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Abstract This paper is concerned with the modeling of strategic change in humans’ behavior when

facing different types of opponents. In order to implement this efficiently a mixed experimental setup

was used where subjects played a game with a unique mixed strategy Nash equilibrium for 100 rounds

against 3 preprogrammed computer algorithms (CAs) designed to exploit different modes of play.

In this context, substituting human opponents with computer algorithms designed to exploit com-

monly occurring human behavior increases the experimental control of the researcher allowing for

more powerful statistical tests. The results indicate that subjects significantly change their behavior

conditional on the type of CA opponent, exhibiting within-subjects heterogeneity, but that there

exists comparatively little between-subjects heterogeneity since players seemed to follow very similar

strategies against each algorithm. Simple heuristics, such as win-stay/lose-shift, were found to model

subjects and make out of sample predictions as well as, if not better than, more complicated models

such as individually estimated EWA learning models which suffered from overfitting. Subjects mod-

ified their strategies in the direction of better response as calculated from CA simulations of various

learning models, albeit not perfectly. Examples include the observation that subjects randomized

more effectively as the pattern recognition depth of the CAs increased, and the drastic reduction in

the use of the win-stay/lose-shift heuristic when facing a CA designed to exploit this behavior.
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1 Introduction

This paper addresses strategic change in humans’ behavior conditional on opponents’ play in a

repeated game with a unique mixed strategy Nash equilibrium. In order to implement this efficiently

subjects played the same game for 100 rounds against three preprogrammed computer algorithms

designed to exploit different modes of play. The main research goals are to model subjects’ behavior

and ascertain how they altered their strategies against different opponents.

The majority of the experimental game theory studies have used human subjects playing against

other human subjects, which complicates matters greatly for the following reason. Due to the bidirec-

tional interaction of the human players it is difficult to focus solely on an individual and understand

how his strategy may be changing and adapting in response to his opponent’s play. This occurs

because in such experiments there is no experimental control over a subject’s opponent thereby

severely limiting the questions researchers can investigate.

This study seeks to restore control to the experimenter by replacing one player with a computer

algorithm (CA). This will allow the systematic observation of how people adapt and learn when

playing against different types of opponents through the experimenter’s manipulation of the CAs.

The ability to pit humans against computer algorithms specially designed to target known or hy-

pothesized human weaknesses in randomization is another important advantage over human versus

human experiments. This will provide subjects with a strong monetary incentive to learn to avoid

such damaging behavior since the CAs will be able to detect and exploit this behavior better than

human opponents. Out of the three CAs used in this study, the fp2 CA detected two-period patterns

in subjects’ behavior within a fictitious play framework, the fp3 CA detected three-period patterns

and finally the spd CA detected whether subjects were using the win-stay/lose-shift (ws/ls) heuristic

or conditioning on the CA’s first lagged action in general.

This paper is structured in the following manner. Section 2 presents the existing literature of

human versus computer algorithm experiments examining game theoretic behavior. A discussion of

the experimental setup is given in Section 3, with particular emphasis on the computer algorithms

employed and the use of a between- and within-subjects experimental framework, alternatively

referred to as a mixed design.

Section 4 provides general statistical analyses, such as whether the payoffs to subjects were

significantly different depending on the CA opponent, whether the position of presentation of the

CAs affected payoffs, as would be the case if subjects learned to play the game better over time, and

whether the degree to which players’ behavior was i.i.d. was affected by the type of CA opponent.

The best performing CA was clearly the three-period pattern detecting algorithm fp3, which forced

subjects to attain significantly lower payoffs compared to the other two CAs. Also, subjects were

more likely to exhibit i.i.d. behavior when playing against this CA than others.

Section 5 includes two different approaches to modeling human behavior. The first approach, in

Section 5.1, models subjects’ action choices by probit regressions with lagged human and CA actions

of up to five time lags as independent variables. A different approach of modeling human behavior

is taken in Section 5.2 which estimates Experience Weighted Attraction (EWA) learning models

(Camerer and Ho, 1999). The probit and EWA models are estimated both by pooling behavior ac-

cording to the CA opponent, and also individually for each human/CA pair. The most important

results of these analyses are that behavior is not i.i.d., as the lagged actions are statistically sig-

nificant in explaining behavior, and that the pooled models perform better in cross-validation data
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compared to the individually estimated models. Hence, this provides strong evidence that the hetero-

geneity exhibited by the subjects is within-subjects rather than between-subjects. Within-subjects

heterogeneity occurs because subjects have a common set of different strategies available but choose

the same strategy conditional on the type of opponent they face. In this case, observed heterogeneity

can be driven either by changes in the game or by a change in the type of opponent. Between-subjects

heterogeneity occurs because subjects do not have a common set of strategies so that the heterogene-

ity that is observed is purely attributed to each player and is not conditional upon their opponent.

For example, if players are bounded rational to different degrees then this implies that their strategy

sets are different and/or that their decision rules for selecting which strategy to use given the game

and opponent are different1. Interestingly, parameter estimates of the individually estimated models

were quite different from those of the pooled models due to overfitting. Hence, great care should be

taken by researchers when drawing conclusions and making inferences regarding heterogeneity from

parameter estimates of individually estimated models. Strategies implemented by subjects tended

to be simple heuristics rather than complex models, which is similar to the viewpoint advanced by

Gigerenzer (2000) that humans have a toolbox of simple yet effective heuristics at their disposal that

they call upon depending on which is better adapted to the problem at hand, in this case the type

of CA opponent.

Section 6 analyzes collected qualitative data, such as subjects’ verbal expression of what their

strategies were, and their estimates of the probability distribution over their own and opponent’s

actions during the previous rounds of play. Interestingly, the estimates over their own actions were

significantly better calibrated than those over their opponents’ actions.

Finally, the optimality of the behavior of subjects is examined through the use of simulations in

Section 7. Since there is no technique available to exactly determine the optimal behavior against

each of the CAs, a number of learning rules with varying parameter values and pattern detection

capabilities were defined and a tournament was conducted where each of these learning rules was

pitted against the CAs. The best performing learning rules were thus postulated as approximating

the optimal strategy against each of the CAs. The main conclusion is that although the subjects did

not precisely learn to play these strategies they did better respond by avoiding many of the learning

rules or parameter values that were particularly inferior, and by modifying their behavior in the

direction of best response. For example, subjects were quite effective in changing their behavior as

measured by changes in the memory weighting parameter, the probability distribution over actions,

the temporal correlation of actions and their use of the ws/ls heuristic.

Conclusions and possible future directions for research are summarized in Section 8 and an

interesting comparison with a similar experiment (Barraclough et al., 2004) performed with monkey

subjects that produced surprisingly similar results is given in Appendix A.

2 Literature review of human versus computer studies

The existing literature of humans versus computer algorithms is particularly limited and interestingly

enough is characterized by experiments run in two different time periods separated by a relatively

1 Theoretically, it could also be the case that the strategy sets are identical and that only the strategy
decision rules differ between players. However, if evolutionary pressures and learning are powerful enough to
direct players to have near identical strategy sets then in all likelihood they would also influence the decision
rules employed by the players to the same degree.
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large interlude. The first wave of research was in the late 1960s and early 1970s probably due to

the widespread introduction of computers to academic institutions during this time period. There

was a pronounced silence thereafter as game theory research was primarily directed to theoretical

advancements with little interest in behavioral and experimental approaches. The second wave of

research was inspired by the widespread surge of interest in experimental and behavioral economics,

and the increase in the availability of computing power (and accompanying fall in cost), coupled

with more user friendly programming languages.

The following section discusses the studies that are the most important and relevant to this

paper’s research agenda. Examples of research using computerized opponents in other strategic

games such as bargaining and auction experiments include Walker et al. (1987), Smith and Walker

(1993), Blount (1995) and Dursch et al. (2005).

2.1 Interdependent decision strategies in zero-sum games: A computer controlled study (Messick,

1967)

Messick (1967) conducted a pioneering experiment where humans were called upon to play against

computer algorithms. The subjects faced three different algorithms, the first was a minimax strategy,

the second was a weighted fictitious play (wfp) algorithm with perfect memory, and the third a

fictitious play algorithm with a fixed memory window of five time period lags. The game was a 3×3

repeated zero-sum game consisting of 150 rounds. The main results are the following.

1. As expected, subjects’ payoffs were not significantly different from the MSNE payoffs when

playing against the minimax algorithm, but were significantly greater than MSNE payoffs when

playing against the two fictitious play algorithms (payoffs were highest against the five period

memory algorithm).

2. Subjects’ play varied greatly across the three algorithms. In particular, the ws/ls heuristic ac-

counted for roughly 70% of choices against the two fictitious play algorithms versus 49% against

the minimax algorithm.

3. The fictitious play CAs were susceptible to exploitation because they led to behavior that man-

ifested positive serial correlation which can easily be exploited by a ws/ls algorithm.

4. Also, the variability in choice behavior was found to be significantly lower against the two ficti-

tious play algorithms which can be attributed to the result that any strategy against a minimax

algorithm has the same expected payoff. However, against the non-minimax fictitious play algo-

rithms, subjects as expected honed into a successful counterstrategy and tended to adhere to it

leading to less variability i.e. experimented less with novel strategies.

2.2 The learning of strategies in a simple, two-person zero-sum game without a saddlepoint (Fox,

1972)

Fox (1972) had subjects play a 2× 2 zero-sum game with a unique MSNE, where they confronted a

rational opponent and a non-rational opponent that played a non-optimal mixed strategy indepen-

dent of human play. Hence, a best response to this non-optimal strategy would be to play one of the

two actions with probability one. The study concludes that:
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1. Subjects changed their play in the direction of their best response when playing against the

non-optimal algorithm, but did not play optimally i.e. play their best response with probability

one, or at least not significantly different from one.

2. When subjects played against the optimal algorithm, and therefore had no financial incentive to

change strategies, they still moved towards the MSNE. It was conjectured that subjects may be

trying to reduce the riskiness of strategies by manipulating the variance of payoffs.

2.3 Strategic interaction in iterated zero-sum games (Coricelli, 2005)

Coricelli (2005) has human subjects playing a 4×4 game with a unique MSNE against two different

CAs. This particular game was originally promoted by O’Neill (1987) based on its advantage that it

is not dependent on the assumption of a linear utility function. The first strategy of the computer

algorithm is to choose its action based on a wfp CA with infinite memory, and for the second strategy

the CA again updates frequencies of actions in the same way with the only exception that it expects

human subjects to overalternate as regards one of the action choices. Such overalternation has been

documented in the psychology literature as occurring often when humans try to randomize, see

Rapoport and Budescu (1997). Subjects were randomly assigned to two conditions to control for

possible order effects in the presentation of the two algorithms which they played in succession. They

were informed that they were playing against computer algorithms rather than humans. The most

important results are:

1. Human play differed significantly across the two algorithms with subjects employing effective

counter strategies to the second algorithm.

2. The data is inconsistent with the minimax hypothesis as human play is correlated with lagged

own actions, lagged opponent actions and their interactions (up to and including two lags).

2.4 Learning about Learning in Games through Experimental Control of Strategic Interdependence

(Shachat and Swarthout, 2002)

Shachat and Swarthout (2002) have human subjects play against two computer algorithms (reinforce-

ment learning and EWA) in two games. The first is a zero-sum asymmetric matching pennies game

called Pursue-Evade and the second is called Gamble-Safe and has a unique MSNE that does not

coincide with the minimax solution to the game. In the first 23 rounds humans were playing against

other humans and then play for each human subject was seamlessly switched over to a computer

algorithm opponent, unbeknown to the subjects. They find the following interesting results:

1. Human play is not significantly affected by whether they are playing against humans or computer

algorithms.

2. Each algorithm’s frequency choices adjust linearly toward the best response to its human oppo-

nent’s non-equilibrium action frequencies.

3. Although algorithms are better responding, their response is too weak to give them a competitive

payoff advantage against humans. This is primarily due to the fact that the computer algorithms’

decision rules are probabilistic so that they are by construct better responding to opponents’ play

rather than best responding.
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4. Human subjects were not able to consistently exploit the predictability of the algorithms to gain

a payoff advantage.

2.5 Do we detect and exploit mixed strategy play by opponents? (Shachat and Swarthout, 2004)

Shachat and Swarthout (2004) conduct an experiment where human subjects play against computer

algorithms that are programmed to play various (not necessarily optimal) mixed strategies. The

game they employ is a zero-sum asymmetric matching pennies game where the unique MSNE is

for both players to play their Left action with probability two-thirds and their Right action with

probability one-third. Subjects were assigned to be either row or column players and were then told

that they would play 200 rounds against the same opponent. They were not informed that they were

playing against a computerized opponent and steps were taken to mask the fact that the opponent

was a computer. Each subject played against the same computer program which implemented a

mixed strategy with probability of playing Left of either 19%, 27%, 35%, 51%, 59%, 67%, 75%, 83%

or 91%. Such a wide range of probability distributions for the computer algorithms would then allow

them to test the sensitivity of human subjects to a large range of deviations from the MSNE. They

find the following important results:

1. They find that subjects’ play is very likely to move in the direction of their best response if the

computer algorithm’s choice frequency was at least 15% away from the equilibrium MSNE pro-

portion. As such they were able in these cases to gain a statistically significant payoff advantage

against the computer algorithms.

2. There is considerable heterogeneity as regards the degree that subjects best responded and

maximized their potential payoffs.

2.6 Proposed modifications and extensions to the existing literature

The use of a mixed-design experimental setup, in particular the within-subjects component, will

allow for more powerful statistical testing than in other studies. This will be conducive for testing

the performance of different types of computer algorithms, whether human subjects transfer learning

from a previous opponent to subsequent opponents and identifying how subjects’ strategic behavior

changes with the computer algorithm they face.

None of the previous experiments have employed computer algorithms that are capable of explicit

second- and higher-order pattern detection as the learning models used in these studies, reinforcement

learning, EWA, weighted fictitious play are all capable of observing only the first-order play of

human subjects. Consequently, subjects could manipulate the CAs in these studies by resorting to

non-i.i.d. behavior that would be undetectable to the CAs. Hence, a logical approach for designing

more effective CAs would be to incorporate pattern detection capabilities. Also, a second reason for

incorporating pattern detection capabilities into CAs is that the weight of the psychological research

finds that humans have problem randomizing or producing i.i.d. time series. For these reasons,

pattern detecting CAs are an obvious extension that should be examined.

Another reason why CAs did not manage to significantly outperform their human opponents

in these studies is because of the use of stochastic decision rules, which are not aggressive enough

in exploiting the subjects’ weaknesses. The best performance of the CAs in these studies was to
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Table 1 Game payoffs

Opponent’s actions

Brown White

Own actions Blue 108, -80 -32, 60
Yellow -32, 60 28, 0

approximately achieve the MSNE payoffs, from which it can be inferred that these CAs were pre-

dominantly defensive algorithms. It is important to use more aggressive algorithms because this in

turn leads to greater payoff incentives to human subjects to perform well, as any weaknesses they

exhibit will result in larger payoff losses. Furthermore, the payoffs of the game employed in this study

were carefully chosen to lead to a high degree of curvature in the payoff surface, thereby providing

the human subjects with significant incentives and motivation to maximize payoffs.

This paper will also incorporate the use of open-ended questions requesting subjects to express

their strategies in their own words. Such responses could be useful because they are direct elicitations

of subjects’ strategies instead of indirect elicitations such as fitting models to behavioral time series,

which are plagued by various problems. Another innovation employed in this paper is that after

playing each algorithm the subjects will be asked to state what they thought was the probability

distribution over their own actions and over the CA’s actions. By comparing these to the observed

probability distributions it is possible to ascertain what information the subjects used in strategizing.

In general, using both indirect and direct methods of elicitation in conjunction should lead to better

inference than using either of these methods in solitude.

3 Methodology

3.1 General experimental setup

The experiment was run in a computer lab at Mediterranean College in Athens, Greece and all

subjects participated in the experiment and interacted through computers running the Comlab

Games Software2. Undergraduate students were randomly recruited through the use of fliers on

campus and majored in business studies, psychology or computer science. Three sessions of eight

students and one session of seven students were run for a total of 31 subjects.

The 2× 2 constant-sum game presented in Table 1 was chosen with the intent to keep the game

simple and easily understandable by subjects. Every subject played against each one of the three

CAs 100 times, so that the game was played 300 times in total by each subject. The MSNE strategies

of this game are playing blue and brown 30% of the time, and yellow and white 70%. It was desirable

to place the MSNE probability of this game far from the trivial value of 0.5 in order to distinguish

it from uniform play which subjects tend to find natural to play, at least initially when they have no

experience3. On the other hand placing the MSNE too far away from 0.5 means that the probability

of one action will be rather small and therefore the probability of this action being played twice in a

2 This software is freely available at http://www.comlabgames.com and allows the design and implemen-
tation of a wide variety of game theory or decision making experiments.

3 This tendency was verified in the data as the probability of playing the yellow action in the first ten
rounds of play of each subject was 0.54.
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row would be even smaller. Hence it would be exceedingly difficult for subjects to detect deviations

from i.i.d. behavior, and in particular n-period strategies. It was with these considerations in mind

that a MSNE of 70% in one action and 30% in the other action was chosen.

Given that this paper is concerned with changes in the strategic behavior of subjects it is im-

perative that the incentives for modifying and learning optimal strategies be appreciable. A game

which has a “flat minimum” around the MSNE will not give subjects an incentive to converge to it

and therefore is not an efficient game for testing this hypothesis. In this experiment the problem is

analogous as subjects will not have an incentive to adapt their strategies much if the game has a

very flat payoff function in the mixed strategy space4. The payoffs of the experimental game were

specifically chosen so that the curvature of the payoff surface is high enough to provide significant

payoff incentives. Table 2 gives the percentage change in payoffs compared to the baseline MSNE

payoffs for various mixed strategies.

