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Abstract

We resort to a rigorous definition of spectrum of an integrated time series in order to

characterise the implications of applying linear filters to such series. We conclude that in

the presence of integrated series the transfer function of the filters has exactly the same

interpretation as in the covariance stationary case, contrary to what many authors sug-

gest. This disagreement leads to different conclusions regarding the link of the original

fluctuations with the transformed fluctuations in the time series data, embodied in various

unjustified criticisms to the application of detrending filters. Despite this, and given the fre-

quency domain characteristics of filtered macroeconomic integrated series, we acknowledge

that the choice of a particular detrending filter is far from being a neutral task.

JEL Classification: E32; C22

Keywords: Unit roots, Band-pass filters, Pseudo-spectrum

1 Introduction

The failure of classical Fourier analysis in the presence of unit roots has led to widespread

misunderstandings regarding the effects of applying linear filters to integrated time series. While

some authors completely disregard spectral theory under non-stationarity, others resort to the
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so-called pseudo-spectrum without providing a rigorous justification for its use. If we want to

fully understand the consequences of applying transformations (linear filters) to integrated time

series, we should be able to decide which view, if any, is correct. Hopefully, we will be able to

address an apparently simple question. What are the consequences, in the frequency domain, of

differencing a random walk? Or the consequences of applying trend-extraction filters, or more

specifically band-pass filters, to integrated time series? These questions are recurrent in the

context of business cycle analysis. What are we isolating when applying the Hodrick-Prescott

(HP) filter (see Hodrick and Prescott, 1997), the Butterworth filters proposed by Gomez (2001)

the Baxter and King filter (see Baxter and King, 1999) or the Christiano and Fitzgerald filter (see

Christiano and Fitzgerald, 2003) to integrated time series? Are the properties of the resulting

cycle components just artefacts? Can we give a rigorous description of its properties or a rigorous

interpretation of the effects of such transformations? As we shall review, these questions have a

trivial answer if the original series are covariance-stationary.

Our sole contribution is assembling some results in the literature as well as our own, and use

them to show that the usual interpretation of the effects of filtering, summarised by the transfer

function of the filter, carries over if the input series is integrated. This occurs essentially because,

although the second moments of an integrated process are time-dependent (or infinite depending

on the specification of initial conditions), the distribution of the (infinite) variance (that is, the

spectrum) over frequencies is not time-dependent. This phenomenon occurs with various infinite

variance processes. The standard representation theorems do not hold, since the variance is not

a constant and the processes exhibit persistent time dependence, but the spectrum exhibits time

invariance. Understanding this apparent paradox is the purpose of this paper. We will then be

able to discuss various criticisms to the application of filters in integrated macroeconomic time

series. We will see that most of them are unwarranted. Nonetheless, we will show that even

though a rigorous interpretation of the effects of filtering is possible, choosing or designing a

specific filter is far from being a neutral task.

The remainder of the paper is organised as follows: In section 2, the usual spectrum of an

integrated series is defined. A justification for its use is provided and the bridge with the spectral

representation theorem for stationary processes is made. In section 3 we discuss why the previous

results are important to understand the consequences of filtering. We discuss various criticisms

in the literature, related to the application of band-pass filters to integrated time series and argue

that most are unjustified. Section 4 gives a note of caution, on why choosing a specific filter can

be a sensitive exercise. Section 5 concludes.
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2 The Spectrum

2.1 Stationary case

It is well known that a covariance-stationary time series can be decomposed into an infinite

weighted sum of periodic orthogonal components. This is summarised in the spectral represen-

tation theorem. Let {xt} be a covariance-stationary sequence with mean zero and define the

spectrum of {xt} as:

Sx(ω) =
1

2π

∞∑
k=−∞

e−iωkγ(k), − π ≤ ω ≤ π (1)

where i2 = −1, ω denotes the frequency measured in radians and γ(k) is the autocovariance

function of {xt} at lag k. It is well known (see, e.g., Brockwell and Davis, 1991) that there exists

a right-continuous orthogonal increment process {z(ω),−π ≤ ω ≤ π} such that:

i) E[(z(ω) − z(−π))(z(ω) − z(−π))∗] = FX(ω) =

ω∫

−π

Sx(ω)dω, − π ≤ ω ≤ π

where ∗ denotes the complex conjugate and:

ii) xt =

π∫

−π

eiωtdz(ω) a.e.

