
Munich Personal RePEc Archive

An Adaptive Succesive Over-relaxation

Method for Computing the Black-Scholes

Implied Volatility

Li, Minqiang

Gerogia Institute of Technology

21 January 2008

Online at https://mpra.ub.uni-muenchen.de/6867/

MPRA Paper No. 6867, posted 24 Jan 2008 05:37 UTC

An Adaptive Successive Over-relaxation Method for Computing
the Black-Scholes Implied Volatility

January 21, 2008

A new successive over-relaxation method to compute the Black-Scholes implied volatility is
introduced. Properties of the new method are fully analyzed, including global well-definedness,
local convergence, as well as global convergence. Quadratic order of convergence is achieved by
either a dynamic relaxation or transformation of sequence technique. The method is further
enhanced by introducing a rational approximation on initial values. Numerical implementation
shows that uniformly in a very large domain, the new method converges to the true implied
volatility with very few iterations. Overall, the new method achieves a very good combination
of efficiency, accuracy and robustness.

Keywords: Successive over-relaxation, Black-Scholes formula, Implied volatility, Rational ap-
proximation.

JEL Classifications: C00, G13

i

1. Introduction

A breakthrough in modern financial theory is the Black-Scholes-Merton theory of option pricing,

developed by Black and Scholes (1973), Merton (1973, 1976) and many others. In 1997, the

Nobel prize in Economics was awarded to Merton and Scholes for the discovery and extension of

this theory. As the press releases described it, the Black-Scholes theory is “among the foremost

contributions to economic sciences over the last 25 years.” The ultimate result of the theory

is the celebrated Black-Scholes formula, which is being used daily by traders around the world

nowadays. Besides being used to price options on stocks, the Black-Scholes theory is also used to

value options on futures, options on currencies, options on interest rates, etc. Even models that

are out of the Black-Scholes framework, such as stochastic volatility models and more recently

Levy-process type models, still refer to the Black-Scholes model as the basic benchmark. See,

for example, Heston (1993), and Carr and Wu (2003). The use of the Black-Scholes formula is

so pervasive that Nigel Goldenfeld, a Physics professor at the University of Illinois at Urbana-

Champaign, claims that the Black-Scholes formula is the most frequently used equation by

human beings nowadays, beating both Newton’s laws of motion in classical mechanics and

Schrödinger’s equation in quantum mechanics.

In practice, traders often do not use the Black-Scholes formula to price options. Rather,

they observe the actual price on the market and then use the Black-Scholes formula backwards

to compute the volatility parameter, called the implied volatility. Early academic development

of this concept and on its applications includes Latané and Rendleman (1976), and Schmalensee

and Trippi (1978). The implied volatility is a useful quantity because it is a succinct way to

talk about option prices. In fact, traders are usually more comfortable to talk in terms of

implied volatilities than prices themselves. Market participants also pay close attention to the

implied volatility since it serves as a forward-looking measure of people’s expectation about

future market movements. The Black-Scholes volatility is also a useful concept for models

outside the Black-Scholes framework. For example, people are constantly interested in whether

a new proposed model can produce the Black-Scholes implied volatility curve observed on the

market. The importance of the implied volatility is most evident in the classical NatWest

Markets case. In 1997, NatWest lost 90.5 million pounds due to consistent underestimating of

implied volatilities it used to price interest rate swaptions.

As early researchers have noted in their works, the inversion of the Black-Scholes formula

cannot be done in closed form if elementary functions are to be used. Thus, to get the implied

volatility, people usually use some solver method, for example, the Dekker-Brent algorithm, or

the Newton-Raphson algorithm. Both methods have strengths and weaknesses (see Jäckel 2006,

and Li 2008). The Newton-Raphson algorithm has a quadratic convergence order and is thus

quite efficient. However, it can suffer from numerical instabilities. For example, each step in the

Newton-Raphson algorithm requires the division by the option vega, which can be extremely

small for away-from-the-money options. Also, with bad starting values, the Newton-Raphson

1

algorithm might not converge at all to the true implied volatility. The Dekker-Brent algorithm

uses a combination of bisection, secant and inverse quadratic interpolation, and is guaranteed

to converge. Some commercial software, such as MATLAB, chooses to use the Dekker-Brent

algorithm, possibly because of its robustness. However, the Dekker-Brent algorithm is usually

slower than the Newton-Raphson algorithm. For example, as Li (2008) reports, the number

of inversions one has to do for the S&P 500 index options for the period January 1996 to

December 2004 is about 700,000. On a typical computer, to achieve 10−6 accuracy in total

volatility (defined as the volatility multiplied by the square root of maturity), it takes the built-

in function “blsimpv” in MATLAB hours to finish these inversions, while the Newton-Raphson

algorithm without vectorization takes about 960 seconds.

Many research works have focused on inverting the Black-Scholes formula. Manaster and

Koehler (1982) show that if one starts the initial estimate for the Newton-Raphson algorithm

from the inflection point, then in theory the algorithm always converges. Jäckel (2006) analyzes

the Newton-Raphson algorithm in detail and points out various pitfalls one should avoid. He

also points out how one can avoid those pitfalls by designing a series of precautionary measures.

Researchers have also considered alternatives to the solver methods, such as analytical approxi-

mation or quasi-iterative methods. Brenner and Subrahmanyam (1988) develop a simple formula

for computing the implied volatility of at-the-money options. Bharadia et al. (1996) derive a

simple volatility formula which does not require the option to be exactly at-the-money. Chance

(1993, 1996) develops a formula for computing the implied volatility by adding a quadratic ad-

justment term to the Brenner-Subrahmanyam formula. Chambers and Nawalkha (2001) develop

a simplified extension of Chance’s method and obtain a formula that is more accurate than pre-

vious methods. One shortcoming of the Chance method and the Chambers-Nawalkha method

is that they both require the knowledge of the at-the-money implied volatility. Based on the

linearization of the cumulative normal distribution, Corrado and Miller (1996a, 1996b) develop

a simple and elegant formula that overcomes this shortcoming. This formula is quite accurate

for near-the-money options but unfortunately its performance deteriorates when the option gets

away from the money. Kelly (2006) considers inverting the Black-Scholes formula using the

implicit function theorem. He also studies the numerical errors of various methods. Charogy-

Corona and Ibarra-Valdez (2006) consider an approximation formula for the implied volatility

by means of an asymptotic representation of the Black-Scholes formula. However, they do not

give a numerical analysis. Li (2008) takes a new approach by using a rational approximation

for the implied volatility. Since a rational approximation can have a small uniform error in a

large domain, the approximation domain considered in Li (2008) is fairly large, with moneyness

ranging from −0.5 to 0.5 and total volatility ranging from 0 to 1. For most index options or

currency options, this domain is large enough. It is found that the rational approximation is

the most accurate among all existing closed-form methods, achieving 10−3 in terms of uniform

error in the total volatility. Also, the rational approximation is able to invert one million options

within a few seconds.