The use of negative payoffs in experimental games requires caution because if payoff incentive

mechanisms are used and a subject’s total payoffs are negative then an issue arises as this would

imply that the subject would have to pay the experimenter. One solution is to pay a lump sum to

the subject for participation that is large enough to cover the maximum possible loss. This is not

practical however, as it would require either a very large lump sum payment or the use of a game with

a flat payoff function so that the maximum possible loss is not large. Setting all payoffs in the game

greater than or equal to zero also restricts the curvature of the payoffs function, thereby reducing

the monetary incentives of the game. This can be seen intuitively with the following example. The

maximum possible proportional loss compared to the MSNE payoffs is 100%, which would occur if a

subject received the payoff of zero in each round. However, the use of negative payoffs would allow for

a maximum proportional loss of greater than 100% which as a consequence would also increase the

general curvature of the payoff surface. Hence, there is a tradeoff between increasing the curvature

of the payoff function using negative payoffs and increasing the risk that a subject will finish the

experiment with negative payoffs. This implies that the optimal solution will be interior and will

therefore involve the use of negative payoffs. A pilot study of the implemented game supported the

contention that total payoffs were unlikely to be negative. This is confirmed by the actual data from

the experiment for which there did not exist any subjects who finished the experiment with negative

payoffs, the lowest average payoffs were 4.93. Also, there were no subjects with negative average

payoffs in the last 100 rounds of the experiment that might have affected subjects’ behavior. These

results justify the choice of the game’s payoffs as they allow for the benefits of negative payoffs

through increased payoff function curvature without any adverse effects as subjects were practically

not in danger of earning negative payoffs.

The following observation should be kept in mind throughout the analysis of the data and dis-

cussion of subjects’ strategies. A general result of games with a unique MSNE is that if player A

chooses to behave according to the MSNE then by definition player B will be indifferent to his own

strategies as all of them will earn the MSNE payoffs. However if the game is not constant-sum,

player B’s choice of strategy will affect the payoffs of player A and therefore the MSNE is not a

minimax solution to this game. Since, the game employed in this study is constant-sum, if player

B is indifferent then by definition player A must also be indifferent. In other words, playing the

4 One of the earliest discussions of the problem of flat payoff functions is Harrison (1989), which critiques
experimental first-price auction research.
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Table 2 Percentage change in payoffs compared to the MSNE payoffs

% of times brown action is played

%
of

ti
m

es
b
lu

e
ac

ti
on

is
p
la

y
ed

10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 47.5 50

10 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80
12.5 70 61.25 52.5 43.75 35 26.25 17.5 8.75 0 -8.75 -17.5 -26.25 -35 -43.75 -52.5 -61.25 -70
15 60 52.5 45 37.5 30 22.5 15 7.5 0 -7.5 -15 -22.5 -30 -37.5 -45 -52.5 -60

17.5 50 43.75 37.5 31.25 25 18.75 12.5 6.25 0 -6.25 -12.5 -18.75 -25 -31.25 -37.5 -43.75 -50
20 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40

22.5 30 26.25 22.5 18.75 15 11.25 7.5 3.75 0 -3.75 -7.5 -11.25 -15 -18.75 -22.5 -26.25 -30
25 20 17.5 15 12.5 10 7.5 5 2.5 0 -2.5 -5 -7.5 -10 -12.5 -15 -17.5 -20

27.5 10 8.75 7.5 6.25 5 3.75 2.5 1.25 0 -1.25 -2.5 -3.75 -5 -6.25 -7.5 -8.75 -10
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

32.5 -10 -8.75 -7.5 -6.25 -5 -3.75 -2.5 -1.25 0 1.25 2.5 3.75 5 6.25 7.5 8.75 10
35 -20 -17.5 -15 -12.5 -10 -7.5 -5 -2.5 0 2.5 5 7.5 10 12.5 15 17.5 20

37.5 -30 -26.25 -22.5 -18.75 -15 -11.25 -7.5 -3.75 0 3.75 7.5 11.25 15 18.75 22.5 26.25 30
40 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40

42.5 -50 -43.75 -37.5 -31.25 -25 -18.75 -12.5 -6.25 0 6.25 12.5 18.75 25 31.25 37.5 43.75 50
45 -60 -52.5 -45 -37.5 -30 -22.5 -15 -7.5 0 7.5 15 22.5 30 37.5 45 52.5 60

47.5 -70 -61.25 -52.5 -43.75 -35 -26.25 -17.5 -8.75 0 8.75 17.5 26.25 35 43.75 52.5 61.25 70
50 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80
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MSNE is also a minimax solution to the game, as such it would be a serious violation of rationality

if subjects in the long run were observed to be earning less than the MSNE payoffs. It is for this

reason that throughout the analysis the MSNE payoffs will often be used as a reference point.

3.2 Computer algorithm selection

Apart from manipulating the curvature of the payoff surface of the game to increase incentives, it is

also necessary to have CAs that are aggressive at exploiting opponents’ flawed behavior to capitalize

on the curvature of the payoff surface. Hence, the computer algorithms were specifically designed

to exploit some limitations of human behavior such as the imperfect randomisation exhibited by

subjects in Rapoport and Budescu (1997) and Budescu and Rapoport (1994). The three algorithms

shall be referred to as fp2, fp3 and spd (single period detector). Each algorithm can be broken down

into two components, the belief learning rule and the decision rule which maps the beliefs generated

by the learning rule into actions. A description of the belief learning rules of the CAs is provided

below, followed by a discussion of the decision rules employed.

3.2.1 Belief learning models of the computer algorithms The fp2 algorithm is a belief learning

model that keeps track of the frequency of occurrence of two-period strategies and generates a belief

for the probability of its opponent playing an action conditional on the previous action. The fp3

algorithm is an analog of the fp2 belief model that tracks three-period strategies (third-order play)

and then generates beliefs for the probability distribution of its opponents’ action conditional on the

two previous actions.

Prior experimental evidence, such as Messick (1967), suggests that humans quite often use a

very simple strategy in games, the ws/ls heuristic5. In order to guard against the possibility that

humans would use this heuristic (or even the exact opposite heuristic i.e. changing strategy when

winning and using the same strategy when losing) the spd algorithm was implemented which detects

whether players adhere to this heuristic on average and then best responds to this belief. The

computer algorithm keeps a count of the number of times a subject’s action was consistent with

the ws/ls heuristic minus the number of times it was inconsistent. Whenever this count is positive

then the CA assumes the subject’s next response will be the one prescribed by the ws/ls heuristic

and therefore best responds to this. If the count is negative, the CA assumes the subject will play

the action that is inconsistent with ws/ls and will best respond to that. Hence, the spd algorithm is

capable of detecting the behavior of subjects conditioning on the CA’s immediately prior action.

In Section 7, simulations were run of these three CAs competing against other learning models

with different parameter values, to determine approximate optimal strategies against each of these

algorithms. The results can be used to ascertain whether humans have learned to better respond to

the computer algorithms they played.

3.2.2 Decision rules of the computer algorithms The choice of the decision rule is of paramount

importance to experimental studies incorporating CAs as human subject opponents. There are two

main classes of decision rules, however both have significant drawbacks. The first is a deterministic

best-response rule which simply best responds to the beliefs generated by the CA. The second is to

5 For a 2 × 2 game this is well defined as changing strategy necessarily implies choosing the other action.
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employ a probabilistic rule, such as the logit decision rule. A best response rule has the advantage

that in each period it fully exploits any patterns detected in human subjects, whereas a probabilistic

rule would only best respond with a probability necessarily less than one. Therefore, the best response

rule has the potential to exploit human behavior more than a probabilistic rule. For example, in

Shachat and Swarthout (2004) although the CA’s belief rule detected patterns in human behavior,

because of the probabilistic nature of the decision rule the CAs could not achieve payoffs significantly

higher than the MSNE payoffs. The problem with the best response rule is that it is much easier for

subjects to reverse-engineer or figure out the belief model as there is no randomness built into it that

would mask the underlying belief generation process. In fact, it may not even be necessary for human

subjects to deduce the underlying belief generating mechanism, which may be quite complicated,

because best response rules can fall into easily detectable patterns, or cycles, in their action choices.

The CAs may then exhibit correlation in their action choices over time that can be exploited by

simple heuristics such as ws/ls. On the other hand, a probabilistic rule with enough programmed

randomness will be less likely to fall into such easily identifiable and exploitable patterns. It is clear

that there is a non-monotonic relationship between the amount of noise injected into a decision

rule and the algorithm’s performance and therefore an optimal amount of noise will be an interior

solution.

The usual probabilistic logit decision rules employed in the literature are functions of the expected

payoffs of each action, as set forth in equation 1, where E(π(ai)) is the expected payoff from action

ai and Si is the discrete strategy set of player i. Hence, the amount of noise injected into each

decision depends on the value of λ and the magnitude of the opponent’s deviation from the MSNE

prescription. If λ ≪ ∞ then opponents with systematic but small deviations will not be exploited

to a significant degree since the differences in the expected payoffs of the actions will not be large in

magnitude. This study opts to decouple the relationship between the amount of noise injected into

a decision from expected payoffs, thereby allowing for more aggressive behavior on the part of the

CA. Also, standard probabilistic decision rules add noise to every single decision, which is excessive

since patterns involve actions over many time periods and therefore they can probably be effectively

concealed by injecting noise less often. For example, if an opponent is detecting n-period patterns

then injecting noise on average once every n time periods will be sufficient to break this pattern6.

P (ai, t) =
eλi·E(π(ai))

∑

ai∈Si
eλi·E(π(ai))

(1)

The final approach taken is to allow some CA responses to be pure best responses, with no

added noise, whilst other responses are simply the MSNE of the game being played. In other words,

instead of uniformly spreading noise out over all decisions, added noise is restricted to a subset of

the actions. The decision rule employed for all CAs in this study is the following. In each round,

with probability 0.8 the CA will best respond to its internally generated beliefs, and with probability

0.2 will simply choose an action using the MSNE prescription. This allows the computer algorithm

to optimally respond with certainty to subjects’ behavior 80% of the time whilst still randomizing

according to the MSNE 20% of the time as a defensive move. There is also a fail-safe mechanism in

case humans were able to significantly exploit the CAs, whereby if the average payoffs to the human

6 No research was found in the literature regarding the theoretical optimal properties, or experimental
comparisons, of decision rules - this is an obvious candidate for future research.
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subject were larger than 20, the CA would revert to playing the MSNE until average payoffs fell

back below 20. Finally, up until the fourth round the algorithms will be playing according to the

MSNE prescription, in order to allow the algorithms to observe enough actions to generate beliefs.

3.2.3 Fp2 algorithm A schematic diagram of the operation of the fp2 algorithm is provided in

Figure 1, with the details of the equations and their updating provided below.

1. Starting from round 3, and for every round henceforth, after observing the action of the human

subject update equations 2 and 3 for all j. Let the subscripts i and j denote two different players,

then given actions aj and a′

j , It(aj |a
′

j) is an indicator function that takes a value of one if aj was

the action played at time t and a′

j was the action played at time t − 1 and takes a value of zero

otherwise7. Define for player i, the count of aj at time t given action a′

j as8:

Ci(aj |a
′

j , t) =
It−1(aj |a

′

j) +
∑t−2

u=1 It−u−1(aj |a
′

j)

t − 1
(2)

The fp2 beliefs of player i of action aj given action a′

j are then given as:

fp2i(aj |a
′

j , t) =
Ci(aj |a

′

j , t)
∑

aj∈Sj
Ci(aj |a′

j)
(3)

where Sj is the discrete strategy set of player j9.

2. If t < 5 or average payoffs to the human subject are higher than 20 proceed to step 3, otherwise

proceed to step 4.

3. Choose the computer action probabilistically according to the game’s MSNE and proceed to step

1.

4. Proceed to step 5 with probability 0.8 or to step 3 with probability 0.2.

5. Observe realized a′

j and if fp2i(aj = blue|a′

j , t) < 0.7 then choose brown as the computer action,

if the inequality is reversed choose white and in the case of equality choose according to the

MSNE. This step is essentially a best response to the value of fp2i(aj = blue|a′

j , t).

6. Repeat starting from step 1.

The above algorithm is essentially a variant of wfp which instead of counting the past frequency of

single-period actions and using that to predict future behavior, counts the past frequency of two

temporally consecutive actions. Equation 2 implicitly assumes that there is no memory decay at all

so that all past actions are remembered perfectly. This was consciously chosen because a pilot study

showed that increasing memory decay made the computer algorithms much more predictable and

open to exploitation, a result that is also corroborated by Messick (1967).

3.2.4 Fp3 algorithm The fp3 algorithm is identical to the fp2 algorithm in every way except that it

keeps track of three temporally consecutive actions instead of just two. Equations 4 and 5 determine

the probability updating procedure and Figure 2 gives a schematic representation of the algorithm.

7 At t = 1 the indicator function takes the value of zero for all actions aj , since a time period t = 0 does
not exist and therefore actions are not observable.

8 Note that this formulation implictly assumes perfect memory as past information is weighted equally in
the algorithm.

9 This definition assumes that the denominator is not zero i.e. that the action a′

j has been played at least
once in the past. In cases where a′

j has not been observed beliefs are assumed to be given by a uniform
distribution over aj ∈ Sj .
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Figure 1 Fp2 algorithm
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1. Starting from round 4, after observing the action of the human subject update the following

equations. Given actions aj , a′

j a′′

j , It(aj |a
′

j , a
′′

j ) is an indicator function that takes a value of one

if aj was the action played at time t and a′

j and a′′

j were the actions played at time t − 1 and

t − 2 respectively, and takes a value of zero otherwise:

Ci(aj |(a
′

j , a
′′

j ), t) =
It−1(aj |(a

′

j , a
′′

j )) +
∑t−2

u=1 It−u−1(aj |(a
′

j , a
′′

j ))

t − 1
(4)

The fp3 beliefs of player i of action aj given actions a′

j and a′′

j are then given as:

fp3i(aj |(a
′

j , a
′′

j ), t) =
Ci(aj |(a

′

j , a
′′

j ), t)
∑

aj∈Sj
Ci(aj |(a′

j , a
′′

j ), t)
(5)

2. If t < 5 or average payoffs to the human subject are higher than 20 proceed to step 3 otherwise

proceed to step 4.

3. Choose the computer action probabilistically according to the game’s MSNE and start again at

step 1.

4. Proceed to step 5 with probability 0.8 or to step 3 with probability 0.2.

5. Observe realized actions a′

j and a′′

j , and if fp3i(aj = blue|(a′

j , a
′′

j ), t) < 0.7 then choose brown

as the computer action, if the inequality is reversed choose white and in the case of equality

choose according to the MSNE. This step is essentially a best response to the value of fp3i(aj =

blue|(a′

j , a
′′

j ), t).

6. Repeat starting from step 1.

3.2.5 Spd algorithm The spd algorithm is inherently different from the previous two algorithms

because instead of examining whether human subjects are conditioning on their own lagged actions,

it examines whether subjects are using the win-stay/lose-shift heuristic (or its opposite, the win-

shift/lose-stay heuristic).

1. Starting from round 4, after observing the human subject’s action update equation 6 where Wi(3)

is initialized to be zero. The indicator function, It−1(a
′

j |a
′′

i , a′′

j ) takes the value one if the subject’s

action a′

j was consistent with the ws/ls heuristic and the value of -1 otherwise:

Wi(t) = Wi(t − 1) + It−1(a
′

j |a
′′

i , a′′

j ) (6)

The variable Wi(t) is just the net sum of the number of times the subject has exhibited ws/ls

behavior - a count of zero means that the ws/ls action was played 50% of the time, which is what

would be expected by chance.

2. If t < 5 or average payoffs to the human subject are higher than 20 proceed to step 3 otherwise

proceed to step 4.

3. Choose the computer action probabilistically according to the game’s MSNE and start again at

step 1.

4. Proceed to step 5 with probability 0.8 or to step 3 with probability 0.2.

5. If Wi(t) > 0, then assume the subject will play the ws/ls prescribed action and best respond to

that, if Wi(t) < 0 assume the subject will not play the ws/ls prescribed action and best respond

to that, and if Wi(t) = 0 then play the MSNE.

6. Repeat starting from step 1.
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Figure 2 Fp3 algorithm
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Figure 3 Spd Algorithm
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3.3 Discussion of disclosure to participants

An important decision must be made regarding how much information to disclose to the human

subjects in this experiment and in particular whether they are playing against a computer or another

human subject. The issue of whether to use deception or to mislead experimental subjects is a hot

topic, see Hertwig and Ortmann (2001) for a general discussion. Many economists are strongly

against the use of any degree of deception (Davis and Holt, 1992), often on the basis that the use of

deception is a public bad. Their reasoning is that in any single experiment a researcher may benefit

from using deception, but on the whole this will give experimental economics a bad reputation

and will cause future experiment participants to suspect that they are being deceived leading to a

change in their behavior. Some economists, such as Bonetti (1998), contend that deception may be

acceptable as long as it is of paramount importance to the experiment, and point to research on the

use of deception in the psychology literature to argue that many of the negative effects feared by

economists have not materialized.

This study provides full disclosure to subjects by clearly stating that they are playing against

three different computer opponents, however absolutely no information or hint is given regarding

how the computer algorithms work or how they differ from one another.

3.4 Monetary incentives to subjects

In order to provide incentives to subjects to actively participate in the game and seek out optimal

strategies, subjects were given performance dependent monetary compensation for participating in

the experiment. Subjects’ monetary reward depended on the average number of points they had

amassed against all three computer algorithms - the expected value of this according to the MSNE

was 10. They would receive the average number of points in euro, hence the expected monetary

reward from MSNE play is AC10. Given that the experiment lasted roughly an hour this is an hourly

rate of AC10 per hour which compares favourably to alternative sources of income for students.

According to Eurostat (2006), the minimum monthly wage for non-manual workers in Greece in

2006 is AC668, roughly AC4.18 per hour (assuming 40 hour weeks). Additionally, two prizes were

offered to the subjects who achieved the two highest average payoffs after the completion of all

experimental runs. The subject with the highest average payoff received an additional AC30, whilst

the second best performer received AC20. These additional monetary incentives can be a particularly

strong incentive to participants due to what the the psychology literature has documented as the

overconfidence effect. Numerous studies, see Svenson (1981) and Gilovich et al. (2002) for examples,

have shown that people tend to think that they are above average performers in general. Therefore,

subjects will tend to believe that they have a larger probability of winning one of the two top

prizes than they actually do, thereby providing an even stronger incentive to perform well in the

experiment.

