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1. Introduction

This paper considers model uncertainty associated with variable selection in linear regression

models. In particular, we focus on applications to cross­country growth regressions, where we

often face a large number of potential drivers of growth with only a limited number of observations.

Insightful discussions of model uncertainty in growth regressions can be found in Brock and

Durlauf (2001) and Brock, Durlauf and West (2003). Various approaches to deal with this model

uncertainty have appeared in the literature, starting with the extreme­bounds analysis in Levine

and Renelt (1992) and the confidence­based analysis in Sala­i­Martin (1997). A natural solution,

supported by formal probabilistic reasoning, is the use of Bayesian model averaging (BMA, see

Hoeting et al., 1999), which assigns probabilities on the model space and deals with model

uncertainty by mixing over models, using the posterior model probabilities as weights.

Fernández et al. (2001b, FLS henceforth) introduce the use of BMA in growth regressions.

In this context, the posterior probability is often spread widely among many models, which
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2 PRIOR ASSUMPTIONS IN BMA

strongly suggests using BMA rather than choosing a single model. Evidence of superior predictive

performance of BMA can be found in, e.g., Raftery et al. (1997), Fernández et al. (2001a) and FLS.

Other papers using BMA in the context of growth regression are León­González and Montolio

(2004) and Masanjala and Papageorgiou (2005, MP henceforth). Alternative ways of dealing with

model uncertainty are proposed in Sala­i­Martin et al. (2004, SDM henceforth), and Tsangarides

(2005). As we will show in the paper, the SDM approach corresponds quite closely to a BMA

analysis with a particular choice of prior.

For Bayesian (and approximately Bayesian) approaches to the problem, any differences can

typically be interpreted as the use of different prior assumptions. A casual comparison of results

can sometimes lead to a misleading sense of “robustness” with respect to such assumptions. In

particular, posterior results on inclusion probabilities of regressors reported in SDM were found

to be rather close to those obtained with the quite different prior settings of FLS, using the same

data; such similarities were noted in MP and Ley and Steel (2007). As we will show here, this

is mostly by accident, and prior assumptions can be extremely critical for the outcome of BMA

analyses—this general issue is also studied in Eicher et al. (2007), which came to our attention

after writing the present paper. As BMA or similar approaches are rapidly becoming mainstream

tools in this area, we wish to investigate in detail how the (often almost arbitrarily chosen) prior

assumptions may affect our inference. We need to stress at this stage that the prior structures

examined in this paper are limited to the most commonly used “vague” choices, that require only

a minimal amount of prior elicitation and do not cover more informative prior structures, such as

the hierarchical model prior structures of Brock et al. (2003).

As a general principle, the effect of not strongly held prior opinions should be minimal. This

intuitive sense of a “non­informative” or “ignorance” prior is often hard to achieve, especially when

we are dealing with model choice, as opposed to inference within a given model—see, e.g., Kass

and Raftery (1995). At the very least, we should be able to trace the effect of these assumptions

in order to inform the analyst which prior settings are more informative than others, and in which

direction they will influence the result. “Clever” prior structures are robust, in that they protect

the analyst against unintended consequences of prior choices. In this paper, we focus on a general

prior structure which encompasses most priors used in the growth regression literature and allows

for prior choice in two areas: the choice of the precision factor g in the g­prior, and the prior

assumptions on the model space. On the latter, we elicit the prior in terms of the prior mean model

size m, which is a quantity that analysts may have some subjective prior preferences on. Other

aspects of the prior are typically less interpretable for most applied analysts and would require

“automatic” settings. However, these choices have to be reasonable and robust. It is important to

stress that the dependence on prior assumptions does not disappear if we make those assumptions

implicit rather than explicit. We then merely lull the analyst into a false sense of security. Thus,

the claim in SDM that their approach “limits the effect of prior information” has to be taken with

extreme caution.

To build priors on the model space, we shall advocate the use of hierarchical priors, since

this increases flexibility and decreases the dependence on essentially arbitrary prior assumptions.

Theoretical results on the distribution of model size and prior odds allow us to shed some light on

the relative merits of the priors on model space. Analytical results for the marginal likelihoods

(Bayes factors) are used to infer the model size penalties implicit in the various choices of g and

allow for an insightful comparison with the BACE procedure of SDM.



E. LEY & M.F.J. STEEL 3

Using three different data sets that have been used in the growth literature, we assess the effect

of prior settings for posterior inference on model size, but we also consider the spread of model

probabilities over the model space, and the posterior inclusion probabilities of the regressors. The

latter is especially critical for this literature, as the relative importance of the regressors as drivers

of growth is often the key motivation for the analysis.

By repeatedly splitting the samples into an inference part and a prediction part, we also examine

the robustness of the inference with respect to changes to the data set and we assess the predictive

performance of the model with the various prior settings.

The next section briefly summarizes the main ideas of BMA. Section 3 describes the Bayesian

model, and Section 4 examines the theoretical consequences of the priors in more detail. Empirical

results for three data sets are provided in Section 5 (using the full samples) and Section 6 (using

100 randomly generated subsamples of a given size). The final section concludes and provides

recommendations for users of BMA in this literature.

2. Bayesian Model Averaging in a Nutshell

There exist many excellent and detailed descriptions of BMA in the literature—e.g., Hoeting et

al. (1999), or Chipman et al. (2001)—but we will briefly survey the main issues here for the sake

of completeness.

In the face of model uncertainty, a formal Bayesian approach is to treat the model index as a

random variable, and to use the data to conduct inference on it. Let us assume that in order to

describe the data y we consider the possible models Mj , j = 1, . . . , J , grouped in the model space

M. In order to give a full probabilistic description—i.e., a Bayesian model—of the problem, we

now need to specify a prior P (Mj) on M and the data will then lead to a posterior P (Mj | y).

This posterior can be used to simply select the “best” model (usually the one with highest

posterior probability). However, in the case where posterior mass onM is not strongly concentrated

on a particular model, it would not be wise to leave out all others. The strategy of using only the best

model has been shown to predict worse than BMA, which mixes over models, using the posterior

model probabilities as weights. The superior predictive performance of these methods has been

established using both decision theory and empirical results—see, e.g., Min and Zellner, (1993),

Raftery et al. (1997).

Thus, under BMA inference on some quantity of interest, ∆, which is not model­specific, such

as a predictive quantity or the effect of some covariate, will then be obtained through mixing the

inference from each individual model

P∆ | y =

J
∑

j=1

P∆ | y,Mj
P (Mj | y). (1)

This implies a fully probabilistic treatment of model uncertainty, just like parameter uncertainty.

In order to implement BMA in practice, we thus need to be able to compute the posterior

distribution on M. It follows directly from Bayes’ Theorem that P (Mj | y) ∝ ly(Mj)P (Mj),

where ly(Mj), the marginal likelihood of Mj , is simply the likelihood integrated with the prior on

the parameters of Mj , denoted here by p(θj |Mj). Thus,

ly(Mj) =

∫

p(y | θj , Mj) p(θj |Mj) dθj . (2)
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A further complication can occur when J is large, making exhaustive computation of the sum

in (1) prohibitively expensive in computational effort. Then we often resort to simulation over M.