2

In this paper, we introduce a new method to compute the Black-Scholes implied volatility

based on successive over-relaxation. Thus, our method is an iterative method and not in closed

form. We study this method for two reasons. First, although the approximation domain in

Li (2008) is fairly large, in practice, total volatility can be well above 1, especially for energy

derivatives, or equity derivatives near earnings announcements. Thus, we use a much larger

domain in this paper, with moneyness ranging from −3 to 3 and total volatility ranging from 0

to 6. This domain should cover almost all practical applications. Second, we try to search for

a method which has the best combination of efficiency, accuracy and robustness. We will see

that our method can achieve quadratic order of convergence, the same order as the Newton-

Raphson algorithm. On the other hand, our method is robust as is the case for the Dekker-Brent

algorithm. With just five iterations our method achieves a uniform error in the total volatility

in the order of 10−13 inside the huge domain. The time it takes to invert one million options is

about 10 seconds.

Our first contribution in this paper is that we design a new method to compute the implied

volatility. The basic idea of our method is to split the Black-Scholes formula into two parts and

to search for the implied volatility iteratively. To improve efficiency, we introduce a relaxation

parameter. We call our method with over-relaxation the SOR algorithm. Unlike the Newton-

Raphson algorithm, the computation of vega is not needed in our method. We analyze the

well-definedness, local and global convergence properties of the SOR algorithm in detail. In

Theorem 3.1, we show that when the relaxation parameter is large enough, the SOR algorithm is

always globally well-defined. This is a very attractive feature because it gives rise to robustness

of our algorithm. Theorem 3.2 shows that the local convergence is dictated by the behavior of the

iteration function near the true implied volatility. Theorem 3.3 shows that only two convergence

patterns can occur, monotone or oscillating. Theorem 3.4 and 3.5 show the convergence patterns

of price errors and implied volatility errors, respectively. The most interesting analysis is on

global convergence, which is usually very difficult to study. We obtain many interesting results.

Theorem 3.6 and 3.7 study two important special cases where the moneyness or the relaxation

parameter is 0, respectively. Theorem 3.8 is shows that when the relaxation parameter is larger

than some threshold value, the SOR algorithm is always globally convergent. The case where

the relaxation parameter is smaller than the threshold value is much harder to analyze and we

content ourselves by giving three sufficient conditions on global convergence in Theorem 3.9, 3.10

and 3.11.

The second contribution of this paper is that we introduce two convergence acceleration tech-

niques to the SOR algorithm. The basic SOR algorithm usually has a linear order of convergence,

as is shown in Theorem 4.1. The first acceleration technique is based on dynamic relaxation,

where we adaptively adjust the relaxation parameter at each iteration. We call this the SOR-DR

algorithm. Theorem 4.2 shows the global well-definedness property and convergence patterns

for the SOR-DR algorithm, while Theorem 4.3 shows that it has a quadratic order of conver-

gence. The second acceleration technique is based on a time-honored sequence transformation

3

technique, where at each iteration step we perform a nonlinear extrapolation, with the weight

adaptively adjusted. We call this the SOR-TS algorithm. Theorem 4.4 shows the global well-

definedness and convergence properties and local convergence patterns for the SOR-TS algorithm,

while Theorem 4.5 shows that it has a quadratic order of convergence.

Our third contribution is on numerical implementation of our algorithms. To further enhance

the efficiency of our algorithms, we introduce a rational approximation on the initial estimates,

in the same spirit as Li (2008). We show numerically that uniformly in a very large domain,

our accelerated algorithms converge to the true implied volatility with very few iterations. We

also briefly compare the SOR-TS algorithm with other methods such as the Newton-Raphson

algorithm and the Dekker-Brent algorithm, and show that the SOR-TS algorithm achieves the

best combination of accuracy, efficiency and robustness.

Finally, we extend our successive over-relaxation method to the computation of implied

correlation in the Margrabe formula, the normal implied volatility in the Bachelier formula,

and the critical stock price in a compound call on call option. The extension to the Margrabe

formula is straightforward. The extensions to the Bachelier implied volatility and critical stock

price require some analysis, and Theorem 6.1 and 6.2 show that for both applications, the

successive over-relaxation method is globally well-defined and convergent with a quadratic order

of convergence. These three examples demonstrate that the idea of successive over-relaxation is

not limited to the computation of the Black-Scholes implied volatility, but rather applicable in

a much wider range of financial problems.

The rest of the paper is organized as follows. Section 2 introduces the problem of computing

the Black-Scholes implied volatility. Section 3 introduces the basic successive over-relaxation

method and studies its well-definedness, local and global convergence properties. Section 4 con-

siders two acceleration techniques, one based on dynamic relaxation and the other on sequence

transformation, and shows that both of them achieve quadratic order of convergence. Section 5

implements all three algorithms with a rational approximation enhancement. Section 6 demon-

strates that the successive over-relaxation method is applicable in many other financial problems

through three additional examples. Section 7 concludes. Proofs are in the Appendix.

2. The Implied Volatility Problem

Let C be the price of a call option at time t with expiration date T and strike price K. Let S

be the current stock price, σ the volatility of the stock, r the risk-free interest rate, and δ the

dividend rate. Then the Black-Scholes formula expresses C in closed form as follows:

C(S, t; r, σ, T, K, δ) = Se−δ(T−t)N(d1) − Ke−r(T−t)N(d2),

where

d1 =
log(Se(r−δ)(T−t)/K)

σ
√

T − t
+

1

2
σ
√

T − t, d2 = d1 − σ
√

T − t,

4

and N(·) is the cumulative normal distribution function.

Let us first define the normalized call option price c(·, ·) by

C(S, t; r, σ, T,K, δ) = Se−δ(T−t)c
(
log(Se(r−δ)(T−t)/K), σ

√
T − t

)
.

The function c(x, v) is given by

c(x, v) = N
(x

v
+

v

2

)
− e−xN

(x

v
− v

2

)
, (1)

where the moneyness x and total volatility v are given by

x = log(Se(r−δ)(T−t)/K), v = σ
√

T − t. (2)

A call option with x > 0, x = 0 and x < 0 is said to be in-the-money, at-the-money, and

out-of-the-money, respectively. Following Li (2008), we call equation (1) the dimensionless

Black-Scholes formula.

The dimensionless Black-Scholes formula implicitly gives v as a function of c and x and

is the starting point for our successive over-relaxation method. This dimensionless formula

clearly states that the Black-Scholes formula is essentially a relation between three dimensionless

quantities, namely the normalized price c, the integrated volatility v and the moneyness x.

Given observed values of S, t, r, T, K, δ and option price C, we first calculate c according to

c = C/(Se−δ(T−t)) and x according to equation (2), and then compute v through some algorithm.

The implied volatility σ can then be obtained by dividing v by
√

T − t.

Figure 1 gives a surface plot for the normalized call option price c when the moneyness x

ranges from −3 to 3, and the volatility v ranges from 0 to 6. As we see, when |x|/v is large, c is

very insensitive to v and the inversion is not very meaningful because a tiny change in c(x, v) due

to measurement error can give rise to a huge change in v. Thus we will omit these regions in the

numerical implementation of our algorithms in Section 5 by imposing the restriction |x|/v ≤ 3.

