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Abstract

This paper proposes a multi-winner noisy-ranking contest model. Contestants are ranked in a

descending order by their perceived outputs, and rewarded by their ranks. A contestant’s perceivable

output increases with his/her autonomous e�ort, but is subject to random perturbation. We establish,

under plausible conditions, the equivalence between our model and the family of (winner-take-all and

multi-winner) lottery contests built upon ratio-form contest success functions. Our model thus provides

a micro foundation for this family of often studied contests. In addition, our approach reveals a common

thread that connects a broad class of seeming disparate competitive activities and uni�es them in the

nutshell of ratio-form success functions.
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1 Introduction

A wide class of competitive activities can be viewed as contests, in which all participants forfeit

scarce resources, regardless of winning or losing.1 Due to the ubiquity of such phenomenon, an

enormous amount of scienti�c literature has been developed to uncover the strategic nature of

contests.

It has long been recognized in the literature that contestants’ incentives and behaviors could

sensitively respond to the rules of the competitive events. Central to the rules of a contest is the

mechanism that picks the winners and distributes the prizes. The selection mechanism can be

technically described in formal modelling as contest success functions that map contestants’ e�ort

entries into the likelihood of every contestant winning each prize. A lion’s share of the existing

literature concerns itself with winner-take-all contests where all tangible reward goes to a single

winner. To model this type of contests, a handful of theoretical frameworks have been independently

proposed and studied. One of (perhaps the most) widely adopted approaches is the lottery contest

model that assumes a ratio-form contest success function,2 with the Tullock contest model as its

most popular special case.3 This framework provides an intuitive and tractable abstraction of a

complex selection process in the presence of randomness, and has been axiomized by Skaperdas

(1996).

The prevalence of multiple-winner contests in reality naturally generates the demand for the-

ories on such phenomenon. A growing literature has emerged to �ll in this gap and has supplied

important results on strategic behaviors in multiple-winner contests. Clark and Riis (1996 and

1998a) modify the basic Tullock contest framework, and propose a multiple-winner nested contest

model to allow a block of prizes to be distributed. Assuming ratio-form success functions as its

building block, this model conducts a series of conditionally independent (single-winner) “lotter-

ies”, and lets each of them “draws” one recipient for a prize until all prizes are given away.4 The

1 Illustrative examples include college admissions, in�uence politics, sports, war and con�icts, internal labor market

competition, etc.
2The winning likelihood �� of a contestant � is given by the ratio of the output of his/her e�ort to the total

outputs contributed by the entire pool of competitors, i.e., �� = ��(��)�
��

�=1

��(��), where the output production

function ��(��) is an increasing function of e�ort ��.

3The Tullock model assumes a contestant’s output is a power function of his/her e�ort outlay, i.e., �� = �
�
� �

��

�=1

��� ,

with � � 0.
4As a result, the conditional probability of a remaining contestant to be selected in the next “draw” is independent
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nested contest model o�ers so far the most reasonable and the most prominent alternative to de-

termine multiple winners based on ratio-form contest success functions.5 �6 However, the sequential

implementation of independent lotteries runs in contrast to the presumption of the model that

contestants simultaneously commit to their one-shot e�ort entries. The legitimacy and plausibility

of this framework have yet to be justi�ed when it is applied to contests that distribute multiple

prizes as one batch.7 More importantly, a micro foundation still lacks to support the sequential

lottery contest. The selection mechanism underlying each single lottery, as well as the entire prize

distribution process, remains in a “black box”.

As Konrad (2007) points out in his thorough survey of economic studies on contests, a contest

can be naturally regarded as a competitive event where contestants expend costly e�ort in order

to “get ahead of their rivals” (quoted from Konrad, 2007). By this natural de�nition, a contest,

regardless of the number of winners, requires the contest organizer to (at least partially) “order”

these contestants based on a rational preference relation. A ranking rule is therefore indispensable

to link the participants to the prizes, while it remains obscure for the family of lottery contests.

In this paper, we propose a multi-winner contest model that selects prize recipients through

a noisy ranking of contestants. We start from this framework to explore the logic that underlies

the family of lottery contest models (the winner-take-all lottery contest model and its multiple-

winner variant). In particular, this model involves a �xed number of economic agents (contestants)

who produce their outputs out of their inputs (e�ort entries) and contribute the outputs to a

rational decision maker (the contest organizer). The decision maker, who strictly prefers higher

outputs, ranks these contestants by their perceived outputs in a descending order. More speci�cally,

following the idea of McFadden (1973 and 1974), we model one’s perceivable output as the sum of

a deterministic component (a strictly increasing function of his/her e�ort) and a noise term that

follows a particular distribution. As a result, given a set of e�ort entries of contestants, and any

of the e�ort entries of contestants selected in previous “draws”.
5Besides Clark and Riis (1996, 1998a), the application of lottery contest models in multiple-winner settings can

be seen in the studies by Amegashie (2000), Yates and Heckelman (2001), Szymanski and Vallettiand (2005), and Fu

and Lu (2007).
6Another approach to model multiple-winner contests is multiple-prize all-pay auction model. A handful of studies

have contributed to this research agenda, which include Barut and Kovenock (1998), Moldovanu and Sela (2001),

and Moldovanu, Sela, and Shi (2006).
7One natural analogy would be the prize distribution rule in Gymnastics competition. Athletes are ranked purely

by their scores, while the score one receives depend on his/her e�ort as well as many other factors. Medals are

awarded to the three top ranked athletes.
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realization of noise terms, a complete ranking immediately arises. Each agent is therefore accorded

a prize of his rank. That is, the �-th ranked contestant (the agent who is associated the �-th highest

perceived output) wins the �-th prize. This type of rank-order prize allocation rule could be seen in

the studies by Glazer and Hassin (1988), Barut and Kovenock (1998), Moldovanu and Sela (2001),

etc.