3.5 Information and data collection

Data on each subject’s action choice was collected after each round. In game theory experiments

it is often very difficult to recover the true parameters of the underlying behavioral models from
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the data due to the bidirectional nature of subjects’ learning which can lead to chaotic time series

that on the surface appear to be random, even if the underlying rules are deterministic. One way

of alleviating this problem is to use open-ended questions asking participants to state what their

strategies were in their own words. Every 25 rounds subjects will have to respond to an open-ended

question asking what their strategy was in the last 25 rounds. This will provide some insight as to

what learning rule players are using against each CA and whether this changes during the repeated

rounds of play.

Such a technique can also help pinpoint models that may be appropriate thereby narrowing down

the field somewhat and guiding modeling. After the last (100th) round against each CA, subjects

were asked to state how many times they thought their opponent played each action and how many

times they thought they played each of their own actions. It will be interesting to see whether these

probabilities will be close to the actual probabilities played. Their knowledge or lack thereof of how

game play evolved may give some important information as to the underlying cognitive processes

involved.

A comparison can be made by classifying human subject behavior according to their responses

in the open-ended questions and the strategies that they appear to be playing as implied by learning

models estimated on the data. These two may match if strategies are the result of conscious, struc-

tured strategizing on behalf of the subjects. However, if on the other hand subjects’ learning is more

of an automatic, subconscious learning process then these may diverge. In all likelihood subjects’

play will be a fusion of both conscious and subconscious learning.

3.6 The information set of the subjects

After making a move each subject will be informed as to what move her opponent made, her current

payoff in that period, her average payoff and her total payoff so far in the game. The reasoning

behind this feedback is that it becomes easier for subjects to keep track of how well they are doing

and therefore should induce greater responsiveness and payoff maximizing behavior.

3.7 Justification of within-subjects design and CA presentation order

There are two possible experimental designs that can be employed to observe how peoples’ strate-

gies change when faced with different opponents, between- or within-subjects structures. Between-

subjects structures, where each subject would be assigned to play only one of the three CAs, have

the disadvantage that they introduce idiosyncratic error when comparing across CA treatments and

therefore reduce the power of subsequent statistical tests. On the other hand, in this case there is no

issue of transfer of learning across the CA opponents. Since the games are the same regardless of the

CA player, then in a within-subjects setup it is reasonable to assume that learning may carry over

from the first 100 periods to the second 100 periods and so on, hence this must be taken into ac-

count. A between-subjects setup also has the following practical problem - for n different treatments

(or CAs in this case) with x participants in each treatment an experimenter would need to find

nx participants whereas the same can be achieved with x subjects in a within-subjects framework.

This study opts for the within-subjects approach on the basis of the increase in power of statistical

tests for a given number of subjects, whilst keeping in mind that learning may be occurring across
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algorithms. In fact the hypothesis that learning is transferred from the history of play against the

preceding CA opponents to later opponents will be formally tested.

The decision to use a within-subjects framework raises the issue of the presentation order of the

CAs to subjects. Since this study is interested in testing differences in behavior and payoffs against

the three different CAs it must resort to using a randomized order of presentation. This is because

if learning does occur across the different algorithms then the algorithm to be presented last may

appear to be a weaker opponent even though this may simply be due to the fact that subjects had

more experience. In this case the order of the algorithms is perfectly correlated with the type of

CA and therefore it would be impossible to separate the two effects. Ultimately for a completely

randomized design all possible combinations of the orderings should be used, which in this case would

amount to 3!. However, this would significantly reduce the number of subjects in each condition,

so much so that the statistical power of tests would be significantly affected. Three conditions were

used instead, which allowed each CA to occupy each position in the presentation order exactly once -

the orders of presentation are fp2 -fp3 -spd, fp3 -spd -fp2 and spd -fp2 -fp3. This implicitly assumes that

only the position of the algorithm in the order of presentation affects behavior, but that behavior is

independent of which particular algorithms preceded it.

4 General statistical analyses of game data

The use of a mixed-effects experimental design where each player faces all three algorithms, allows for

more powerful statistical testing than conventional studies. The estimated models are linear mixed-

effects models, which can capture both within- and between-subjects variance. Since subjects were

randomly sampled from a population of possible subjects they should be modeled as random-effects

rather than fixed effects. With random subject effects each individual’s constant (or general ability)

is a normally distributed random variable, whose mean and variance is estimated by the model. The

general equation setup for the following analyses will be:

response=random subject effects + fixed treatment effects + error (7)

The treatments are fixed-effects and are modeled by the inclusion of appropriate dummy variables.

There are two treatments each consisting of three levels. The algorithm treatment consists of three

levels, namely the three CAs that the subjects faced, fp2, fp3 and spd. Let Aalg denote a dummy

variable equal to one whenever alg was the computer algorithm faced by the subject. Likewise, the

position (or order) treatment consists of three levels i.e. whether the game was the first, second or

third that a subject played. Let Tt be a dummy variable equal to one where t is equal to the position

(or order of presentation) of the game. Adhering to this convention let the estimated coefficients of

these treatment effects be denoted by the lower-case Greek equivalents, αalg and τt. The dependent

variable, payoffs, is denoted by πt
alg with subscripts for each player dropped from the notation for

simplicity.

The reference category for this model is the value of the dependent variable when subjects played

against the fp2 algorithm in the 1st position and is equal to the value of π1
fp2. The estimated model

is given in equation 8, where ǫi,t ∼ N(0, σ2
ǫ ) thereby assuming homoskedasticity of errors, and

µi ∼ N(0, σ2
µ) with variance-covariance matrix Ω3n×3n = In ⊗ Σ3×3 , where n = i × t is the total
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number of observations, In is the identity matrix and Σ3×3 is given in equation 9.

πi,t = π1
fp2 + αfp3Afp3 + αspdAspd + τ2T2 + τ3T3 + µi + ǫi,t (8)

Σ3×3 =







σ2
ǫ + σ2

µ σ2
µ σ2

µ

σ2
µ σ2

ǫ + σ2
µ σ2

µ

σ2
µ σ2

µ σ2
ǫ + σ2

µ






(9)

All analyses were performed in Stata (StataCorp, 2007) using the xtreg command, for maximum-

likelihood estimation of random-effects models. Confidence intervals were boostrapped in order to

circumvent the assumption of normality which was not justified by the data. Confidence intervals

were created using the bias-corrected, accelerated percentile intervals (BCa) method proposed by

Efron (1987). Compared to standard bootstrapped confidence intervals, the BCa method has the

advantage of exhibiting second-order accuracy (compared to the first-order accuracy of alternative

methods), and is transformation-respecting and range-preserving. The number of boostrap replica-

tions used is 2,500 which is higher than the recommendation of 2,000 replications made by Efron

and Tibshirani (1994) for the BCa method. The effects of multiple comparisons are accounted for by

controlling the family-wise error rate (FWER) rather than the per-comparison error rate (PCER)

as is usual, through the use of the Sidak (1967) correction. According to this correction, the family-

wise error rate (FWER) for n pairwise comparisons is related to the PCER through the equation

1 − (1 − PCER)1/n. All confidence intervals will be calculated at a 5% FWER, and the respective

PCER.

For ease of exposition when comparing contrasts, let πt
alg denote the mean payoffs to players when

they face the CA, alg, in position t. Note that πt
fp3 = πt

fp2 + αfp3, and similarly πt
spd = πt

fp2 + αspd.

4.1 Are some algorithms better than others in exploiting human behavior?

Hypothesis Subjects’ payoffs depend on the computer algorithm opponent they face, some algo-

rithms will be more efficient than others at exploiting human weaknesses. Hence, payoffs aver-

aged by computer opponent are significantly different from each other i.e. at least one of the

coefficients αfp3, αspd, αspd − αfp3 will be significantly different from zero.

Testing this proposition or hypothesis entails three pairwise comparisons - the maximum possible

number of combinations of two algorithms from a total of three algorithms. Assuming that there is no

prior reason to believe that differences should be either positive or negative these three comparisons

are two-tailed tests implying an appropriate PCER of 1.7%10.

The results are displayed in Table 3 which shows that mean payoffs where highest against spd,

followed by fp2 and finally by fp3. The estimated difference in payoffs between fp2 and spd, αspd, is

1.099 which is not significantly different from zero at the appropriate PCER. Payoffs against fp3 are

significantly less than the payoffs from both the fp2 and spd CAs making fp3 the clear winner in

terms of performance. Compared to these two CAs, payoffs against fp3 are less by 3.265 and 4.363

10 Although it is quite likely that the fp3 algorithm will perform better than fp2 against the human subjects
because its pattern detecting capabilities are of a higher order, it is not possible to be sure of this. Therefore,
preferring to err on the side of caution, a two-tailed test was employed.
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Table 3 Payoff performance and its dependence on position and algorithm effects

Coef. Bias Bootstrap s.e. lower2−tail
98.3% upper2−tail

98.3% lower1−tail
98.3%

π1
fp2 10.563 -0.005 1.078 7.964 13.147

π1
fp3 7.299 -0.018 1.074 4.503 9.726

π1
spd 11.662 -0.057 1.217 8.629 14.612

π3
fp2 13.109 -0.019 1.238 9.864 15.922

π3
fp3 9.844 -0.033 1.271 6.224 12.567

π3
spd 14.207 -0.071 1.205 11.352 17.232

αfp3 -3.265 -0.013 1.293 -6.459 -0.243
αspd 1.099 -0.052 1.356 -2.189 4.266

αspd − αfp3 4.363 -0.038 1.352 1.256 8.059
τ2 2.609 0.020 1.257 0.037

τ3 − τ2 -0.063 0.010 1.403 -2.774
τ3 2.545 0.030 1.313 -0.084

Likelihood LR χ2(4) p-value

-285.30503 15.58 0.0036

respectively revealing that the results are not only statistically significant but also economically

significant in terms of magnitude.

In conclusion, the proposition that human subjects’ payoff performance varies depending on the

computer opponent is empirically verified as for two of the three pairwise comparisons the differences

in payoffs were statistically significant, and the fp3 CA is clearly the best at exploiting human play

as it leads to significantly lower payoffs to subjects than the other two CAs.

4.2 Are payoffs against CAs significantly different from the MSNE payoffs, and is there a

dependence upon the position?

Hypotheses Two hypotheses will be tested: the first that for some CAs in the first position subjects’

payoffs are different from the MSNE payoffs, and secondly that the same is true of payoffs against

CAs in the third position.

Human subjects may be able to exploit the CAs and earn higher than the MSNE payoffs, but at

the same time the CAs are able to exploit human weaknesses, especially in randomizing. Testing

whether subjects’ payoffs are less than MSNE payoffs is important since subjects are always able to

secure MSNE payoffs by simply playing according to the MSNE. Hence, such a finding would imply

that subjects are not privy to what the MSNE solution is and were not able to learn it during the

rounds of the game.

This section will firstly test for differences in games played during the first position and secondly

for games played in the final position which would include learning throughout the experiment.

These shall be treated as two different hypotheses for the sake of adjusting for pairwise comparisons.

Each proposition involves three pairwise comparisons, specifically comparing the mean payoffs

grouped by the three CAs to the MSNE payoffs of 10. These tests will be two-tailed as it is not

possible to rule out the case that subjects cannot utilize the MSNE solution. The appropriate PCER

is 1.7% and the results are found in Table 3.
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For games played in the first period, payoffs against fp2 and spd are both higher than MSNE

payoffs but they are not significantly different from 10 at the specified significance level. The mean

payoffs against fp3, π1
fp3, however are significantly less than 10, leading to the conclusion that the

three-period pattern detecting capabilities of this algorithm are much more efficient at exploiting

subjects than the simpler two-period pattern detecting capabilities of fp2.

Shifting attention to the payoffs from games played against the CAs in the last position, when

the subjects have benefited from experience and learning, the results are quite different. Payoffs π3
fp2

and π3
spd are again greater than MSNE payoffs, with the latter qualifying as a statistically significant

result. Interestingly, payoffs π3
fp3 are estimated to be 9.844, much higher than π1

fp3, and are now not

statistically different from the MSNE payoffs.

In conclusion, there is evidence that by the final period humans are achieving payoffs significantly

greater than MSNE payoffs against spd, whereas in the first period they are found to be playing

significantly worse than MSNE payoffs against fp3. In the last position, none of the mean payoffs

could be shown to be significantly less than the MSNE payoffs and therefore a hypothesis that the

subjects have not learned to achieve at least MSNE payoffs by the end of the experiment can be

rejected.

4.3 Do subjects exhibit game-specific and opponent-specific learning?

The answer to this question is approached from two different angles. Firstly, through the observation

of the dependence of payoffs on their position in the presentation order, and secondly through the

dependence of first-order behavior on the position.

4.3.1 Do payoffs depend on the order of presentation of each algorithm?

Hypothesis Human subjects exhibit transfer of learning across positions (and by implication across

CAs), as measured by payoff performance, even though they are aware that the computer oppo-

nent has changed. This hypothesis implies that τ2 > 0 and τ3 − τ2 > 0.

A reasonable distinction between two types of learning can be made. The first type of learning

is general knowledge about the properties of the game being played, which is independent of the

CA opponent, and shall be referred to as game-specific learning. The second type of learning is

opponent-specific learning which has to do with the learning of strategies that are effective against

a particular CA.

These two types of learning can be expected to exhibit different properties throughout the ex-

periment. Game-specific learning would be expected to be very strong initially, i.e. against the first

CA, but would likely taper off quite early, in particular well before the end of the experiment. It

is reasonable to expect that this type of learning will be transferred to the rounds played against

the other two CAs as it is a general type of knowledge that will be useful against any opponent.

Opponent-specific learning on the other hand, would be expected to be stronger during the initial

rounds of play against each CA, and would likely not be perfectly transferred from one CA opponent

to another. In practice, there may be some transfer of learning since subjects may continue to use

strategies from the previous CA for lack of a better alternative in the initial rounds of playing against

a new opponent. However, these strategies will likely be abandoned soon if they are not performing

well against the new CA.
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The statistical tests in this case are one-tailed as game-specific learning necessarily implies an

increase in payoffs over time, and therefore only differences in payoffs from the immediately preceding

time period should be examined. Learning from the first to second position necessarily implies that

learning from the first to third period will be at least as much or more, depending on the strength

of learning from the second to third position. A test for learning from the first to third position is

redundant and therefore only two pairwise comparisons will be made, between the first and second

time periods, and between the second and third time periods. All statistical tests will be one-tailed

and adjusted for two pairwise comparisons, for a strictly controlled FWER of 5%.

The coefficients in Table 3 that test this proposition are those for τ2 and τ3−τ2, the first of which

is significantly different from zero at the required significance level and economically significant as

payoffs rise by 2.6. The value of τ3 − τ2 however is close to zero and not statistically significant

implying that although there is significant transfer of learning from the first to the second and third

periods in terms of an increase in mean payoffs, there is no additional transfer of new learning from

the second to third time periods.

4.3.2 Do subjects strategically modify their first-order behavior against different CAs and is learned

first-order behavior transferred across positions (and CAs)?

Hypothesis Subjects vary the first-order probability distribution (fop) over their actions depend-

ing on the CA they face. Hence, at least one of following coefficients in equation 10 must be

significantly different from zero: αfp3, αspd, αspd − αfp3.

Let fop denote the first-order play (the percentage of yellow actions played by subjects is chosen

as the reference class) and be the independent variable in Equation 10. As before, random subject

effects are employed, captured by µi, and the treatment is the type of CA faced by subjects11.

fopi,t = fopfp2 + αfp3Afp3 + αspdAspd + µi + ǫi,t (10)

Table 4 reports that play against the fp2 algorithm had the highest proportion of yellow actions

followed by fp3 and lastly by spd. First-order play against the spd and fp2 CAs is significantly

different from zero, and the difference fopspd − fopfp3, is close to being statistically significant as it

ranges from -0.0019 to 0.1215, which is of considerable magnitude. In conclusion, there is statistical

evidence that fop is used by subjects as a strategic instrument against different CAs.

Figure 4 graphs the evolution of first-order play across algorithms and positions. For example, the

upper left subgraph plots the probability of playing yellow for the first 20 rounds (at a value of 20 on

the x-axis), from the 21st to 40th rounds (value of 40 on the x-axis) et cetera. The graph immediately

to the right of this subgraph plots the the probability when the fp2 algorithm was faced in the second

position. Within each subgraph, changes in probability indicate opponent-specific learning since they

plot the same subjects playing against the same CA over the 100 rounds.

Transfer of learning is observed at the vertical lines indicating the crossover from one position

to the next. A drop in the graph at these crossover points means that some opponent-specific

knowledge acquired from playing the previous CA is discarded. However as long as the starting

11 A linear model was used instead of a fractional response model on the basis of simplicity and intuitive
interpretation of the magnitude of coefficients. Since all of the observations of the dependent variable were
well within the bounds of zero and one results will not be affected significantly by this approach.
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Table 4 Proportions of first-order play of yellow action across CA opponents

Coef. Bias Bootstrap s.e. lower2−tail
98.3% upper2−tail

98.3%

fopfp2 0.624 -0.0002 0.012 0.592 0.653
fopfp3 0.594 -0.0007 0.011 0.564 0.619
fopspd 0.545 0.0002 0.022 0.485 0.589
αfp3 -0.029 -0.0004 0.016 -0.07 0.01
αspd -0.079 0.0005 0.025 -0.147 -0.024

αspd − αfp3 0.049 -0.0009 0.026 -0.002 0.122

Likelihood LR χ2(2) p-value

91.138 11.65 0.003

point of a subgraph is higher than the starting point of the subgraph of the previous position (i.e.

the subgraph to the same row and to the left) this indicates some transfer of game-specific knowledge.

Against the fp2 and fp3 CAs there seems to be significant game-specific learning as the beginning

of the second position graph is significantly higher than the beginning of the first position graph in

both cases. However, comparing the second and third positions the starting point of the graphs are

very close to each other indicating that no additional game-specific learning has occurred during the

second position. At the crossover point from the first to the second position of the spd algorithm

there is a drop back to the original level in the beginning, however comparing the end of the second

position to the beginning of the third position yields a small increase. In general there does not

seem to be much learning occurring as regards first-order play when the spd CA is the opponent,

however it is very likely that other types of learning are taking place, such as second-order play or

the frequency of use of heuristics such as ws/ls.