So, xt can be decomposed into an infinite weighted sum of orthogonal fluctuations, each with

frequency ω. Sx(ω) can be interpreted as the decomposition of the variance of xt in terms of these

fluctuations. Sx(ω) contains the same information as the second order moments characterised

by γ(k), k = 0,±1,±2, .... Sx(ω) and γ(k) form a pair of Fourier transforms in that:

γ(k) =

π∫

−π

eiωkdFx(ω) =

π∫

−π

eiωkSx(ω)dω, k = 0,±1,±2, ... (2)

If we apply a time-invariant linear filter h(L) =
∞∑

j=−∞

hjL
j where Ljxt = xt−j and such that

∞∑
j=−∞

|hj| < ∞ to the sequence {xt} we obtain a filtered sequence yt =
∞∑

k=−∞

hjxt−j. It is easy to
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verify that the spectrum of {yt} is given by:

Sy(ω) = |h(e−iω)|2Sx(ω) (3)

where h(e−iω) is denoted as the transfer function of the filter. The interpretation of a time series

in the frequency domain, and the analysis of the consequences of filtering, is straightforward

given the spectral representation theorem. However, the conditions for it to hold are rather

restrictive, the assumption of covariance stationarity being the crucial one. How can we interpret

the consequences of filtering an integrated time series? Can we extend somehow the relation in

(3)?

Although it is straightforward to know the consequences of filtering an integrated time series

(i.e., to know exactly what the spectrum of the filtered series is once it becomes stationary), the

link with the original integrated series is hard to make if no reasonable definition of spectrum

of an integrated series is available. We will argue that a more general interpretation of the

spectrum is available, that is, we argue that the spectral representation theorem is a restrictive

way of interpreting a time series in the frequency domain. Obviously, if we extend the definition

of spectrum in order to encompass integrated series, the spectrum of a covariance stationary

series should still be consistent with the spectral representation theorem. That is, under both

definitions the spectrum of a covariance stationary process coincides.

2.2 Integrated case

Spectral analysis of integrated time series is a difficult task given the failure of classical Fourier

analysis in that case. There have been several approaches to the spectral analysis of non-

stationary processes. Hatanaka and Suzuki (1967) build a spectral theory of non-stationary

processes by focusing on finite subsets of the sequence {xt} that have finite second moments.

The defined pseudo-spectrum is time-varying and closely related to the evolutionary spectra of

Priestley (1981). Another approach, widely followed, is to define the power distribution of an

integrated series as the limit of the spectrum of a stationary process when the smallest autore-

gressive roots converge to 1 (e.g., Harvey, 1993; Den Haan and Sumner, 2004; Young, Pedregal

and Tych, 1999). The pseudo-spectrum of a general ARIMA process is defined as (see Harvey,

1993):

Sx(ω) =
σ2

ε

2π

|φ−1(e−iω)|2|θ(e−iω)|2

|1 − e−iω|2s
=

σ2

ε

2π

|ψ(e−iω)|2

|1 − e−iω|2s
, ω 6= 0 (4)
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where xt satisfies:

φ(L)(1 − L)sxt = θ(L)εt, ∀t

σ2

ε is the variance of the white-noise innovations εt, we assume the roots of φ(L) lie outside the

unit circle and are different from those of θ(L), ψ(L) = φ(L)−1θ(L) and s > 0 is the order of

integration of the series. This limit is a time-invariant continuous function at all frequencies

except at those associated with autoregressive roots with unit modulus. At those frequencies

the pseudo-spectrum is not well-defined, there is a pole, a singularity associated with the unit

roots1. The spectrum of an integrated series is thus a functional form extension of the spectrum

of stationary processes. Within this approach, the analysis of the consequences of filtering can be

made, but the results hold by definition, as we shall review in section 3. No rigorous justification

for the use of the pseudo-spectrum is presented. It is assumed that this function represents

indeed a distribution of variance. Without further results it is merely an ad-hoc extension of the

spectrum of a stationary series. If the spectral representation theorem does not hold, alternative

definitions and the exploration of its properties should be done.