We only need to consider inverting call options because by the put-call parity in the Black-

Scholes theory (see Stoll 1969), we have C = P + Se−δ(T−t) − Ke−r(T−t). Writing out in nor-

malized call and put prices, we have

c(x, v) = p(x, v) + 1 − e−x, (3)

where the normalized put price is defined as the ratio of the actual put price P and the quantity

Se−δ(T−t). If we are given a put option with moneyness x and normalized put price p, we will

simply invert a call option with moneyness x and normalized call price c = p + 1 − e−x.

Finally, we only need to consider options with moneyness x ≤ 0. This is because we have

the following symmetry, which we call the “in-out” duality:

c(−x, v) = exc(x, v) + 1 − ex. (4)

5

If we need to invert the Black-Scholes formula for an option with moneyness x ≥ 0 and nor-

malized call price c, we can as well use the right hand side of the above equation to invert its

dual option with moneyness x′ = −x ≤ 0 and normalized call price c′ = exc + 1 − ex. This

is also in line with industry practice of treating out-of-the-money options as more informative

than in-the-money options. Another rationale to invert out-of-the-money options is the follow-

ing. Letting v̂ be the estimate of the true volatility v∗ that one gets from inverting the dual

out-of-the-money option when x > 0, then the “in-out” duality gives

|c(−x, v̂) − c(−x, v∗)| = ex|c(x, v̂) − c(x, v∗)| > |c(x, v̂) − c(x, v∗)|.

That is, if we use “in-out” duality to compute the implied volatility for an in-the-money option,

the error in terms of price for the in-the-money option is always smaller than that for its dual

out-of-the-money options.

3. The Successive Over-relaxation Method

3.1. The SOR algorithm

In this section, we establish a numerical method to compute the implied volatility which is based

on the idea of successive over-relaxation. We also analyze the properties of the new method,

including global well-definedness, local convergence, as well as global convergence.

We will use n(·) to denote the standard normal density function. The following functions

will play important roles, so we give them specific names in order to shorten expressions:

n+(x, v) = n(x/v + v/2), (5)

N+(x, v) = N(x/v + v/2), (6)

N−(x, v) = e−xN(x/v − v/2), (7)

c+(x, v) = N+(x, v) + N−(x, v). (8)

Notice that the dimensionless Black-Scholes formula now becomes c(x, v) = N+(x, v)−N−(x, v).

By the discussion in Section 2, we only consider x ≤ 0 and v > 0. The following lemma is

very useful later when we analyze the properties of our method. Because of the well-known

discontinuity of the Black-Scholes formula, we consider the x < 0 and x = 0 cases separately.

Lemma 3.1. When x < 0, we have

1) N+(x, v) is strictly increasing in v. Furthermore, N+(x, 0+) = 0 and N+(x,+∞) = 1;

2) N−(x, v) is strictly increasing in v for v ≤
√

2|x| and decreasing in v for v >
√

2|x|.
Furthermore, N−(x, 0+) = N−(x,+∞) = 0;

3) c(x, v) is strictly increasing in v, strictly convex in v for v <
√

2|x| and strictly concave

in v for v >
√

2|x|. Furthermore, c(x, 0+) = 0 and c(x,+∞) = 1;

6

4) c+(x, v) is strictly increasing in v. Furthermore, c+(x, 0+) = 0, and c+(x,+∞) = 1;

5) Let v > 0, u > 0 and v 6= u. Then

u2

2 |x|
[
c+(x, v) − c+(x, u)

]
< c(x, v) − c(x, u) <

v2

2 |x|
[
c+(x, v) − c+(x, u)

]
. (9)

When x = 0, we have

1) N+(0, v) is strictly increasing in v. Furthermore, N+(0, 0+) = 1/2 and N+(0, +∞) = 1;

2) N−(0, v) is strictly decreasing in v. Furthermore, N−(0, 0+) = 1/2 and N−(0, +∞) = 0;

3) c(0, v) is strictly increasing in v, and strictly concave in v. Furthermore, c(0, 0+) = 0 and

c(0, +∞) = 1;

4) c+(0, v) ≡ 1.

Hereafter, we will suppress the dependence on x in the functions n+, N+, N−, c, and c+

unless there can be a confusion. That is, we will write N+(v) for N+(x, v), etc. To introduce our

successive over-relaxation method, we need to define the iteration function. Let N−1(·) denote

the inverse function of the cumulative normal distribution N(·). Let the moneyness be x, the

observed option price c∗, and the true implied volatility v∗. That is, c∗ = c(x, v∗). For fixed

c∗ = c(x, v∗) and x, define a function F (v; x, v∗, ω) as follows

F (v; x, v∗, ω) ≡ c∗ + N−(v) + ωN+(v). (10)

The parameter ω will play the role of the relaxation parameter in our method. The iteration

function is given by

G(v; x, v∗, ω) = N−1

(
F (v; x, v∗, ω)

1 + ω

)
+

√[
N−1

(
F (v; x, v∗, ω)

1 + ω

)]2

+ 2|x|. (11)

Notice that although we write G and F as functions of v∗, they only depend on v∗ through

c∗ = c(x, v∗). In order for G(v; x, v∗, ω) to be well-defined, we will require ω > −1 throughout

the paper. We will write G(v;x, v∗, ω) as G(v) unless we want to emphasize the dependence of

G on x or ω. Similarly for F (v;x, v∗, ω). Our problem is to compute the v∗ from the observed c∗

and x. For a given sequence vk of implied volatility estimates, we will write ck for the sequence

c(x, vk). Our method of finding v∗ is the following:

1. Select an initial point v0 and a fixed relaxation parameter ω;

2. (SOR) After obtaining vk, compute vk+1 from the following equation

vk+1 = G(vk); (12)

3. Stop when |vk − v∗| < ǫ or |ck − c∗| < ǫ, for some ǫ small.

We will call the above algorithm the SOR algorithm. This algorithm is an interesting applica-

tion of the successive over-relaxation idea to financial problems where the underlying relations

7

are nonlinear. The successive over-relaxation method was first developed by Young and others

around 1950. The most well-known application of successive over-relaxation is to solve sys-

tems of linear equations Ax = b. In finance, the PSOR (projected successive over-relaxation)

algorithm is widely used in solving partial differential equations for derivative prices. In Nash

(1990), Young reviews the historical development of iterative methods. This book also contains

an interesting account of how many iterations it took him to finally get his dissertation published

in 1954 (Young 1954).

Some simple algebra shows that equation (12) is equivalent to

c∗ + N−(x, vk) + ωN+(x, vk) = (1 + ω)N+(x, vk+1), k = 0, 1, · · · . (13)

By Lemma 3.1, c(x, v) is strictly increasing in v, hence v∗ is the unique fixed point of G(v). This

in turn implies that if the SOR algorithm converges, it will converge to v∗.

