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Abstract: This paper proposes spectral and asymmetric-volatility based methods for
cluster analysis of stock returns. Using the information about both the periodogram of
the squared returns and the estimated parameters in the TARCH equation, we compute
a distance matrix for the stock returns. Clusters are formed by looking to the hierarchical
structure tree (or dendrogram) and the computed principal coordinates. We employ
these techniques to investigate the similarities and dissimilarities between the "blue-chip"
stocks used to compute the Dow Jones Industrial Average (DJIA) index. For reference,
we investigate also the similarities among stock returns by mean and squared correlation
methods.
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1. Introduction

Cluster analysis of �nancial time series plays an important role in several areas of appli-
cation. In stock markets, the examination of mean and variance correlations between asset
returns can be useful for portfolio diversi�cation and risk management purposes. In inter-
national equity markets, we may be interested in identifying similarities in index returns
and volatilities for grouping countries. The existence of asymmetric cross-correlations and
dependences in asset returns is also of interest for many �nancial researchers.
Many time-varying volatility models have been proposed to capture the asymmetric

volatility e¤ects in asset returns. These include the common univariate asymmetric mod-
els of Nelson (1991), Engle and Ng (1993), Glosten, Jagannathan and Runkle (1993) and
Zakoian (1994), the multivariate generalized autoregressive conditionally heteroskedastic-
ity (GARCH) models of Engle and Kroner (1995) and Kroner and Ng (1998), and the
asymmetric dynamic autoregressive conditional correlation model of Capiello, Engle and
Sheppard (2006).
Two di¤erent types of asymmetries in asset returns have been investigated in the econo-
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metric and �nance literature. The �rst type is concerned with the leverage e¤ect some-
times observed in individual stock returns (see Christie, 1982 and Schwert, 1989). Ana-
lyzing the conditional variance, most studies �nd a higher persistence for negative returns
than for positive returns (see, for instance, Engle and Ng, 1993, and Glosten, Jagannathan
and Runkle, 1993). The second type of asymmetry is found on the comovements of stock
returns. For example, Yu and Wu (2001) analyzed the asymmetric cross-correlation in
stock returns relative to economic factors. Ang and Chen (2002) developed statistics for
comparing and testing asymmetries in conditional correlations between U.S. stocks. Most
empirical evidence shows an asymmetric pattern in the dependence of stock returns in the
sense that stock returns exhibit higher correlations in periods of market downturns than
in periods of upturns. For a review of the research literature on asymmetric volatility, see
the surveys by Bollerselev, Chou and Kroner (1992), Kroner and Ng (1998) and Bekaert
and Wu (2000).
Many existing statistical methods for analysis of multiple asset returns use multivariate

volatility models imposing conditions on the covariance matrix that are hard to apply.
To avoid these problems, three types of multivariate statistical techniques have been used
for analysing the structure of asset returns comovements. One is the principal component
analysis (PCA) that is concerned with the covariance structure of asset returns and can
be used in dimension reduction. The second is the factor model for asset returns that
uses multiple time series to describe the common factors of returns (see Zivot and Wang,
2003 and Tsay, 2005 for further discussion). The third is the identi�cation of similarities
in asset return volatilities using cluster analysis (see, for instance, Bonanno, Caldarelli,
Lillo, Miccieché, Vandewalle and Mantegna, 2004).
A fundamental problem in clustering of �nancial time series is the choice of a relevant

metric. Mantegna (1999), Bonanno, Lillo and Mantegna (2001), among others, used the
Pearson correlation coe¢cient as similarity measure of a pair of stock returns. Although
this metric can be useful to ascertain the structure of stock returns movements, it does not
take into account the stochastic volatility dependence of the processes and cannot be used
for comparison and grouping stocks with unequal sample sizes. The later is a common
problem of most existing nonparametric-based metrics for cluster analysis of economic
and �nancial time series.
In this paper, we introduce a distance measure between the threshold autoregressive