We show that this model generates an outcome that is stochastically identical to that of a

lottery contest: For any given e�ort entries and production functions, (1) one’s probability of being

top ranked coincides with his/her winning odd in a winner-take-all lottery contest with the same

set of production functions; (2) when more than one prize is available, the ex ante likelihood of

every possible prize allocation plan perfectly corresponds to that in a sequential lottery process, as

described by the multiple-winner nested contest.8

These results establish the strategic equivalence between the two seemingly disparate frame-

works. This isomorphism therefore makes it possible to uncover the microeconomic underpinning

of the family of lottery contest models. It implies that a rational “preference relation” (ranking

system) can be “recovered” under the disguise of a ratio-form contest success function. In other

words, a complete, transitive and strictly monotonic ranking system indeed exists that generates

and rationalizes the popular ratio-form stochastic selection rule.

Our paper represents a continuing e�ort in the literature that attempts to bridge di�ering

modelling approaches and to illuminate the “black-box” of lottery contests. The pioneering study

of Baye and Hoppe (2003) reveals the strategic equivalence among research tournament models

(Fullerton and McAfee, 1999), patent race model (Dasgupta and Stiglitz, 1980), and winner-take-

all Tullock contests. We advance this line of research by investigating multiple-winner contests,

which demands a complete and transitive ordering of participants’ outputs in the presence of

randomness. These discoveries, however, naturally lead to more fundamentally important questions:

(1) Why could di�erent classes of contests be uni�ed under the same umbrella (ratio-form contest

success functions)?; (2) To what extent could such isomorphism continue to hold? In other words,

what kind of competitive activities can be abstracted as lottery contests? For this purpose, we

introspectively scrutinize our noisy-ranking model. A rationale for these issues unfolds as the

economic interpretation of our technical approach (McFadden, 1973, 1974) develops. The micro

foundation of lottery contests uncovered in our analysis enables us not only to connect a wide variety

8 In other words, the ex ante likelihood that a contestant is ordered on a 	-th rank equates to the probability a

contestant is selected for the 	-th draw in a multiple-winner nested contest.
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of observationally detached competitive activities, but also to explore in depth the unobserved

common thread that runs through these contests and imposes a conceptual limit on the scope of

this unity.

The rest of the paper is organized as follows. In Section 2 we set up the model, complete the

analysis, and brie�y discuss the implication of this model. In Section 3, we reinforce our argument

by presenting the “dual” problem to our original model. A concluding remark is provided in Section

4.

2 A Multi-Winner Noisy-Ranking Contest Model

2.1 Setup

We propose a multi-winner noisy-ranking contest model. � � 2 contestants, indexed by � �

I , {1� 2� ���� �}� simultaneously submit their e�ort entries x = (�1� � � � ��), to compete for � �

{1� 2� ���� �} prizes. Their e�ort outlays are not directly observable to the contest organizer. Never-

theless, the contest organizer perceives a noisy signal (	�) about contestant �’s output and evaluates

their performance through this signal. Following McFadden (1973, 1974), we assume that the noisy

signal (	�) is described through

log 	� = log 
�(��) + ��� �� � I� (1)

where the deterministic strictly increasing function 
�(·) : R+ � R+ measures the impact of contes-

tant �’s e�ort ��,
9 and the additive noise term �� re�ects the randomness in the production process

or the imperfection of the observation and evaluation process. We name 
�(·) the production func-

tion of contestant �. We de�ne g , {
�(·)� � � I}, which denotes the set of technologies. The

idiosyncratic noises � , {��(·)� � � I} are independently and identically distributed. It is worth

noting that the additive-noise ranking model (1) is equivalent to a multiplicative-noise ranking

model

	� = 
�(��)�̃�� �� � I� (2)

where the noise term �̃� is de�ned as �̃� , exp ��.

The � prizes are ordered by their values, with �1 � �2 � � � � � ��. We assume that each

contestant is eligible for at most one prize. As contestants’ outputs accrue to the bene�ts of the

9We de�ne log ��(��) = �� if ��(��) = 0.
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contest organizer, the contest organizer thus rank these contestants by their performance evaluations

(i.e., perceivable output log 	�) in a descending order. Prizes are allocated among contestants by

their ranks, given the availability of the prize. That is, the contestant who contributes the highest

perceivable output 	� receives �1, the one who contributes the second highest perceivable output

then receives �2, and so on until all prizes are given away.

When � = 1, the model degenerates to a winner-take-all contest, with the top-ranked contestant

to be the only winner. When � � 2, a multi-winner contest would follow, which requires a more

complete ranking among contestants to implement its prize allocation rule. For any given e�ort

entries x, a complete ranking among contestants immediately result from any realization of the

noise terms �. We assume a fair and random tie breaking rule. The probability of a contestant

� winning a prize �� is simply given by the probability that he/she is ranked at the �-th position.

This setup therefore embraces the notion that a contest is a competitive event where contestants

compete to “get ahead of others” (Konrad, 2007).10

In this paper, we impose virtually no restriction on the technology 
�(·), and the number of

prizes �. However, we follow McFadden (1973, 1974), and let the random component �� be drawn

from a type I extreme-value (maximum) distribution. Denote the cumulative distribution function

of �� by 
 (·), then we have


 (��) = ���
��� � �� � (���+�)� �� � I� (3)

and the density function is

�(��) = ������
��� � �� � I� (4)

The performance evaluation mechanism underlying this formulation will be discussed in Section

2.4, which reveals the economic implication of this seemingly peculiar distribution. Note that when

�� follows a type I extreme-value (maximum) distribution, then �̃� , exp �� must follow a Weibull

(maximum) distribution.