It is helpful to understand the SOR algorithm without relaxation. When ω is set to be 0,

equation (13) reduces to

c∗ + N−(x, vk) = N+(x, vk+1), k = 0, 1, · · · . (14)

That is, we split the Black-Scholes formula into two parts and try to find a fixed point for

the above iteration. The equation also shows the need to introduce the relaxation parameter.

When x is very negative or v∗ is very large, N−(x, vk) can be very small so the convergence

could be extremely slow. The relaxation parameter ω helps in these situations.

A well-known result is that if G(v) is locally contracting (that is, locally Lipschitz around v∗

with coefficient strictly less than 1), then for v0 sufficiently close to v∗, the SOR algorithm will

converge to v∗. See, for example, Isaacson and Keller (1994). In particular, the local Lipschitz

condition can be quickly checked by the first-order derivative of G(v) at v∗. Lemma 3.4 below

gives the expression of G′(v∗). If in addition, G(v) is globally contracting (that is, globally

Lipschitz with coefficient strictly less than 1), then starting from any v0, the SOR algorithm

converges to v∗.

Unfortunately, in general the function G(v) does not have these global or even local Lipschitz

properties. In fact, it is even possible for G(v) to be not defined. From the definition of G(v),

this happens when the following condition is violated

0 < F (v;x, v∗, ω) < 1 + ω. (15)

Because a thorough understanding of the function G(v) is crucial, we plot the function G(v)

and its derivative in v in Figure 2 for five different parameter combinations (x, v∗, ω). For ease

of exposition, we fix x = −0.5 and vary v∗ and ω. Figure 2 shows that all of the following five

behavior of G(v) can occur, corresponding to the five rows of the subplots:

1. G(v) is globally well-defined and globally contracting. This corresponds to the first

row of Figure 2, where v∗ = 0.5 and ω = 1. This is the best case scenario where we can

start from any positive v0 and the SOR algorithm always converges.

8

2. G(v) is globally well-defined, not globally contracting, but locally contracting

around v∗. This corresponds to the second row of Figure 2, where v∗ = 1.2 and ω = 0.

3. G(v) is globally well-defined, but not locally contracting around v∗. This corre-

sponds to the third row of Figure 2, where v∗ = 1.8, ω = −0.28, and G′(v∗)
.
= −1.32.

4. G(v) is not globally well-defined, but locally contracting around v∗. This corre-

sponds to the fourth row of Figure 2, where v∗ = 2.4, ω = −0.1, and G′(v∗)
.
= −0.89.

5. G(v) is not globally well-defined, and not locally contracting around v∗. This

corresponds to the last row of Figure 2, where v∗ = 1.2, ω = −0.66, and G′(v∗)
.
= −2.47.

In the rest of this section, we will analyze the global well-definedness property, local conver-

gence properties, as well as the global convergence properties of the SOR algorithm.

3.2. Global well-definedness property of the SOR algorithm

We will look at well-definedness first. It is extremely difficult to analyze local well-definedness for

a fixed starting point v0. The following numerical example illustrates this point. Let x = −0.5,

v∗ = 2.5 and ω = −0.1. Then G(v) is not defined for v ∈ [0.548467, 1.46434]. This means that

we cannot start the SOR algorithm from a point in this region. However, if v0 = 0.03, then the

sequence jumps past this bad region to v1 = 2.2285 and converges to v∗. Thus, in the following

we look for a global well-definedness condition which guarantees that the sequence vk is well-

defined regardless of the initial point v0. We will focus on x < 0 since we show later that the

well-definedness property with x = 0 is quite simple to analyze even for a fixed starting point v0.

First we define a function ṽ = ṽ(w;x) as follows. For any x ≤ 0 and −1 < ω < 1, we let

ṽ = ṽ(ω;x) =
√

2|x|
√

1 + ω

1 − ω
. (16)

We will often simply write ṽ or ṽ(ω) for ṽ(ω; x). We first establish two lemmas.

Lemma 3.2. Let x < 0. Then, we have limv→0+ F (v) = c∗ and limv→+∞ F (v) = c∗ + ω. Also,

if ω ∈ (−1, 1), then F (v) strictly increases on (0, ṽ) and strictly decreases on (ṽ,∞). If ω ≥ 1,

then F (v) strictly increases for all v > 0.

Lemma 3.3. Let x < 0. Suppose ω ∈ (−1, 1). Define

H(ω) = H(ω;x, v∗) ≡ c∗ + N−(ṽ(ω)) + ωN+(ṽ(ω)) − (1 + ω). (17)

Then, H(ω) has a unique root ω̂ in (−1, 1). Furthermore, if ω ≤ ω̂, then H(ω) ≥ 0, and if

ω > ω̂, then H(ω) < 0.

Notice that ω̂ is implicitly a function of x and v∗. For each fixed ω ∈ (−1, 1), the function

F (v) takes its maximum at the point ṽ and for global well-definedness we would need H(w) < 0.

9

The following theorem gives a necessary and sufficient condition for global well-definedness of

the SOR algorithm when x < 0. The x = 0 case is deferred to Theorem 3.6 because a separate

analysis is needed for this simpler case.

Theorem 3.1. (global well-definedness) Let x < 0. When ω ≥ 1, {vk} in the SOR algorithm

is well-defined for any v0 ∈ R+. When −1 < ω < 1, {vk} is well-defined for any v0 ∈ R+ if and

only if ω > ω̂ and ω ≥ −c∗.

While the global well-definedness condition guarantees that the SOR algorithm produces

a well-defined sequence, it does not guarantee that such an ω will make the SOR algorithm

convergent. In the following, we study the local and global convergence properties of the SOR

algorithm.

3.3. Local convergence properties of the SOR algorithm

We will first analyze the local convergence properties. We say that the SOR algorithm converges

locally if there exists a neighborhood Vǫ of v∗, such that the for any v0 ∈ Vǫ, the SOR algorithm

converges. Let us introduce two functions Φ(v; x) and Ψ(v; x) defined as follows

Φ(v; x) =
v2 − 2|x|
v2 + 2|x| , and Ψ(v;x) =

−2|x|
v2 + 2|x| . (18)

We will write Φ(v) instead of Φ(v;x) unless we want to emphasize the dependence on x. Similarly

for Ψ(v; x). The two functions are related through Φ(v) = 1 + 2Ψ(v). Notice that when x < 0,

−1 < Φ(v) < 1, −1 < Ψ(v) < 0, and both Φ(v) and Ψ(v) are strictly increasing in v. When

x = 0, Φ(v) ≡ 1 and Ψ(v) ≡ 0. These two functions Φ(v) and Ψ(v) play extremely important

roles in the analysis that follows.

The following lemma gives properties of the iteration function G(v). In particular, it says

that G(v) is strictly increasing on any connected open subsets of DomG ∩ {v : ω > Φ(v)}.

