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Abstract

This note provides a simple explanation why sellers rarely set optimal reserve prices
in one-shot auctions. In a standard sealed-bid second-price auction, bidders with
private values do not bid truthfully if the seller cannot commit to her announced
reserve price. Consequently, expected revenue may be lower than without the an-
nouncement of a reserve price.
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1. Introduction

It is well known that the seller in a sealed-bid second-price (or Vickrey) auction
maximizes her ex ante revenue by setting a positive reserve price (Myerson, 1981; Krishna,
2002). Doing so, she compensates the risk of not selling with an increased price in
case the reserve lies between the highest and second highest bids. For bidders, truthful
bidding remains an undominated strategy: Blume and Heidhues (2004) characterize all
– symmetric and asymmetric – equilibria of the Vickrey auction and show that truthful
bidding is a unique equilibrium if the seller imposes a strictly positive reserve price.

In real auctions, however, reserve prices seem unpopular. For example, governments
rarely imposed significant reserve prices in recent spectrum licence auctions. Klemperer
(2002, p.175) mentions the Swiss UMTS auction and some other “disasters” – auctions
with disappointing revenues – and argues they could have been prevented had sellers
imposed significantly high reserve prices. In the Swiss UMTS auction, the responsible
authority initially withdrew the auction after a large number of bidders had dropped
out on short notice. Following complaints from various parties, it had to carry out the
auction with unchanged rules. Consequently, the general impression was that the auction
finally conducted had to end with a sale. As a result, all bids exactly met the (rather
low) reserve price and the auction was perceived as a failure (see Wolfstetter, 2003, for
more details). Similar situations take place in eBay auctions of perishable goods, such
as concert tickets, travel tickets or vouchers with limited validity:1 the seller has to sell
them before a certain date and bidders may exploit that fact in their bidding strategies.

In this note, we show that such problems can explain why sellers refrain from setting
a reserve price in a one-shot Vickrey auction. In particular, we consider the case of a non-
credible reserve price: because of the one-shot nature of the auction, the seller may be
tempted ex post to accept the highest bid even if it is lower than the previously announced
reserve price. As a result, bidders do not bid truthfully. A symmetric equilibrium is to
bid the reserve if the valuation exceeds it by a small amount, and to bid the valuation
otherwise. With such a non-credible reserve price, the seller’s expected revenue may drop
even below revenue in the case of Vickrey auction without a reserve price. The auction
becomes inefficient.

To our knowledge, the case of a non-credible reserve price in the one-shot Vickrey auc-
tion has not been studied before. Instead, an ex post sale below the optimal reserve price
has been modeled as resale and as negotiations. McAfee and Vincent (1995) introduce
the possibility of costless resale in later auctions and show that bidders with valuations
just above the reserve price wait to the next round, in which the reserve price is lower.
Grant et al. (2002) and Menezes and Ryan (2005) study reserve price commitments for
the case when sellers, after an unsuccessful auction round, have the option to re-auction
or to negotiate and bidders are short-lived.

1Bajari and Hortaçsu (2003) demonstrate that the equilibrium in an eBay auction is formally equiv-
alent to the standard equilibrium in a Vickrey auction.
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2. Truthful bidding is not an equilibrium strategy

We normalize the value of the object to the seller to 0 and assume that there are
n identical bidders with valuations which are their private information. Valuations are
independently drawn from the distribution F with density on the normalized support
[0, 1].

Suppose the seller chooses a sealed-bid second-price auction and sets a positive reserve
price r. However, if the reserve price is not reached, she still offers the object to the highest
bidder for a price equal to the second highest bid.2 If bidders are aware of this lack of
commitment, those with valuations below r will also place bids, since they also have a
chance to win. The price is then

P (n, r) =







b2:n if b2:n > r

r if b2:n ≤ r < b1:n

b2:n if b1:n ≤ r,

(1)

where bi:n is the i-th highest bid.

Truthful bidding, i.e. b(x) = x, is not a Nash equilibrium in this auction, since a
profitable deviation exists. Consider a bidder with a valuation a little above r. If he bids
truthfully, as everybody else, his expected payoff conditional on his valuation is

Eπ(x, b = x) = xG(x) − rG(r) −

∫

x

r

ydG(y), (2)

where G(y) is the cumulative distribution function of the highest of n − 1 valuations, so
that G = F n−1. However, if he bids r and wins, he pays only the second highest bid and
gains

Eπ(x, b = r) = xG(r) −

∫

r

0

ydG(y). (3)

The deviation is profitable when Eπ(x, b = r)−Eπ(x, b = x) > 0, which can be simplified
(cf. appendix A.1) to

∫

r

0

(r − y)dG(y) >

∫

x

r

(x − y)dG(y). (4)

This condition is always fulfilled for x close enough to r. For example, if F is uniform
and n = 2, inequality (4) reduces to x < 2r, so all bidders with valuations from the set
(r, 2r) have an incentive to deviate from truthful bidding.