But recently, in an important paper, Bujosa, Bujosa and Garćıa-Ferrer (2002) extend the

classical spectral analysis by developing an extended Fourier transform to the field of fractions of

polynomials. A pseudo-autocovariance generating function is defined to account for the presence

of unit roots and the corresponding extended Fourier transform is defined as the pseudo-spectrum.

Within this approach, which leads to exactly the same functional forms as the limit of the

stationary spectrum in (4), the pseudo-spectrum collapses to the standard spectrum when no

non-stationary roots are present, since the extended Fourier transform is just the classical Fourier

transform in that case. This extended Fourier transform is just the ratio of the Fourier transform

of ψ(L) to that of the non-invertible polynomial (1 − L)s, associated with the unit roots. This

leads to (4).

This complements and extends an earlier definition of the spectrum of non-stationary processes,

provided by Solo (1992). Solo (1992) has shown that certain continuous-time, stationary incre-

ment processes, possess many of the frequency domain properties of stationary processes. Cru-

cially, although their variance is infinite or time-varying, they have a time-invariant spectrum,

defined there as the limit of the expected periodogram. This definition is motivated by the fol-

lowing observation, that we adapt to the discrete-time case. If {xt} is a stationary time series

with mean µ and the autocovariance function γ(.) is absolutely summable, it can be shown (see,

1Since we assumed the roots of φ(L) lie outside the unit circle, we are only considering the existence of a pole at
zero frequency. This assumption can straightforwardly be relaxed in order to include singularities at frequencies
other than zero, e.g., due to non-stationary seasonal components.
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e.g., Brockwell and Davis, 1991, p.343) that:

E[IT,x(0) − Tµ2] → 2πSx(0) as T → ∞ (5)

E[IT,x(ω)] → 2πSx(ω) as T → ∞, ω 6= 0

where Sx(ω) is the spectrum of xt and IT,x(ω) is the periodogram for a sample of size T . That

is, when T grows the periodogram converges to the distribution of variance as revealed by the

spectral representation theorem. Solo (1992) argues that the result in (5) is a less restrictive

inversion relation than that implied by (1), hence justifying the limit of the expected periodogram

as a more general definition of spectrum. It would be comforting if the definition of Solo (1992)

lead to functional forms as in (4). Unfortunately it does not. Valle e Azevedo (2007) provides an

exact limit for the expected periodogram when the (discrete-time) time series contains one unit

root (s = 1), under general conditions2,3. The limit (divided by 2π) is the following, assuming

as above that xt follows (1 − L)xt = ψ(L)εt, ∀t:

S∗

x(ω) =
σ2

ε

2π

(|ψ(e−iω)|2 + |ψ(1)|2)

|1 − e−iω|2
, ω 6= 0 (6)

which differs from (4) due to the term |ψ(1)|2 in the numerator. Using this definition of spectrum

instead of that in (4) would in general lead to different conclusions regarding the effects of

applying linear filters to integrated processes. But these differences would not be dramatic after

a simple normalisation, given the fact that the inverse of |1− e−iω|2 dominates the behaviour of

both Sx(ω) and S∗

x(ω) at frequencies close to the pole located at zero frequency. Consider the

simplest case, when {xt} verifies xt−xt−1 = εt,∀t where {εt} is a white noise sequence such that

E[εt] = 0 and V ar[εt] = σ2

ε . We have, since ψ(e−iω) = ψ(1) = 1 :

S∗

x(ω) =
σ2

ε

π|1 − e−iω|2
, ω 6= 0

which shows that the pseudo-spectrum, defined as in (6), is just proportional to the inverse of the

Fourier transform of the differencing operator (1 − L). However, if we apply the first difference

filter to {xt} the spectrum of (1−L)xt = εt is given by σ2

ε/2π. To perfectly maintain the relation

2Put (1 − L)xt = ψ(L)εt =
∞∑

j=−∞

ψjL
j . The condition

∞∑
j=−∞

|ψj ||j|
α < ∞ for some (small) α > 0 is imposed

to guarantee this result.
3The limit of the (appropriately normalised) expected periodogram when the time series process contains more

than one unit root is still unexplored.
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Sε(ω) = |1 − e−iω|2Sx(ω) as in (3) we would need to define the pseudo-spectrum of xt as:

Sx(ω) =
σ2

ε

2π|1 − e−iω|2
, ω 6= 0

which is exactly what we obtain in (4) and seems a neutral normalisation of the (non-integrable)

power distribution (if it were defined by (6)) of xt . In this case, the first difference filter maintains

the usual interpretation, summarised by the function |1 − e−iω|2. It attenuates low frequencies

and amplifies high frequencies, thus producing a ”noisier” output series. The stationary case

interpretation would also still be valid for any linear filter containing at least one unit root.