In particular, we use a Markov chain Monte Carlo (MCMC) sampler to deal with the very large

model space M (already containing 2.2× 1012 models for the smallest example here with k = 41).

Since the posterior odds between any two models are analytically available (see Subsection 4.3),

this sampler moves in model space alone. Thus, the MCMC algorithm is merely a tool to deal with

the practical impossibility of exhaustive analysis of M, by only visiting the models which have

non­negligible posterior probability. In this paper we use the Fortran code from FLS updated to

account for data sets with more than 52 regressors, as explained in Ley and Steel (2007). This code

can deal with up to 104 regressors, corresponding to a model space M containing 2104 = 2 × 1031

models, and is available at the Journal of Applied Econometrics data and code archive.

Other approaches to dealing with the large model space are the use of a coin­flip importance­

sampling algorithm in SDM, and the branch­and­bound method developed by Raftery (1995).

Eicher et al. (2007) experiment with all three algorithms on the FLS data and find that results

from the MCMC and branch­and­bound methods are comparable, with the coin­flip method taking

substantially more computation time, and leading to somewhat different results.

3. The Bayesian Model

In keeping with the literature, we adopt a Normal linear regression model for n observations of

growth in per capita GDP, grouped in a vector y, using an intercept, α, and explanatory variables

from a set of k possible regressors in Z. We allow for any subset of the variables in Z to appear in

the model. This results in 2k possible models, which will thus be characterized by the selection of

regressors. We call model Mj the model with the 0 ≤ kj ≤ k regressors grouped in Zj , leading to

y |α, βj , σ ∼ N(αιn + Zjβj , σ
2I), (3)

where ιn is a vector of n ones, βj ∈ ℜkj groups the relevant regression coefficients and σ ∈ ℜ+ is

a scale parameter.

For the parameters in a given model Mj , we follow Fernández et al. (2001a) and adopt a

combination of a “non­informative” improper prior on the common intercept and scale and a

so­called g­prior (Zellner, 1986) on the regression coefficients, leading to the prior density

p(α, βj , σ |Mj) ∝ σ−1f
kj

N (βj |0, σ2(gZ ′
jZj)−1), (4)

where fq
N (w|m, V ) denotes the density function of a q­dimensional Normal distribution on w with

mean m and covariance matrix V . The regression coefficients not appearing in Mj are exactly

zero, represented by a prior point mass at zero. Of course, we need a proper prior on βj in (4),

as an improper prior would not allow for meaningful Bayes factors. The general prior structure in

(4), sometimes with small changes, is shared by many papers in the growth regression literature,

and also in the more general literature on covariate selection in linear models—see, e.g., Clyde and

George (2004) for a recent survey.

Based on theoretical considerations and extensive simulation results in Fernández et al. (2001a),

FLS choose to use g = 1/max{n, k2} in (4). In the sequel, we shall mainly focus on the two

choices for g that underlie this recommendation.



E. LEY & M.F.J. STEEL 5

[1] The first choice, g0j = 1/n, roughly corresponds to assigning the same amount of information

to the conditional prior of β as is contained in one observation. Thus, it is in the spirit of the

“unit information priors” of Kass and Wasserman (1995) and the original g­prior used in Zellner

and Siow (1980). Fernández et al. (2001a) show that log Bayes factors using this prior behave

asymptotically like the Schwarz criterion (BIC), and George and Foster (2000) show that for

known σ2 model selection with this prior exactly corresponds to the use of BIC.

[2] The second choice is g0j = 1/k2, which is suggested by the Risk Inflation Criterion of Foster

and George (1994). In growth regression, we typically have that k2 ≫ n (as is the case in all

three examples here), so that the recommendation of Fernández et al. (2001a) would lead to the

use of g = 1/k2.

In this paper, we shall not consider other choices for g, but some authors suggest making g
random—i.e., putting a hyperprior on g. In fact, the original Zellner­Siow prior can be interpreted

as such, and Liang et al. (2005) propose the class of hyper­g priors, which still allow for closed

form expressions for the marginal likelihood in (2).

The prior model probabilities are often specified by P (Mj) = θkj (1 − θ)k−kj , assuming that

each regressor enters a model independently of the others with prior probability θ. Raftery et

al. (1997), Fernández et al. (2001a) and FLS choose θ = 0.5, which can be considered a benchmark

choice—implying that P (Mj) = 2−k and that expected model size is k/2. SDM examine the

sensitivity of their results to the choice of θ. The next section will consider the prior on the model

space M more carefully.

The assumption of prior independent inclusion of regressors can be contentious in some contexts.

Chipman et al. (2001) argue that in situations where interactions are considered, or some covariates

are collinear, it may be counterintuitive to treat the inclusion of each regressor as independent a

priori. In particular, they recommend “dilution” priors, where model probabilities are diluted across

neighbourhoods of similar models. From an economic perspective, a related idea was proposed by

Brock et al. (2003), who construct the model prior by focusing on economic theories rather than

individual regressors. This implies a hierarchical tree structure for the prior on model space and

was also used, e.g., in Durlauf et al. (2006). In this paper, we will only consider priors that assign

equal probabilities to the inclusion of each variable, as this is still by far the most common practice

and requires less elicitation effort on the part of the user. In that sense, it is closer to the idea of a

‘non­informative’ prior, which is our main focus here.

4. Prior Assumptions and Posterior Inference

4.1. Model prior specification and model size

In order to specify a prior on model space, consider the indicator variable γi, which takes the value

1 if covariate i is included in the regression and 0 otherwise, i = 1, . . . , k. Given the probability of

inclusion, say θ, γi will then have a Bernoulli distribution: γi ∼ Bern(θ), and if the inclusion of

each covariate is independent then the model size W will have a Binomial distribution:

W ≡
k
∑

i=1

γi ∼ Bin(k, θ).

This implies that, if we fix θ—as was done, e.g., in FLS and SDM, as in most other studies—the

prior model size will have mean θk and variance θ(1 − θ)k.
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Typically, the use of a hierarchical prior increases the flexibility of the prior and reduces the

dependence of posterior and predictive results (including model probabilities) on prior assumptions.

Thus, making θ random rather than fixing it would seem a sensible extension—this was implemented

by Brown et al. (1998), and is also discussed in, e.g., Clyde and George (2004) and Nott and Kohn

(2005). An obvious choice for the distribution of θ is a Beta with hyperparameters a, b > 0, i.e.,

θ ∼ Be(a, b), leading to the following prior moments for model size, as a function of k, a and b:

E[W ] =
a

a + b
k, (5)

Var[W ] =
ab(a + b + k)

(a + b)2(a + b + 1)
k. (6)

This framework generates a prior model size distribution that corresponds to the Binomial­Beta

distribution (Bernardo and Smith, 1994, p. 117), and has a probability mass function given by

P (W = w) =
Γ(a + b)

Γ(a)Γ(b)Γ(a + b + k)

(

k

w

)

Γ(a + w) Γ(b + k − w), w = 0, . . . , k.