10This family of contest models include Lazear and Rosen (1981), Glazer and Hassin (1988), Fullerton and McAfee

(1999) etc. All these models link the top ranked contestant to a unique prize, while they di�er in the output

technology, the formulation of the random component, and therefore the probability of a contestant winning a prize

given the e�ort entries.
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2.2 The Equivalence to Lottery Contests

In this part, we will show that this noisy-ranking model is stochastically equivalent to the family

of lottery contests (winner-take-all lottery contests and multiple-winner nested contests).

In our setting, given the e�ort entries x, a contestant � is ranked ahead of another �, if and only

if

log 
�(��) + �� � log 
	(�	) + �	

	 �	 
 �� + log

�(��)


	(�	)
�

A contestant � would be top ranked if and only if

�	 
 �� + log

�(��)


	(�	)
��� � I\{�}�

In the setup of McFadden (1973, 1974), the decision maker cares about the top-ranked choice.

We therefore adapt the result established by McFadden (1973, 1974) to our contest setting.

Lemma 1 For any given x � 0 such that
P
	�I 
	(�	) � 0, the ex ante likelihood that a contestant

� achieves the top rank is

�(�|x) =

�(��)P
	�I 
	(�	)

� �� � I� (5)

The proof is omitted as it is available fromMcFadden (1973, 1974). By Lemma 1, the probability

of a contestant being top ranked can be written as a ratio between his/her output 
�(��), and the

sum of outputs contributed by all contestants. This winning probability exactly coincides with the

popularly assumed ratio-form contest success function of winner-take-all lottery contests, provided

that each contestant � produces his/her output through a technology 
�(��). Denote such a lottery

contest with contestants I and technology g by �(I�g� � ), where � represents the unique prize

available to contestants. Lemma 1 immediately leads to the following result.

Theorem 1 When � = 1 and �� follows the type I extreme-value (maximum) distribution, the

noisy-ranking model (1) is strategically equivalent to a winner-take-all lottery contest �(I�g� � ).

When � � 1� the model evolves into a multi-winner contest. In this case, we have to completely

characterize the probability of each contestant winning each prize. To this end, we need to explore

the probabilities of all possible complete (when � � � � 1) or partial (when � 
 � � 2) rankings.

To cover all these possibilities, we consider the complete ranking of all contestants.
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Suppose � (1 
 � 
 � � 2) contestants are ranked from top 1 to top � by the amount of 	�.

Let �
 indicate the index of the �-th ranked contestant. De�ne I� = {�
� � = 1� �����}, which is the

index set of the top � contestants. We thus have 	�1 � 	�2 � · · · � 	�� � 		 � �� � ��+1 , I\I� .

We next calculate the conditional probability of a contestant � � ��+1 being the (�+1)-th ranked.

We denote this probability by �(�|N� �x���), where N� = (�1� ���� ��) denotes the sequence of the

top �-ranked contestants� �� = (	�1 � ���� 	�� ) denotes the sequence of the perceived outputs of the

top �-ranked contestants.

Since �� are i.i.d., the conditional cumulative distribution function of �	 � �� � ��+1 is described

by


 (�	 |N� �x���) = 
 (�	 |		 � 	�� )

= ���
���

����
��̄�

� �	 � (��� �̄	)� �� � ��+1� (6)

where �̄	 � log 	�� � log 
	(�	)� �� � ��+1. It therefore yields the density function

�(�	 |N� �x���) = ������
���

����
��̄�

� �	 � (��� �̄	)� �� � ��+1� (7)

As implied by (6) and (7), the conditional distribution of �	 ��� � ��+1, only depends on the

minimum of {	�� � � = 1� �����}, i.e., 	�� � because 	� are ranked in a descending order. We have the

following result.

Lemma 2 For any given e�ort entries x � 0 such that
P
	�N 
	(�	) � 0, the probability that a

contestant � � ��+1 is the (� + 1)-th ranked, conditioning on that contestants �1� �2� ���� �� are

respectively ranked from top 1 to top �, can be written as

�(�|N� �x) =

�(��)X

	���+1


	(�	)
� �� � ��+1� (8)

Proof. We �rst calculate �(�|N� �x���), which denotes the probability that a contestant � � ��+1

is the (�+1)-th ranked conditioning on that contestantsN� = (�1� �2� ���� ��) are respectively ranked

from top 1 to top � and their perceived outputs are �� . Note that �� + log 
�(��)� log 
	(�	) 
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�̄	 ���� � (��� �̄�)� ��� � � ��+1� � 6= �� We thus have

�(�|N� � �� �x)

= Pr(�	 
 �� + log 
�(��)� log 
	(�	)� �� � ��+1� � 6= ��)

=

Z �̄�

��

[�	���+1�	 6=�
 (�� + log 
�(��)� log 
	(�	)|N� �x���)]�(��|N� �x���)���

=

Z �̄�

��

[�	���+1�	 6=��
��

�(��+log 	�(
�)�log 	�(
�))

����
��̄�
]������

���
����

��̄�
���

= (�	���+11��
��

��̄�
)

Z �̄�

��

[�	���+1�	 6=��
��

�(��+log 	�(
�)�log 	�(
�))

]������
���

���

= (�	���+11��
��

��̄�
)

Z �̄�

��

exp[��� � ���� · (1 +
X

	���+1�	 6=�


	(�	)


�(��)
)]���� (9)

Let �����+1 = log(1 +
P
	���+1�	 6=�


�(��)

�(��)

) = log(
P
	���+1


�(��)

�(��)

)� then

�(�|N� � �� �x)

= (�	���+11��
��

��̄�
)