conditionally heteroskedastic (TARCH) parameters of the return series. In order to also
capture the spectral behavior of the time series, we suggest combining the proposed statis-
tic with a periodogram distance measure for the squared returns. In order to summarize
and better interpret the results, we suggest using a hierarchical clustering tree and a
multidimensional scaling map to explore the existence of clusters.
We apply these steps to investigate the similarities and dissimilarities among the �blue-

chip� stocks of the Dow Jones Industrial Average (DJIA) index. For reference with a
well-known method, we also investigate the similarities and dissimilarities among level
and squared returns by using correlation measures.
The remaining sections are organized as follows. Section 2 provides the asymmetric-

volatility and spectral based methods for clustering asset returns. Section 3 describes the
data. Section 4 presents the empirical �ndings on the analyzed data. Section 5 compares
these �ndings with those obtained by squared returns correlations. Section 6 summarizes
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and concludes.

2. Asymmetric-volatility and spectral based distances

Glosten, Jagannathan and Runkle (1993) and Zakoian (1994) introduced independently
the Threshold ARCH model to allow for asymmetric shocks to volatility. The simple
TARCH(1,1) model assumes the form

"t = zt�t, (1)

�2t = ! + ��2t�1 + �"
2
t�1 + 
"

2
t�1dt�1, (2)

where fztg is a sequence of independent and identically distributed random variables with
zero mean and unit variance, dt = 1 if "t is negative, and dt = 0 otherwise. In this model,
volatility tends to rise with the "bad news" ("t�1 < 0 ) and to fall with the "good news"
("t�1 < 0). Good news has an impact of � while bad news has an impact of � + 
. If

 > 0 then the leverage e¤ect exists. If 
 6= 0, the shock is asymmetric, and if 
 = 0,
the shock is symmetric. The persistence of shocks to volatility is given by � + � + 
=2.
Nelson (1991) proposed also an heteroskedasticity model to incorporate the asymmetric
e¤ects between positive and negative stock returns, called the exponential GARCH (or
EGARCH) model, in which the leverage e¤ect is exponential rather than quadratic. To
capture all the skewness and excess kurtosis in the volatility processes with asymmetric
distributions, Nelson (1991) suggested a "fat-tailed" distribution, the generalized error
distribution (GED), with density function given by

f(z) =
v exp [�0:5 jz=�jv]
�2(1+1=v)�(1=v)

; 0 < v � 1;�1 < z < +1 (3)

where v is the tail-tickness parameter, �(�) is the gamma function, and

� =

�
2(�2=v)�(1=v)

�(3=v)

�0:5
. (4)

When v = 2, fztg is normally distributed, and is fat-tailed distributed if v < 2. For
v > 2, it has thinner tails distribution (for example, for v = +1, it has a uniform
distribution on the interval [�

p
3;
p
3]).

We now introduce a distance measure for clustering time series with similar asymmetric
volatility e¤ects. Let rx;t = logPx;t � logPx;t�1 denote the continuously compounded
return of an asset x from time t�1 to t (ry;t is similarly de�ned for asset y). Suppose we �t
a common TARCH(1,1) model to both time series by the method of maximum likelihoods

assuming GED innovations. Let TGx = (b�x; b�x; b
x; bvx)0 and TGy = (b�y; b�y; b
y; bgy)0 be the
vectors of the estimated ARCH, GARCH, leverage e¤ect and tail-tickness parameters,
respectively, with the estimated covariance matrices given by V Gx and V Gy , respectively. A
Mahalanobis-like distance between the asymmetric features of the volatilities (TARCH-
based distance) of the return series rx;t and ry;t can be de�ned by

dTARCH(x; y) =
q
(TGx � TGy )0
�1(TGx � TGy ), (5)
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where 
 = V Gx + V
G
y . This measure takes into account the information about the asym-

metric structure of the time series volatilities and solves the problem of of unequal lengths.
We can used alternative methods based on the periodogram ordinates and the auto-

correlations lags of the squared returns. The autocorrelation function and the spectrum
for the squared return series provide useful information about the time series behavior in
terms of the ARCH e¤ects. Let P SRx (!j) = n