In the special case where a = b = 1 (i.e., we mix with a uniform prior for θ) we obtain a discrete

uniform prior for model size with P (W = w) = 1/(k + 1) for w = 0, . . . , k.

This prior depends on two parameters, (a, b), and it will facilitate prior elicitation to fix a = 1.

This allows for a wide range of prior behaviour and generally leads to reasonable prior assumptions,

as seen below. It is attractive to elicit the prior in terms of the prior mean model size, m. The

choice of m ∈ (0, k) will then determine b through equation (5), which implies b = (k − m)/m.

Thus, in this setting, the analyst only needs to specify a prior mean model size, which is exactly

the same information one needs to specify for the case with fixed θ, which should then equal

θ = m/k. With this Binomial­Beta prior, the prior mode for W will be at zero for m < k/2 and

will be at k for m > k/2. The former situation is likely to be of most practical relevance, and, in

that case, the prior puts most mass on the null model, which reflects a mildly conservative prior

stance, where we require some data evidence to favour the inclusion of regressors.

For the case of k = 67, Figure 1 contrasts the prior model­size distributions1 with fixed θ (solid

lines) and random θ (dashed lines), for two choices for mean model size: m = 7, which is used in

SDM, and m = 33.5, which corresponds to a uniform prior in the random θ case. Clearly, the prior

with fixed θ is very far from uniform, even for m = k/2. Generally, the difference between the fixed

and random θ cases is striking: prior model size distributions for fixed θ are very concentrated.

1
These distributions are, of course, discrete, but for ease of presentation they are depicted through continuous graphs—the

same comment applies throughout the paper.
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Fig. 1. Prior model size for k = 67; fixed θ (solid) and random θ (dashed).

With random θ and the hyperparameter choices discussed above, the prior variance of model

size is then equal to

Var[W ] = m(m + 1)
k − m

k + m
, (7)

which is roughly equal to m2 when k ≫ m. In fact, we can illustrate the added uncertainty

introduced by the hierarchical prior structure on θ by the fact that the variance in (7) multiplies

Var[W ] of the corresponding case with fixed θ = m/k by a factor

k
m + k
k
m + 1

,

which, for k > 1 is always larger than one and is an increasing function of m, ranging from 1 (in

the limit as m ↓ 0) to (k + 1)/2 (in the limit as m ↑ k).

Thus, treating θ as random will typically imply a substantial increase in the prior uncertainty

about model size. To assess whether this increase is reasonable, consider Pearson’s coefficient of

variation, say CV[W ], given by the standard deviation divided by the mean. For fixed θ = k/m
this coefficient of variation equals

CV[W ] =

√

k − m

km
,

which is a rapidly decreasing function of m and is unity for m = k/(k + 1), which is often close to

one. Thus, for any reasonable prior mean model size, the prior with fixed θ will be far too tight. For

example, if we take m = 7 in our applications, where k ranges from 41 to 67, CV[W ] will range

from 0.344 to 0.358, which is quite small. For m = k/2, then CV[W ] =
√

1/k, which ranges

from 0.122 to 0.156, clearly reflecting an unreasonable amount of precision in the prior model size

distribution.

For random θ with the hyperprior as described above, we obtain

CV[W ] =

√

(m + 1)(k − m)

m(k + m)
,
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which is also decreasing in m, but is much flatter than the previous function over the range

of practically relevant values for m.2 Taking m = 7 in our applications, CV[W ] will now

range from 0.900 to 0.963, which is much more reasonable. For m = k/2, we now have that

CV[W ] =
√

(k + 2)/3k, which ranges from 0.586 to 0.591.

Thus, this hierarchical prior seems quite a sensible choice. In addition, both Var[W ] and CV[W ]

increase with k for a given m, which also seems a desirable property. This holds for both prior

settings; however, limk→∞ CV[W ] =
√

(m + 1)/m for the case with random θ whereas this limit

is only
√

1/m for the fixed θ case.

4.2. Prior odds

Posterior odds between any two models in M are given by

P (Mi|y)

P (Mj |y)
=

P (Mi)

P (Mj)
·
ly(Mi)

ly(Mj)
,

where ly(Mi) is the marginal likelihood, defined in (2). Thus, the prior distribution on model space

only affects posterior model inference through the prior odds ratio P (Mi)/P (Mj). For a prior with

a fixed θ = 0.5 prior odds are equal to one (i.e., each model is a priori equally probable). If we fix

θ at a different value, these prior odds are

P (Mi)

P (Mj)
=

(

θ

1 − θ

)ki−kj

,

thus inducing a prior penalty for the larger model if θ < 0.5 and favouring the larger model for

values of θ > 0.5. Viewed in terms of the corresponding mean model size, m, we obtain (for

θ = m/k):

P (Mi)

P (Mj)
=

(

m

k − m

)ki−kj

,

from which it is clear that the prior favours larger models if m > k/2. For the hierarchical Be(a, b)

prior on θ, we obtain the prior model probabilities:

P (Mj) =

∫ 1

0

P (Mj |θ)p(θ)dθ =
Γ(a + b)

Γ(a)Γ(b)
·

Γ(a + kj)Γ(b + k − kj)

Γ(a + b + k)
.

Using a = 1 and our prior elicitation in terms of E[W ] = m as above, we obtain the following prior

odds

P (Mi)

P (Mj)
=

Γ(1 + ki)

Γ(1 + kj)
·

Γ
(

k−m
m + k − ki

)

Γ
(

k−m
m + k − kj

) .

2
Of course, both CV functions tend to zero for m ↑ k since then all prior mass has to be on the full model. In addition,

CV in both cases tends to ∞ as m ↓ 0.
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Fig. 2. Log of Prior Odds: ki = 10 vs varying kj .

Figure 2 compares the log prior odds induced by the fixed and random θ prior structures, in the

situation where k = 67 and for m = 7, 33.5 and 50. The graphs indicate the prior odds in favour of

a model with ki = 10 versus models with varying kj .

Note that the random θ case always leads to downweighting of models with kj around k/2,

irrespectively of m. This counteracts the fact that there are many more models with kj around k/2

in the model space M than for kj values nearer to 0 or k.3 In contrast, the prior with fixed θ does

not take the number of models at each kj into account and simply always favours larger models

when m > k/2 and the reverse when m < k/2. Note also the wider range of values that the log

prior odds take in the case of fixed θ.

Thus, the choice of m is critical for fixed θ, but much less so for random θ. The latter prior

structure is naturally adaptive to the data observed. This is, again, illustrated by Figure 3, which

plots the log of the prior odds of a model with ki = (kj − 1) regressors versus a model with kj

regressors as a function of kj .

Whereas the fixed θ prior always favours the smaller model Mi for m < k/2, the choice of m
for random θ only moderately affects the prior odds, which swing towards the larger model when

kj gets larger than approximately k/2. This means that using the prior with fixed θ will have a

deceptively strong impact on posterior model size. This prior does not allow for the data to adjust

prior assumptions on mean model size that are at odds with the data, making it a much more risky

choice.