3. Equilibrium bidding

We propose the following symmetric Nash equilibrium bidding strategy. Bidders with
valuations higher than r and lower than a threshold x1 bid r and all other bidders bid

2We focus exclusively on reserve price commitment. An alternative analysis of seller commitment
to auction format (for example a switch to a first-price auction in case the reserve price is not met) is
outside the scope of this note.
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truthfully (x1 may also equal 1). An example of this pooling strategy is depicted in figure
1. Bidders with valuations below r are not affected and bid truthfully. Consider a bidder

✲

✻

1

1

x

b

r x1

r

Figure 1: Equilibrium bid

with valuation x ∈ (r, x1). He bids r and wins in two cases. If all other bidders have
valuations lower than r, the price of the auction equals the second highest valuation.
That happens with probability G(r). In the second case, some other bidders also bid r

and he wins the tie.3 That happens with probability

R(r, x1, n) =
n−1
∑

i=1

(

n − 1

i

)

1

i + 1
(F (x1) − F (r))iF (r)(n−1)−i. (5)

The price is then r. Hence, the expected profit of our bidder with valuation x ∈ (r, x1) is

Eπ(x, b = r) = x(G(r) + R(r, x1, n)) −

∫

r

0

ydG(y) − rR(r, x1, n), (6)

Using this strategy, the bidder trades off the risk of losing in the tie for the chance of
paying a price lower than r. A deviation to a bid higher than x or lower than r is obviously
not profitable. A unilateral deviation to a bid b̃ ∈ (r, x) yields

Eπ(x, b = b̃) = G(x1)(x − r), (7)

because in case of winning the price is r for sure and he wins when all other bidders have
valuations lower than x1. When Eπ(x, b = r) − Eπ(x, b = b̃) > 0, such deviation is not
profitable, which using definitions (6) and (7) reduces to

(x − r)(G(x1) − R(r, x1, n)) < xG(r) −

∫

r

0

ydG(y). (8)

If x = r, the condition is trivially satisfied. Both sides of this inequality are linear in x,
positively sloped and the left-hand side is steeper, since G(r) < G(x1)−R(r, x1, n). They
cut in only one point and according to its definition, this point should be x1. Therefore,

3We assume that each bidder in the tie has an equal chance of winning.
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we find x1 by solving

(x1 − r)(G(x1) − R(r, x1, n)) =

∫

r

0

(x1 − y)dG(y). (9)

In case of the uniform distribution and two bidders we have x1 = 2r. For n = 3, x1

decreases to 3
2
r and when n grows to infinity, x1 converges to r (cf. appendix A.2).

If x1 ≥ 1, all bidders with valuations x > r bid the reserve price, since deviations are
not profitable. If x1 < 1, bidders with valuations x > x1 bid truthfully. They expect

Eπ(x, b = x) = xG(x) − rG(x1) −

∫

x

x1

ydG(y). (10)

Any deviation to a bid from the set [x1, 1] is weakly dominated by the truthful bid. A
deviation to (r, x1) does not decrease the price, but increases the probability of losing, so
it cannot be profitable. Finally, a deviation to r is not profitable if (10) is greater than
(6). Rearranging terms (cf. appendix A.3), we get

∫

r

0

(x − y)dG(y) −

∫

x

x1

(x − y)dG(y) < (x − r)(G(x1) − R(r, x1, n)). (11)

This condition is fulfilled, since (8) implies that for x > x1 the first integral on the left-
hand side alone is lower than the right-hand side of the inequality, and because the second
integral is positive.

Our last remark is on the seller’s expected revenue. Only in one occasion, the sale
price in our case is higher than in the standard Vickrey auction with r = 0: when the
highest valuation (Y1:n) is greater than x1 and the second-highest (Y2:n) lower than r. If
Y2:n ∈ (r, x1), the sale price is lower. In all other cases, it is the same. Therefore, the
difference in expected revenue depends on how much weight distribution F puts on the
set (r, x1) relative to other valuations and how big this set is, which is determined by
F and n. If the event Y2:n ∈ (r, x1) is probable enough, expected revenue is lower than
in the standard Vickrey auction. For example, this is the case when F is uniform and
n = 2. Since the uniform distribution puts relatively little weight on middle values, more
common distributions such as the Gaussian are more prone to this effect.

Summing up, this note provides an explanation why sellers do not have incentives to
impose significant reserve prices in settings representable by a one-shot Vickrey auction.
The seller’s ability to contact the highest bidder after an unsuccessful auction can destroy
her commitment and hence the value of a reserve price. As a final caveat, note that the
equilibrium proposed here does not carry over to the English auction in a straightforward
manner. We therefore believe that reserve price commitments in auctions deserve further
study.
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A.1 Derivation of (4)

Using definitions (2) and (3), we rewrite

Eπ(x, b = r) − Eπ(x, b = x) > 0 (A1)

as

xG(r) −

∫

r

0

ydG(y) − xG(x) + rG(r) +

∫

x

r

ydG(y) > 0. (A2)

Since G is a probability distribution, it holds that

G(z) =

∫

z

0

dG(y), (A3)

and substituting this in (A2) we have

x

∫

r

0

dG(y) −

∫

r

0

ydG(y) − x

∫

x

0

dG(y) + r

∫

r

0

dG(y) +

∫

x

r

ydG(y) > 0. (A4)

Simplifying the above we get inequality (4).
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A.2 Calculations of x1 for the uniform distribution

If F is uniform, R(r, x1, n), which enters definition (6), becomes

rn−1(nx1 − r(n + (x1

r
)n − 1))

n(r − x1)
.

For n = 3, R(r, x1, n) reduces to

1

3
(x1 − r)(2r − x1)

and equation (9) reduces to

x3
1

3
= x2

1(x1 − r),

which gives x1 = 3
2
r.

A.3 Derivation of (11)

Using equations (10) and (6), the condition becomes

x(G(r) + R(r, x1, n)) −

∫

r

0

ydG(y) − rR(r, x1, n) < xG(x) − rG(x1) −

∫

x

x1

ydG(y).

(A5)

Using
∫

x

x1

xdG(y) = x(G(x) − G(x1)) and rearranging, we get

∫

r

0

(x − y)dG(y) + (x − r)R(r, x1, n) < (x − r)G(x1) +

∫

x

x1

(x − y)dG(y), (A6)

which after further rearrangement reads as inequality (11).
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