Z �̄�

��

exp[��� � ��(��������+1)]���

= (�	���+11��
��

��̄�
) exp(������+1)

Z �̄������

��

exp[��0� � ���
0
� ]��0�

= (�	���+11��
��

��̄�
) exp(������+1) exp[���(�̄������)]

= [
�(��)Á
X

	���+1


	(�	)] · {(�	���+1 exp[�
��̄� ]) exp[���(�̄�������+1 )]}

= [
�(��)Á
X

	���+1


	(�	)] · exp{(
X

	���+1

���̄� )� ��(�̄�������+1)}� (10)

Note that

(
X

	���+1

���̄� )� ��(�̄�������+1 )

= (
X

	���+1

��(���+log 
�� (��� )�log 
�(��)))

� exp{�[��� + log 
�� (��� )� log 
�(��)� (log(
X

	���+1


	(�	))� log 
�(��))]}

=
�����


�� (��� )
{
X

	���+1


	(�	)�
X

	���+1


	(�	)}

= 0� (11)

(10) and (11) give

�(�|N� � �� �x) = 
�(��)Á
X

	���+1


	(�	)� (12)
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(12) is a very strong result as it says that �(�|N� � �� �x) does not depend on �� � Aggregating

over all possible �� , we must have

�(�|N� �x) = 
�(��)Á
X

	���+1


	(�	)� � � ��+1�� = 1� ���� � � 2� (13)

which completes the proof.

Q.E.D.

Lemma 2 is important. Firstly, it reveals that given the top � ranked contestants, the

conditional probability of a contestant to be ranked as the next is completely independent of

(��1 � � � � � ��� ), the e�ort entries of these top � ranked contestants. Secondly, it shows that the con-

ditional probability �(�|N� �x) can be conveniently written as a ratio-form contest success function


�(��)Á
X

	���+1


	(�	), which mimics a lottery among the set of contestants who are ranked worse

than level �.

Let the sequence {�
}
�

=1 denote a complete ranking among the � contestants, where �
 is the

index of the ��th ranked contestant. Combine Lemma 1 and Lemma 2, we therefore conclude the

following.

Theorem 2 For any given e�ort entries x � 0 such that 
�(��) � 0��� � I, the ex ante likelihood

of any complete ranking outcome {�
}
�

=1 can be written as

�({�
}
�

=1) = �

�

=1


��(���)
�X


0=



��0 (���0 )

� (14)

Theorem 2 states that the ex ante likelihood of a complete ranking can be written as the

cumulative product of the conditional probability �(�
|N
�1�x) = 
��(���)�
�X


0=



��0 (���0 ) that

contestant �
 is ranked as the top among all contestants {�
� �
+1� ���� ��}. As aforementioned, the �

prizes are awarded to the � contestants who contribute the highest 	�s, respectively, by their ranks.

Thus, a prize allocation outcome is therefore represented by the subsequence {�
}
�

=1 of {�
}

�

=1,

where �
 denotes the index of the contestant who is ranked at the �-th position and receives �
.

The probability of a prize allocation plan {�
}
�

=1 is therefore determined in light of Theorem 2.

Corollary 1 For any given e�ort entries x � 0 such that 
�(��) � 0��� � I, the ex ante likelihood
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of any prize allocation outcome {�
}
�

=1 can be written as

�({�
}
�

=1) = �

�

=1


��(���)
�X


0=



��0 (���0 )

� (15)

Note that Corollary 1 does not cover the case where 
�(��) = 0 for some contestants. Since ties

are randomly broken fairly in our noisy ranking model, these contestants will be ranked among

the last ones with the same probability. By these results, we can conclude the strategic equiva-

lence between our noisy-ranking model and a generalized multiple-winner nested contest model as

proposed by Clark and Riis (1996 and 1998a). Clark and Riis (1996 and 1998a) extends winner-

take-all Tullock contests to allow a block of prizes to be allocated among contestants. The selection

mechanism is illustrated as a sequential lottery process. Contestants simultaneously submit their

one-shot e�ort entries x. The recipient of each prize is selected through a lottery among all remain-

ing candidates represented by a ratio-form contest success function. As each contestant is eligible

for at most one prize, the recipient of a prize is immediately removed from the pool of candidates

who are eligible for the next draw. This procedure is repeated until all prizes are given away. If

we use �� to represent the index set of all remaining contestants for the �-th draw for the �-th

prize ��, then for any contestant � � ��, he/she wins prize �� with a probability
��(��)X
����

��(��)

if
X

����
��(��) � 0. Here ��(·) : R+ � R+ is the output function of contestant �, which is as-

sumed to be strictly increasing with e�ort outlay ��. To the extent that
X

����
��(��) = 0, i.e.,

��(��) = 0��� � ��, prizes are randomly given away. Thus, the prize allocation plan of this nested

contest is determined by a series of � independent lotteries if � prizes are available. This nested

contest reduces to a standard winner-take-all lottery contest when only one prize is available.

Let �(I, g(·), V) denote a multi-winner nested Tullock contest with contestants I, output

functions g(·) and prizes V� The vector V = (�1� � � � � ��) represents the ordered set of � prizes

with �1 � �2 � � � � � ��. Each contestant � is endowed with an output production technology

��(��) = 
�(��). Corollary 1 immediately leads to the following result.

Theorem 3 When � � 1 and �� follows the type I extreme-value (maximum) distribution, the

noisy-ranking model (1) is strategically equivalent to a generalized multiple-winner nested contest

�(I, g(·), V) .

Thus, Theorem 3 establishes the strategic equivalence between the noisy-ranking contest model

and a generalized multiple-winner nested contest that is built upon ratio-form contest success

11



functions. Clark and Riis (1998a), among others, provide a complete solution for the multiple-

winner nested contests when contestants are symmetric and the winning odd in each lottery takes

a Tullock success function, i.e., the output function ��(��) = ��� . These results, by Theorem 3,

also solve for the equilibrium of the noisy-ranking model (1) when contestants are assumed to be

identical.