3
The number of models with kj regressors in M is given by

(

k

kj

)

. For example, with k = 67, we have 1 model with

kj = 0 and kj = k, 8.7 × 108 models with kj = 7 and kj = 60 and a massive 1.4 × 1019 models with kj = 33 and 34.
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4.3. Bayes factors

The marginal likelihood in (2) forms the basis for the Bayes factor (ratio of marginal likelihoods)

and can be derived analytically for each model with prior structure (4) on the model parameters.

Provided g in (4) does not depend on the model size kj , the Bayes factor for any two models from

(3)–(4) becomes:

ly(Mi)

ly(Mj)
=

(

g

g + 1

)

ki−kj

2

(

1 + g − R2
i

1 + g − R2
j

)−n−1

2

, (8)

where R2
i is the usual coefficient of determination for model Mi, i.e., R2

i = 1 − [y′QXi
y/(y −

ȳιn)′(y − ȳιn)] and we have defined QA = I − A(A′A)−1A′ and Xi = (ιn, Zi), the design matrix

of Mi, which is always assumed to be of full column rank. The expression in (8) is the relative

weight that the data assign to the corresponding models, and depends on sample size n, the factor

g of the g­prior and the size and fit of both models, with the latter expressed through R2.

Let us compare this with the so­called BACE approach of SDM. The BACE approach is not

totally Bayesian, as it is not formally derived from a prior­likelihood specification, but relies on

an approximation as sample size, n, goes to infinity (which may not be that realistic in the growth

context). In fact, BACE uses the Schwarz approximation to compute the Bayes factor, as was

earlier used in Raftery (1995) in a very similar context. From equation (6) in SDM, we get the

following Bayes factor:

ly(Mi)

ly(Mj)
= n

kj−ki

2

(

1 − R2
i

1 − R2
j

)−n
2

. (9)

This expression is not that different from the one in our equation (8), provided we take g = 1/n. In

that case, the Bayes factor in (8) becomes:

ly(Mi)

ly(Mj)
= (n + 1)

kj−ki

2

(

1 + 1
n − R2

i

1 + 1
n − R2

j

)−n−1

2

,
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which behaves very similarly to the BACE procedure in (9) for practically relevant values of n (as

in the examples here). This will be crucial in explaining the similarity of the results with the FLS

and SDM prior settings mentioned before.

It also becomes immediately clear that the necessity of choosing prior settings implicit in using

BMA is not really circumvented by the use of BACE, in contrast with the claims in SDM. In fact,

BACE implicitly fixes g in the context of our BMA framework. The fact that this is hidden to

the analyst does not make the results more robust with respect to this choice. It even carries a

substantial risk of conveying a false sense of robustness to the applied analyst.

Now we can examine more in detail how the various prior choices translate into model size

penalties. From (8) we immediately see that if we have two models that fit equally well (i.e.,

R2
i = R2

j ), then the Bayes factor will approximately equal g(ki−kj)/2 (as g tends to be quite small).

If one of the models contains one more regressor, this means that the larger model will be penalized

by g1/2.

For n = 88 and k = 67 (as in the SDM data) this means that the choice of g = 1/n leads to a

Bayes factor of 0.107 and choosing g = 1/k2 implies a Bayes factor of 0.015. Thus, the model size

penalty is much more severe for g = 1/k2 in the context of these types of data. The size penalty

implicit in the BACE procedure is the same as for g = 1/n.

We can also ask how much data evidence is required to exactly compensate for the effects of

prior odds under different specifications. Posterior odds will be unity if the Bayes factor equals the

inverse of the prior odds, thus if

ly(Mi)

ly(Mj)
=

P (Mj)

P (Mi)
, (10)

where the prior odds are a function of prior mean model size m, as well as k and the sizes of both

models—as described in the previous subsection.

Typically, we have no control over n and k, but we do need to select g and m. To give

more insight into the tradeoff between g and m, Figure 4 plots the contours in (g,m)­space that

correspond to n = 88, k = 67, ki = 8, kj = 7, and R2
j = 0.75 for different ratios R2

i /R2
j that would

make the two models equally probable in the posterior. These plots are provided for fixed and

random θ model priors with the Bayes factor in (8).

It is apparent from the left figure for the fixed θ case that there is a clear trade­off between m
and g: larger m, inducing a smaller size penalty, can be compensated by a small g, which increases

the penalty. In this particular case with k and n corresponding to the SDM data, we notice that the

combination of g = 1/n with m = 7, as implicitly assumed in SDM, is on a contour rather close

to the one corresponding to the settings in FLS: g = 1/k2 with m = 33.5. These combinations

are represented in the left panel. This explains the similarity of the results with the SDM and FLS

prior settings, mentioned in the Introduction. See also the related discussion in Subsection 3.2 of

Eicher et al. (2007). If we adopt the hierarchical prior with random θ, the trade­off between g and

m almost disappears, as the choice of m now only has a very small role to play.

5. Some Illustrative Examples: Complete Sample Results

In this section we will present posterior results for three data sets that have been analysed in

the literature—all the datasets and the code used here are available on the Journal of Applied
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Fig. 4. Equal Probability Contours for different ratios R2
i /R2

j .

Left Panel shows also the choices of (log(g), m) for FLS and SDM.

(n = 88, k = 67, ki = 8, kj = 7, and R2
j = 0.75)

Econometrics data and code archive. The results reported in this section are based on MCMC runs

of 2 million retained drawings after a burn­in of 1 million.

We focus, in particular, on the effect of the prior choices on posterior model size distributions,

the spread of the posterior mass over model space, posterior model probabilities and the inclusion

of individual regressors.

Results are presented for eight combinations of prior settings, taking g = 1/n and g = 1/k2,

m = 7 and m = k/2 and using either a fixed or a random θ. The choice of m = 7 was used in SDM

and also motivated by the restriction to models with up to 7 regressors in Levine and Renelt (1992)

and exactly 7 regressors in Sala­i­Martin (1997). Choosing m = k/2 corresponds to a “vague”

model size prior, which is, as discussed in Subsection 4.1, uniform for random θ, and symmetric

(but far from uniform) for fixed θ.

5.1. The FLS Data

We first illustrate the effects of our prior choices using the growth data of FLS. The latter data set

contains k = 41 potential regressors to model the average per capita GDP growth over 1960­1992

for a sample of n = 72 countries.

As expected, results with m = 41
2 = 20.5, fixed θ and g = 1/k2 (the FLS settings) are virtually

identical to those obtained in FLS on the basis of a chain of the same length. Figure 5 provides a

complete picture of the posterior model size distributions (overplotted with the priors) for all eight

combinations of prior settings. Summaries in the form of the first two moments are provided in

Table 1.

From these results, we immediately notice the striking influence that prior assumptions have on
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Fig. 5. Model Size: Prior and Posterior Distributions for FLS data.

Table 1. FLS Data—prior and posterior moments of model size.