The largest changes in proportion of play occur in rounds 21-40 of the first position. By comparing

the first 20 rounds of the first position to the last 20 rounds of the third position it is possible to see

the final variation in first-order play after all learning has taken place. This comparison yields large

increases in the proportion of yellow play for the fp2 and fp3 algorithm indicating significant learning,

however play against the spd algorithm is approximately the same at the end of the experiment as

it was as the beginning, with some variation however throughout.

4.4 Do subjects strategically modify their use of the win-stay/lose-shift heuristic against different

CAs?

Hypothesis The ws/ls heuristic will be employed to different degrees by subjects depending on the

CA which they are matched up with12. Hence, at least one of the following coefficients in equation

11 must be significantly different from zero: αfp3, αspd, αspd − αfp3.

The win-stay/lose-shift count, Wi(t), is simply the difference between the number of times a subject’s

chosen action was consistent with this heuristic and the number of times it was inconsistent13. The

modeled equation in this case, Equation 11, is similar to the one investigating first-order play with

12 Intuitively, the ws/ls heuristic will be employed less against the spd algorithm because it is designed
to exploit it implying a one-tail test. However, this hinges on the assumption of rationality of the subjects
which is not indisputable and therefore the more cautious choice of a two-tailed test was preferred.
13 This is equivalent to the output of the ws/ls heuristic employed in the spd algorithm.
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Table 5 Win-stay/lose-shift behavior and its dependence on the CA opponent

Coefficient Bias Bootstrap s.e. lower2−tail
98.3% upper2−tail

98.3%

Wfp2 35.774 0.067 3.346 27.657 43.608
Wfp3 30.742 0.013 2.557 24.94 37.234
Wspd 6.677 -0.03 2.759 -0.012 13.718
αfp3 -5.032 -0.053 4.166 -15.199 5.33
αspd -29.097 -0.096 4.512 -39.264 -17.758

αspd − αfp3 -24.065 0.043 3.868 -14.626 -33.208

Likelihood LR χ2(2) p-value

-396.556 43.74 0.000

the exception that the independent variable is now the ws/ls count, and the results are given in

Table 5.

Wi(t) = Wfp2 + αfp3Afp3 + αspdAspd + µi + ǫi,t (11)

The value of Wfp2 is roughly 36 translating into ws/ls play approximately 68% of the time,

whilst Wfp3 is less but the difference is not statistically significant. However when it comes to the

spd algorithm there is a statistically and economically significant change in behavior compared to

both the fp2 and fp3 CAs. As expected, since this algorithm is able to take advantage of players

exhibiting ws/ls behaviour Wspd has fallen to 6.67 (translating into ws/ls behaviour only 53.5% of

the time), which is not statistically different from zero.

4.5 Do subjects strategically modify the degree of randomness of their action choices against

different CAs?

A common non-parametric test for randomness or i.i.d. behavior is the Wald-Wolfowitz runs test,

which is based on the number of runs found in a time series. This statistic compares the observed

number of runs of a dichotomous variable to the expected number of runs, given the observed

frequencies. More than expected runs indicate the existence of overalternation in the time series, the

opposite indicates underalternation or longer than random sequences. Table 6 presents the number

of subjects for whom the hypothesis that they are playing randomly can be rejected by a Wald-

Wolfowitz test conducted at the 5% significance level (two-tailed). The results are grouped by the

two treatment groups i.e. CA opponents and position. The highest number of non-i.i.d. behaving

subjects is found against the spd CA which is reasonable since it is not able to directly detect non-

randomness. Also, more subjects were classified as playing randomly against fp3 than against fp2

which is a logical response as the increased pattern detecting capabilities of the former increases the

incentives to adopt i.i.d. behavior.

The difference between actual and observed runs, Table 7, can also be used to examine players’

behavior and how it varies against CAs and positions. When competing against fp2 and fp3 subjects’

play exhibits fewer runs than expected which means that they are underalternating. Against the spd

algorithm however the average difference over all positions is positive indicating overalternating

behavior.
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Table 6 No. of subjects not exhibiting i.i.d. behavior

Positions

CA opponent 1st 2nd 3rd All

fp2 3 3 5 11
fp3 4 1 3 8
spd 5 5 6 16
All 12 9 14

Table 7 Difference between observed and expected number of runs

Positions

CA opponent 1st 2nd 3rd All

fp2 -2.42 -0.47 -5.75 -2.87
fp3 -5.85 -0.31 -1.72 -2.55
spd 5.74 -3.81 5.36 2.52
All -0.89 -1.49 -0.51

Hypothesis The difference in observed and expected runs is varied by subjects according to the CA

opponent14. Hence at least one of following coefficients in equation 12 is significantly different

from zero: αfp3, αspd, αspd − αfp3.

Equation 12 regresses the difference in observed and expected runs, denoted by runs, on random

subject effects and fixed-effects on the levels of the algorithm treatment. Confidence intervals are

two-tailed at an adjusted PCER of 1.7% to account for three pairwise comparisons.

runsi,t = runsfp2 + αfp3Afp3 + αspdAspd + µi + ǫi,t (12)

Table 8 Dependence of the difference between actual and expected runs

Coef. Bias Bootstrap s.e. lower2−tail
98.3% upper2−tail

98.3%

runsfp3 − runsfp2 0.315 0.052 1.577 -3.601 3.894
runsspd − runsfp2 5.390 -0.050 1.692 1.509 9.690
runsspd − runsfp3 5.074 -0.102 1.842 0.737 9.734

Likelihood LR χ2(2) p-value
-323.474 14.62 0.0007

The results of this panel regression are displayed in Table 8, which indicates that statistically

significant differences exist in randomness of play between fp2 and spd, and fp3 and spd. In both

cases the number of observed runs when playing against the spd CA increases by roughly 5.

14 In accordance to previous similar arguments a two-tailed test was preferred even though a reasonable
assumption is that αfp3 < 0 since fp3 is designed to detect higher order non-i.i.d. behavior and therefore a
rational player should deviate less from the expected number of runs.
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Table 9 Spearman correlation coefficients of first-order human and computer play by opponent

CA opponent Spearman correlation coefficient p-value

fp2 -0.259 0.1594
fp3 -0.378 0.036
spd 0.386 0.032

4.6 Joint first-order behavior of human subjects and CAs

Figure 5 displays for each subject/CA pair the joint observed proportion of action choices, allowing

the assessment of the resulting dynamics of the two-way interaction between players. Data is broken

down by CA opponent in order to clarify the difference in single-period characteristics of each game

on the unit square of probabilities. Also, the figure is decomposed into four quadrants by the MSNE

proportions of play. Assuming i.i.d. play by both players, Quadrants I and IV lead to lower than

MSNE payoffs for human subjects and Quadrants II and III lead to higher than the MSNE payoffs.

It is clear from the spread of data points that play is not centered on the MSNE and that there

is a pattern to the deviations. The first striking observation is that rarely do human subjects exhibit

proportions greater than the MSNE of 0.7 whereas the computer algorithms were more prone to this,

leading to a large concentration of datapoints in Quadrants III and IV. There are no datapoints in

Quadrant II, only two on the border, so it clear than human subjects’ superior payoffs are primarily

due to play being concentrated in Quadrant III. This may be due to the fact that the payoff to

action blue, 108, is much higher than other possible payoffs and may therefore be creating a bias

to a smaller proportion of yellow play. Another interesting observation is that almost all of the spd

algorithm datapoints are in Quadrant III implying that the spd algorithm almost always played

white less than 70% of the time. On the other hand, the fp2 and fp3 algorithms ventured into

Quadrant IV relatively often. Furthermore, there are few datapoints in Quadrant I, most of them

belonging to play against the spd algorithm.

Table 9 demonstrates that for algorithms fp2 and fp3 there is a negative correlation between

human and computer single-period play, whereas for the spd algorithm it is positive. However, no

inference should be made about the direction of causality because of the inherent endogeneity of

this system where one player’s behavior affects the other’s and vice versa. Rather these correlations

should be viewed as representing the effects of the interaction between subjects and CAs and their

influence on the joint distribution of first-order behavior on the unit square.

4.7 Payoffs and nth-order behavior

The determinant of subjects’ payoffs is the joint play of both game players, but more interestingly

this can be broken down into two distinct determinants. The first is the resulting first-order play of

both players and the second is the resulting second- and higher orders of play. This segregation is

interesting as it can help pinpoint why subjects or CAs achieved high payoffs. Table 10 presents the

expected payoffs given the first-order play of both players, fop, where expected payoffs are calculated

by using the realized joint first-order probabilities of play and multiplying by the relevant payoffs.

If actual payoffs are higher than expected first-order payoffs this implies that subjects have taken

advantage of the CAs through manipulation of second- and/or higher orders of play.

28



Figure 5 Scatterplot of first-order play of both players
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Table 10 Actual and expected payoffs given first-order play

CA
Expected

payoffs given fop
of both players

Actual payoffs Coef. Bias Bootstrap
s.e.

lower2−tail
95% upper2−tail

95%

fp2 10.061 12.226 2.166 0.009 1.016 0.108 4.121
fp3 10.463 9.045 -1.418 -0.017 1.041 -3.676 0.498
spd 12.888 13.406 0.518 -0.009 0.891 -1.346 2.196

Expected payoffs given first-order play are higher than the MSNE payoffs against all computer

algorithms, although marginally so against the fp2 algorithm. Actual payoffs however are higher than

MSNE payoffs only for the fp2 and spd algorithm. Humans have exploited patterns when playing

against the fp2 and spd algorithms however only against the fp2 algorithm is the difference between

actual and first-order expected payoffs significantly greater than chance at the 5% significance level

(applying a bootstrap BCa method). Perhaps the most interesting result is that although first-order

expected payoffs against the fp3 algorithm are higher than the MSNE payoffs, actual payoffs where

much less which implies that the fp3 algorithm managed to exploit patterns in human behavior,

which the fp2 algorithm did not. This result is not entirely surprising as the fp3 algorithm is capable

of deeper pattern detection than the fp2 algorithm. Note however, that although it is not significantly

different from zero at the 5% significance level, the magnitude of the effect is quite large as actual

payoffs are roughly 14% lower than the expected payoffs given first-order play.

5 Models of human behavior

This section proceeds by presenting two different models of behavior, probit regressions and EWA

models, and explicitly examining the type of heterogeneity present in subjects’ behavior. A compar-

ison of the probit and EWA models will lead to some interesting conclusions regarding the relative

value of simple heuristic models of behavior versus more complex models when opponent hetero-

geneity is controlled for by the use of a CA opponent.

5.1 Probit modeling

This section proceeds to examine how players in this game have conditioned on their own and

opponent’s past actions, and whether conditioning is dependent on the type of CA opponent. This

analysis will be performed by maximum likelihood probit regressions, executed in Stata, with human

actions at time t as dependent variables and dummy variables of human and computer actions for

the previous 5 lags as independent variables (Ht−1, ...,Ht−5, Ct−1,..., Ct−5).

Section 5.1.1 estimates 4 models, one pooled model for all the data collected, and one model for

each CA opponent that the subjects played against, whilst Section 5.1.2 allows for greater hetero-

geneity in players by estimating a model for each human/CA pairing.

For ease of exposition and comparison all estimated coefficients are reported as the discrete

change in the probability of playing an action when the dummy independent variable changes from

zero to one (evaluated at the mean of the other independent variables), denoted by dP/dx. A robust
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error approach was used, namely the Huber/White sandwich estimate of variance, Huber (1967) and

White (1980).

The dataset is broken down into training and cross-validation (CV) subsets which will allow for

the examination of possible overfitting of models to the data, and which will permit the deduction

of the true out-of-sample predictive power of the models. The cross-validation set starts from the

fourth time period and continues as every third datapoint thereafter i.e. the 4th, 7th, 10th...100th

time periods - all other datapoints form the training set. This method of partitioning the data was

chosen rather than assigning a contiguous block of data, such as the final rounds, so that it more

accurately tracks the the fit of the model throughout all the rounds of the game.

5.1.1 Probit modeling pooled by CA opponent The estimated model will have current human play

as the dependent variable, human and computer actions lagged up to 5 periods as the independent

variables.

Pr(Ht = 1|Ht−1, ...,Ht−5, Ct−1, ..., Ct−5) =

ΦN (βht−1
Ht−1 + ... + βht−5

Ht−5 + βct−1
Ct−1 + ... + βct−5

Ct−5) (13)

In equation 13, Ht is a dummy variable equal to one if the human subject played the blue action

at time t and zero otherwise, Ct is another dummy variable equal to one if the CA played the brown

action at time t and zero otherwise. The transformation ΦN is simply the cumulative distribution

function of the normal distribution, which ensures that the fitted value of the dependent variable is

bound between zero and one. This equation will be estimated on four different sets of data: data of

play against all the algorithms pooled together and also against each of the algorithms separately.

Table 11 provides the results of these probit regressions, where dP/dx is the estimated marginal effect

of each independent variable, POI is the percentage inaccuracy on the training set, or equivalently

the percentage of classification errors, POI-CV the percentage inaccuracy on the cross-validation

set and Baseline is the error rate in classifying behavior if one simply predicted the most probable

action from the data.

In fitting a single model of play against all the CAs, all the coefficients except βht−1
, βht−3

and βct−3
are statistically significant at the 5% level. The largest in magnitude coefficient is βct−1

,

with βct−2
also significantly large, indicating that players are conditioning primarily on the first and

second lags of computer play. This model does better than a baseline model as the POI for the

cross-validation set falls by roughly 5% points.

The models estimated separately for each of the computer algorithms are of greater interest

as they allow comparisons and will provide information as to how subjects’ play depends on their

opponents’ behavior. Figure 6 represents the estimated coefficients graphically for ease of comparison.

Against the fp2 algorithm the only statistically significant independent variables are βht−4
and βct−1

,

with the effect of βct−1
on probability outweighing in magnitude that of βht−4

by 2.7 times. Hence,

human play against the fp2 algorithm is driven primarily by conditioning on the last computer

move15.

15 Given the chosen game, it is important to note that the ws/ls heuristic would manifest itself in a probit
analysis as a large in magnitude coefficient on the first computer lag.
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Table 11 Probit regressions of human play on 5 lags of human and computer play (pooled across all data and across each CA)

All algorithms fp2 fp3 spd

dP/dx z-stat. p-value dP/dx z-stat. p-value dP/dx z-stat. p-value dP/dx z-stat. p-value

βht−1
0.024 1.680 0.093 0.048 1.940 0.053 0.056 2.250 0.025 -0.021 -0.860 0.390

βht−2
0.080 5.750 0.000 0.028 1.120 0.265 0.079 3.220 0.001 0.131 5.620 0.000

βht−3
0.008 0.540 0.588 0.010 0.390 0.693 -0.004 -0.170 0.867 0.018 0.760 0.449

βht−4
0.112 7.920 0.000 0.121 4.680 0.000 0.110 4.390 0.000 0.104 4.410 0.000

βht−5
0.067 4.950 0.000 0.033 1.360 0.175 0.079 3.320 0.001 0.077 3.260 0.001

βct−1
-0.235 -16.240 0.000 -0.326 -12.430 0.000 -0.287 -11.550 0.000 -0.092 -3.420 0.001

βct−2
-0.111 -7.470 0.000 -0.048 -1.700 0.089 -0.056 -2.120 0.034 -0.125 -4.570 0.000

βct−3
0.017 1.150 0.250 -0.048 -1.710 0.087 0.007 0.270 0.784 0.007 0.250 0.800

βct−4
-0.053 -3.640 0.000 -0.007 -0.250 0.802 -0.043 -1.680 0.094 -0.061 -2.240 0.025

βct−5
0.038 2.590 0.010 0.029 1.080 0.282 0.057 2.230 0.026 0.001 0.050 0.957

POI 36.17 32.16 34.36 39.07
POI-CV 36.16 33.97 34.17 37.30
Baseline 41.02 37.28 40.27 45.5
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Figure 6 Estimated probit coefficients of human play on human and computer lagged play
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Table 12 Probit models of human play and dependence on Ct−1

βct−1
Error measures

CA dP/dx z-stat. p-value POI POI-CV

fp2 -0.32 -13.29 0.000 31.24 32.76
fp3 -0.264 -11.04 0.000 35.13 32.66

In comparison, against the fp3 algorithm the statistically significant coefficients are βht−1
, βht−2

,

βht−4
, βht−5

, βct−1
, βct−2

and βct−5
. Due to the large number of observations however, statistically

significant results do not necessarily imply that these variables have real economic significance. In

particular, the two largest coefficients are again βht−4
and βct−1

which are many times larger than

the coefficients of the other statistically significant variables. Again the main driving force seems

to be the first computer lag indicating the use of the ws/ls heuristic just as was the case with the

fp2 algorithm. Shifting to the model estimated for games against the spd algorithm, the results

now change significantly compared to those of fp2 and fp3. Although the coefficient βct−1
is still

statistically significant it is roughly one third in magnitude of that estimated for the fp2 and fp3

models. This result indicates that subjects learned to condition less on Ct−1 which is reasonable as

the spd algorithm is designed to exploit the ws/ls heuristic (and therefore conditioning on Ct−1).

The other important difference is that subjects are now conditioning much more on Ct−2, as the

effect on the dependent variable is roughly two times higher compared to the fp2 and fp3 models.

The coefficient βht−4
is still large in magnitude and statistically significant but has been surpassed

in importance by βht−2
.

In all cases the models have a lower POI for the cross-validation set than the baseline error rate

indicating that significant information has been discovered in the lags of the human and computer

play allowing for better prediction. Given the importance of Ct−1 in predicting behavior against

the fp2 and fp3 algorithms it is also of interest to regress human play only on Ct−1 in order to

determine whether this is adequate to explain behavior or whether more lags are needed. The model

now simply becomes:

Pr(Ht = 1|Ct−1) = ΦN (βct−1
Ct−1) (14)

Even though a reduced model will necessarily not fit as well as the full model as regards the

likelihood function of the training data, it is possible that a reduced model may fare better when

examining the POI of the cross-validation set.