2.3 Discussion

In Section 2.2, we establish the equivalence between our noisy ranking contest model and the

family of lottery contests that build upon ratio-form contest success functions. The decision maker

(contest organizer), who has a strictly monotonic preference, evaluates and ranks contestants by

the perceivable output 	� in the presence of randomness, and awards these contestants by their

ranks. When only one prize is available, and therefore only the top rank is of concern, the ex ante

likelihood that a contestant � achieves the top rank and wins the prize can be written in a ratio

form 
�(��)P
��I


�(��)
, which is identical to the success function of a generalized lottery contest with

production functions 
�(��). Hence, we have established the strategic equivalence between these

two types of contests in winner-take-all settings.

A more intriguing duality is detected when more than one winner is allowed to receive a prize.

The multiple-winner nested contest model (Clark and Riis, 1996, 1998a) uses ratio-form contest

success function as its building block, but allows a block of prizes to be given away. This multiple-

winner nested contest model provides a reasonable and relatively tractable framework to analyze

contess with more than one winner. However, this model seems to require a series of independent

lotteries to allocate the prizes one by one, which could severely narrow the scope of its application.

As visualized as a sequential lottery process, the legitimacy of this model is immediately left in

doubt when it is applied to situations where prizes are allocated as a batch.11

Nevertheless, our results directly resolve this concern. In our framework, for given e�ort entries

x, a complete ranking of contestants, as well as the corresponding prize allocation plan, immediately

results from any realization of the noise terms �. Corollary 1 reveals that a noisy-ranking contest

model and a nested contest model generate an identical probability for every prize allocation rule.

We therefore establish the equivalence between the seemingly sequential lottery process and a

simultaneous noisy ranking scheme. Consequently, the sequential lottery process should only be

11For example, one could imagine that a college admits a batch of top scoring students using a cuto� standard,

instead of making acceptance decision sequentially.
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understood as a convenient “visualization” of the selection procedure that underlies a multiple-

winner nested contest, instead of revealing the “panorama” inside the “black box”. Indeed, a noisy

ranking system hidden under the disguise of the lottery process has been “recovered” by Theorem

3!

It is well known in contest literature that a winner-take-all all-pay auction is a limiting

case of a Tullock contest. Assume that the output function takes the commonly adopted form


�(��) = ��� � � � 0. When � approaches in�nity, a slight increment in e�ort makes a sure win. As a

result, the Tullock contest converges to an all-pay auction. By the same token, one would conclude

that a multiple-winner nested contest converges to a multiple-winner all-pay auction (Clark and

Riis, 1998b, Barut and Kovenock, 1998, Moldovanu and Sela, 2001) when 
�(��) = ��� � � � 0.

This convergence looks even more intuitive once we recover the noisy-ranking system underlying

ratio-form contest success functions. As � (the measure of productivity) increases, e�ort would

contribute more to one’s perceivable output, while the noise does less. As � approaches in�nity, the

impact of noise is completely overshadowed by that of substantive e�ort, and the complete ranking

of contestants is purely determined by their e�ort entries.12

2.4 A Micro Foundation of Ratio-Form Contest Success Functions

In this part, we further explore the implications of our results. As we mentioned in Introduction,

this paper has been inspired by and is closely linked to Fullerton and McAfee (1999) and Baye

and Hoppe (2003). Both of these papers establish the strategic equivalence between a research

tournament (Fullerton and McAfee, 1999) and a winner-take-all Tullock contest. They show that

the likelihood of a �rm � winning a research tournament can be written as a standard Tullock

contest success function ��P
�
��
, where �� is the number of parallel experiments a �rm � conducts.

A more fundamental question naturally arises: Why could these seemingly disparate models be

uni�ed? Or in other words, what is the common thread that connects them? In light of the duality

we have established in Section 2.2, our model bears a strong tie to this research tournament model

as well. Our results follow the e�ort of these pioneering studies, and allow us to further expand

the family of competitive activities that can be uni�ed within an integral framework.

12We can immediately realize that our model covers the allocation scheme of all single-period auctions, regardless

of the payment scheme or the number of objects on sale. Any meaningful auction rule requires a ranking of the bids,

and the highest bidder(s) win the object(s). Bids are assumed to be perfectly observable so that no exogenous noise

plays a role.
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The tie reveals itself as we closely scrutinize the setup of our noisy ranking model. We assume

the perceivable output (log 	�) contains a deterministic component and a random component, which

follows an extreme value type I (maximum) distribution. Following Lazear and Rosen (1981), one

could interpret the perceivable output (log 	�) of a contestant as the sum of its expectation and a

random shock. Type I Extreme value distributions (Gumbel) are the limiting distributions of the

maximum or the minimum of a large collection of i.i.d. random observations from a same arbitrary

continuous distribution on support (����). The type I extreme value (maximum) distribution is

pertinent to a circumstance where (only) the maximum value of a collection of random shocks is of

interest. By assuming this distribution, the model therefore depicts a selection mechanism where

the decision maker (the contest organizer) honors the “best shot” of each contestant’s repeated

attempts. For instance, weight lifters are ranked by their most successful tries. Alternatively, our

model images the situations where only the best performance is observable to the decision maker.

An architect submits only his/her best idea to a design competition. A participant of Olympic

Physics Competition puts down only the most satisfactory solution that occurs to him/her to any

given problem. Indeed, in many occasions, only the best performance of a contestant is perceived.