�1jPn
t=1 rt;xe

�it!j j2 be the periodogram of
the squared return series, r2x;t, at frequencies !j = 2�j=n, j = 1; :::; [n=2] (with [n=2] the
largest integer less or equal to n=2) in the range 0 to �, and s2x be the sample variance
of rx;t (similar expression applies to asset y), the Euclidean distance between the log nor-
malized periodograms (Caiado, Crato and Peña, 2006) of the squared returns of x and y
is given by

dLNP (x; y) =

vuut
[n=2]X

j=1

�
log(P SRx (!j)=s2x)� log(P SRy (!j)=s2y)

�2
, (6)

or, using matrix notation,

dLNP (x; y) =
q
(Lx � Ly)0(Lx � Ly). (7)

where Lx and Ly are the vectors of the log normalized periodogram ordinates of the
squared return series, r2x;t and r

2
y;t, respectively. Since the parametric features of the

TARCH model are not necessary associated with all the periodogram ordinates and all
the autocorrelation lags, the parametric and nonparametric approaches can be combined
to take into account both the asymmetric stochastic dependence and the cyclical behavior
of the return series, that is

dTARCH�LNP (x; y) = �1

q
(TGx � TGy )0
�1(TGx � TGy ) + �2

q
(Lx � Ly)0(Lx � Ly). (8)

where �i; i = 1; 2 are normalizing constants. The distance measures (5) and (8) ful�l the
usual properties of a metric (except the triangle inequality): (i) d(x; y) is asymptotically
zero for independent time series generated by the same DGP; (ii) d(x; y) � 0; and (iii)
d(x; y) = d(y; x).

3. Data description

We consider data of the 30 "blue-chip" US daily stocks used to compute the Dow
Jones Industrial Average (DJIA) index for the period from June 1990, 11 to September
2006, 12 (4100 daily observations), as shown in Table 1. This data was obtained from
Yahoo Finance (http://�nance.yahoo.com) and correspond to closing prices adjusted for
dividends and splits.
Table 2 presents the summary statistics (mean, standard deviations, skewness, kurto-

sis, and Ljung-Box test statistic for serial correlation) for daily stock returns. Hewlett-
Packard, Inter-tel, Microsoft, and AT&T (technology companies), Boeing, Caterpillar,
and Honeywell (industrial goods), Walt Disney, Home Depot, and Mcdonalds (services),
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Table 1
Stocks used to compute the Dow Jones Industrial Average (DJIA) Index