Lemma 3.4. Let x ≤ 0. Let DomG denote the open set of v for which G(v) is well-defined in

a neighborhood of v. For v ∈ DomG, we have

dG(v)

dv
=

ω − Φ(v)

1 + ω

G(v)2 n+(v)

v2 n+(G(v))

v2 + 2|x|
G(v)2 + 2|x| . (19)

Furthermore, v∗ ∈ DomG, and

G′(v∗) =
ω − Φ(v∗)

1 + ω
. (20)

We need another technical lemma to establish the local convergence property. Define a new

function Q(v;x, v∗, ω) : DomG 7→ R as follows:

Q(v) = Q(v; x, v∗, ω) ≡ c(v) + c(G(v)) − 2c∗. (21)

10

Notice that Q(v∗) = 0. Suppose G(v) and G(G(v)) are both defined. Taking the sum of two

consecutive iteration equations, we have

Q(v) = (1 + ω)[N+(v) − N+(G(G(v))]. (22)

Thus, the sign of Q(vk) controls whether vk+2 is larger than vk or not. In particular, to help

convergence, we would like to see Q(v) > 0 if v > v∗ and Q(v) < 0 if v < v∗. The following lemma

gives the derivatives of Q(v). It is useful in proving both Theorem 3.2 on local convergence and

Theorem 3.9 on global convergence.

Lemma 3.5. For any v ∈ DomG, the derivative of Q(v) is given by

Q′(v) =
n+(v)
|x|

G(v)2
+ 1

2

[(|x|
v2

+
|x|

G(v)2

)
+

ω

1 + ω

]
. (23)

In particular, when v = v∗, we have

Q′(v∗) =
2n+(v∗)

1 + ω

[
ω − Ψ(v∗)

]
. (24)

Furthermore, when ω = Ψ(v∗), we have Q′(v∗) = Q′′(v∗) = 0 and

Q′′′(v∗) =
2n+(v∗)|x|

v4
∗(v

2
∗ + 2|x|)(12v2

∗ − v4
∗ + 4x2).

The above two lemmas give the following theorem, which establishes conditions for the SOR

algorithm to have local convergence.

Theorem 3.2. (conditions for local convergence) Let ω > −1.

1) When x < 0, a necessary condition for the SOR algorithm to converge locally is ω ≥ Ψ(v∗)

and a sufficient condition is ω > Ψ(v∗). If ω = Ψ(v∗), a further necessary condition for local

convergence is 12v2
∗ − v4

∗ + 4x2 ≥ 0 while a further sufficient condition is 12v2
∗ − v4

∗ + 4x2 > 0.

2) When x = 0, the necessary and sufficient condition for the SOR algorithm to converge

locally is ω > 0.

Ordinarily, to check these conditions, we would need to know the value of v∗, which is the goal

of the SOR algorithm. However, in the next section, we will introduce two acceleration techniques

which employ the above theorem but avoid the knowledge of v∗. In one of the techniques, we

dynamically vary ω in each iteration k, such that ωk is eventually larger than Ψ(v∗). In the

other technique, we set ω to be the constant 1 in each iteration so ω ≥ Ψ(v∗) is trivially satisfied.

Although we give a detailed proof of Theorem 3.2 in the Appendix, Theorem 3.2 (except

for the borderline case ω = Ψ(v∗)) is actually a special application of a well-known result in

numerical analysis. See, for example, Isaacson and Keller (1994) for a more general statement.

Indeed, in our proof we make little use of the special structure of the SOR algorithm. Notice that

11

when x < 0, the condition ω > Ψ(v∗) is only sufficient but not necessary for local convergence,

and the condition ω ≥ Ψ(v∗) is necessary but not sufficient. This is because the borderline case

ω = Ψ(v∗) is a little bit complicated. The SOR algorithm can either locally converge or diverge in

this case. When both ω = Ψ(v∗) and 12v2
∗−v4

∗ +4x2 = 0 hold, it can be shown that Q(4)(v∗) = 0

since in this case it is proportional to [3v6
∗ − 6v4

∗x+24x3 − 4v2
∗x(8+3x)](12v2

∗ − v4
∗ +4x2). Thus,

a further condition on Q(5)(v∗) is needed to guarantee local convergence. We do not analyze

this double borderline case in more detail because we will never encounter it in our actual

implementation.

The following function will play a pivotal role in the analysis of the SOR algorithm:

φ(u, v) = φ(u, v;x) ≡





N−(u) − N−(v)

N+(v) − N+(u)
if u 6= v,

Φ(u; x) if u = v.

(25)

Lemma 3.6. The function φ(u, v) is symmetric in u and v and continuous on R2
+. Furthermore,

if x < 0, then |φ(u, v)| < 1, and for any fixed v, φ(u, v) is continuously differentiable and strictly

increasing in u, with the derivative given by

φ1(u, v) =





n+(u)

[N+(u) − N+(v)]2

{
x

u2
[c(u) − c(v)] +

1

2
[c+(u) − c+(v)]

}
if u 6= v,

4 |x| v
(v2 + 2 |x|)2 if u = v.

(26)

Similarly, for any fixed u, φ(u, v) is continuously differentiable and strictly increasing in v, with

φ2(u, v) = φ1(v, u). If x = 0, then φ(u, v) ≡ 1 on R2
+.

The following three lemmas are useful in analyzing both the local and global behavior of the

sequence {vk} from the SOR algorithm.

Lemma 3.7. Let {vk} be a well-defined SOR sequence and vk 6= v∗ for all k ∈ N.

1) If vk < v∗, then vk+1 > vk;

2) If vk > v∗, then vk+1 < vk.

Lemma 3.8. Let {vk} be a well-defined SOR sequence and vk 6= v∗ for all k ∈ N. Then for

any k, we have ω 6= φ(vk, v∗), and

1) If ω > φ(vk, v∗), then vk and vk+1 are on the same side of v∗;

2) If ω < φ(vk, v∗), then vk and vk+1 are on the opposite side of v∗.

Lemma 3.9. Let {vk} be a well-defined SOR sequence and vk 6= v∗ for all k ∈ N.

1) If 1 + 2ω > φ(vk, vk+1), then vk+1 and vk+2 are on the same side of vk;

2) If 1 + 2ω < φ(vk, vk+1), then vk+1 and vk+2 are on the opposite side of vk;

3) If 1 + 2ω = φ(vk, vk+1), then vk+2 = vk.

12

The next theorem states that if the SOR algorithm converges, then it is either eventually

monotone or eventually oscillating around v∗.

Theorem 3.3. (local convergence pattern) Let x ≤ 0. Suppose that vk from the SOR

algorithm converges to v∗ and vk 6= v∗ for all k ∈ N. Then there exists a k0 ∈ N, such that if

k > k0, the following is true:

1) If ω ≥ Φ(v∗), then vk approaches v∗ monotonically;

2) If ω < Φ(v∗), then vk is oscillating around v∗. More specifically, for any m ∈ N, we have

vk0+2m < vk0+2m+2 < v∗ and vk0+2m−1 > vk0+2m+1 > v∗.

We give two more results on the patterns of the SOR algorithm below.