This is verified by the results in Table 12 as in all cases there is an improvement in the cross

validation POI indicating that the 5-lag models suffered from overfitting. This can occur because the

greater the number of free parameters in a model the greater the ability of the model to fit the noise in

the data rather than the true underlying signal. These models estimated by regressing only on Ct−1

are essentially capturing the use of the win-stay/lose-shift algorithm. As regards behavior against

the spd CA, it was not possible to significantly reduce the number of independent variables without

negatively impacting the POI-CV. This indicates that a long memory process is being employed, a

result that is supported by subsequent EWA modeling.
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5.1.2 Individual probit modeling This section focuses attention on the effects of fitting probit models

to each subject/CA pair. This allows for heterogeneity of individuals and therefore will provide a

population distribution of parameter estimates. Table 13 gives the percentage of subject/CA pairs

for which the estimated coefficient of each independent variable was significantly different from zero

according to z-tests conducted at the 5% level. Human play was more often affected by the first lag

of the computer algorithm’s play followed by the second and fourth lag of humans’ own play.

Turning now to the distribution of individual parameter estimates grouped by computer algo-

rithm, the most interesting result is the change in the sign of the mean coefficient of the first human

lag, from being positive when playing against fp2 and fp3 to becoming negative when subjects played

the spd algorithm. In other words, subjects switch from positively correlated play to negatively cor-

related play. The other most striking result is the fall in the mean magnitude of the coefficient of

Ct−1 when subjects were playing against the spd algorithm. This shows that players have learned

that conditioning on Ct−1 leads to inferior payoffs against the spd algorithm. This is a rational

reaction as the spd algorithm is designed to take advantage of exactly that type of behavior.

The significance statistics essentially mirror the above results as the percentage of player/algorithm

combinations for which βct−1
is statistically significant falls from 80.65% and 74.19%, for fp2 and fp3

respectively, to 12.90% for the spd algorithm. When playing against the spd algorithm the percent-

age of cases where βct−2
is significant rises from 3.23% and 6.45%, for fp2 and fp3 respectively, to

22.58% - it seems that the conditioning shifts from Ct−1 which is exploitable by the spd algorithm to

the second lag, Ct−2, which is not exploitable by the spd algorithm. Also, against the spd algorithm

the percentage of significant coefficients for lagged human play in general increases significantly.

A comparison of the cross-validation performance of the CA pooled models and the individually

estimated models in Table 14 will provide evidence whether between-subjects heterogeneity is im-

portant. Comparing the single probit model pooled across all CAs, the cross-validation performance

is slightly better than that of the individually estimated probit models. This result is even more

impressive if one accounts for the difference in the number of free parameters, which is enormous

as the single model estimates ten parameters whereas the individual models estimate a total of 310

parameters. Comparing models pooled by the CA opponent with the cross-validation performance of

individually estimated models averaged for each CA opponent, the pooled models performed better

for the fp2 and fp3 CAs, and worse for the spd CA. The difference for the fp3 CA is particularly

large as the pooled model outperforms the mean performance of the individually estimated mod-

els by 4.23% points. On average, the pooled models perform better on cross-validation data than

the individual models providing convincing evidence that there is relatively little between-subjects

heterogeneity in the data.

5.2 EWA modeling

The learning literature is mainly devoted to two general types of learning algorithms and their vari-

ants: fictitious play algorithms and reinforcement learning. For a long time these two algorithms

were regarded as distinct and not closely related, however Camerer and Ho (1999) changed this per-

ception. They showed that fictitious play is an extension of reinforcement learning where all possible

actions are reinforced in every time period rather than just the chosen action as is customary in

reinforcement learning models. This discovery allows the nesting of both reinforcement and fictitious
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Table 13 Percentage of player/game combinations where each independent variable is statistically significant from zero

Coefficients

CA opponent βht−1
βht−2

βht−3
βht−4

βht−5
βct−1

βct−2
βct−3

βct−4
βct−5

Mean All 0.02 0.11 0.03 0.12 0.07 -0.27 -0.08 0.01 -0.05 0.03
value of fp2 0.03 0.07 0.05 0.13 0.03 -0.37 -0.05 -0.02 -0.02 0.03

estimated fp3 0.06 0.1 0 0.1 0.07 -0.32 -0.06 0.05 -0.02 0.03
coefficients spd -0.04 0.16 0.04 0.12 0.1 -0.11 -0.12 -0.01 -0.09 0.02

% of individual All 7.53% 20.43% 8.60% 21.51% 11.83% 55.91% 10.75% 8.60% 10.75% 3.23%
coefficients fp2 0.00% 6.45% 3.23% 22.58% 9.68% 80.65% 3.23% 12.90% 6.45% 3.23%

significantly different fp3 6.45% 22.58% 6.45% 19.35% 6.45% 74.19% 6.45% 3.23% 6.45% 0.00%
from zero spd 16.13% 32.26% 16.13% 22.58% 19.35% 12.90% 22.58% 9.68% 19.35% 6.45%
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Table 14 Comparison of fit between pooled and individually estimated probit models grouped by algorithm

CA opponent POI-CV of pooled probit models POI-CV of individual probit models

All 36.16% 36.43%
fp2 33.97% 35.1%
fp3 34.17% 38.4%
spd 37.3% 35.78%

play learning models (and the spectrum between these two endpoints defined by how much weight

is given to forgone payoffs) within a single model - the experience weighted attraction model or

EWA for short. Hence, rather than model reinforcement learning models and fictitious play models

separately we will instead fit the EWA model and compare the models by looking at the parameters

that distinguish the two learning rules.

Equation 15 is the EWA updating formula for the attractions of each available action. These

attractions are then normalized so that they sum up to one, thereby representing probabilities of

playing each action, by implementing the logit decision rule in equation 16. Players are indexed

by i (all other players by −i), individual strategies by j for a total of Mi strategies per player,

πi(s
j
i , s−i(t)) are the payoffs to player i given strategies sj

i at time t, and I(sj
i , si(t)) is an indicator

function which is equal to one if strategy j was played at time t by player i (i.e. if sj
i = si(t)) and

zero otherwise. The free parameters in the model are φ which represents a decay rate on the previous

period attraction and can be thought of as strength of memory, δ controls how much, if at all, forgone

payoffs affect attractions and κ controls how attractions grow over time - whether attractions are

weighted averages of previous attractions or a cumulative sum of previous attractions. The parameter

N(t) is an experience weight and is modified according to equation 17 - note that if N(0) = 0, κ = 0

and φ = 1 then the experience weight is simply the number of rounds played. The λ parameter in the

logit decision rule determines the sensitivity of agents to differences in the attractions of the available

actions. For example if λ = 0 then subjects are completely insensitive to attraction strengths and

will play each action with the same probability. As λ increases, given differences in attractions of

actions will lead to greater differences in the probability of playing actions. As λ → ∞ this decision

rule will tend to a strict best response rule with one action being played with probability one and

the others with probabilities of zero i.e. it is what is often referred to as a hard decision rule rather

than a soft decision rule. Before the game starts, at t = 0, the experience weight N(t), is assigned

an initial value, N(0) to be estimated, as are all attractions Aj
i (0) as well16.

Aj
i (t) =

φ · N(t − 1) · Aj
i (t − 1) +

[

δ + (1 − δ) · I(sj
i , si(t))

]

· πi(s
j
i , s−i(t))

N(t)
(15)

P j
i (t + 1) =

eλ·Aj

i
(t)

∑Mi

k=1 eλ·Ak
i
(t)

(16)

N(t) = φ · (1 − κ) · N(t − 1) + 1 (17)

16 In this case, given that there are two possible actions it is only necessary to estimate A
j

i (0) for one action
and normalize the other value to some constant, in this case zero. This is because of the parametric form of
the logit decision rule which is such that adding a constant to all attractions does not change probabilities.
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5.2.1 Special cases nested within the EWA model One of the alluring aspects of the EWA model

is that it nests many of the learning models used in the literature, namely reinforcement learning,

weighted fictitious play and cournot best response dynamics. As a result it is extremely easy to

compare these standard models simply by observing the estimated values of certain parameters.

In standard reinforcement learning, only realized payoffs affect attractions and therefore only the

attraction of the action played in the previous period will be adjusted. This can be accomplished in

the EWA model by setting δ = 0. If κ = 1 and N(0) = 1 then these three restrictions will reduce

equation 15 to equation 18 which is the standard cumulative reinforcement learning model. Previous

period attractions are decayed by a multiplicative factor of φ and are strengthened by the value of

the realized payoff. If instead κ = 0 this will reduce to the weighted average reinforcement learning

model.

A
j
i (t) = φ · Aj

i (t − 1) + I(sj
i , si(t)) · πi(s

j
i , s−i(t)) (18)

Camerer and Ho (1999) have shown that the difference between reinforcement learning and

fictitious play learning is the updating of attractions not only based on realized payoffs but also

on forgone payoffs i.e. payoffs that would have been achieved if the player had chosen the other

action. Recall that δ is the parameter that regulates how much of an effect forgone payoffs have

on attractions so that if both forgone payoffs and realized payoffs are given the same weight then

δ = 1. For the model to reduce perfectly to weighted fictitious play it is required that κ = 0 so that

attractions at any time period are averages of previous attractions.

Cournot best response dynamics can be obtained for generalized payoffs from the model by setting

φ = 0 in the weighted fictitious play case so that there is no memory beyond the immediately previous

time period and λ = ∞ so that the decision rule best responds. The third necessary condition for

generalized payoffs is that δ = 1 so that the model weights both foregone and realized payoffs equally.

It is important however to note that given the payoffs of the game used in this experiment δ = 1 is not

a necessary condition. This is most easily seen by considering that cournot best response dynamics

simply dictate that one should play the best response to the previous action of one’s opponent. If

φ = 0 the EWA model reduces to:

Aj
i (t) =

[

δ + (1 − δ) · I(sj
i , si(t))

]

· πi(s
j
i , s−i(t)) (19)

The payoffs used in this game allow the above equation to emulate cournot best response for all

values of δ for the following reason. Given an opponent’s action, the subject has only two possible

actions, one of which has positive payoffs and the other negative payoffs. Hence, no matter what the

value of δ the ordering of the attractions of actions remains invariant (since λ = ∞ the magnitude of

the attractions is irrelevant). This would not be the case if given the computer’s action the payoffs

to the subjects’ two possible actions had the same sign.

5.2.2 Estimation techniques of the EWA model The EWA model entails the concurrent estimation

of six parameters and complicating matters further is the problem that as λ increases the EWA model

slowly morphs from a probabilistic model to a deterministic model of best response. A deterministic

best response learning model will not be sensitive to parameter changes and therefore the objective

function (or error) surface will be less smooth and even discontinuous. Most typical optimization

algorithms such as the various Newton methods involve the use of approximate derivatives to guide
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Table 15 EWA models for pooled subjects against each algorithm

Parameter estimates Measures of fit

CA opponent κ δ φ λ A
j
i (0) N(0) POI POI-CV

fp2 N/A N/A 0 10 N/A N/A 0.317 0.329
fp3 N/A 1 0.301 9.994 35.767 55.614 0.352 0.326
spd 0.27 0 1 7.134 11.015 54.726 0.423 0.41

N/A refers to parameters that are not identified given other estimated parameters

the search in the right direction, which is problematic for a non-smooth model. Hence, for high

values of λ gradient descent techniques such as Newton-Raphson would be useless as the algorithm

would remain stuck at the initial values.

Another problem concerns the choice of initial values for the optimization procedure because

of the large number of estimated parameters which can cause the response surface of the objective

function to have a large number of local minima. As a consequence this increases the probability of

optimization algorithms becoming stuck at local minima rather than a global minimum.

These two problems are solved using the technique presented in Appendix B, namely by using

genetic algorithms to propose a starting or initial point for the Nelder and Mead (1965) Simplex

Method, which can deal with discontinuous functions17.

The choice of the objective function of the EWA model to be minimized is important as it can

influence the properties of parameter estimates. The MAD is preferred to the MSD as the error

measure of choice for this application on the basis of the arguments detailed in Section C.

5.2.3 EWA modeling pooled by CA opponent EWA models were estimated by minimizing the MAD

for all the games played against the same algorithm, leading to three different models of subjects’

pooled behavior against each algorithm. The benefits of pooling subjects in this way and estimating

single pooled parameters for all individuals rather than different parameters for each individual is

that there are more degrees of freedom available for estimation and less chance of overfitting param-

eters to noise. The final purpose is to allow comparison of the three models, namely to observe the

differences in parameter estimates which can be attributable to adaptation and learning conditional

on opponent types.

The parameter estimates are given in Table 15 as well as the percentage of inaccuracies (POI),

which is simply the percentage of classification errors18.

An estimated value of φ equal to zero means that the model only uses the information from the

immediately preceding time period and ignores all other information. Coupled with a high value

of λ this means that a player is using cournot best response or the ws/ls heuristic. These two

heuristics although apparently stemming from two different classes of learning models i.e. cournot

best response is a special case of fictitious play and ws/ls is a special case of reinforcement learning,

are indistinguishable in the 2 × 2 mixed strategy NE game employed in this study.

Interestingly, against the fp2 algorithm the value of φ is zero, against the fp3 algorithm 0.3 and

against the spd algorithm it is virtually equal to one. The latter is consistent with the standard

17 All computations were performed in Matlab (2007).
18 Note that the estimated coefficient, λ, is high enough to lead to deterministic choice, so that predictions
of the model are equal to zero or one. In this case, the MAD error measure is equivalent to the POI measure.
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form of fictitious play where all past information is weighted equally and the player keeps track of

the frequencies of past actions of his opponent. Values of λ are high enough to create deterministic

choice rather than stochastic choice decisions. Another notable difference is that δ is equal to zero

for the spd opponent but equal to one against the fp3 algorithm.

Figures 7, 8 and 9 graph the results of sensitivity analyses on individual parameter estimates,

when the other parameters are fixed at their estimated values. This will permit the examination

of whether parameters are well identified and how important it is to include them in the model by

looking at the effects of their variation on the error measures.

Since the optimal φ parameter against the fp2 algorithm is zero and the estimate of λ is high

enough for the decision to rule to produce deterministic behavior, it is apparent from equation 15 that

the parameters κ, δ, N(0) and A
j
i (0) are not identifiable. Varying φ leads to large variations in the

POI and POI-CV, and therefore we can be confident of the importance of this parameter in modeling

subjects’ behavior. There is no variation between values of zero and 0.2 as the POI measure can be

insensitive to small changes in parameter values. The estimated value of λ causes significant changes

in classification error rates over values between zero and 0.2 and stabilizes thereafter, implying that

subjects’ behavior was best modeled by deterministic choice rather than probabilistic choice.

Diverting attention to the EWA model for games played against the fp3 CA, the optimal φ

parameter is roughly 0.3, but there is no appreciable variation in the classification error rates for

values between zero and 0.3 and therefore for all intents and purposes φ can be thought of as being

equal to zero19. This is further supported by the behavior of the κ, N(0) and A
j
i (0) parameters which

do not show appreciable variation in the POI and POI-CV. The only exception is the δ parameter

which when varied from a value of zero to one leads to falls in the POI and POI-CV of approximately

2 percentage points. The behavior of λ is identical to the case of the fp2 algorithm so that optimal

classification occurs when choice is deterministic rather than probabilistic.

The results for behavior against the spd algorithm are interesting in the sense that they contrast

sharply to the two previous algorithms. Values of φ between zero and 0.2 now provide the worst fit

to the data in contrast to the EWA models of the other two CAs. The POI and POI-CV then exhibit

a sharp drop at φ values roughly between 0.25 and 0.28 and remain relatively stable until just before

a value of one where there is a sharp drop leading to the global minimum. At an optimal φ value of

one the other parameters of the EWA model are now identifiable and therefore greater sensitivity of

classification error rates to changes in these parameters should be observed. This is indeed the case

with the exception of κ which varies minimally over the whole range. The value of δ on the other

hand leads to an approximately monotone increase in roughly 6-7 percentage points in the POI and

POI-CV as it changes from 0 to 1. The classification errors are mostly insensitive to changes in A
j
i (0)

except for the region between 0 and 10 which displays a sharp drop of roughly 10 percentage points.

The N(0) parameter and the classification errors exhibit a roughly monotone inverse relationship

until an N(0) value of approximately 50 with no significant correlation thereafter.

5.2.4 Individual EWA modeling Many studies in the behavioral game theory literature conclude

that allowing for heterogeneity by modeling subjects individually is important as assuming homo-

geneity can lead to seriously biased estimates of learning parameters. This section proceeds with

19 The classification error rate for the test set is at a minimum for all values between zero and roughly 0.29
so that the small dip in the POI for the training set is likely just a statistical aberration.

40



Figure 7 EWA (fp2 ) parameter sensitivity analysis
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Figure 8 EWA (fp3 ) parameter sensitivity analysis
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Figure 9 EWA (spd) parameter sensitivity analysis
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Table 16 Comparison of fit between pooled and individually estimated EWA models grouped by algorithm

Pooled EWA model Individual EWA models

CA opponent POI POI-CV POI POI-CV

All 36.4% 35.5% 30.9% 36.36%
fp2 31.7% 32.9% 25.97% 33.28%
fp3 35.2% 32.6% 32.33% 35.48%
spd 42.3% 41.0% 34.4% 40.32%

a comparison of EWA models estimated individually and the previously discussed EWA models

pooled by computer algorithm opponent. Table 16 communicates the POI of the estimated models

for both the training and cross-validation set. The training set measures of fit are not as important

as individually estimated models will provide better fits to the training data simply by virtue of the

increase in the number of free parameters. This causes a potential problem of overfitting to the train-

ing data set without an improvement in the fit to previously unseen data in the cross-validation set.