Stock Code Sector Stock Code Sector

Alcoa Inc. AA Basic materials Johnson & Johnson JNJ Healthcare

American Int. Group AIG Financial JP Morgan Chase JPM Financial

American Express AXP Financial Coca-Cola KO Consumer goods

Boeing Co. BA Industrial goods McDonalds�s MCD Services

Caterpillar Inc. CAT Financial 3M Co. MMM Conglomerates

Citigroup Inc. CIT Industrial goods Altria Group MO Consumer goods

El Dupont DD Basic materials Merck & Co. MRK Healthcare

Walt Disney DIS Services Microsoft Corp. MSFT Technology

General Electric GE Industrial goods P�zer Inc. PFE Healthcare

General Motors GM Consumer goods Procter & Gamble PG Consumer goods

Home Depot HD Services AT&T Inc. T Technology

Honeywell HON Industrial goods United Technologies UTX Conglomerates

Hewlett-Packard HPQ Technology Verizon Communic. VZ Technology

Int. Business Machin. IBM Technology Walt-Mart Stores WMT Services

Inter-tel Inc. INTC Technology Exxon Mobile CP XOM Basic materials

Johnson & Johnson, Merck, and P�zer (healthcare), Coca-cola, Altria, and Procter &
Gamble (consumer goods) exhibit a negative skewness, which show the distribution of
those returns have long left tails. Moreover, the higher negative skewness coe¢cients cor-
respond to returns series (BA, HD, INTC, MO, MRK, PG, UTX) with higher excess of
kurtosis. All �nancial companies and basic materials companies have a positive skewness
coe¢cient. There are no signi�cant autocorrelations up to order 20 in the returns for
companies BA, CAT, DD, DIS, GE, GM, HON, HPQ, IBM, JPM, and MCD.
In Table 3 we present the estimation results of TARCH(1,1) models for DJIA stock

returns with GED innovations, including diagnostic tests for residual and squared residu-
als. The estimated coe¢cients are statistically signi�cant for all stocks except the ARCH
estimates for CAT, DIS, GE and MRK, and the leverage-e¤ect for INTC and MMM,
which are not signi�cant at conventional levels. The distribution of the innovation series
is fat-tailed for all stocks. As expected, the persistent estimates for all the asymmetric
models are very close to one. This extreme persistence in the conditional variance is very
common in many empirical application using high frequency data (see Bollerselev, Chou
and Kroner, 1992, and Kroner and Ng, 1998).
The Lagrange multiplier test statistic show evidence of no serial correlation in the

squared residuals up to order 20 for all stocks except CAT, MCD and VZ. In terms of the
mean equation, the Ljung-Box test statistic do not reject the null hypothesis of no serial
correlation in the residuals for all stocks except AIG, JNJ, PFE, UTX, VZ, and XOM.

4. Cluster analysis using the TARCH-LNP based distance

Cluster analysis of time series attempts to determine groups (or clusters) of objects in
a multivariate data set. The most commonly used partition clustering method is based in
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Table 2
Summary statistics for Dow Jones Industrial Average (DJIA) stock returns

Stock Mean�100 Std. dev.�100 Skewness Kurtosis Q(20)
AA 0.037 2.043 0.226 5.750 32.4**

AIG 0.051 1.696 0.131 6.247 56.8*

AXP 0.066 2.108 0.291 8.966 35.1**

BA 0.030 1.951 -0.535 10.666 26.2

CAT 0.059 1.997 -0.032 6.019 23.8

CIT 0.080 2.135 0.021 7.509 33.2**

DD 0.030 1.735 0.073 5.890 28.2

DIS 0.029 1.987 -0.081 10.241 23.3

GE 0.053 1.646 0.042 7.062 29.8

GM 0.011 2.113 0.095 6.499 27.6

HD 0.064 2.187 -0.952 19.773 53.7*

HON 0.044 2.104 -0.152 15.327 14.5

HPQ 0.055 2.614 -0.098 8.386 8.4

IBM 0.031 1.961 0.001 9.753 25.6

INTC 0.082 5.495 -0.258 11.978 370.8*

JNJ 0.058 1.534 -0.256 8.665 98.0*

JPM 0.042 2.260 0.119 8.020 27.4

KO 0.040 1.570 -0.082 7.038 42.3*

MCD 0.041 1.723 -0.063 7.055 16.3

MMM 0.042 1.475 0.028 7.143 33.9**

MO 0.060 1.927 -0.802 18.509 39.5**

MRK 0.040 1.810 -1.355 27.212 48.1*

MSFT 0.082 2.216 -0.041 7.471 21.8*

PFE 0.065 1.868 -0.135 5.349 46.7*

PG 0.052 1.612 -2.823 66.497 50.1*

T 0.034 1.762 -0.071 6.671 32.3**

UTX 0.061 1.773 -1.235 26.060 36.8**

VZ 0.024 1.707 0.126 6.976 59.3*

WMT 0.048 1.889 0.075 5.384 58.3*

XOM 0.054 1.404 0.022 5.545 69.7*

* (**) Signi�cant at the 1% (5%) level; Q(20) is the Ljung-Box statistic with 20 lags.
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Table 3
Estimated TARCH(1,1) models with conditional GED innovations for DJIA stock returns