Theorem 3.4. (local pattern for |ck − c∗|) Suppose that the SOR algorithm converges to v∗

with vk 6= v∗ for all k ∈ N. Then the sequence |ck − c∗| eventually monotonically decreases to 0.

Theorem 3.5. (local pattern for |vk − v∗|) Suppose that the SOR algorithm converges to v∗

and vk 6= v∗ for all k ∈ N. When ω > Ψ(v∗), |vk − v∗| is eventually monotonically decreasing.

When ω = Ψ(v∗), |vk − v∗| is eventually monotonically decreasing if and only if v∗ =
√

2|x|.

When ω = Ψ(v∗) and v∗ 6=
√

2|x|, |vk−v∗| no longer monotonically decreases to 0. However,

in this case, vk oscillates around v∗ and the two subsequences above and below v∗ approach v∗

monotonically.

3.4. Global convergence properties of the SOR algorithm

In the actual implementation it is hard to know whether the initial v0 is close enough to v∗ or

not. Thus, in the following we study the global convergence properties. That is, in the analysis

below, we do not assume that v0 is close to v∗. Furthermore, in the majority of the analysis

below, we also do not assume that the global well-definedness condition is satisfied.

The following theorem completely characterizes the well-definedness and convergence pat-

terns for the SOR algorithm when x = 0. Recall from Theorem 3.2 that a necessary condition

for the algorithm to converge when x = 0 is ω > 0.

Theorem 3.6. (SOR algorithm when x = 0) Assume x = 0 and v0 6= v∗. We have three

cases:

1) ω > 1. In this case, the SOR algorithm is globally well-defined and convergent. Further-

more, if v0 > v∗, then vk strictly decreases to v∗. If v0 < v∗, then vk strictly increases to v∗.

2) ω = 1. In this case, the SOR algorithm is globally well-defined and convergent. In fact,

vk = v∗ for any k ≥ 1.

3) 0 < ω < 1. In this case, the SOR algorithm is well-defined if and only if G(v0) is defined.

Furthermore, if G(v0) is defined, then the SOR algorithm is convergent and {vk} is immediately

oscillating around v∗.

13

The following analysis will focus on x < 0. We first consider the baseline case ω = 0 in

the SOR algorithm. The following theorem shows that in this case, the SOR algorithm is always

globally well-defined and convergent provided that v1 is defined.

Theorem 3.7. (SOR algorithm when ω = 0) Let x < 0 and ω = 0. Suppose c∗ +N−(v0) < 1,

then {vk} in the SOR algorithm is globally well-defined and converges to v∗. Furthermore, the

condition c∗ + N−(v0) < 1 is always satisfied when v∗ ≤
√

2|x|, and satisfied if v0 ≥ v∗ or

v0 ≤ 2|x|/v∗ when v∗ >
√

2|x|.

We will now consider a general relaxation parameter ω. Since a necessary condition for the

SOR algorithm to converge locally is ω ≥ Ψ(v∗), we only consider such ω’s.

It turns out that when ω ≥ Φ(v∗), the SOR algorithm is globally convergent if the sequence

is well-defined. By Theorem 3.3, the SOR sequence eventually monotonically approaches v∗ if it

converges in this case.

Theorem 3.8. (SOR algorithm when ω ≥ Φ(v∗)) Let x < 0 and v0 6= v∗. Assume that ω ≥
Φ(v∗). When v0 < v∗, {vk} from the SOR algorithm is globally well-defined and monotonically

increases to v∗. When v0 > v∗, we have the following three cases:

1) If ω > φ(v0, v∗), then {vk} is globally well-defined and monotonically decreases to v∗.

2) If ω = φ(v0, v∗), then {vk} is globally well-defined and vk = v∗ for all k ≥ 1.

3) If Φ(v∗) ≤ ω < φ(v0, v∗), then {vk} is globally well-defined if v1 is defined. Furthermore,

if v1 is defined, then v1 < v∗ and the sequence monotonically increases to v∗.

While the above theorem completely characterizes the behavior of the SOR algorithm when

ω ≥ Φ(v∗), we do not have a complete characterization for the ω < Φ(v∗) case. Notice that by

Theorem 3.3, the SOR sequence is eventually oscillating around v∗ if it converges when ω < Φ(v∗).

Nevertheless, we have obtained three sufficient conditions to guarantee convergence that are

possibly weaker than ω ≥ Φ(v∗). These are given in the three theorems that follow. They

show that to have global convergence, we only need to slightly strengthen the local convergence

condition ω ≥ Ψ(v∗), which is the same as 1 + 2ω ≥ Φ(v∗).

Theorem 3.9. (first sufficient condition for global convergence) Let x < 0. Suppose that

ω ≥ Ψ(
√

2v∗). Let {vk} be the SOR sequence, possibly only defined for finitely many k. Let vk0

be well-defined and the first point in the sequence {vk} such that ω < φ(vk, v∗). Then the whole

sequence {vk} is well-defined if and only if G(vk0
) is defined. Furthermore, if G(vk0

) is defined,

then the SOR algorithm converges to v∗.

Whether the sequence is eventually monotone or oscillating in Theorem 3.9 depends on

whether ω ≥ Φ(v∗). Also, if k0 in the theorem does not exist, then the SOR algorithm is globally

well-defined and converges monotonically to v∗. Another consequence of the above theorem is

that since Ψ(
√

2v∗) < 0 when x < 0, the SOR algorithm always converges when ω ≥ 0 provided

that {vk} is well-defined.

14

Theorem 3.10. (second sufficient condition for global convergence) Let x ≤ 0. Suppose

that the SOR sequence {vk} is well-defined and bounded above by some v ≥ v∗. Then the sequence

converges to v∗ if 1 + 2ω > φ(v∗, v).

For the last theorem, we first need to establish some properties of φ(u, G(u)).

Lemma 3.10. Let x < 0, −1 < ω < 1, and u ∈ DomG. If u < G(u), there exists K > 0, such

that

φ(u,G(u))′ > K(ω − Φ(u)).

As a result, when ω < Φ(v∗), we have φ(u,G(u))′ > 0 if u < ṽ, where ṽ is the unique point

satisfying ω = Φ(ṽ).

Theorem 3.11. (third sufficient condition for global convergence) Let x ≤ 0. Suppose

that ω satisfies the global well-definedness condition. Then for any v0 ∈ R+, the SOR algorithm

converges to v∗ if

1 + 2ω > sup
ṽ<u<v∗

φ(u,G(u)). (27)

Figure 3 summarizes the results of this section by giving all the possible convergence patterns

for the SOR algorithm. The top half of Figure 3 plots all the possible convergence patterns when

x = 0. Notice that by Theorem 3.6 all the conditions above each subplot are both sufficient and

necessary for that particular convergence pattern to occur. The bottom half of Figure 3 plots

all the possible convergence patterns when x < 0. Notice that Theorem 3.8 only guarantees

convergence when ω ≥ Φ(v∗). We box two conditions in two of the subplots to indicate that

these conditions are only necessary and not sufficient for these two particular global convergence

patterns.