But in general this normalisation is only neutral (or leads to values of the distribution close to

those in (4)) at frequencies close to zero, which nonetheless dominate clearly the behaviour of

an integrated time series. Formally, it can be shown (see Hurvich and Ray, 1995) that for a unit

root process:

E[
1

2π
IT,x(ωj)/Sx(ωj)] → 2 as T → ∞, ωj = 2πj/T (7)

where Sx(ωj) is defined as in (4) and regarded as the power distribution of xt, as is typical in

the long-memory literature (see also, e.g., Velasco, 1999). It should be noted that j is held fixed,

whereas the result in (6) is valid for any fixed ω 6= 0. It is easy to reconcile the two results.

Heuristically, once T grows, ωj approaches 0 and hence |ψ(e−iωj)|2 approaches |ψ(1)|2. Therefore
1

2π
IT,x(ωj) approaches 2Sx(ωj), with Sx(ωj) defined as in (4). In the stationary case the limit in

(7) is just 1.

In short, the rigorous definition of pseudo-spectrum due to Bujosa, Bujosa and Garćıa-Ferrer

(2002) is not completely consistent with that of Solo (1992) for processes containing one unit root,

due to the ”slight” breakdown of the result in (5) in that case. Nonetheless, the unreasonableness

of disregarding any spectral characterisation of unit root processes is clear.

3 Interpreting filtered integrated time series

3.1 Consequences of filtering

The lack of a rigorous definition of spectrum of an integrated time series is not crucial to un-

derstand its properties. But if we want to interpret the frequency domain effects of applying

linear filters to such series, this definition is essential. Otherwise, important questions would

be left unanswered. What would we be isolating when applying band-pass filters to integrated
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time series? What would be the link with the original time series fluctuations? These questions

have been puzzling for a long time due to the insufficiencies of spectral theory in the presence of

unit roots. This has led to numerous misinterpretations of the role of filtering in the behaviour

of integrated time series, as we shall discuss below. Detractors of the use of commonly used

filters often cite the fact that the spectral representation theorem does not hold in presence of

integrated series. Those in support of their use fail to fully justify the frequency domain interpre-

tation given to an integrated process. Given that we have at hand such interpretation, embodied

in a definition of spectrum that encompasses integrated processes, we can proceed to discuss the

effects of filtering an integrated time series.

It is straightforward to verify that if we apply an absolutely summable linear filter h(L) to an

integrated time series xt, and this series becomes stationary, the spectrum of the filtered series

yt is given by:

Sy(ω) = |h(e−iω)|2Sx(ω) (8)

where Sx(ω) is the pseudo-spectrum, defined as in (4), of the integrated series xt. That is, an

extension of the relation stated in (3) holds. This relation would always hold regardless of the

validity of the pseudo-spectrum as a frequency domain description of xt. This occurs because

once the unit roots in the filter polynomial h(L) cancel those in the auto-regressive polynomial

of xt, φ(L)(1 − L)s, what we get is a transformed series given by yt = h∗(L)φ−1(L)θ(L)εt,

where h∗(L) = h(L)/(1 − L)s. The spectrum of this series is obviously |h(e−iω)|2Sx(ω), even for

ω = 0. But this relation, without any further justification for the use of the pseudo-spectrum, is

irrelevant for the analysis of the consequences of filtering. However, we can now state that the

function |h(e−iω)|2 has exactly the same interpretation as in the covariance stationary case. It

represents the way fluctuations of xt with frequency ω are amplified or mitigated by the filter.