Stock b� b� b
 bv Persistence Q(20) Q2(20) LM(20)
AA 0.02403* 0.95053* 0.03220* 1.482* 0.9907 26.4 19.3 18.9

AIG 0.04141* 0.91677* 0.05873* 1.417* 0.9874 35.0** 15.6 16.3

AXP 0.01958* 0.94808* 0.06949* 1.343* 1.0024 24.2 3.2 3.2

BA 0.03346* 0.93562* 0.03709* 1.317* 0.9876 15.5 21.8 21.0

CAT 0.00340 0.98055* 0.02344* 1.320* 0.9957 21.9 36.2** 16.3

CIT 0.02722* 0.95570* 0.03781* 1.405* 1.0018 21.1 17.0 16.9

DD 0.01787* 0.96790* 0.02372* 1.466* 0.9976 15.1 16.2 16.4

DIS 0.00494 0.97643* 0.03166* 1.344* 0.9972 17.5 10.7 10.4

GE 0.00816 0.96498* 0.05153* 1.598* 0.9989 17.6 21.1 21.2

GM 0.02065* 0.94330* 0.04757* 1.380* 0.9877 23.0 13.5 13.2

HD 0.01317* 0.95588* 0.05286* 1.397* 0.9955 29.8 7.7 7.9

HON 0.04347* 0.87160* 0.11698* 1.247* 0.9736 17.7 16.5 16.3

HPQ 0.01362* 0.97216* 0.01908* 1.224* 0.9953 19.6 9.0 8.9

IBM 0.02417* 0.95046* 0.04493* 1.259* 0.9971 14.2 12.1 11.8

INTC 0.02642* 0.96920* 0.00817 0.969* 0.9997 25.7 11.2 11.0

JNJ 0.03090* 0.93535* 0.06490* 1.450* 0.9999 35.5** 26.1 26.5

JPM 0.02044* 0.95543* 0.06946* 1.418* 1.0006 27.2 15.0 14.9

KO 0.02089* 0.95719* 0.04040* 1.416* 0.9983 22.8 22.6 22.7

MCD 0.01897* 0.95870* 0.02784* 1.405* 0.9916 13.9 44.6* 45.5*

MMM 0.01216* 0.98754* -0.00219 1.186* 0.9986 21.9 17.1 16.6

MO 0.06040* 0.88601* 0.05836* 1.098* 0.9756 16.3 3.7 4.0

MRK 0.01701 0.90773* 0.06365* 1.186* 0.9566 28.8 0.9 0.9

MSFT 0.05052* 0.92676* 0.04293* 1.316* 0.9988 10.8 6.2 6.4

PFE 0.04057* 0.93469* 0.02592** 1.468* 0.9882 31.9** 11.6 11.2

PG 0.03159* 0.94220* 0.04236* 1.336* 0.9950 26.9 2.6 2.8

T 0.03919* 0.93948* 0.03402* 1.450* 0.9957 22.1 22.4 22.7

UTX 0.02540* 0.90959* 0.10784* 1.324* 0.9889 32.2** 4.4 4.4

VZ 0.02877* 0.94453* 0.04853* 1.520* 0.9976 33.6** 41.2* 37.8*

WMT 0.02549* 0.95718* 0.03206* 1.543* 0.9987 30.2 18.9 18.2

XOM 0.03407* 0.93796* 0.03420* 1.610* 0.9891 45.8* 26.1 26.4

* (**) Signi�cant at the 1% (5%) level; Q(20) is the Ljung-Box statistic for serial correlation
in the residuals up to order 20; Q2(20) is the Ljung-Box statistic for serial correlation in the
squared residuals up to order 20 (McLeod and Li, 1983); LM(20) is the Lagrange multiplier
test statistic for ARCH e¤ects (Engle, 1982) in the residuals up to order 20.
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hierarchical classi�cations of the objects. In hierarchical cluster analysis, we begin with
each time series being considered as a separate cluster (k clusters). In the second stage,
the closest two groups are linked to form k � 1 clusters. This process continues until the
last stage in which all the time series are in the same cluster (see Everitt, Landau and
Leese, 2001 for further discussion).
Figure 1 shows the cluster analysis of DJIA stock returns using a hierarchical clustering