Thus, the seemingly peculiar type I extreme value (maximum) distribution adopted in Section

2.1 in fact captures the essence of a broad class of competition activities. This speci�cation is at

least a good approximation for a performance evaluation scheme that is based on the best luck of

contestants. These observations rationalize our adoption of this distribution.

In light of the isomorphism between our model and contests built upon ratio-form success

functions, this argument directly sheds light on the hidden mechanism in the black box of the

family of lottery contests. One could also understand that a lottery contest model represents a

noisy ranking system that orders contestants by their best performance. This insight immediately

reveals the logic underlying the equivalence established by Fullerton and McAfee (1999) and Baye

and Hoppe (2003). In a research tournament, each �rm hires a number of scientists to conduct

research. Each of them could run an experiment and come up with an idea with a randomly

distributed value. Each �rm then submits the best it obtains to compete with others, and a �rm

that submits “the best among the best” wins. A research tournament naturally exempli�es this

winning mechanism. It is such a performance evaluation mechanism that underpins and unites

these models! Additional evidence is provided in next section to support this argument.
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3 Extensions

In this section, we dialectically elaborate the argument we have proposed. We “test” this argument

by examining the “dual” problem to our original model, i.e., a multi-winner race model. We

establish its equivalence to a multiple-winner nested contest. A hidden ranking rule is intuitively

“recovered” that con�rms and reinforces our hypothesis. In addition, we present “the antithesis”

to our argument. We provide a model that cannot be abstracted as a standard lottery contest, as

it hosts a di�erent winning mechanism.

3.1 The “Dual” Problem: A Multi-Winner Race Model

Baye and Hoppe (2003) establish the strategic equivalence between a patent race and a standard

Tullock contest. In this part, we show that the arguments proposed in Section 2.4 also shed light on

this isomorphism. A noisy ranking that honors the most favorable shock could also be “recovered”

underneath models on racing competitions, i.e., the type of competitive events where contestants

are better rewarded by accomplishing a speci�c task faster than others.

We �rst propose a generalized race model that allows for more than one prize. We adopt the

framework of Dasgupta and Stiglitz (1979). When each of � contestants I chooses a lump-sum

e�ort ��, a contestant � would accomplish a task (e.g. making a scienti�c discovery) by the time ��

with a probability (i.e. a Weibull minimum distribution)

�(��|��) = 1� ����(��)�� � ��� �� � 0� (16)

where  �(��) represents the hazard rate of contestant �, i.e., the conditional probability of accom-

plishing this task between �� and time �� + ���. Conditional on e�ort entry x, ��s are i.i.d. The

hazard rate  �(��) is a strictly increasing function of the expenditure ��. We de�ne z(·) , ( �(·))�

Diverging from Dasgupta and Stiglitz (1979), we allow for multiple winners. We assume � �

{1� 2� ���� �} prizes (denoted by V = (�1� �2� ���� ��)) to be awarded to contestants. That is, the

contestant who �nishes the �rst receives prize �1, the second receives �2, so on and so forth.
13

Given e�ort entries x� each conditional realization of (��) determines a ranking of contestants and

accordingly the prize allocation rule. By the nature of a race, we may also intuitively interpret

a race as a noisy-ranking contest: contestants are ranked in an ascending order by the time they

13One could imagine a number of �rms are engaged in process R&D competition. The earlier a �rm discovers the

secret of a cost-reduction technology, the higher its accumulated pro�t.
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spend on accomplishing the task, and a contestant is better rewarded for the realization of smaller

��.

Denote by !(I, z(·), V) this multi-winner race model and �(I, z(·), V) a multiple-winner nested

Tullock contest with contestants I, technology z(·) and prizesV�We �rst present the following result

and we will build its micro foundation at a later point.

Theorem 4 A multiple-winner race !(I, z(·), V) is strategically equivalent to a multiple-winner

nested Tullock contest �(I, z(·), V).

Proof. One may directly obtain that for given expenditure entries x such that for
X

	�I

 	(�	) � 0,

a �rm � could leapfrog all others with a probability

Pr(�	 � ��� � � I� � 6= �) =

�Z

0

 �(��)�

���

X

��I

��(��)

���

=
 �(��)X

	�I

 	(�	)
� �� � I� (17)

which perfectly mimics one’s winning odd in a generalized Tullock lottery contest with (increasing)

output functions  �(��).

Suppose �̃ (1 
 �̃ 
 � � 2) contestants are ranked as the �rst to the �̃-th in ascending order

according to (��), with contestant �
 ranked at �-th one. De�ne Ĩ�̃ = {�
� � = 1� ���� �̃}� We thus

have ��1 
 ��2 
 · · · 
 ��
�̃

 �	 � �� � �̃�̃+1 = I\Ĩ�̃ . We next consider the conditional probability of

a contestant � � �̃�̃+1 being the (�̃+1)-th ranked. We denote this probability by "(�|Ñ�̃ �x� #�̃),

where #�̃ = (��1 � ���� ���̃ )� Ñ�̃ = (�1� ���� ��̃). This conditional probability is simply

"(�|Ñ�̃ �x� #�̃) = Pr(�� 
 �	 � � � �̃�̃+1 � � 6= �|�� � ��
�̃
)

=

�Z

��
�̃

 �(��) exp(���
X

	��̃
�̃+1

 	(�	))���Á exp(���
�̃

X

	��̃
�̃+1

 	(�	))

=
 �(��)X

	��̃
�̃+1

 	(�	)
��� � �̃�̃+1� (18)

This strong result says that "(�|Ñ�̃ �x�#�̃) does not depend on #�̃ � Aggregating over all possible

#�̃ , we must have that conditioning on contestants �1� �2� ���� �� being respectively ranked from top
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1 to top �, the probability that a contestant � � �̃�̃+1 is the (�̃ + 1)-th ranked is

"(�|N� �x) =  �(��)Á
X

	���+1

 	(�	)� � � �̃�̃+1�� = 1� ���� � � 2� (19)

We thus see from (18) and (19) that the resulted prize allocation plan is stochastically equivalent

to that of a multiple-winner nested contest with output functions  �(��).

