter

renders the series stationary. It is assumed, without resorting to results such as that in theorem

1, that this function represents indeed a distribution of variance.

Bujosa, Bujosa and Garćıa-Ferrer (2002) provide a rigorous justification to the definition in

(13), generalising the classical spectral analysis by developing an extended Fourier transform

1Since we assumed the roots of φ(L) lie outside the unit circle, we are only considering the existence of a pole
at zero frequency. This assumption can straighforwardly be relaxed in order to include singularities at frequencies
other than zero, e.g., due to non-stationary seasonal components.
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to the field of fractions of polynomials. A pseudo-autocovariance generating function is defined

and the corresponding extended Fourier transform is defined as the (pseudo-) spectrum of the

integrated series, which leads to a functional form exactly as in (13). No representation theorem

is provided but it is argued, again without stating a result such as that in theorem 1, that the

usual interpretation of the spectrum as a decomposition of variance holds. Were the functions

in theorem 1 (which only deals with one unit root) and in (13) the same for ω 6= 0, one could

state that defining the spectrum of an integrated series as the limit of the expected periodogram

was a coherent extension of the stationary case inversion relation in (2). But the alert reader

has noticed that the functional form in theorem 1 is slightly different than that in (13) due to

the term |ψ(1)|2 in the numerator. This is definitely a nuisance when the process is not a pure

random walk, for which a straightforward normalisation (as in Example 1) preserves the power

distribution and leads to the maintenance of the relation in (12). In any case, and given this

normalisation, the differences in the interpretation would not be dramatic given the fact that

the inverse of |1 − e−iω|2 dominates the behaviour of both functions at frequencies close to the

pole located at zero frequency and the result in (10).

In short, one could be tempted to define the limit of the expected periodogram as the spec-

trum (or power distribution) of the integrated process, since in the stationary case this limit is

the distribution of power revealed by the spectral representation theorem. However, this func-

tion differs slightly from the commonly defined (pseudo-) spectrum of an integrated time series,

which has recently been given a rigorous interpretation by Bujosa, Bujosa and Garćıa-Ferrer

(2002). Defining the spectrum of an integrated series as in theorem 1 would in general distort

the interpretation given to the transfer function of filters applied to such series.
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