tree (or dendrogram) by complete linkage (see, e.g., Johnson and Wichern, 2002). For
this purpose we used the combined TARCH-LNP distance measure (8), with weights
proportional to the distance.
Figure 2 shows the multidimensional scaling map of distances constructed with the

same distance measure. The multidimensional scaling is a multivariate statistical method
closely related to principal coordinates analysis, and uses the information about the simi-
larities (or dissimilarities) between the time series to construct a con�guration of k points
in the r-dimensional space (in this case, two dimensions). For details, see Morrison (2005).
The plot can also help to identify the clusters.
The dendrogram associated with the stochastic features of returns series suggests ho-

mogenous clusters of stocks with respect to the economic sectors. We found a group
formed by consumer goods companies (Coca-Cola, General Motors and Procter & Gam-
ble), by industrial goods companies (Boeing and Citigroup), by �nancial companies
(American Int. Group, American Express and JP Morgan Chase), by technology com-
panies (IBM, Microsoft and AT&T), by healthcare companies (Johnson & Johnson and
P�zer) and by the Home Depot company; a group formed by basic materials companies
(Alcoa, El Dupont and Exxon) and by services companies (McDonalds and Walt-Mart
Stores); a group formed by a miscellaneous sector companies (Caterpiller, Walt Disney,
Hewlett-Packard and 3M); a group formed by Honeywell and United Technologies; and
a group formed by Altria and Merck. The Inter-Tel company was not grouped. Looking
at the map of distances across the stocks, we appear to have most �nancial and tech-
nology companies close together, most services and basic materials companies tend to
cluster together, and most consumer goods companies are close to each other and close
to the �nancial-technology cluster at the �rst coordinate. The two conglomerates compa-
nies (MMM and UTX) are quite distinct at the second coordinate, and again the INTC
company is a clear outlier.

5. A comparative study using cross-correlation methods

In this section, we investigate the similarities among DJIA stocks by contemporaneous
cross-correlation methods.
In order to identify initial stock-returns linkages, we have computed cross-correlations

both for the DJIA returns and for the squared returns (detailed results are available from
the authors upon request). We found that pairs of stocks in general show lower cross-
correlations in squared returns than in returns. Inter-Tel, McDonalds, Altria Group,
Merck and Procter & Gamble were found to be the most independent companies in
volatilities, while Inter-Tel, McDonalds and American Express were the lowest return cor-
related companies. Pairs formed among United Technologies-Boeing-Walt Disney, United
Technologies-Boeing-Honeywell, United Technologies-General Motors, AT&T-Verizon, and
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Figure 1. Dendrogram of DJIA stock returns using the TARCH-LNP distance
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Figure 2. Multidimensional scaling of DJIA stock returns using the TARCH-LNP distance
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AIG-General Electric showed the highest cross-correlations in volatilities, and pairs formed
among AT&T-Verizon (communications), IBM-Hewlett-Packard-Microsoft (technology),
Johnson & Johnson-Merck-P�zer (healthcare), Walt-Mart Stores-Home Depot (services),
Honeywell-United Technologies-Boeing, Citigroup-Home Depot, El Dupont-3M, and Gen-
eral Electric-AIG displayed the highest cross-correlations in levels.
We then used these cross correlations as a basis for a new cluster analysis. We choose

a well-established correlation metric: d(x; y) =
p
2(1� Cor(rx; ry) (see Mantegna, 1999