3.2 Band-pass filters applied to integrated series

In the remainder of the paper we will focus in the analysis of band-pass filters, filters designed

to isolate specific fluctuations in the original time series. We give special attention to the HP

filter and to finite sample approximations of ideal band-pass filters, given the emphasis put

in these filters in the literature. We define an ideal band-pass filter for the frequencies band

]ωl, ωh[⊆ [0, π]4, as the filter that would perfectly eliminate the fluctuations with frequencies

4We restrict hereafter the analysis to the interval [0, π], due to the symmetry of the spectrum around ω = 0.
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outside this band and preserve without distortion the remaining fluctuations. The transfer

function of an ideal band-pass filter B(L) is thus given by B(e−iω) = 1 for ω ∈]ωl, ωh[ and 0

otherwise. The ideal filter can be expressed as B(L) =
∞∑

j=−∞

BjL
j. The filter weights are well

known and given by:

Bo =
ωh − ωl

π
, Bj =

sin[ωhj] − sin[ωlj]

πj
, |j| ≥ 1 (9)

It can be shown that B(L) removes up to two unit roots, which means that B(L) can be factored

as B(L) = (1−L)2B1(L) = (1−L)B∗(L) where B∗(1) = 0. Furthermore, we can easily conclude

that by applying an ideal band-pass filter to the integrated time series xt (with order of integration

s = 1), no fluctuations associated with frequencies outside the band of interest ]ωl, ωh[⊆ [0, π] will

be present in the filtered series. That is, for ω 6= 0 and ω ∈]0, π]/]ωl, ωh[ we have Sy(ω) = 0 by

(8) since B(e−iω) = 0. This is true regardless of the interpretation given to the pseudo-spectrum

since (8) holds by definition. Also, we can conclude that Sy(0) = 0, even if the pseudo-spectrum

is not well defined for ω = 0. This occurs because yt = B∗(L)(1 − L)xt = B∗(L)zt. Now, zt is

stationary and its spectrum well defined for all ω. Since B∗(1) = 0 the result follows. Finally,

for ω ∈]ωl, ωh[ and since B(e−iω) = 1, we can conclude by (8) that Sy(ω) = Sx(ω). In short, the

ideal band pass filter retains its usual interpretation in the presence of one unit root. Further

unit roots would be needed in the filter if we wanted to isolate some range of frequencies in a

time series with order of integration greater than 1 and enforce Sy(0) = 0.

Since the ideal filter in (9) is not applicable in practice, approximations have been developed.

Baxter and King (1999) construct symmetric moving averages (BK filters) aimed at approxi-

mating an ideal band-pass filter. Christiano and Fitzgerald (2003) developed an optimal (in the

mean squared error sense) band-pass filter (CF filter) that can be applied to every observation

in the sample (since symmetry in the filter weights is not imposed). The HP filter (see Hodrick

and Prescott, 1997) has long been used to eliminate low frequencies in the data. The fact that

this filter was indeed a high-pass filter (a filter that eliminates only low frequencies and retains

without distortion high frequencies) was pointed by King and Rebelo (1993). Using the HP filter,

it is easy to construct a band-pass filter, by applying successively an HP high-pass filter and the

complementary of another HP high-pass filter (a low-pass filter). The choice of the smoothing

parameters can also be reconciled with the choice of a band of frequencies (see Pedersen, 2001).

Butterworth filters, which can be seen as generalisations of the HP filter, provide better approx-

imations (at least in infinite samples) to the ideal filter, the filter that would perfectly isolate

the desired frequencies (see Gomez, 2001). The BK and CF filters are explicitly designed to
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account for the removal of unit roots while the HP and Butterworth filters fortunately possess

that property. This means, together with the interpretation given to the pseudo-spectrum, that

they can in fact be seen as band-pass filters when applied to integrated series (with sufficiently

small order of integration)5.

3.3 Discussion of criticisms to the use of band-pass filters

The comprehension of the consequences of filtering a time series (either stationary or integrated)

is crucial to this analysis. Many criticisms to the HP filter and to other band-pass filters forget

such consequences. For instance, differences between second moments of filtered and unfiltered

series cannot be taken as evidence of a weak performance of a filter as do King and Rebelo (1993),

Guay and St-Amant (1997) and Canova (1998). The differences are a consequence of filtering,

since the spectrum of the filtered series changes and the relation in (2) holds. The differences

would arise even if an ideal band-pass filter were used. The analyst interested in the fluctuations

approximately isolated by the filter should not be concerned with these consequences. As he

should not be concerned if the filter does not isolate the cycle component in an unobserved-

components model with a stochastic trend, as Murray (2003) shows. This type of criticism

seems redundant except if there are arguments against the usefulness of looking at a portion of

the spectrum in each particular application.