4. Convergence acceleration methods

4.1. The convergence order of the SOR algorithm

We next take a look at the speed of convergence. We make use of the following common notions

of convergence speed. Suppose that the sequence vk converges to v∗. We say that this sequence

converges linearly if there exists a number µ ∈ (0, 1) such that

lim
k→+∞

|vk+1 − v∗|
|vk − v∗|

= µ. (28)

If the above limit exists with µ = 0, we say that the sequence converges superlinearly. If µ = 1,

we say that the sequence converges sublinearly. The number µ is usually called the convergence

15

rate. A smaller µ means faster convergence. We say that the sequence converges with order q if

for some q ∈ N,

lim
k→+∞

|vk+1 − v∗|
|vk − v∗|q

= µ with µ > 0. (29)

In particular, convergence with order 2 is called quadratic convergence. The following proposi-

tion shows that the SOR algorithm in the last section usually has a linear order of convergence.

Theorem 4.1. (convergence order of the SOR algorithm) Let x ≤ 0. Suppose that vk from

the SOR algorithm converges to v∗ and vk 6= v∗ for all k ∈ N. Then,

1) If ω 6= Φ(v∗) and ω > Ψ(v∗), the sequence {vk} has a a linear order of convergence, with

convergence rate µ = |G′(v∗)|.
2) If ω = Φ(v∗), then the sequence converge superlinearly.

3) If ω = Ψ(v∗), then the sequence converges sublinearly.

The above theorem immediately implies the following. Consider a fixed option with money-

ness x ≤ 0 and implied volatility v∗. Let vA
k and vB

k be two convergent SOR sequences associated

with initial values vA
0 and vB

0 , and relaxation parameters ωA and ωB, respectively. Suppose

vi
k 6= v∗ for all k ∈ N, i = A,B. If µA < µB, then Theorem 4.1 implies that regardless of the

relative accuracy of vA
0 and vB

0 , there exists k0 ∈ N, such that for all k > k0, |vA
k −v∗| < |vB

k −v∗|.
Thus, in selecting ω, we should try to select it such that it is as close to Φ(v∗) as possible. In

particular, if ω happens to be Φ(v∗), then we have superlinear convergence.

A linear convergence order is not very efficient. The rest of this section improves the con-

vergence order of the SOR algorithm through two convergence acceleration techniques: dynamic

relaxation and transformation of sequence.

4.2. Dynamic relaxation (SOR-DR)

Although the theory tells us that we should select ω to be Φ(v∗), in practice we do not know

the value of v∗, because after all, the precise value of v∗ is the goal of the SOR algorithm.

This difficulty can be overcome by a dynamic relaxation technique which approximates Φ(v∗)

adaptively with Φ(vk). More specifically, we modify the SOR algorithm to the following, which

we label as the SOR-DR algorithm.

1. Select an initial point v0 and set ω0 = Φ(v0);

2. (SOR-DR) After obtaining vk, compute vk+1 from the following equation

vk+1 = G(vk;x, v∗, ωk), (30)

and set ωk+1 = Φ(vk+1);

3. Stop when |vk − v∗| < ǫ or |ck − c∗| < ǫ, for some ǫ small.

The next theorem shows that if v1 is defined, then the SOR-DR algorithm always converges

monotonically to v∗.

16

Theorem 4.2. (convergence properties of the SOR-DR algorithm) When x = 0, the SOR-DR

algorithm is globally well-defined and vk = v∗ for all k ∈ N. When x < 0 and v0 > v∗,

vk is globally well-defined and monotonically decreases to v∗. When x < 0 and v0 < v∗, the

SOR-DR algorithm is globally well-defined if v1 is defined. If v1 is defined, then v1 > v∗, and vk

monotonically decreases to v∗ afterwards.

In addition to having nice global well-definedness and convergence properties, the SOR-DR

algorithm has at least quadratic order of convergence.

Theorem 4.3. (convergence order of the SOR-DR algorithm) Assuming vk 6= v∗ for all k,

the SOR-DR algorithm has at least a quadratic order of convergence if v1 is defined.

Theorem 4.3 is a very interesting result, because while the Newton-Raphson algorithm uses

derivative information of c(x, v), the SOR-DR algorithm never requires the calculation of the

derivatives. The derivative of c(x, v) with respect to v is given by n+(v). For deeply away-

from-the-money options, n+(v) could be extremely small, often resulting in overflow problems

in implementing the Newton-Raphson algorithm. That the SOR-DR algorithm works well for

away-from-the-money options is one major advantage over the Newton-Raphson method.

4.3. Transformation of sequence (SOR-TS)

While we can obtain quadratic order of convergence through a dynamic relaxation technique,

quadratic convergence can also be obtained through a classical transformation of sequence tech-

nique. Well-known examples of sequence transformation include Aitken’s delta-squared method

and Richardson extrapolation. A very good up-to-date reference to this technique is Sidi (2002).

We will label the following the SOR-TS algorithm.

1. Select an initial point v0 and a relaxation parameter ω;

2. (SOR-TS) After obtaining vk, compute vk+1 from the following equation

vk+1 = αkG(vk; x, v∗, ω) + (1 − αk)vk, (31)

where

αk =
1 + ω

1 + Φ(vk)
; (32)

3. Stop when |vk − v∗| < ǫ or |ck − c∗| < ǫ, for some ǫ small.

The iteration step in the SOR-TS algorithm can be more succinctly written as

vk+1 = M(vk;x, v∗, ω), (33)

where the iteration function M(v;x, v∗, ω) is given by

M(v) = M(v; x, v∗, ω) ≡ 1 + ω

1 + Φ(v; x)
G(v; x, v∗, ω) +

(
1 − 1 + ω

1 + Φ(v;x)

)
v. (34)

17

We will use the common practice in numerical analysis of using the term extrapolation

generally to include interpolation. That is, we treat extrapolation as a synonym for sequence

transformation. The transformation of sequence technique above is a simple extrapolation using

only two points vk and G(vk). The weight αk is chosen carefully so that M ′(v∗; x, v∗, ω) = 0,

which guarantees at least quadratic order of convergence if the SOR-TS algorithm converges.

Using the notions in Sidi (2002), the extrapolation is nonlinear, in that the parameter αk is

not a constant, but rather depends on the sequence {vk} itself. As Sidi (2002) points out,

nonlinear extrapolation is usually needed to improve order of convergence. Also, the sequence

transformation is iterative in that for each k, the extrapolated value vk is used to perform the

next extrapolation to get vk+1.

While ω is a free parameter in the SOR-TS algorithm, there is some guidance on how to choose

a good ω. First, ω should be chosen such that the sequence {vk} is well-defined. Thus, ω can not

be too small. For example, if ω is close to Ψ(v∗), G(v) fails to be globally well-defined. Also, ω

can not be too large because a too large ω might send the extrapolated point vk+1 below 0. The

following numerical example illustrates this point. Let x = −0.1, v∗ = 0.1 and ω = 5. Let v0 = 2.