and Bonnano, Lillo and Mantegna, 2001). Again, we used both the level returns and the
squared returns. Figures 3, 4, 5 and 6 show the complete linkage dendrograms and the
two-dimensional scaling maps for DJIA mean and squared correlation distances.
The hierarchical structure of the stocks is less clear in these dendrograms (Figures 3

and 5) than in the TARCH-LNP dendrogram (Figure 1). Therefore, trying to determine
the appropriate partition is not straightforward. Only the metric scaling maps (Figures
4 and 6) suggest a linkage structure for the stocks we now describe.
For level returns, we found three groups of companies. One group is composed of

healthcare companies (JNJ, MRK and PFE), consumer goods companies (KO, MO and
PG), Communications companies (T and VZ) and XOM. The second group is composed
of industrial goods companies (BA, HON and CIT), conglomerates companies (UTX and
MMM), services companies (HD, WMT and DIS), technology companies (HPQ, IBM and
MSFT) and companies CAT, DD and GM. The third is composed of �nancial companies
(AXP, AIG, JPM) and miscellaneous sector companies (GE, AA, AXP, MCD and INTC).
For squared returns, we can see that the technology companies are close to each other

in a distinct cluster. Most �nancial companies (AIG, AXP and JPM) tend to cluster
together. The healthcare companies (JNJ, MRK and PFE) tend to group with some
consumer goods (KO and PG) and basic materials (XOM and DD) companies. There is
a miscellaneous sector group formed by industrial goods companies (BA and HON) and
by the companies GM, UTX and DIS.
From the dendrograms and the scaling maps we note that all considered methods are

able of getting meaningful company clusters. The TARCH-LNP method tends to collect
most �nancial, technology, consumer goods and industrial goods companies in a distinct
cluster and most basic materials and services companies in another distinct cluster. The
mean correlation method tends to group the healthcare and consumer goods companies
in a cluster, the industrial goods, conglomerates, technology and services companies in
another one, and the �nancial companies in a third one. The squared correlation method
tends to group most healthcare, basic materials and consumer goods companies in a
cluster, most �nancial companies in another one, and the technology companies in a third
one.
Clearly, the three methods provide somehow di¤erent clustering results. From the

dendrograms, it is apparent that the proposed TARCH-LNP method can distinguish
better among di¤erent �nancial time series. Its vertical links are signi�cantly longer,
which means that the horizontal cuto¤ can be made in a more reliable fashion, providing
clearly separated clusters.
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Figure 3. Dendrogram of DJIA returns using the correlation-based metric

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

AA

AIG

AXP

BA

CAT

C

DDDIS

GE

GM

HD

HON
HPQ

IBM

INTC

JNJ

JPM

KO

MCD

MMM

MO

MRK

MSFT

PFE

PG

T

UTX

VZ

WMT

XOM

First coordinate

S
e
c
o
n
d
 c

o
o
rd

in
a
te

Figure 4. Multidimensional scaling of DJIA returns using the correlation-based metric
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6. Conclusions

In this paper, we introduced a asymmetric-volatility and spectral based metric for
clustering �nancial time series. Our methodological contribution consists of adding the
asymmetry to the comparison factors and providing a weighted measure that takes into
account both the spectral characteristics and the asymmetry.
Using the information about the simple TARCHmodel estimates and the log normalized

periodogram ordinates of the squared returns, we investigated the similarities among the
stock of the Dow Jones Industrial Average (DJIA) index. From empirical study, we
found homogenous clusters of stocks with respect to the economic sectors. The �nancial
companies and the technology companies are close together, the basic materials companies
and services companies are in a distinct cluster, and most consumer and industrial Good
companies are at the same location and close to the �nancial-technology cluster.
For reference, we also investigated the linkage between these stocks using cross-correlation

methods. The two procedures give di¤erent, but not completely distinct results, which is
very reassuring. The introduction of our technique allows for a more reliable di¤erentia-
tion between the series.
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