As expected, the POI for the training sets are lower for individually estimated models. However, the

individually estimated models on average classify 0.86% points worse on the cross-validation set than

the single model pooled against all CAs. Comparing POI-CV for play against the fp2 CA the pooled

model does slightly better whereas against the fp3 CA the pooled model exhibits a significantly

smaller POI-CV, 32.6% versus 35.48%. As regards the spd CA, the individually estimated models

do slightly better, although the difference is small in magnitude and in economic significance. These

results strongly suggest that there does not exist any significant between-subjects heterogeneity and

that models pooled by computer opponent, are appropriate in modeling behavior.

The antithesis between the above results and the rest of the literature where modeling subject

heterogeneity is found to be important deserves further attention and explanation. The most impor-

tant distinction to keep in mind is that although this study does not find individual heterogeneity

to be important it does find that allowing for heterogeneity conditional on one’s opponent is very

important. Hence, the results support within-subject heterogeneity which results from adaptation

to one’s opponent. The within-subjects heterogeneity seems to account for almost all of the hetero-

geneity in behavior without needing to postulate between-subject heterogeneity. In fact, subjects’

behavior is surprisingly similar when facing the same opponents. Since in most studies in the liter-

ature subjects’ opponents are not experimentally controlled, the observed behavioral heterogeneity

was tacitly assumed to arise from between-subjects heterogeneity as there was no way to distinguish

between within- and between-subjects heterogeneity.

Table 17 compares the estimated parameters of the pooled models to the average parameters

of the individually estimated models. It is interesting to note that the differences in most cases

are quite large with averages of individually estimated parameters usually being less extreme than

pooled estimated parameters. This is reasonable since many parameters are bounded between zero

and one and therefore the variations in estimated parameters occurring due to overfitting must

always push the averages to less extreme values or the interior of the bounded interval. Pronounced

differences occur for estimates of φ and δ with average values for individually estimated models

near the middle of the probability space, whilst the pooled estimates lie at the extremes. Figure 10

plots the distributions of the individually estimated values of φ̂, which do not show any significant

difference according to the CA opponent implying stability of this parameter, which however is
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Table 17 Parameter estimates from pooled and individually estimated models

Pooled estimated coefficients Individually estimated coefficients

CA κ δ φ λ A
j
i (0) N(0) κ δ φ λ A

j
i (0) N(0)

fp2 N/A N/A 0.00 10.00 N/A N/A 0.61 0.57 0.41 7.92 20.77 88.74
fp3 N/A 1.00 0.30 9.99 35.77 55.61 0.79 0.46 0.39 6.72 35.35 85.93
spd 0.27 0.00 1.00 7.13 11.02 54.73 0.80 0.36 0.51 8.07 -1.43 52.18

Table 18 Comparison of cross-validation performance of EWA and probit models

Pooled EWA model Pooled probit models (5 lags) Pooled probit models (1 lag)

CA POI POI-CV POI POI-CV POI POI-CV

fp2 31.7% 32.9% 32.16% 33.97% 31.24% 32.76%
fp3 35.2% 32.6% 34.36% 34.17% 35.13% 32.66%
spd 42.3% 41.0% 39.07% 37.30%

clearly not the case according to the pooled parameter estimates. Also, against the spd CA κ is

equal to 0.27 for the pooled model but equal to 0.8 for the individually estimated models. It is

clear that the parameter estimates of these individually estimated models lead to wrong conclusions

as to the real values of the learning parameters. This is an important qualification since at the

extremes the EWA model is equivalent with simplified learning rules, such as the ws/ls heuristic,

weighted fictitious play or standard reinforcement learning, and therefore it would lead us to reject

simple heuristics in favour of unnecessarily complicated models. Tables 23, 24 and 25 in Appendix

D report the individually estimated parameter values for all subjects against all computer algorithm

opponents.

5.3 Comparison of EWA and probit models

The EWA and probit models presented above can be thought of as competing models of behavior.

The most important differences between these two models is that the probit models have a discrete

window of lagged observations whereas the EWA model uses all past information with exponentially

decreasing weights (expect in the degenerate case where the memory parameter is equal to zero).

Also, the probit model presented here did not directly incorporate payoff information20, whereas the

EWA model does so explicitly. A comparison of the performance of the probit and EWA models on

training and cross-validation data yields some interesting conclusions. The accuracy of the various

models on training and cross-validation data is recompiled in Table 18 for ease of comparison.

The last two columns document the models from Section 5.1.1 that included only one independent

variable, the first lagged computer action, which were found to perform better out of sample than

the 5 lag models of both own and CA’s actions. In terms of the POI-CV of models of play against fp2

and fp3, the EWA models and the 1-lag probit models are virtually identical. Taking into account

that the probit model has significantly fewer free parameters than the EWA model, it is clear that

it is the preferable model. On the other hand, comparing the EWA and 5-lag probit model for the

spd CA the probit model performs significantly better than the EWA model, as is exemplified by a

20 Although it does so indirectly because it includes the two determinants of payoffs, own and opponent’s
actions.
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Figure 10 Histogram of φ̂
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POI-CV of 37.3% versus 41% respectively. This difference is likely due to the fact that the probit

model can better capture a non-monotonic dependence on lagged behavior, whereas the EWA model

must have a decreasing dependence on the history of play because of the built-in exponential memory

function21.

On the basis of this information, the probit model appears in general to offer better predictive

power on cross-validation data than the EWA, in particular whenever it is important to have a

more flexible memory structure. However, this is conditional upon knowing what kind of opponent a

player is facing. Therefore, in an uncontrolled environment where one’s opponent is not known it is

still possible for EWA models to have better predictive power than a probit model, particularly the

1-lag model, as the larger number of parameters of the EWA model will be better at representing

the effects of opponents’ heterogeneity in play. A clear distinction regarding how the value of models

is measured is in order. If models are valued on the basis of how well they fit the true underlying

behavior of subjects then comparisons should be made between models estimated against the same

CA opponent, as is primarily done in this study, through the use of a human/computer experimental

setup. If on the other hand, one is interested in the predictive power of a model in an uncontrolled

environment, then the fit of the competing models should be compared when subjects are facing

a wide variety of opponent types, thereby indirectly incorporating information about the relative

prevalence of these different types in a population of players in the estimated parameters. In this

case one can compare the single EWA and probit models pooled across all subjects, and indeed

the POI-CV of the EWA is now smaller than that of the 5-lag probit models, 35.5% compared to

36.16%.

6 Analysis of questionnaire data

The style of analysis in this section shifts toward a more qualitative nature in the hope that it

will provide insights which the quantitative models presented above cannot. After every 25 rounds

subjects were asked to state what their decision strategy was in their own words, to provide clear

examples of human strategizing. This question was open-ended to avoid leading subjects to specific

strategies and to allow subjects to express any strategy without restriction to prespecified answers.

The benefit of this is that it allows researchers to inspect individual thought processes, on the other

hand however it would be desirable to be able to group answers into more generalized categories

in order to infer trends across all subjects. Hence, each answer was coded as falling into either

of the following categories: fictitious play, pattern detecting fictitious play, reinforcement learning,

pattern detecting reinforcement learning, other types of reasoning, ws/ls heuristic, and random.

The results of this categorization are displayed in Table 19. The difference between fictitious play

(and reinforcement learning) with respect to pattern detecting fictitious play (and pattern detecting

reinforcement learning) is that in the latter categories subjects displayed some type of multi-period

or sequential thought instead of simply looking at single-period actions. Examples are given below

of actual answers of subjects and how they were classified.

Fictitious play “The computer played white more often so I played yellow more often”, “I think it

started off playing white more often but then started playing brown more often”

21 Referring back to Table 11, against the spd algorithm the coefficient of the first lag is smaller in mag-
nitude than that of the second lag i.e. dependence is indeed non-decreasing, a property that will hinder the
effectiveness of the EWA model.
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Table 19 Classification of players into types based on the questionnaire answers

Fictitious play Reinforcement learning

CA single period pattern single period pattern ws/ls Other reasoning Random

All 12.1 8.9 6.7 12.1 2.2 4.6 53.5
fp2 11.3 10.5 6.5 10.5 2.4 5.6 53.2
fp3 11.3 7.3 5.6 15.3 1.6 3.2 55.6
spd 13.7 8.9 8.1 10.5 2.4 4.8 51.6

Pattern fictitious play “I thought the computer chose to play the same colour very often”, “I am

trying to figure out how many times in a row it uses each colour”

Reinforcement learning “I tried to count how often I won playing each colour”, “I made my choice

according to the changes in my score”

Pattern reinforcement learning “Playing three times yellow and one time blue seems to be a prof-

itable combination”, “When I lost two consecutive times playing blue I would play yellow and

vice versa”

Other reasoning “I played yellow so as not to lose 80 points”, “Normally you should play only blue

because if you win you have made up for three losses”

Win/stay, lose/shift heuristic “Usually whenever I lost I would change colour”, “If I lost playing

yellow I would then choose blue and vice versa”

Random “I was playing according to chance”, “I had no strategy”

From Table 19 it is evident that playing against different algorithms does not in general sig-

nificantly affect the proportions of subjects classified under each type. The only striking difference

occurs when comparing fp2 and fp3 computer opponents as there is a large increase in pattern re-

inforcement classification rates for the fp3 algorithm opponent. The class of fictitious play learning

algorithms account for 21% of responses with the class of reinforcement learning algorithms also

accounting for 21% of responses22. A large percentage of responses stated that decisions were made

randomly, 53.5%, and a much smaller percentage, 4.6%, gave some other kind of reasoning for how

they were playing.

The most striking disparity between the data collected from the questionnaire and actual play is

the fact that although ws/ls behavior is rampant, only a small percentage of responses acknowledged

using it. This disparity begs the question of whether the use of the ws/ls heuristic is a controlled or

automatic process as distinguished by Camerer et al. (2005). Controlled processes of neural function-

ing involve effortful serial processing and are invoked deliberately, implying that humans should have

good introspective access to these processes. Automatic processes involve parallel processing of infor-

mation, are effortless and people will have little introspective access as to how or why decisions were

made. Since the subjects were not in general able to explain the use of the ws/ls heuristic, displaying

little introspective access, this implies that in many cases the ws/ls heuristic may be an automatic

process. Supporting this conclusion is the observation that such automatic processes are usually the

result of the sculpting of the human brain by evolutionary pressures (Cosmides and Tooby, 1987).

This would be very reasonable in the case of the ws/ls heuristic because it works admirably in any

22 Although in this game the ws/ls heuristic makes equivalent decisions with a fictitious play learning rule
with γ = 0, it has been included under the class of reinforcement learning rules because in every single case
subjects described it in reinforcement learning terms rather than fictitious play terms.
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Table 20 Predictions of own and opponents’ first-order play

Opponents’ actions (white action) Own actions (blue action)

CA % predicted % actual MAD % predicted % actual MAD

All 51.24% 66.15% 20.98 41.13% 41.16% 11.60
fp2 53.41% 69.59% 23.83 39.07% 37.48% 11.38
fp3 51.90% 67.81% 21.26 38.65% 40.58% 12.71
spd 48.25% 60.75% 17.71 46.00% 45.61% 10.61

general situation where the environment exhibits relatively stable conditions, structured order and

correlated behavior23.

Given the distinction between automatic and controlled processes regarding introspective access,

answers to the questionnaire can by definition only provide controlled processes as answers. When

subjects answered that they played randomly or had no strategy they are referring to controlled

processes. Hence, the abberation between the large percentage of answers categorized as random,

the very small percentage of answers that explicitly stated the ws/ls heuristic but the widespread

use of the ws/ls heuristic can be explained by the fact that the subjects’ use of the ws/ls heuristic

is predominantly an automatic process24.

6.1 Accuracy of predictions of own and opponents’ first-order play

At the end of 100 rounds of play against each CA each subject was asked to state the number of

times she thought she had played blue in the last 100 rounds and also the number of times that her

opponent had played white. Table 20 tabulates the predicted proportions and the actual proportions

of own and opponents’ play pooled against all algorithms and also by each computer opponent.

Predictions of opponents’ play are not calibrated well with an average prediction of white play

(against all algorithms) of 51.24% versus an actual value of 66.15%, whereas predictions of own play

are surprisingly well calibrated with a predicted value of 41.13% versus 41.16%. Testimony that

this result is important is the fact that even when predictions are broken down into each algorithm

subjects were still well calibrated, with a maximum deviation of only 1.93% points. A measure of

individual accuracy of predictions is the average individual absolute deviations of predictions from

actual play or MAD. The difference between own and opponents’ play is again striking as the MAD

is much smaller for own play, 11.6%, compared to opponents’ play, 20.98%. A Wilcoxon signed ranks

test concludes that this difference is significantly different from zero at a p-value of less than 0.1%

(z-value=-4.308).

The results for both the fp2 and fp3 CAs are very similar but against the spd algorithm the

results are strikingly different. Calibration, especially for opponents’ play, improves significantly

as the difference between predicted and actual white play is 12.5% points for the spd algorithm,

23 The notions of controlled and automatic processes are very similar to the notions of implicit and explicit
learning, especially with respect to whether subjects consciously acknowledge them or whether they occur
at a subconscious level.
24 Different regions in the brain tend to be active depending on whether the subject is using a controlled or
automatic process. Hence, the conjecture that the ws/ls heuristic is to a large extent an automatic process
could be tested more rigorously by a neuroeconomic experiment that implements some technique of brain
scanning whilst subjects are playing the game.
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Table 21 Spearman correlations of predicted frequencies of own and opponents’ play against actual play

Prediction of own action frequencies Prediction of opponent’s action frequencies

CA ρ p-value ρ p-value

All 0.3887 0.0002 0.077 0.4757
fp2 0.5671 0.0013 0.0755 0.6970
fp3 -0.0125 0.9467 0.2195 0.2354
spd 0.4646 0.0127 0.0271 0.8911

in comparison to 16.18% points and 15.91% points for the fp2 and fp3 algorithms respectively.

Also, the MAD is lower when subjects played against the spd computer algorithm, especially for

predictions of opponents’ play. The MAD for predictions of opponents’ play falls from 23.83 and

21.26 for fp2 and fp3 respectively to 17.71 for the spd algorithm. This improvement in predictions

can be explained by referring back to the results from the EWA modeling - namely that against

the fp2 and fp3 algorithms subjects predominantly used the ws/ls heuristic which does not require

knowledge of own and opponents’ play over the whole game whereas against the spd algorithm the

estimated memory parameter was equal to one which implies the utilization of all past play of one’s

opponent. Hence, more attention must have been paid to keeping track of these variables leading to

the improvement in calibration. However, conducting Friedman tests with the null hypothesis that

the average MAD for predictions of own and opponents’ play is the same across all CAs it is not

possible to reject the null hypotheses at the 5% significance level. The χ2 (and associated p-values) of

MAD predictions of own and opponents’ play are 1.52 (0.468) and 2.742 (0.254) respectively. Despite

this failure to reject the null hypothesis, other evidence such as the EWA regressions which in the

case of the spd algorithm concluded that players did use past information about opponents’ actions,

strengthens the argument that this result is not a statistical artifact. However, future studies should

attempt to verify this by increasing the number of subjects and the power of the test to reject the

null hypothesis.

The Spearman correlations of predicted frequencies of play on actual frequencies of play are

given in Table 21. The Spearman correlation for own actions against all of the CAs, is much higher

than that of opponent’s actions, 0.39 (p-value=0.0002) versus 0.077 (p-value=0.4757) respectively,

with only the former exhibiting statistical significance. Such a large difference is important as it

is further strong evidence that subjects were not monitoring their opponents’ first-order behavior

closely. Breaking down the analysis by CA opponent reveals an interesting result. The Spearman

correlation for own actions falls to zero in games against the fp3 algorithm in stark contrast to the

large in magnitude and statistically significant estimates against the fp2 and spd algorithms. At the

same time, against the fp3 CA, there is an increase in the ρ value for opponent’s action frequencies,

which although not statistically significant at the 5% level, is appreciably higher in magnitude than

the correlation against the other CAs. These simultaneous shifts in opposite directions point to a

significant change in subjects attention to the history of play, and have occurred against fp3, the

CA that was the best at detecting patterns and by implication the best at detecting conditioning

on subjects’ own history. Hence, the direction of the shift in attention could be considered to be a

better response on behalf of the subjects.
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7 Optimality of subjects’ strategies

Agent-based computational economics (ACE) are increasingly being used to model the interactions

of individual economic agents and to observe the resulting complex, non-linear dynamics of popu-

lations of agents, thereby allowing researchers to overcome some of the limitations of experimental

economics25. Typically, heterogeneous agents are modeled as computer algorithms, and simulations

of the interactions of a population of these different agents are performed. Simulations have been

utilized in game theory to examine the evolutionary properties of agents and strategies such as in

Axelrod (1985), where a tournament of different Prisoner’s Dilemma strategies was conducted.

In order to assess how well subjects in the experiment are responding to the computer algorithms

it is crucial to have some notion of what the best response to these algorithms is. This is not trivial as

the CAs employed in this study are complex, and it is only through simulations that one can attempt

to tackle this problem. However, there is no guarantee that an optimal strategy has been found as it

is impossible to try all possible strategies against these algorithms. Instead, an approximate approach

is condoned where a relatively broad sample of learning rules will be implemented. In particular, a

wide class of reinforcement learning algorithms will be examined, with different depths of pattern

recognition and values of the memory parameter. In one case it will be useful to also include a simple

mixed strategy with varying first-order play. From this mini-tournament of learning rules we hope

to get an approximate best response strategy against the CAs and to gain important insights into

the evolutionary value and fitness of these learning rules.

More specifically the three algorithms used in the experiment, fp2, fp3 and spd were in the pool

of algorithms and were pitted against three variants of reinforcement learning. Re1 is a standard

reinforcement learning algorithm that reinforces single period actions according to realized payoffs,

re2 and re3 are variants which reinforce two and three consecutive period actions allowing for the

detection of which patterns of responses are more successful. Each one of the reinforcement learning

algorithms was matched against the fp2, fp3 and spd algorithms. All the reinforcement learning

algorithms were simulated with varying memory parameters, namely from zero to one in steps of

0.05 and their decision rules were deterministic best responses. Figures 11 and 12 graph the results of

these simulations, both display the same information but in the former figure the results are grouped

by the reinforcement learning algorithm and in the latter they are grouped by the CA opponent.