Q.E.D.

Why are they equivalent?

Theorem 4 states the strategic equivalence between our multi-winner race model and a nested

lottery contest model where more than one prize is available. It remains to lay a micro foundation

for this strategic equivalence. We now show that the argument proposed in Section 2.4 continues to

apply and a selection mechanism that honors “the most favorable shock” is also hidden underneath

the race model.

Theorem 5 A multiple-winner race !(I, z(·), V) is equivalent to a descending-order noisy-ranking

contest (1) with the set of output functions z(·) and the noises � that are individually and indepen-

dently distributed following an extreme value type I (maximum) distribution.

One may not �nd this result very surprising, as we have established the equivalence between

the multi-winner race model and a multiple-winner nested contest model. We will not lay out a

dedicated technical proof, but present the reasoning by the following discussion. The hidden tie

that connects all these models would surface as we set out to establish the result.

It is worth noting that �� (the time the contestant � takes to �nish a given task) can be modelled

as the product of two multiplicatively separable components as follows

�� = $�(��)"�� �� � I� (20)

where ��� "� � (0��) and $�(��) ,  �1� (��). In other words, �� is jointly determined by the de-

terministic component $�(��), which depends on only one’s e�ort entry, and a stochastic term "�.

Obviously, the function $�(·) : R+ � R+ strictly decreases with one’s e�ort. As suggested by

simple statistical facts, �� follows a Weibull (minimum) distribution of (16) if and only if "� fol-

lows a Weibull (minimum) distribution with c.d.f. 1� ���� . Under this assumption, model (16) is
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equivalent to model (20).14

Model (20) can be further equivalently written as

log �� = log $�(��) + %�� �� � I� (21)

where i.i.d idiosyncratic noises %� � log "� follow an extreme value type I extreme-value (minimum)

distribution.15 The c.d.f. and p.d.f. of %�, respectively written as follows,

�(%�) = 1� ���

� � %� � (���+�)� �� � I� and (22)

&(%�) = �����

� � �� � I� (23)

A closer look would reveal that an ascending-order model (21) is in fact equivalent to the framework

we set up in Section 2.1. Note that model (21) can be equivalently written as

log e	� = log  �(��) + '�� �� � I� (24)

where e	� = ��1� and '� = log "�1� . Note that when %� = log "� follows an extreme value type

I extreme-value (minimum) distribution, '� must follow an extreme value type I extreme-value

(maximum) distribution as given by (3). By the simple statistical fact, the extreme value type

I (maximum) distribution is simply the inverse of its “minimum” counterpart (the extreme value

type I (minimum) distribution)! Consequently, ranking (��) of model (21) in ascending order is

equivalent to ranking (��1� ) of model (22) in descending order. In short, the race model (21) is the

“dual” of the model we proposed in Section 2.1. With this observation, Theorem 5 immediately

results, which reveals why our multi-winner race model is strategically equivalent to a sequential

lottery contest (Theorem 4).

Model (21) thus provides a micro foundation for model (16). The multi-winner race model,

as well as its “tweak” model (21), is underpinned by the same “preference relation” or “ordering

mechanism” as the model we presented in Section 2.1. Both of them represent an evaluation

mechanism that honors “the most favorable shock”, which lays a common foundation for all the

equivalence results we have established.

To see that, note that the random term %� in (21) follows an extreme-value (minimum) type I

distribution, which is also known as “log-Weibull (minimum)” distribution. A Weibull (minimum)

14We derive this setup by manipulating a race model. However, it is worth nothing that this model could also be

applied to other competitive events, where contestants win by reducing the amounts of their “disvalued” outputs,

e.g., pollution.
15The extreme value type I (minimum) distribution is also known as a “log-Weibull” distribution.
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distribution describes the timing of “the minimum” from a collection of random sample from an

arbitrary distribution with a support on [0��).16 This fact, together with the ascending-order

ranking rule, naturally corresponds to a selection mechanism that honors “the best luck”, when the

output is a “bad” to the decision maker, and contestants get ahead of others by contributing lesser

amounts of their perceivable outputs: Under such a circumstance, “the most favorable shock” is

seen by the realized minimum. A race directly exhibits such characteristics: One secures a more

favorable rank by accomplishing his/her task as quick as possible, i.e., making �� as “small” as

possible!

3.2 The “Antithesis”: An Example of Non-Lottery Contests

So far we have proposed a micro foundation, i.e., a hidden preference relation and an ordering rule,

which underpins a wide range of contests. This discovery permits us to connect varieties of seeming

disparate models on one hand, while it imposes a limit on this unity on the other: This family of

contests may not include competitive events that do not honor “the most favorable shocks” when

picking the winners.

To illustrate this point, we provide a contest model that hosts a di�erent performance evaluation

rule. One salient example is the noisy ranking contest model suggested by Hirshleifer and Riley

(1992). Two contestants simultaneously submit their e�ort entries �1 and �2, and they are ranked

by their composite output "���, where "� is a random variable that follows a Weibull (minimum)

distribution with c.d.f. 
 ("�) = 1 � ����� . The contestant with higher output wins, thus outputs

need to be ranked in a descending order. It can be easily veri�ed that given the set of e�ort entries,

the ex ante winning odd of a contestant is exactly identical to a standard Tullock success function

��
�1+�2

� � = 1� 2.