Properties of the chain and the best model.

m = 7 m = k/2 = 20.5

fixed θ random θ fixed θ random θ

g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2

Prior mean 7 7 7 7 20.5 20.5 20.5 20.5

Prior st. dev. 2.41 2.41 6.30 6.30 3.20 3.20 12.12 12.12

Posterior mean 9.17 6.29 10.76 5.73 19.84 9.91 12.87 6.03

Posterior st. dev. 1.54 1.30 2.67 1.65 2.57 1.63 4.43 1.64

# Models visited 141,980 20,003 329,694 19,275 522,637 150,255 436,602 23,558

# Models covering 50% 1,461 40 3,569 27 9,348 1,598 5,489 36

Post. Prob. best model 0.91% 6.22% 0.65% 5.61% 0.21% 1.24% 0.54% 5.21%

kj for best model 9 6 10 5 20 10 10 6

Corr. visits and PO 0.992 0.999 0.971 0.999 0.748 0.992 0.922 0.998

Prob. mass visited 70.7% 95.2% 39.6% 95.1% 18.4% 69.7% 27.2% 93.7%

model size in the posterior. Even if we fix the prior mean model size, simply changing between

random and fixed θ, or choosing a different g can substantially alter the posterior distribution of



14 PRIOR ASSUMPTIONS IN BMA

model size, W . Clearly, influence of the choice of m is massive for fixed θ, whereas its effect is

much less severe for the case of random θ. This accords with the fact (discussed in Subsection 4.1)

that the prior on model size is very concentrated for the fixed θ case, and the relative robustness

with respect to the choice of m noted for random θ in Subsections 4.2 and 4.3. Also, it appears

that the effects of prior choices are much more pronounced for the prior with g = 1/n. In fact, if

we adopt g = 1/k2 with a hierarchical prior on θ, the value chosen for m has very little impact, in

marked contrast with the other prior settings.

From Figure 5 we also deduce that the posterior of W can display bimodality if data and prior

information are in conflict. This happens when m = 20.5 and we choose g = 1/n for the case with

random θ. In the corresponding fixed θ case the prior is actually so concentrated that it dominates

and the posterior is mostly determined by the prior.

Table 1 also records some key properties of the chain: it is clear that the choice of g = 1/n
always leads to the sampler visiting many more models, indicating that the posterior mass is more

spread out over the model space. This is clear when considering how many of the higher­probability

models we need to cover 50% of the probability mass. This number varies dramatically with the

choice of g, especially for random θ (where we need more than 100 times as many models for

g = 1/n). If we adopt g = 1/n, many larger models are visited and the posterior mass assigned to

the best model is much smaller than with g = 1/k2 (roughly by a factor 8). In addition, the best

model is much larger for g = 1/n. All this is in keeping with the smaller penalty for increasing

model size that is implied by adopting g = 1/n (see Subsection 4.3). An important practical

consequence of this is that convergence of the chain requires a longer run. Table 1 also presents the

correlation between model visit frequencies and probabilities computed on the basis of the exact

posterior odds of the visited models, which is in excess of 0.99 (indicating excellent convergence)

for all cases with g = 1/k2. For g = 1/n, where the model probability is spread more evenly over

M, the evidence in favour of convergence is slightly less convincing. For the case with m = 20.5
and fixed θ we would ideally recommend a longer run.4 However, even in this case, multiple runs

led to very similar findings. For completeness, Table 1 also displays the estimated total posterior

model probability visited by the chain, computed as suggested in George and McCulloch (1997).

For the random θ cases, the specification and the posterior probability of the best model is not

much affected by the choice of m. However, changing from g = 1/n to g = 1/k2 has a dramatic

effect on both. Finally, the size of the best model varies in between 5 and 20, and is not much

affected by m for random θ.

Of course, one of the main reasons for using BMA in the first place is to assess which of the

regressors are important for modelling growth. Table 2 presents the marginal posterior inclusion

probabilities of all regressors that receive an inclusion probability of over 10% under any of the

prior settings. It is clear that there is a large amount of variation in which regressors are identified

as important, depending on the prior assumptions.

Whereas three variables (past GDP, fraction Confucian and Equipment investment) receive more

than 0.75 inclusion probability and a further two (Life expectancy and the Sub­Saharan dummy)

are included with at least probability 0.50 in all cases, there are many differences. If we compare

4
It is important for our purposes in this section that run lengths are identical, to ensure comparability of the properties of

the chains. Longer chains will typically capture marginally more of the posterior probability, but they will only add models
with very small posterior probabilities and this will not affect any of the conclusions.
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cases that only differ in m, the choice of g = 1/n with fixed θ leads to dramatic differences in

inclusion probabilities: Fraction Hindu, the Labour force size, and Higher education enrollment

go from virtually always included with m = 20.5 to virtually never included with m = 7; the

Number of years open economy has the seventh largest inclusion probability for m = 7 and drops

to the bottom of the 32 variables shown in the table for m = 20.5. In sharp contrast, the case with

g = 1/k2 and random θ leads to very similar inclusion probabilities for both values of m.

Table 2. FLS data—Marginal posterior inclusion probabilities of the covariates.
m = 7 m = k/2 = 20.5

fixed θ random θ fixed θ random θ
Regressors g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2