A more involved type of criticism concerns the alleged spurious ciclicity induced by band-pass

filters when applied to persistent time series. Pedersen (2001) has fully addressed this issue in

the case when the original series is persistent but still covariance-stationary. However, he does

not resort to the definition of pseudo-spectrum, essential to rigorously extend the argument to

integrated series. But let us review this type of criticism. Harvey and Jaeger (1993), Cogley and

Nason (1995) and Guay and St-Amant (1997) criticise the HP filter for inducing business cycle

periodicity in integrated or near-integrated time series, those with the “typical spectral shape”

of Granger (1966). Figure 1 shows an example of this spectral shape for a covariace-stationary

series. The spectrum decreases monotonically towards π, with the power clearly concentrated

in the low frequencies. A peak in the spectrum of HP filtered series, which is absent in the

spectrum of the original series, is taken as evidence of Slutzky-effect (or spurious ciclicity). This

peak occurs because the low frequencies clearly dominate the spectrum of a persistent time

series. Once we apply a band-pass filter, and thus eliminate low frequencies, a peak in the

5If some of the unit roots from the input series were not removed, the filtered series would not consist only of
fluctuations with the desired frequencies since the spectrum of the filtered series would still not be well defined
at zero frequency.

10



spectrum of the filtered series will be detected near the lowest frequency of the band of interest.

Pedersen (2001) shows that these critics rest on an “inadequate definition of the Slutzky-effect –

a definition which has the unfortunate consequence that even an ideal high-pass filter induces a

Slutzky effect”. In fact, neither an ideal band-pass filter nor the commonly used band-pass filters

amplify or weaken certain frequencies so as to produce a peak in the spectrum of the filtered

series. They only isolate certain fluctuations that are in the data. If we define, as would be

reasonable, the Slutzky-effect as a cycle in the transfer function of a filter, then the HP filter and

other band-pass filters do not induce a Slutzky effect. There is clearly no cycle in the transfer

function of the HP filter (see figure 2).

Crucially, the previous argument carries over to the analysis of integrated series, since we can

interpret the effects of filtering integrated time series in the same way as we do for stationary

processes. Many authors completely neglect this fact and analyse the consequences of filtering

by first “transforming” the process into a stationary form. This completely hides or distorts

relevant characteristics of the original process. E.g., Harvey and Jaeger (1993) and Cogley and

Nason (1995) show that there is a peak in the power transfer function of a subcomponent of the

HP filter. This subcomponent is isolated to interpret the effects of the filter in I(1) time series.

Let the transfer function of the HP cyclical filter be decomposed as:

C(ω) = (1 − e−iω).C1(ω), C1(ω) =
λei2ω(1 − e−iω)3

λei2ω(1 − e−iω)4 + 1

where λ is the value of the smoothing parameter. According to this decomposition, applying the

HP filter to an I(1) time series is equivalent to: First, filter the non-stationary time series with

the first difference filter and then filter the remaining stationary component with the asymmetric

filter determined by C1(ω) . The modulus of the transfer function of this second filter is plotted

in figure 3. It has a clear peak at business cycle frequencies that Harvey and Jaeger (1993)

classify as “a classical example of the Yule-Slutzky-effect”. The definition of spectrum for an

integrated process tells us that we must look to the total transfer function C(ω), not only to the

subcomponent C1(ω). That is, we cannot overlook the consequences of the first-difference filter

(1 − L). This introduces a complete discontinuity in the analysis of the effects of filtering once

the unit root case is considered. We believe this challenges even casual observation6.

6Rigour apart, a band-pass filtered AR(1) with coefficient 0.99 is indistinguishable from a band-pass filtered
pure random walk with the same innovations. The same can be said of the spectrum of the filtered series,
which can be precisely determined regardless of the reasonableness of the pseudo-spectrum as a frequency domain
description of an integrated process.
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We can thus state that the effects of applying a band-pass filter to an integrated series are

similar to those of applying the band-pass filter to a highly persistent (but stationary) time series.