However, the equivalence between this model and a lottery contest does not hold when more

than two contestants are in presence. We consider a more generalized variation of this model. We

assume the deterministic component in the composite output takes the form "�
�(��), where 
�(��)

is a strictly increasing function of the e�ort outlay ��. Obviously, linear technology 
�(��) = �� is

a special case of this setting. When � = 3, and when only one prize is available, contestant 1 wins

16This is the reason that it is the inverse of the extreme value type I maximum distribution.
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with a probability

(1 = 1�

2(�2)


1(�1) + 
2(�2)
�


3(�3)


1(�1) + 
3(�3)

+

2(�2)
3(�3)


1(�1)
3(�3) + 
2(�2)
3(�3) + 
1(�1)
2(�2)
� (25)

The proof is provided in the Appendix.

The source of this dichotomy is not di�cult to detect as we look at the distribution of the

noise term. The Weibull (minimum) distribution indicates the distribution of the incidence of the

“minimum” among a collection of shocks. Referring to (20), readers would immediately realize that

this model is no di�erent from our race model except for the winning rule. One wins in a race by a

smaller output "���. By way of contrast, a contestant in the model of Hirshleifer and Riley (1992)

wins by a larger output. Namely, the decision maker does prefer a higher output. However, he/she

does not honor the best shot, but rank their performances by their “weakest links”.

This mechanism contradicts with the one underneath our model (21). It could represent those

contests when the worst performance matters (the most) for one’s win and contestants compete by

improving their own blind sides. A close analogy is high-pro�le board game competitions such as

Chess Olympic Championships. It is often perceived that one loses because of his/her most harmful

misplay despite his/her marvelous moves. This dichotomy in underlying performance evaluation

mechanism thus drives this observed disparity when the number of participants exceeds two, and

excludes this type of contests from the family of models that can be represented as standard lottery

contests.

4 Concluding Remarks

In this paper, we set forth a multi-winner contest model that links its prize allocation plan to a

noisy ranking of contestants by their performances. The performance of a contestant is modelled

as the sum of a deterministic output out of his/her spontaneous e�ort, and a random component.

Contestants exert their one-shot e�ort simultaneously, and the ordered prizes are awarded to best

performers by their ranks.

We �nd that if the contestants are evaluated and ranked by their “most favorable shocks” in

a collection of attempts, our noisy-ranking model delivers exactly the same success functions as a

lottery contest. We therefore establish the strategic equivalence between our noisy-ranking contest

model and the family of lottery contests. The implications of this result are multi-fold. Firstly, this
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result provides an alternative interpretation of lottery contests, in particular, the multiple-winner

nested contest model (Clark and Riis, 1996 and 1998a): a noisy ranking system can be recov-

ered underneath its literally sequential lottery process. Secondly, this result illuminates a hidden

common thread that connects a wide variety of seemingly disparate contests in the nutshell of ratio-

form contest success functions: underlying all these contests is a common winning mechanism that

honors contestants’ most favorable shocks! Thus, this result provides a behavioral foundation that

underpins the family of commonly adopted lottery contest models. Finally, our result nevertheless

imposes a limit on the boundary of this broad class of models: the family of contests that can be

united in the nutshell of lottery contests may not include competition schemes that do not honor

“the most favorable shocks” on contestants’ performance.
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Appendix: The Proof of the “Antithesis”

In this appendix, we prove that when are three contestants (� = 3)� the noisy-ranking contest model

we present in 3.2 does not deliver a standard lottery contest.

Following Hirshleifer and Riley (1992), we use a formulation with multiplicative noise term:

	� = "�
�(��)� (A.1)

where the "� follows a Weibull minimum distribution with c.d.f. 1� ���� . (A.1) can be equivalently

written as

log 	� = log 
�(��) + log "�� (A.2)

This distribution of �� , log "� is a type I extreme-value (minimum) distribution. The c.d.f.

and p.d.f. of �� are thus


 (��) = 1� exp(����)� and (A.3)

�(��) = �����
�� � (A.4)

Consider the case of three contestants (� = 3). Given e�ort ��� contestant 1 wins with the

following probability

Z +�

��

[�	=2�3
 (�1 + log 
1(�1)� log 
	(�	))]�(�1)��1

=

Z +�

��

[(1� exp(���1+log 
1(�1)�log 
2(�2)))(1� exp(���1+log 
1(�1)�log 
3(�3))]��1��
�1
��1

= 1�

Z +�

��

exp(���1+log 
1(�1)�log 
2(�2)) · ��1��
�1
��1

�

Z +�

��

exp(���1+log 
1(�1)�log 
3(�3)) · ��1��
�1
��1

+

Z +�

��

exp(���1+log 
1(�1)�log 
2(�2)) · exp(���1+log 
1(�1)�log 
3(�3)) · ��1��
�1
��1
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= 1�

Z +�

��

exp(�1 � ��1(1 +

1(�1)


2(�2)
))��1 �

Z +�

��

exp(�1 � ��1(1 +

1(�1)


3(�3)
))��1

+

Z +�

��

exp(�1 � ��1(1 +

1(�1)


2(�2)
+


1(�1)


3(�3)
))��1

= 1�

Z +�

��

exp(�1 � �
�1+log(1+

	1(
1)
	2(
2)

)
)��1 �

Z +�

��

exp(�1 � �
�1+log(1+

	1(
1)
	3(
3)

)
)��1

+

Z +�

��

exp(�1 � �
�1+log(1+

	1(
1)
	2(
2)

+
	1(
1)
	3(
3)

)
)��1

= 1�

2(�2)


1(�1) + 
2(�2)
�


3(�3)


1(�1) + 
3(�3)

+

2(�2)
3(�3)


1(�1)
3(�3) + 
2(�2)
3(�3) + 
1(�1)
2(�2)
�
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