log GDP in 1960 1.00 0.91 1.00 0.79 1.00 1.00 1.00 0.84

Fraction Confucian 0.99 0.94 1.00 0.93 1.00 1.00 1.00 0.94

Life expectancy 0.92 0.74 0.95 0.63 1.00 0.95 0.97 0.68

Equipment investment 0.95 0.98 0.93 0.98 0.97 0.94 0.94 0.98

Sub­Saharan dummy 0.70 0.59 0.78 0.53 1.00 0.75 0.85 0.55

Fraction Muslim 0.62 0.29 0.63 0.23 0.43 0.66 0.61 0.27

Rule of law 0.41 0.17 0.56 0.15 0.93 0.52 0.67 0.17

Number of years open economy 0.56 0.60 0.46 0.54 0.07 0.50 0.36 0.56

Degree of capitalism 0.36 0.09 0.50 0.08 0.56 0.47 0.56 0.09

Fraction Protestant 0.38 0.23 0.49 0.24 0.47 0.46 0.51 0.24

Fraction GDP in mining 0.36 0.08 0.51 0.07 0.94 0.44 0.63 0.08

Non­Equipment investment 0.33 0.07 0.47 0.06 0.71 0.43 0.56 0.07

Latin American dummy 0.18 0.09 0.23 0.07 0.75 0.19 0.34 0.08

Primary school enrollment, 1960 0.19 0.10 0.21 0.08 0.63 0.18 0.29 0.09

Fraction Buddhist 0.14 0.05 0.20 0.07 0.25 0.17 0.23 0.07

Black market premium 0.11 0.02 0.22 0.01 0.69 0.16 0.34 0.02

Fraction Catholic 0.09 0.03 0.13 0.02 0.12 0.11 0.14 0.03

Civil liberties 0.09 0.03 0.13 0.02 0.54 0.10 0.22 0.03

Fraction Hindu 0.06 0.07 0.18 0.01 0.97 0.10 0.36 0.01

Political rights 0.06 0.01 0.09 0.01 0.29 0.07 0.13 0.02

Exchange rate distortions 0.06 0.03 0.06 0.02 0.12 0.06 0.08 0.03

Age 0.06 0.02 0.07 0.02 0.25 0.06 0.10 0.02

War dummy 0.05 0.02 0.06 0.02 0.14 0.05 0.08 0.02

Fraction of Pop. Speaking English 0.04 0.01 0.07 0.01 0.42 0.05 0.15 0.01

Size labor force 0.04 0.01 0.11 0.01 0.95 0.05 0.28 0.01

Ethnolinguistic fractionalization 0.03 0.01 0.09 0.01 0.87 0.03 0.24 0.01

Spanish Colony dummy 0.03 0.01 0.06 0.01 0.59 0.03 0.17 0.01

French Colony dummy 0.03 0.01 0.05 0.01 0.54 0.03 0.15 0.01

Higher education enrollment 0.02 0.01 0.08 0.01 0.91 0.02 0.24 0.01

British colony dummy 0.02 0.00 0.04 0.00 0.47 0.02 0.13 0.00

Outward orientation 0.02 0.01 0.04 0.01 0.42 0.02 0.12 0.01

Public education share 0.02 0.00 0.03 0.00 0.30 0.02 0.08 0.00

Finally, note that results for model size, chain behaviour and inclusion probabilities are quite

similar for the cases where g = 1/n with fixed θ = 7
41 (the preferred implied prior in SDM) and

where g = 1/k2 with θ = 0.5 (the prior used in FLS). This is in line with the negative trade­off

between g and m illustrated in Figure 4, which explains the similarity between empirical results

using BACE and the FLS prior on the same data. The same behaviour is observed for the other

datasets presented in the next subsections.
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5.2. The Data Set of MP

MP investigate the role of initial conditions at independence from colonial rule on the economic

growth of African countries. These authors focus on the average growth rate in GDP from 1960 to

1992 and construct a dataset for n = 93 countries with k = 54 covariates, obtained by combining

32 original regressors and 22 interaction dummies.

Table 3 records the main characteristics of model size and the MCMC chain, and illustrates that

results are quite close to those with the FLS data, leading to the same conclusions. Probably due to

the somewhat larger model space, convergence is now even more problematic for the fixed θ case

with g = 1/n and m = 54
2 = 27. Again, however, longer runs do not lead to appreciably different

conclusions (see footnote 5).

Table 3. MP Data—prior and posterior moments of model size.

Properties of the chain and the best model.

m = 7 m = k/2 = 27

fixed θ random θ fixed θ random θ

g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2

Prior mean 7 7 7 7 27 27 27 27

Prior st. dev. 2.47 2.47 6.57 6.57 3.67 3.67 15.88 15.88

Posterior mean 8.68 6.05 9.67 5.42 17.90 9.77 10.37 5.75

Posterior st. dev. 1.52 1.16 2.09 1.53 2.44 1.75 2.24 1.48

# Models visited 106,041 13,103 194,230 11,864 516,479 135,353 241,082 13,88

# Models covering 50% 933 31 1,549 23 3,038 1,353 2,049 28

Post. Prob. best model 1.65% 10.70% 1.14% 9.60% 0.49% 1.28% 0.90% 9.01%

kj for best model 8 6 8 4 19 8 8 6

Corr. visits and PO 0.990 0.998 0.973 0.999 0.251 0.985 0.963 0.999

5.3. The Data Set of SDM and DW

SDM and Doppelhofer and Weeks (2008) use a larger data set, and model annual GDP growth per

capita between 1960 and 1996 for n = 88 countries as a function of k = 67 potential drivers.

Despite the larger model space (the number of models in M is now 1.5 × 1020), Table 4 shows

that posterior model probabilities are more concentrated than in the previous two cases; in fact,

even in those cases where many models are visited, 50% of the posterior mass is still accounted for

through a rather small number of models. Also, model sizes tend to be smaller; in fact, the posterior

mean model size is less than 3 for three of the four cases with g = 1/k2. If we adopt a random

θ and g = 1/k2, the choice for m has little effect. The twenty best models are the same for both

values of m, with very similar posterior probabilities and only slight differences in ordering. The

best model (with over 60% posterior probability) in these cases as well as with two other settings,

is the model with only the East Asian dummy and Malaria prevalence as regressors. The same

model is also second best for the random θ case with m = 33.5 and g = 1/n, but is well down the

ordering (receiving less than 0.25% of probability) if we fix θ with m = 33.5. In fact, in the latter

case with g = 1/n, the regressors East Asian dummy and Malaria prevalence never appear together
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Table 4. SDM Data—prior and posterior moments of model size.

Properties of the chain and the best model.

m = 7 m = k/2 = 33.5

fixed θ random θ fixed θ random θ

g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2

Prior mean 7 7 7 7 33.5 33.5 33.5 33.5

Prior st. dev. 2.50 2.50 6.74 6.74 4.09 4.09 19.63 19.63

Posterior mean 6.17 2.84 5.26 2.35 14.20 7.00 5.73 2.40

Posterior st. dev. 1.50 0.85 1.86 0.59 1.64 1.44 1.91 0.62

# Models visited 102,852 6,141 101,642 2,167 606,792 130,776 129,929 2,594

# Models covering 50% 590 4 248 1 485 744 383 1

Post. Prob. best model 6.63% 37.72% 5.74% 66.42% 1.43% 6.58% 5.22% 63.64%

kj for best model 6 2 2 2 13 6 6 2

Corr. visits and PO 0.996 1.000 0.996 1.000 0.029 0.996 0.996 1.000

in any model with posterior probability over 0.25%. This further illustrates the huge impact of

simply changing between the fixed and random θ cases.

Convergence is excellent, except for the case with fixed θ, m = 33.5 and g = 1/n, as in the other

examples. The difference in convergence between the cases is even more striking than with the

previous examples, and it appears that the case with convergence problems struggles to adequately

describe the posterior distribution on the model space M. While most of the mass is covered by

a relatively small number of models, the prior assumptions induce a very fat tail of models with

little but nonnegligible mass. However, inference on most things of interest, such as the regressor

inclusion probabilities is not much affected by running longer chains. For all other prior settings,

the very large model space is remarkably well explored by the MCMC chain.

6. Robustness and Predictive Analysis: Results from 100 Subsamples

In the previous section we have illustrated that the choice of, perhaps seemingly innocuous, prior

settings can have a dramatic impact on the posterior inference resulting from BMA. Posterior model

probabilities and identification of the most important regressors can strongly depend on the prior

settings we use in our analysis of growth regressions through BMA.

We now address the issue of whether small changes to the data set would result in large changes

in inference—i.e., data robustness. In addition, we want to assess the predictive performance of the

model under various prior settings. We will use the same device to investigate both issues, namely

the partition of the available data into an inference subsample and a prediction subsample. We will

then use the various inference subsamples for the evaluation of robustness and assess prediction

on the basis of how well the predictive distribution based on the inference subsamples captures the

corresponding prediction subsamples.