The spectrum of the filtered series will have a clear peak at the lowest frequency of the band of

interest, given the typical shape of the pseudo-spectrum of an integrated time series (see figure

4).

4 Choosing a specific filter is not neutral

As we have seen, it is almost impossible to identify a dominant stationary component in a

typical macroeconomic time series simply by looking to the pseudo-spectrum. There is not, in

most cases, a clear peak in the pseudo-spectrum. It is definitely possible to have a (usually slight)

peak if, e.g., the first differences of the series can be described by an AR process with complex

roots. Also, if the true data generating process of the integrated series has a cycle component

like the ones in Harvey and Jaeger (1993), there will be a small peak in the pseudo-spectrum

at intermediate frequencies. All this means that (regular) business cycle fluctuations are hardly

identified through the pseudo-spectrum. Sargent (1987) and more recently Pagan (1999), point

this fact. If this was not the case we could comfortably define, in a purely statistical sense,

business cycle fluctuations as those fluctuations with frequecies around the peak in the spectrum

of a set of macroeconomic time series.

In view of the above, choosing to isolate a specific band of fluctuations in a macroeconomic

time series (e.g., the famous [6, 32] quarters band in quarterly data) or choosing a particular

smoothing parameter in the case of the HP filter is essentially an arbitrary exercise, with poten-

tially important consequences. Suppose for instance that a central bank uses a Taylor rule in

determining interest rates, and resorts to a band-pass filter in order to estimate the output gap.

The bigger the upper period in the band of interest, the more volatile will be the output gap

series, since more power is being assigned to the cycle component.

Furthermore, the pseudo-spectrum is so clearly increasing as we approach the zero frequency

that a cut determined by a band-pass filter will deliver a very clear peak near the lowest frequency

of the band of interest, regardless of the existence of intermediate peaks. We argued before that

this is not a distortion of the power distribution of fluctuations that are in the data. But it is

nonetheless an important property of the filtered series.

Should we be concerned with the above facts if we know that more or less regular fluctuations

affect output and other economic variables? To make things worse, similar spectral patterns
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would arise in the filtered series if the original series were a pure random walk. By applying the

HP filter or another band-pass filter to a random walk process, we are again defining a trend and

allowing specific frequencies to remain in the cycle component. But does it make sense to filter

a random walk? Band-pass filtering is certainly “a sensible way to look at the data” (Kaiser

and Maravall, 1999), just as is ideal band-pass filtering. There is no “truth” in any isolated

cycle component. Prior information must be added through the specification of business cycle

fluctuations. An important element of definition must therefore be assumed. As we have seen

before, the peak in the spectrum of filtered series, which can be interpreted as the period of the

cycle component, is mostly determined by the lowest frequency of the band of interest (or by the

value of the smoothing parameter λ in the case of the HP filter). Given this important element

of definition we share the view of Kaiser and Maravall (1999): “The analyst should first decide

the length of the period around which he wishes to measure economic activity.” The variance of

the cycle component will therefore be mostly justified by fluctuations around the critical length.

A similar decision is embodied in the now standard definition of business cycle fluctuations as

”fluctuations with a specified range of periodicities” (Baxter and King, 1999)7.

5 Conclusions

In this paper, as opposed to common practice in the literature, we have resorted to a rigorous

definition of spectrum of an integrated time series in order to characterise the implications of ap-

pying linear filters to such series. We show that the fact that the spectral representation theorem

does not hold is not fundamental to interpret rigorously the effects of filtering integrated data. A

major conclusion is that we can indeed interpret filtered integrated data in the same way as we do

for stationary processes, as has been suggested by other authors. However, given the frequency

domain characteristics of typical macroeconomic integrated series, we have acknowledged that

the choice of a particular detrending filter is far from being a neutral task.
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Figure 1: Spectrum of a time series with the typical ”Granger” shape.
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Figure 2: Transfer function of the HP cyclical filter C(ω).
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Figure 3: Modulus of the transfer function of the subcomponent C1(ω) of the HP cyclical filter
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Figure 4: Typical pseudo-spectrum of an integrated macroeconomic time series.
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