7.1 Simulations of reinforcement learning algorithms versus implemented CAs

Against the fp2 algorithm, all the reinforcement learning algorithms achieve higher than MSNE

payoffs for low values of γ but fall below MSNE payoffs for higher values. The highest payoff was

achieved by re3 which strictly dominated the other two models for all values of γ greater than

roughly 0.05. Re2 and re3 are more robust to changes in γ as they earn greater than MSNE payoffs

for γ up to roughly 0.95. It is important to note that re1 with γ equal to zero, which is essentially

the ws/ls heuristic, fares very well especially considering its computational simplicity. Even more

impressive is the fact that its average payoff of 15.41 is considerably higher than the MSNE payoffs

of 10 and relatively close to the highest possible average payoff of 17.9 accomplished by re3 with

γ equal to 0.45. As would be expected, an re1 algorithm with high γ can be exploited by the fp2

25 For an overview of agent-based computational economics applications the reader is referred to Tesfatsion
and Judd (2006).
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Figure 11 Payoffs to simulated agents playing against the computer algorithms (grouped by simulated
agent)
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algorithm which is capable of detecting two-period patterns whereas the re1 algorithm reinforces

only single-period actions. The maximum payoff achieved by the re2 agent is 17.1 which is extremely

close to that of the the re3 agent and therefore the re2 model is probably the most effective algorithm

once the increased computational costs of implementing re3 rather than re2 are considered.

Against the fp3 algorithm the picture is similar as all three reinforcement learning algorithms

earn more than MSNE payoffs for small memory parameter values whilst performance declines signif-
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icantly for longer memory structures. Re3 achieves the highest payoff, 13.33, of all three algorithms

at γ equal to 0.1. However, this is only slightly higher than the maximum of the re2 algorithm,

13.15, and therefore after taking into account computational costs re2 would again probably be the

best option. Once more, given its simplicity the re1 model with zero memory does extremely well

although again the payoffs it achieves are lower than those associated with re2 and re3. The re1

agent’s maximum payoff is 12.02 with γ equal to 0.2 with the average payoff at γ equal to zero only

marginally less at 11.89, these results are roughly 20% higher than the MSNE payoffs. When faced

with the fp3 CA, since it detects three-period patterns it would be reasonable to expect that the

re2 algorithm would be more susceptible than when it is playing against an fp2 algorithm. This is

indeed the case as it dips below MSNE payoffs at a much lower value of γ, namely at 0.8.

Turning now to the spd algorithm, due to the very different nature of this algorithm compared

to fp2 and fp3 it is expected that the results of the simulations will be very different. This is indeed

the case, with the most striking feature being the reversal of the robust inverse relationship between

memory depth and payoffs found for fp2 and fp3. For all three re algorithms, payoffs were lowest

for low values of γ, but these algorithms could achieve greater than MSNE payoffs by increasing

their memory depth. Re1 is strictly dominated by re2 and re3 over all parameter values whilst

re2 achieved the highest payoffs this time (but did not strictly dominate re3 which did significantly

better for low γ). The highest average payoff of 19.2 was achieved by re2 when γ equaled 0.75, making

the spd algorithm the worst performer when pitted against the chosen agents and optimal γ values.

Re1 average payoffs are below MSNE payoffs for all values of γ except one. This particularly bad

result breaks the previous excellent results of re1 and in particular of the ws/ls heuristic. However,

this was to be expected as the spd algorithm was designed specifically to exploit ws/ls behavior in

opponents.

Simulating various i.i.d. mixed strategies against the fp2 and fp3 algorithms would not be par-

ticularly interesting because these algorithms would obviously be able to take advantage of such

deviations from the MSNE. However, the spd algorithm is not designed to directly exploit such

behavior, and therefore mixed strategies of varying probability distributions over actions will be

simulated against the spd algorithm in order to ascertain whether there may be a relatively easy

way of exploiting this algorithm. The results are given in Figure 13 which plots average payoffs for

varying values of the average proportion of blue actions played by the agent. The highest possible

payoff of 12.52 is achieved by playing blue roughly 55% of the time, so that an improvement of

roughly 25% over MSNE payoffs was possible against this algorithm only by modifying first-order

play. However, this improvement is much less than the improvements achieved by the re2 and re3

algorithms and therefore there is a significant incentive for agents to switch to these algorithms

despite the increased computational cost.

7.2 Have subjects learned the approximately optimal strategies derived from the simulations?

The EWA and probit models found subjects to be predominantly using the ws/ls heuristic against

the fp2 and fp3 algorithms. Although the ws/ls heuristic (executed perfectly with no error or

noise), or re1(0), is a very good general strategy against the fp2 and fp3 algorithm as it earns more

than the MSNE payoffs, subjects often did not perform significantly better than MSNE payoffs

probably because of the noise in their decision processes. As a result of this, human subjects playing
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Figure 12 Payoffs to simulated agents playing against the computer algorithms (grouped by computer
algorithm)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−5

0

5

10

15

20

φ

fp2

 

 

  
  
  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

φ

P
ay

o
ff

s 
o
f 

re
in

fo
rc

em
en

t 
le

ar
n
in

g
 a

g
en

ts

fp3

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

φ

  
  
  

spd

 

 

re1 re2 re3

re1 re2 re3

re1 re2 re3

54



Figure 13 Payoffs to simulated agents with fixed i.i.d. proportions of actions against the spd CA
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against the fp2 algorithm did not earn payoffs significantly higher than the MSNE payoffs and

against the fp3 algorithm in the first position ended up making significantly less than this. In all

fairness however, adopting re2 and re3 would have significant additional computational cost without

necessarily large increases in payoffs. Against the spd algorithm humans did much better although

again not as well as the simulated reinforcement learning algorithms suggest they could. However,

average payoffs are quite close to what could be expected if subjects simply altered their first-order

behavior (assuming i.i.d. behavior). In this case compared to the proportion of actions played against

the other two algorithms, human subjects moved towards and ended up very close to the optimal

first-order frequency of play against the spd algorithm of roughly 0.5, as shown in Figure 13.

Subjects displayed the ability to detect significant changes to optimal strategies such as the

superiority of a small φ value against fp2 and fp3, versus the superiority of a large φ parameter

against spd. From the results in Section 4, they clearly modulated the properties of their nth-

order behavior according to the ability of each algorithm to exploit deviations from i.i.d. behavior.

Subjects shifted from underalternation against fp2 and fp3 to overalternation against the spd CA.

Also, the number of players that were not deemed to be playing independently was much higher for

the spd algorithm, which is not as adept at detecting such deviations from MSNE play as the fp2

and fp3 algorithms. From the probit regressions in Section 5.1.1, against the spd CA they quickly

learned to avoid strongly conditioning on Ct−1 which they had done against fp2 and fp3, and instead

conditioned strongly on Ct−2 which the spd algorithm was not designed to detect. This matches well

with the simulations against the spd algorithm where re2 and re3 clearly dominate re1, from which

it can be inferred that higher-order information is indeed useful against the spd CA.

In conclusion, subjects avoided strategies that were clearly inferior and altered their strategies in

the direction of best response, but did not perfectly adopt the optimal strategies derived from the

simulations.
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8 Conclusion

The purpose of this paper is to offer novel analyses to questions of strategy and behavioral modeling of

humans engaged in games with a unique mixed strategy Nash equilibrium through the use of human

versus computer algorithm experiments. The increase in experimental control through the use of

computer algorithms as subjects’ opponents allows for more powerful tests of hypotheses and also

allows new hypotheses to be tested. As a consequence, it is possible to disentangle within-subjects

heterogeneity resulting from adapting to opponents’ behavior, and between-subjects heterogeneity

resulting from differences in individuals’ strategies against the same opponents.

The most important results to be derived from this research are the following. Subjects were

found to adopt extremely similar strategies against the same opponents, so much so that models

pooled by computer opponent (CA), did on average better at predicting out-of-sample behavior

than individually estimated models. Hence, it is clear that between-subjects heterogeneity is not

particularly important in modeling behavior. In contrast, it was found that subjects’ behavior was

strongly conditioned on their computer opponent, thereby exhibiting within-subjects heterogeneity.

Subjects’ play changed radically as the estimated memory parameter in the EWA models, which lies

on the interval between zero and one, was estimated as being zero against two computer opponents

and one against the other. In the probit models, conditioning against the fp2 and fp3 CAs was

primarily on the first lag of the CA’s action but against the spd CA this changed significantly as

conditioning switched to the second lag of the CA’s action. These results confirm that within-subjects

heterogeneity is extremely important and is the major driver of the general heterogeneity observed

in subjects’ play.

Another important result is the effectiveness of simple heuristics in predicting out-of-sample

behavior of subjects compared to more complex alternatives. Once experimental control is restored by

using computer algorithms as subjects’ opponents, the EWA models exhibit estimated parameters at

the extremes of the EWA cube, where this rule collapses into simple heuristics like the win-stay/lose-

shift heuristic if the memory parameter is zero or standard weighted fictitious play if it is equal to

one i.e. perfect memory. These results are at the heart of what Gigerenzer (2000) and Gigerenzer

and Selten (2001) refer to as an adaptive toolbox. They contend that humans are equipped with a

toolbox of simple yet effective heuristics that have been sculpted by evolution to fit the properties

of the environment, instead of the complex models usually postulated by economists.

Subjects were initially challenged to find effective counterstrategies to a pattern-detecting fic-

titious play algorithm which utilized the history of three consecutive time period actions of the

subjects. They earned significantly less than MSNE payoffs when this was the first algorithm they

faced, but with more experience they managed to raise payoffs to the MSNE level when they played

this algorithm last. They were much more effective at outperforming a two-period pattern detecting

fictitious play algorithm and an algorithm that detects whether subjects are conditioning play on

the computer algorithm’s previous action (this includes the popular win-stay/lose-shift heuristic).

Subjects exhibited surprisingly poor performance when asked to state what they thought was

the frequency of the CA’s actions in past rounds, whilst displaying significantly higher accuracy for

their own actions. This may be evidence that reinforcement learning is a better representation of

learning than fictitious play since the latter requires information about the probability distribution

over opponents’ actions but not over own actions. This striking result warrants further investigation

and in particular should be expanded to examine n-period combinations of actions.
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Transfer of learning was exhibited by subjects as they learned not only within rounds of play

against the same algorithm, dubbed opponent-specific learning, but also across CAs, specifically

between the first two of the three CAs presented to them, referred to as game-specific learning.

Simulations of pattern-detecting reinforcement and fictitious play algorithms competing against

each other yielded some interesting conclusions. The first was the relatively good performance of the

win-stay/lose-shift heuristic against much more complex algorithms such as two- and three-period

pattern detecting fictitious play algorithms. This lends credibility to the evidence that subjects often

bring the win-stay/lose-shift heuristic into experimental studies, as it is a strategy that seems to

be effective in a wide variety of environments, especially ones exhibiting positive serial correlation.

These simulations provided approximately optimal strategies against each CA, which can be used as a

benchmark to determine whether subjects learned to adapt their behavior towards these strategies.

In particular, first-order play, the use of the win-stay/lose-shift heuristic, the i.i.d. properties of

behavior and the memory depth they employed were all found to differ significantly against the CAs

indicating that subjects learned to tailor these strategies to each CA opponent. More importantly,

the changes in behavior of these three strategies were in the direction of better responding to each

CA, although subjects did not employ them optimally. For example, subjects’ actions were closer to

i.i.d. behavior when they faced the three-period pattern detecting algorithm, they stopped using the

win-stay/lose-shift heuristic when playing against the spd CA which could detect this and they also

increased their memory depth in the EWA model drastically against the spd CA which is exactly

what the simulations prescribed.

The results from this study were extremely similar to the results of a similar study conducted

with monkey subjects playing against computerized opponents. In particular, both studies used

similar games and computer algorithms as opponents, and the estimated memory parameters of

behavioral models were virtually identical, including the changes in these parameters with different

computer opponents. From this it can be inferred that the learning process was likely an automatic

or subconscious process, as otherwise it would be reasonable to assume that human and monkey

behavior would diverge significantly.

Concluding, the increase in experimental control, through the use of computer algorithms as

humans’ opponents in this study, has allowed the disambiguation of within-subjects heterogeneity

from between-subjects heterogeneity which was blurred in prior human versus human experiments.

Furthermore, it has led to the observation that simple heuristics can explain out-of-sample data

against the same opponent better than the complicated models usually postulated in the literature,

such as EWA, which had a tendency to overfit the data. The simulations of various agents allowed

the discovery of near optimal strategies against the computer algorithms used and provided insights

as to the evolutionary fitness and robustness of various strategies when matched against each other.

These conclusions were possible only due to the use of computerized agents or algorithms, testifying

to the usefulness of such techniques in the research methods of experimental game theory.

Direct extensions of this work for future research could include a larger variety of computer

algorithms, including pattern detection capabilities of higher order pattens. As computational power

increases the simulations of different pattern detecting algorithms could be furthered to include a

larger variety of algorithms and parameter values.

Further directions for this line of research include a detailed examination of the inherent tradeoffs

regarding stochastic or noisy decision rules. In particular, the determination of the optimal amount
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and parametric form of noise that would render the underlying belief formation model immune

to detection by human opponents, but at the same time satisfy the competing goal of retaining

enough aggressiveness to exploit human behavior. The use of human/CA experimental designs could

be applied to other strategic situations, such as auction markets, and to exploit other behavioral

weaknesses of humans, such as endowment effects, preference reversals, expected utility anomalies,

the Winner’s curse et cetera.

Changes in strategic behavior in this paper were determined by the inference of learning models

and their parameters from action data. Another interesting methodology would be to combine this

with a neuroeconomic approach whereby the players’ neural activity would be monitored whilst

participating in the experiments. Changes in strategizing would then be directly measured through

neural activity in various areas of the brain rather than indirectly through estimation of learning

rules, leading to invaluable new insights.
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A Comparison of results with Barraclough et al. (2004)

Barraclough et al. (2004) conducted a very similar study with monkey subjects playing against

computer algorithms comparable to the ones investigated in this paper. What is even more interesting

is that both papers exhibit extremely similar results for both human and monkey subjects, warranting

special attention.

In their paper, two monkeys are engaged in playing a simple zero-sum game, matching pennies,

against three different computer algorithms. All monkeys played the computer algorithms in the

same order: algorithm 0 first, then algorithm 1 and finally algorithm 2.

Algorithm 0 chose both available actions with equal probability i.e. played the mixed strategy

Nash equilibrium of this game. Against this algorithm the monkeys had no incentive to converge

to the MSNE or any other particular strategy as their expected payoffs were independent of their

actions.

Algorithm 1 had access to all the past moves of the monkeys in each trial and calculated the con-

ditional probabilities of play given the last four actions of the monkeys. For each of these conditional

probabilities binomial tests were conducted of the null hypothesis that these were not significantly

different from zero at the 5% level. If the null hypothesis was not rejected for any of the tests then

the computer algorithm assumed that the monkey was playing according to the MSNE and therefore

also reverted to doing the same i.e. playing as algorithm 0. If only one of the tests was significant

then this conditional probability was used to calculate the algorithm’s best response. The algorithm

responded probabilistically, in particular if the conditional probability that the monkey would play a

particular action was p, then the computer algorithm would play its best response to that action also

with probability p. In such a setup the optimal behavior of the subjects is to play according to the

MSNE (including the i.i.d. condition). This algorithm is very similar to the fp2 and fp3 algorithms

used in this paper with the difference that these algorithms did not test over many different time

periods and did not perform significance tests as to whether deviations from i.i.d. behavior were

significantly different from random deviations.

Algorithm 2 is the same as algorithm 1 with the addition of lagged payoffs (one to four lags)

in the computer algorithm analysis. This means that the computer algorithm could now detect

whether monkeys were conditioning on the algorithm’s past play (through the interaction of payoffs

and computer algorithm actions) and therefore the payoff maximizing strategy of the monkeys was

to play not only independently of own past play but also independently of the computer algorithm’s

past play. Hence, algorithm 2 could detect and exploit possible ws/ls behavior on the part of the

monkeys. This algorithm is analogous to the spd algorithm in this study since both are able to

detect and exploit ws/ls behavior in opponents. The difference is that algorithm 2 could also detect

conditioning on subjects’ own actions whereas the spd algorithm could not, thereby opening an

avenue for subjects to exploit this algorithm using strategies different from the ws/ls heuristic.

A comparison of the four main results of Barraclough et al. (2004) and analogous results from

this paper follows.

1. The monkey subjects used the ws/ls heuristic with increasing frequency against algorithm 2,

algorithm 1 and algorithm 0. Hence, they used the ws/ls heuristic least against algorithm 2

which was able to exploit this, and more when playing against algorithm 1 which could not

detect it. What is interesting is that even against algorithm 0, where the ws/ls heuristic does
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Table 22 Estimated memory decay parameters

Monkey Algorithm 0 Algorithm 1 Algorithm 2

C 0.99 0.18 0.99
E 0.68 0.17 0.83

Average 0.84 0.17 0.91

not confer a competitive advantage, monkeys still had a bias towards using the ws/ls heuristic.

This result together with the widespread findings that the ws/ls heuristic can be found in a wide

range of games and human behavior lead us to conclude that it is the first strategic choice of

human and animal subjects. Spiliopoulos (2008) finds that use of the ws/ls heuristic is quite

widespread in the experimental data of Nyarko and Schotter (2002) and that simulations of the

ws/ls heuristic against a fictitious play algorithm with full memory and a two-period pattern

detecting variant of fictitious play conclude that the ws/ls outperforms these computationally

more complex strategies. The ws/ls heuristic is a smart evolutionary strategy if environments are

relatively stable and invariant as in this case, an action that provided a positive reinforcement

in the past will also on average do so in the future i.e. the environment exhibits positively

correlated events. Nowak and Sigmund (1993) find that the ws/ls heuristic outperforms the tit-

for-tat strategy and is more robust and resistant to invasion from other strategies in iterated

Prisoners’ Dilemma games. Siebrasse (2000) discovers that a generalized version of the ws/ls

heuristic dominates populations of strategies that evolve through time via the application of

genetic algorithms.