We take random partitions of the sample, where the size of the prediction subsample is fixed

at 15% of the total number of observations (rounded to an integer), leaving 85% of the sample

to conduct inference with. We generate random prediction subsamples of a fixed size by using

the algorithm of McLeod and Bellhouse (1983). We use 100 random partitions and compute the
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posterior results through an MCMC chain of 500,000 drawings with a burn­in of 100,000 for each

partition. This led to excellent convergence, with the exception of the cases with θ fixed at 0.5 and

g = 1/n. Thus, for this combination we have used a chain of length 1,000,000 after a burn­in of

500,000, which leads to reliable results.5 To increase comparability, we use the same partitions for

all prior settings.

6.1. Robustness

Figure 6 indicates the distribution of the posterior mean model size across 100 inference subsamples

of the FLS data (left panel). Values corresponding to the full sample are indicated by vertical

lines. The right panel of the same Figure shows the posterior inclusion probabilities of the ten

regressors with highest posterior inclusion probabilities in the full­sample analysis with the FLS

prior setting—i.e., θ = 0.5 and g = 1/ max{n, k2}.

A striking characteristic of both panels is the sensitivity of the results to the choice of m for the

fixed θ priors, whereas the effect of m is very small for the cases with random θ. The choice of g,

however, always matters: g = 1/k2 generally leads to smaller mean model sizes and results in very

different conclusions on which regressors are important than g = 1/n, especially for random θ.

Given each choice of prior, the results vary quite a bit across subsamples, especially for the

inclusion probabilities where the interquartile ranges can be as high as 60%. It is interesting how

the combinations of g = 1/n with fixed θ = 7/41 (the setting implicitly favoured in SDM) and

g = 1/k2 with θ = 0.5 (the prior of FLS) lead to very similar results, both for model sizes and

inclusion probabilities, as also noted in Section 5. Overall, the difference between fixed and random

θ cases is small for m = 7, but substantial for m = k/2.

For the MP data, results on posterior model size are quite similar as for the FLS dataset, and we

can draw the same conclusions on the basis of the inclusion probabilities.

Finally, Figure 7 shows the robustness results for the SDM data set, where we have k = 67

potential regressors. As before, the choice of m critically affects the fixed θ results, but not the

ones for random θ. Differences between fixed and random θ cases are large for m = k/2, but

relatively small for m = 7, as with both previous datasets. Again, the choice of g always affects

the results, and inference using g = 1/n in combination with θ = 7
67 is quite similar to that using

g = 1/k2 with θ = 0.5, for both model size and inclusion probabilities. For g = 1/k2 inference on

model size is quite concentrated on small values, with the exception of the case with fixed θ and

m = 33.5.

Even though many results are not very robust with respect to the particular choice of subsample,

it is clear that the differences induced by the various prior assumptions largely persist if we take

into account small changes to the data.

5
In fact, the results are very close to those obtained with 100,000 burn­in and 500,000 retained drawings, with the only

noticeable difference in the maximum LPS values.
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Fig. 6. Distribution of mean model size and posterior inclusion probabilities of the first ten regressors.

(FLS data, 100 inference subsamples.)
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Fig. 7. Distribution of mean model size and posterior inclusion probabilities of the first ten regressors.

(SDM data, 100 inference subsamples.)
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6.2. Prediction

In order to compare the predictive performance associated with the various prior choices, we turn

now to the task of predicting the observable, growth, given the regressors. Of course, the predictive

distribution is also derived through model averaging, as explained in, e.g., FLS. As a measure of

how well each model predicts the retained observations, we use the log predictive score (LPS),

which is a strictly proper scoring rule, described in FLS.6 In the case of i.i.d. sampling, LPS can

be given an interpretation in terms of the Kullback­Leibler divergence between the actual sampling

density and the predictive density (Fernández et al., 2001a), and smaller values indicate better

prediction performance.

We compare the predictions based on: (i) BMA, (ii) the best model (the model with the highest

posterior probability), (iii) the full model (with all k regressors), and (iv) the null model (with only

the intercept).

Panel A in Table 5 summarizes our findings for the FLS data: the entries indicating “best” or

“worst” model or how often a model is beaten by the null are expressed in percentages of the 100

samples for that particular prior setting. Selected runs with 500 subsamples lead to very similar

results.

[1] BMA—The predictive performance of BMA is much superior to that of the other procedures—

which corroborates evidence in e.g. Raftery et al., 1997, Fernández et al., 2001a and FLS. It

is never the worst predictor and leads to the best predictions in more than half of the sampled

cases (with the exception of the prior with fixed θ = 0.5 and g = 1/n).

[2] Best—Basing predictions solely on the model with highest posterior probability is clearly a lot

worse: it almost never gives the best prediction and leads to the worst prediction in 18 to 46%

of the cases; moreover, it is beaten by the simple null model in more than 35% of the cases.

[3] Full—The use of the full model can lead to good forecasts, but is very risky, as it also has a

substantial probability of delivering the worst performance: in fact, for g = 1/k2 the proportion

of the latter always exceeds the fraction of best performances. This behaviour is also illustrated

by the fact that {Min, Mean, Max} for LPS of the full model is {0.74, 1.77, 3.77} for g = 1/n
and {0.67, 2.15, 5.82} for g = 1/k2. For comparison, the null model leads to {1.67, 2.05, 2.72}.

Having established that BMA is the strategy to adopt for prediction, we can focus on the forecast

performance of BMA to compare the predictive ability across the different prior settings. Mean

values of LPS (over all 100 samples) are not that different, but the maximum values indicate that

fixing θ at 0.5 is the most risky strategy. This suggests using random θ. In addition, BMA always

performs better with respect to the other prediction strategies for g = 1/k2. Indeed, the worst case

scenario for BMA appears to be θ = 0.5 with g = 1/n. Finally, the choice of m almost leaves the

random θ results unaffected, but has a substantial effect on the cases with fixed θ, in line with our

expectations.

Panel B in Table 5 presents the same quantities for the MP data (where k = 54), and the

{Min, Mean, Max} values for LPS of the full model are {1.13, 2.55, 6.05} for g = 1/n and

{1.12, 2.79, 7.48} for g = 1/k2, whereas the null model leads to {1.70, 2.03, 2.63}.

6
Alternative scoring rules may be considered, like the continuous ranked probability score (CRPS). The CRPS measures

the difference between the predicted and the observed cumulative distributions, and was found in e.g. Gneiting and Raftery
(2007) to be less sensitive to outliers than LPS. It was introduced in the context of growth regressions by Eicher et al. (2007).
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Table 5. Predictive performance: Three datasets (100 subsamples)

Panel A. FLS Data

m = 7 m = k/2

fixed θ random θ fixed θ random θ

g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2 g = 1/n g = 1/k2

Best 59 65 54 66 48 63 54 67

BMA Worst 0 0 0 0 0 0 0 0

(%) Beaten by Null 7 6 11 6 19 11 11 6

Best 1 2 1 0 3 2 2 0

Best model Worst 28 18 34 18 46 31 36 17

(%) Beaten by null 35 35 41 36 52 47 45 36

Best 34 28 37 30 37 24 36 29

Full model Worst 16 42 15 41 8 31 15 42

(%) Beaten by null 25 45 25 45 25 45 25 45

Minimum 1.12 1.19 1.12 1.21 0.86 1.11 1.11 1.20

LPS of BMA Mean 1.58 1.61 1.61 1.64 1.65 1.63 1.61 1.63

Maximum 2.57 2.52 2.67 2.53 2.76 2.85 2.64 2.47

St. dev. 0.30 0.26 0.33 0.25 0.42 0.37 0.34 0.25

Panel B. MP Data

Best 71 70 75 73 61 78 73 72

BMA Worst 0 0 0 0 0 0 0 1

(%) Beaten by null 15 16 15 18 32 15 16 18

Best 10 8 7 2 2 5 7 3

Best model Worst 18 4 19 6 37 18 20 5

(%) Beaten by null 42 35 42 33 63 49 43 31

Best 4 7 3 9 6 2 4 9

Full model Worst 61 75 59 75 46 66 59 75

(%) Beaten by null 71 77 71 77 71 77 71 77

Minimum 1.15 1.30 1.14 1.39 1.05 1.12 1.13 1.38

LPS of BMA Mean 1.70 1.74 1.71 1.77 1.87 1.72 1.72 1.77

Maximum 3.34 3.46 3.26 3.53 3.60 3.31 3.23 3.54

St. dev. 0.39 0.37 0.40 0.35 0.51 0.42 0.40 0.36

Panel C. SDM Data

Best 69 53 64 48 48 63 66 46

BMA Worst 0 0 0 0 0 0 0 0

(%) Beaten by null 15 11 16 10 51 16 16 10

Best 16 36 20 42 1 21 18 44

Best model Worst 3 1 3 0 12 2 3 0

(%) Beaten by null 38 20 31 19 79 39 32 18

Best 0 0 0 0 0 0 0 0

Full model Worst 97 99 97 100 88 98 97 100

(%) Beaten by null 99 100 99 100 99 100 99 100

Minimum 1.36 1.41 1.39 1.43 1.22 1.33 1.38 1.43

LPS of BMA Mean 1.78 1.75 1.78 1.75 2.18 1.81 1.79 1.74

Maximum 3.38 2.67 3.31 2.53 3.70 3.63 3.38 2.51

St. dev. 0.34 0.26 0.32 0.25 0.60 0.38 0.34 0.25
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The superiority of BMA is even more pronounced, with the prior setting θ = 0.5 with g = 1/n
again being the least favourable for BMA. The performance of the full model is now considerably

worse than for the FLS data, as this model quite often leads to the worst behaviour and is soundly

beaten by the much more conservative null model. This seems in line with the fact that the number

of regressors, k, is now larger, so the full model is even more overparameterized than in the FLS

case. Considering the LPS values for BMA, priors with g = 1/n seem to have a slight edge, except

for the case with a fixed θ = 0.5. Finally, the choice of m is again virtually immaterial for the

random θ cases, and affects those with fixed θ.

Finally, Panel C in Table 5 collects prediction results for the SDM data, where the number of

regressors is even larger with k = 67. This is immediately felt in the behaviour of the full model,

which is now virtually always the worst model. The {Min, Mean, Max} values for LPS of the full

model are {2.53, 5.16, 11.75} for g = 1/n and {2.65, 6.95, 23.21} for g = 1/k2, whereas the null

model leads to {1.72, 2.08, 3.09}.

As before, the case with θ = 0.5 and g = 1/n leads to the worst BMA performance, allowing

the null model to beat it more than half of the time! This is due to those cases where prediction is

relatively difficult for which the conservative null model performs better. Throughout, the choice

of g = 1/k2 does better in avoiding large values of LPS, reducing the cases for which BMA is

beaten by the null model. On the other hand, it is more conservative and lowers the percentage of

cases where BMA leads to the best predictive behaviour. As we know from Subsection 4.3, the

choice of g = 1/k2 implies a larger size penalty, and thus stays closer to the rather conservative null

model. As in the previous examples, the effect of m is far larger for fixed θ than for random θ. For

the combinations of random θ with g = 1/k2 BMA seems less dominant than for the other cases.

This is simply a consequence of the fact that the best model then accounts for more than 60% of

the probability mass (see Table 4), so that the best model also predicts very well here (albeit not

quite as well as BMA). In fact, either BMA or the best model predict best in 90 of the 100 samples,

while the null model does best for the remaining 10 samples.

If we measure robustness as in Subsection 6.1 by the standard deviation of the LPS values for

BMA, Table 5 also shows us that cases with random θ and g = 1/k2 are the most robust. Note that

differences in robustness can be quite large, and the case with fixed θ = 0.5 and g = 1/n stands out

as the least robust combination by far.

To summarize the predictive behaviour in terms of the choice of prior setting, we can conclude

that a random θ prior seems preferable in view of the lack of sensitivity to m. Also, the combination

of fixed θ = 0.5 and g = 1/n is to be avoided as it can lead to relatively bad forecasting behaviour

and BMA is not as dominant as it is under other priors. For these other priors there seems no clear

guidance for the choice of g on the basis of predictive behaviour alone.

7. Concluding Remarks and Recommendations

The theoretical and empirical evidence provided above shows the critical importance of prior

assumptions for BMA: it clearly matters what prior settings we choose. The previously noted

similarity of results with BACE and FLS prior settings turns out to be a fluke rather than an

indication of prior robustness. Making certain prior assumptions implicit (as the choice of g = 1/n
in BACE) does not, in our view, constitute an improvement over a fully explicit Bayesian analysis

and can easily lead to a false sense of prior robustness.
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A first clear recommendation on the prior structure is to use random θ rather than fixed θ, since

the hierarchical prior is much less sensitive to the (often rather arbitrary) choice of prior mean

model size, m. Only in the unlikely situation when you really have very strong prior information

on model size can a fixed θ prior be defensible. Therefore, we strongly discourage the use of the

fixed θ prior as a “non­informative” prior, as it has clearly been shown to be quite informative.

Secondly, we would recommend to avoid the choice of g = 1/n, which implies a fairly small

model size penalty and can, thus, result in convergence problems (with a very long tail of relatively

unimportant models) and has also displayed more sensitivity to m than the alternative g = 1/k2.

In particular, we strongly advise against choosing g = 1/n with fixed θ = 0.5 as this combination

can lead to relatively bad predictions and the superiority of BMA (which has been shown to be the

best procedure to use for prediction) is less pronounced.

In conclusion: for growth­regression or other linear regression settings where we have a fairly

large number of potential regressors with relatively few observations (where k < n but of the same

order of magnitude, so that k2 ≫ n), we would recommend to use the prior structure in (4) with

g = 1/k2 for any given model. Also, for the prior over models we strongly advise the use of

the hierarchical prior on θ described in Subsection 4.1, whenever analysts have no really strong

prior information on model size (which will typically be the case for growth regression). In that

situation, the actual choice of the prior mean model size, m, will almost not matter, although we

would, of course, advise to use a reasonable value for m.
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