2. Against algorithms 1 and 2 which are able to exploit non-i.i.d. behavior, such as conditioning on

own past actions, the monkeys’ play was much closer to i.i.d. behavior than against algorithm 0

which could not detect them. The use of algorithm 0 is interesting because it can be used to infer

what strategies or dependencies are brought into the experiment rather than being learned in the

experiment, since MSNE behavior by the CA leaves the subject indifferent to its own strategies.

3. Simple reinforcement learning models were modeled in their study requiring the estimation of a

memory parameter, γ. Table 22 gives the estimated memory parameters from the reinforcement

learning models they estimated. The most interesting results are for those of algorithms 1 and 2

which as argued above correspond to algorithms fp2, fp3 and spd. Algorithms fp2 and fp3 are

special cases of algorithm 1 and the spd algorithm is a special case of algorithm 2. In this paper’s

results we find that against fp2 and fp3 computer opponents the estimated γ was close to zero

but against the spd algorithm this was close to one and exactly the same pattern emerges from

their study. Algorithm 1, which is the analogue of fp2 and fp3, exhibits a low average estimated

γ, 0.17, whereas against algorithm 2, which is the analogue of the spd algorithm, the estimated

γ is 0.91. Even though this study allowed for much more complex behavior by modeling subjects

using the EWA learning rule, of which reinforcement learning is a special case, it is found that the

same simple strategies predict behavior against similar algorithms in both our human subjects

and their monkey subjects equally well.

4. Evidence was found of individual neurons encoding information as to the previous choice and re-

ward of monkeys’ actions and of the conjunction of these, which are necessary for the computation

of a reinforcement learning algorithm.
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B Computational details of model estimation and optimization

The problem of choosing initial parameter values for optimization algorithms is usually solved with

one of two techniques.

1. Performing the optimization many times with randomly chosen parameter values from a restricted

parameter space. The problem with this method is that for a large number of parameters it is

necessary to use a large number of random initial points which means that an already computa-

tionally expensive optimization routine must be run a large number of times.

2. Performing a grid search over plausible parameter values and then choosing the best combination

of parameter values (or a set of the best performing combinations) as initial starting points for the

optimization algorithm. For a large number of parameters this technique is also computationally

expensive as the number of possible initial grid values increases exponentially in the number of

parameters (keeping the grid distance constant).

These two techniques are computationally inefficient because their search is not directed - in the

first case points are chosen randomly, in the second case deterministically but arbitrarily. This

occurs because the points are determined before the algorithm starts and are not updated with

new information obtained during the execution of the algorithm. Incorporating this new information

would lead to an increase in efficiency as the algorithm could increase sampling from areas of the

parameter space that show promise and are more likely to lead to better solutions. We propose

instead the use of genetic algorithms where the search is influenced and directed by information

collected throughout the procedure, see Mitchell (1999) for an introduction.

Genetic algorithms use three main evolutionary principles or operators to guide the search for

an optimum.

1. Start with an initial (usually randomly selected) population of combinations of parameters and

estimate the objective function for each one.

2. Apply a selection rule by selecting a subset of the best performing parameter combinations which

will serve as the parents of the next generation.

3. Apply a crossover rule to combine two parents and create children for the next generation. This

entails randomly selecting features from the two parents and combining them to form a new

parameter combination.

4. Apply a mutation rule to chosen parents so as to randomly change features of the parent and

create a child for the next generation.

Repeating the above three rules for each successive generation creates a process similar to natural

or Darwinian selection. The selection rule guides the algorithm so that it spends more time in

regions of parameter space which have been more successful in the past and therefore reduces the

computational time devoted to scanning clearly suboptimal regions in the parameter space. The

drawback is that it may wrongly become stuck in a suboptimal area. This is where the mutation

rule is useful since it forces the algorithm to keep experimenting in other areas of the parameter

space regardless of their past performance. The crossover rule allows for the process to quickly and

efficiently hone in to a good solution by combining the characteristics of good performers.

Genetic algorithms are very well suited for problems that are discontinuous, nondifferentiable,

stochastic, or highly nonlinear. Although quite often the genetic algorithm procedure is used by itself
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to perform the whole optimization routine, we propose to use it only to obtain initial parameter

values. These will then be used to start another algorithm that is more suited to locally searching

the parameter space and refining these initial parameter values found by the genetic algorithm.

As argued in the main text, the family of gradient descent techniques may not be well suited to

this specific problem and therefore the Nelder and Mead (1965) Simplex Method was implemented

instead.

C Mean absolute deviations (MAD) versus mean square deviations (MSD) as an error

measure of performance

Minimizing the MAD of a model instead of the MSD has a number of important advantages that are

particularly important for this study. Mitropoulos (2001) finds that it is generally the case that MSD

minimization tends to select learning rules that make predictions closer to a uniform distribution

rather than a distribution of predictions near to the bounds. In response to this problem the MAD is

proposed as the error measure, since it does not excessively penalize larger absolute errors. Gorard

(2005) provides evidence for preferring MAD over MSD particularly on the grounds of efficiency.

Although Fisher (1920) defended the use of MSD over MAD by arguing that the former was more

efficient than the latter, the assumptions he made were extremely strong - he assumed normality

and no observation or measurement error. Huber (1981) did away with these strict assumptions and

found that MAD is in fact more efficient than MSD whenever the percentage of error points in the

total observations is greater than 0.2%26. Wilson (1978) surmises that MAD is dramatically more

efficient than MSD in the presence of outliers contaminating the dataset. The superiority of MAD

over MSD for non-normal distributions was pointed out by Fisher himself and has been verified

through the use of Monte Carlo techniques. This is extremely important for this study as error

distributions of fitted stated beliefs will clearly be non-normal as argued earlier. In addition to this,

the error distributions of the estimated models will not be evenly distributed around the function, i.e.

will be asymmetric, in which case Matheson (1990) concludes again that MAD should be preferred

over MSD.

D Tables of individually estimated EWA model parameters

26 If the percentage of error points is 5% then MAD is twice as efficient as MSD.
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Table 23 Parameter estimates and measures of fit of individually estimated EWA models of subjects playing against the fp2 algorithm

Parameter estimates Measures of fit

Player κ δ φ λ A
j
i (0) N(0) POI POI-CV MSD MSD-CV MAD MAD-CV

1 0.00 0.26 0.00 10.00 140.00 0.00 26.12 27.27 0.26 0.27 0.26 0.27
2 0.10 0.81 0.99 0.37 -131.05 5.66 20.15 42.42 0.19 0.40 0.20 0.41
3 1.00 0.36 0.66 9.39 -137.20 50.47 18.66 27.27 0.18 0.27 0.19 0.27
4 1.00 0.00 0.60 10.00 -0.21 673.13 29.10 30.30 0.29 0.30 0.29 0.30
5 1.00 1.00 0.33 9.99 -13.08 13.36 18.66 18.18 0.18 0.18 0.19 0.18
6 0.00 0.00 0.00 10.00 -134.68 0.00 33.58 39.39 0.33 0.39 0.34 0.39
7 0.00 1.00 0.00 10.00 94.87 94.99 14.18 24.24 0.14 0.24 0.14 0.24
8 0.99 0.66 0.86 1.37 -89.11 656.48 27.61 48.49 0.27 0.48 0.28 0.48
9 1.00 0.30 0.85 9.52 -11.48 0.01 35.08 45.46 0.35 0.45 0.35 0.45
10 1.00 0.37 0.00 10.00 140.00 0.00 20.15 24.24 0.20 0.24 0.20 0.24
11 0.90 0.99 0.84 8.41 77.09 32.35 39.55 45.45 0.39 0.45 0.40 0.45
12 0.00 0.00 0.00 10.00 140.00 78.10 30.60 45.46 0.30 0.45 0.31 0.45
13 0.00 0.00 0.00 10.00 -50.98 50.48 29.10 27.27 0.29 0.27 0.29 0.27
14 1.00 1.00 0.31 10.00 124.44 0.00 5.22 9.09 0.05 0.09 0.05 0.09
15 0.94 1.00 0.34 10.00 16.31 64.15 15.67 30.30 0.16 0.29 0.17 0.30
16 0.00 1.00 0.00 10.00 140.00 95.75 24.63 27.27 0.24 0.27 0.25 0.27
17 0.46 1.00 0.49 10.00 140.00 0.00 18.66 27.27 0.18 0.27 0.19 0.27
18 0.46 0.00 0.00 10.00 140.00 140.72 33.58 39.39 0.33 0.39 0.34 0.39
19 0.98 0.79 0.98 5.26 46.60 72.91 29.10 45.46 0.29 0.45 0.29 0.45
20 0.03 0.98 0.19 6.99 -50.73 33.21 18.66 24.24 0.18 0.24 0.19 0.24
21 1.00 0.00 0.42 0.00 -52.92 9.18 50.00 50.00 0.25 0.25 0.50 0.50
22 0.97 0.49 0.94 8.67 27.90 23.15 21.64 36.36 0.21 0.36 0.22 0.36
23 0.32 0.95 0.00 10.00 -41.23 0.00 33.58 36.36 0.33 0.36 0.34 0.36
24 1.00 0.11 0.00 10.00 -140.00 4.15 18.66 39.39 0.18 0.39 0.19 0.39
25 1.00 1.00 0.00 10.00 82.97 113.54 33.58 24.24 0.33 0.24 0.34 0.24
26 1.00 0.37 0.86 10.00 134.68 318.66 33.58 45.46 0.33 0.45 0.34 0.45
27 0.46 0.10 1.00 3.64 121.86 25.75 26.12 21.21 0.26 0.21 0.26 0.21
28 0.37 0.56 1.00 1.92 111.70 21.80 27.61 36.36 0.27 0.36 0.28 0.36
29 0.10 0.66 0.14 9.33 -22.06 55.86 24.63 24.24 0.24 0.24 0.25 0.24
30 0.82 1.00 0.00 10.00 -19.67 96.22 12.69 24.24 0.12 0.24 0.13 0.24
31 0.98 0.89 1.00 0.57 -140.00 20.71 35.08 45.46 0.34 0.45 0.34 0.46
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Table 24 Parameter estimates and measures of fit of individually estimated EWA models of subjects playing against the fp3 algorithm

Parameter estimates Measures of fit

Player κ δ φ λ A
j
i (0) N(0) POI POI-CV MSD MSD-CV MAD MAD-CV

1 0.90 0.67 0.00 10.00 140.00 14.93 29.10 39.39 0.29 0.39 0.29 0.39
2 1.00 0.75 1.00 4.00 17.39 40.34 38.06 30.30 0.38 0.30 0.38 0.30
3 0.97 0.00 0.00 1.45 111.77 26.61 39.55 30.30 0.39 0.30 0.40 0.30
4 0.93 0.44 0.35 10.00 139.99 122.40 24.63 33.33 0.24 0.33 0.25 0.33
5 1.00 0.48 0.30 10.00 -66.04 2.11 17.16 18.18 0.17 0.18 0.17 0.18
6 1.00 0.00 0.99 4.90 -138.88 0.00 50.00 39.39 0.50 0.39 0.50 0.39
7 0.82 0.00 0.17 10.00 -140.00 156.13 18.66 30.30 0.18 0.30 0.19 0.30
8 0.99 1.00 0.93 0.01 140.00 1000.00 36.57 36.36 0.35 0.35 0.36 0.36
9 1.00 0.00 0.18 0.00 35.92 34.65 50.00 50.00 0.25 0.25 0.50 0.50
10 0.72 0.62 0.98 2.82 98.27 68.56 26.12 33.33 0.26 0.33 0.26 0.33
11 1.00 0.23 0.55 10.00 140.00 78.73 32.09 60.61 0.32 0.61 0.32 0.61
12 1.00 1.00 0.90 3.76 139.98 7.80 24.63 39.39 0.24 0.39 0.25 0.39
13 0.77 0.65 0.95 5.60 -82.58 38.19 21.64 33.33 0.21 0.31 0.22 0.32
14 0.91 0.00 0.13 10.00 -139.96 224.69 32.09 39.39 0.32 0.39 0.32 0.39
15 1.00 1.00 0.34 10.00 139.87 0.01 29.10 33.33 0.29 0.33 0.30 0.33
16 0.11 0.00 0.00 10.00 6.81 25.10 35.08 45.46 0.35 0.45 0.35 0.45
17 0.75 0.85 0.92 10.00 131.06 1.54 36.57 36.36 0.36 0.36 0.37 0.36
18 1.00 0.87 0.94 7.52 5.47 13.32 26.12 51.52 0.26 0.52 0.26 0.52
19 0.69 0.75 0.98 3.58 59.26 33.34 33.58 45.46 0.33 0.45 0.34 0.45
20 0.00 0.15 0.20 10.00 22.46 0.28 30.60 15.15 0.30 0.15 0.31 0.15
21 1.00 0.00 0.40 0.00 140.00 0.00 50.00 50.00 0.25 0.25 0.50 0.50
22 0.00 1.00 0.00 2.16 37.11 147.74 32.09 33.33 0.32 0.33 0.32 0.33
23 0.73 0.01 0.00 10.00 -140.00 8.28 20.15 18.18 0.20 0.18 0.20 0.18
24 1.00 0.80 0.00 10.00 41.76 0.00 29.10 15.15 0.29 0.15 0.29 0.15
25 1.00 0.97 0.00 10.00 -140.00 299.68 35.08 36.36 0.35 0.36 0.35 0.36
26 0.71 1.00 0.01 0.80 8.48 2.06 41.05 42.42 0.41 0.42 0.41 0.42
27 1.00 0.00 0.05 1.61 -118.82 0.16 33.58 27.27 0.33 0.27 0.34 0.27
28 0.94 0.17 0.74 10.00 86.50 73.68 18.66 42.42 0.18 0.42 0.19 0.42
29 0.58 0.00 0.00 10.00 140.00 48.05 39.55 24.24 0.39 0.24 0.40 0.24
30 0.57 0.66 0.00 10.00 140.00 0.00 20.15 30.30 0.20 0.30 0.20 0.30
31 0.35 0.11 0.00 10.00 140.00 195.56 51.49 39.39 0.51 0.39 0.51 0.39
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Table 25 Parameter estimates and measures of fit of individually estimated EWA models of subjects playing against the spd algorithm

Parameter estimates Measures of fit

Player κ δ φ λ A
j
i (0) N(0) POI POI-CV MSD MSD-CV MAD MAD-CV

1 0.89 0.00 0.43 7.96 15.35 0.00 36.57 30.30 0.36 0.30 0.37 0.30
2 0.97 0.07 0.99 0.28 43.48 30.57 27.61 33.33 0.27 0.33 0.28 0.33
3 1.00 1.00 0.73 10.00 -17.74 0.00 33.58 60.61 0.33 0.61 0.34 0.61
4 1.00 0.06 1.00 0.01 -76.17 77.36 5.22 0.00 0.05 0.00 0.05 0.00
5 0.61 0.81 0.00 10.00 79.28 51.06 36.57 30.30 0.36 0.30 0.37 0.30
6 1.00 0.00 0.92 10.00 70.20 204.93 24.63 45.46 0.24 0.46 0.25 0.46
7 0.14 0.32 0.98 4.68 35.62 97.40 24.63 15.15 0.24 0.15 0.25 0.15
8 1.00 0.56 0.50 10.00 -139.99 0.25 39.55 48.49 0.39 0.48 0.40 0.48
9 0.94 1.00 0.76 9.89 -29.30 7.77 33.58 42.42 0.33 0.42 0.34 0.42
10 0.45 0.56 0.00 10.00 135.98 0.00 51.49 48.49 0.51 0.48 0.51 0.48
11 1.00 0.00 0.26 9.89 -33.88 3.55 41.04 33.33 0.41 0.33 0.41 0.33
12 1.00 0.00 0.61 10.00 0.67 84.80 30.60 48.49 0.30 0.48 0.31 0.48
13 1.00 0.00 0.89 10.00 -7.27 0.19 21.64 15.15 0.21 0.15 0.22 0.15
14 0.95 0.11 0.85 10.00 -10.77 9.59 39.55 51.52 0.39 0.52 0.40 0.52
15 0.62 0.00 0.07 10.00 140.00 0.00 36.57 27.27 0.36 0.27 0.37 0.27
16 0.76 0.61 0.98 7.32 15.51 9.24 21.64 36.36 0.21 0.36 0.22 0.36
17 0.84 0.00 0.39 10.00 40.90 24.05 18.66 39.39 0.18 0.39 0.19 0.39
18 1.00 0.00 0.00 0.00 -57.82 41.20 50.00 50.00 0.25 0.25 0.50 0.50
19 1.00 0.04 0.63 9.89 129.62 95.07 35.08 45.46 0.35 0.45 0.35 0.45
20 0.03 1.00 0.00 1.16 -139.99 7.72 44.03 60.61 0.44 0.61 0.44 0.61
21 1.00 0.00 0.86 10.00 33.53 155.24 45.52 39.39 0.45 0.39 0.46 0.39
22 1.00 0.82 0.00 10.00 140.00 0.00 45.52 54.55 0.45 0.55 0.46 0.55
23 0.99 0.97 0.49 9.79 -107.79 36.88 30.60 39.39 0.30 0.39 0.31 0.39
24 0.98 0.01 0.91 3.43 -43.47 26.51 38.06 42.42 0.38 0.42 0.38 0.42
25 1.00 0.68 0.46 10.00 139.93 1.64 38.06 42.42 0.38 0.43 0.38 0.43
26 0.64 0.65 0.99 8.51 45.70 24.13 18.66 27.27 0.18 0.27 0.19 0.27
27 0.97 0.12 0.00 7.42 -64.15 184.60 48.51 60.61 0.48 0.61 0.49 0.61
28 0.82 1.00 0.00 10.00 -140.00 114.61 48.51 45.46 0.48 0.45 0.49 0.45
29 0.17 0.00 0.00 10.00 -6.24 47.91 36.57 48.49 0.36 0.48 0.37 0.48
30 0.16 0.75 0.90 9.98 -139.52 2.67 36.57 48.49 0.36 0.48 0.37 0.48
31 1.00 0.00 0.27 10.00 -95.98 278.62 27.61 39.39 0.28 0.39 0.29 0.40
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