Then G(v0) = 1.3137 and the extrapolated point v1 = −0.1617 < 0. Another consideration in

selecting ω is stability. Let v̂k be the computed numerical value for vk. As Sidi (2002) points

out, when vk is sufficiently close to v∗, the round-off error |v̂k − vk| might start to dominate the

total error |v̂k − v∗|. Furthermore, the round-off error might propagate and make the algorithm

unstable if more than necessary many iterations are performed. There are a few possible sources

of round-off errors. The first source is the iteration equation. This is due to the inaccuracy in

computing the cumulative normal distribution and its inverse, and the effect is largely controlled

by the coefficients ω and 1+ω. For example, a very large ω will amplify the errors. This source

of round-off error is also present in the SOR-DR algorithm. However, the SOR-TS algorithm has

another source of round-off error coming from the sequence transformation. The magnitude of

this source is largely controlled by the coefficients αk and 1 − αk.

Because of the above considerations, we recommend setting ω = 1 always in the SOR-TS

algorithm. There are several reasons for this choice. First, the choice of ω = 1 is good from

stability considerations. Second, if x = 0 and ω = 1, we immediately have G(v1) = v∗, and

since α1 = 1, we have v1 = v∗. That is, the sequence immediately lands on v∗. Finally, if x < 0

and ω = 1, Theorem 3.1 guarantees the global well-definedness of G(v), and Theorem 4.4 below

in turn guarantees the global well-definedness of M(v). The global well-definedness property is

extremely useful because it brings in the robustness of the SOR-TS algorithm.

We first establish some useful results for the extrapolated iteration function M(v; x, v∗, ω)

in Lemma 4.1 below when ω = 1. These results will be used in Theorem 4.4.

Lemma 4.1. Let x < 0 and ω = 1. The derivative of M(v) with respect to v is given by

M ′(v) = −4G|x|
v3

+
2|x|
v2

+
n+(v)

n+(G)

1
1
2 + |x|

G2

(|x|
v2

+
2x2

v4

)
, (35)

18

where we have written G for G(v;x, v∗, 1). Furthermore, M(v) > 0 for all v ∈ R+. Also, we

have M ′(v∗) = 0, and

M ′′(v∗) = − |x|
2v3

∗(v
2
∗ + 2 |x|)2 m(v∗, x)

where the function m(v, x) is given by m(v, x) = v6 − 2(4 + x)v4 − 4x2v2 + 8x3. For any fixed

x < 0, there exists a unique vr = vr(x) ∈ R+ such that m(vr, x) = 0. Furthermore, m(v, x) < 0

when v < vr, and m(v, x) > 0 when v > vr.

Since M ′(v∗) = 0, we immediately have local convergence. Also, the sign of M ′′(v∗) controls

the convergence pattern. For global convergence, we need to define two more quantities:

Mmin(x, v∗) ≡ inf{M(v; x, v∗, 1) : v ≥ v∗}, (36)

B(x, v∗) ≡ sup{|M ′(v; x, v∗, 1)| : v ≥ Mmin(x, v∗)}. (37)

Notice that since M(v∗) = v∗, we have Mmin(x, v∗) ≤ v∗. We have the following theorem:

Theorem 4.4. (convergence properties of the SOR-TS algorithm) Let x ≤ 0. Then the

SOR-TS algorithm with ω = 1 is globally well-defined and {vk} converges to v∗ locally. For any

option with (x, v∗), the SOR-TS algorithm converges globally for any v0 ∈ R+ if B(x, v∗) < 1.

Furthermore, if x = 0, then vk = v∗ for all k ∈ N. If x < 0 and {vk} converges to v∗ with

vk 6= v∗ for all k ∈ N, we have

1) The sequence {vk} eventually decreases to v∗ if v∗ < vr(x).

2) The sequence {vk} eventually increases to v∗ if v∗ > vr(x).

3) If v∗ = vr(x), the convergence can be either eventually monotone or eventually oscillating.

The condition B(x, v∗) < 1 is only sufficient for global convergence and not necessary.

Through extensive numerical analysis, we conjecture that the SOR-TS sequence converges glob-

ally without this condition, but so far we are not able to prove it analytically. In any case, we

have numerically verified (details are available upon request) that the condition B(x, v∗) < 1 is

satisfied inside a very large domain D− on which we will implement our algorithms. That is,

inside the domain D−, the SOR-TS algorithm with ω = 1 is globally convergent.

Theorem 4.5. (convergence order of the SOR-TS algorithm) Let x ≤ 0. Assuming the

sequence {vk} from the SOR-TS algorithm with ω = 1 converges to v∗ with vk 6= v∗ for all k ∈ N,

then the sequence has at least a quadratic order of convergence.

Figure 4 gives all the convergence patterns for the SOR-DR and SOR-TS (ω = 1) algorithms.

Notice that the two algorithms are always globally well-defined, except that when v0 < v∗

and x < 0, we need G(v0) to be well-defined to guarantee that {vk} is defined in the SOR-DR

algorithm. When x = 0, the convergence patterns of the two algorithms are exactly the same.

They both land on v∗ after just one iteration. When x < 0, the SOR-DR algorithm always

19

eventually converges to v∗ monotonically from above. We classify the local convergence behavior

of the SOR-TS algorithm according to the sign of M ′′(v∗). The three conditions listed should be

interpreted as necessary conditions. For example, a necessary condition for the SOR-TS sequence

to eventually decreases to v∗ is that M ′′(v∗) ≥ 0.

While the above discussion has focused on improving the asymptotic convergence speed of

the SOR algorithm by modifying the iteration step, in the actual implementation the initial

estimate v0 is often of crucial importance because in practice only a finite number of iterations

can be performed. A good estimate v0 usually also helps with numerical stability. Therefore,

for each option with observed moneyness x and option price c∗, we use a rational approximation

v0 = v0(x, c∗) for the initial estimate. This will be discussed in detail in the next section.

5. Numerical implementation and performance

5.1. Numerical implementation with rational approximation enhancement

First, we will describe the domain of inversion. The domain of inversion consists of all options

we consider, with different values of moneyness x and implied total volatility v∗. We will

restrict v∗ ≥ 0.0005 since volatilities lower than this bound are extremely rare in real financial

applications. Options with values c∗ extremely close to 0 or 1 are also excluded. The final

inversion domain D we consider is as follows:

D = { |x| ≤ 3, 0.0005 ≤ v∗ ≤ 6, 0.0005 ≤ c∗ ≤ 0.9995, |x|/v∗ ≤ 3 }. (38)

Notice that this domain is much larger than those considered by most authors. For example,

in Li (2008), v∗ is bounded above by 1, |x| bounded by 0.5, and x/|v∗| bounded by 2. Figure 5

plots the domain D in the two-dimensional (c∗, v∗)-space. Recall that we will only consider

options with x ≤ 0 by the “in-and-out” duality. We denote the left half of D by D−, where

x ≤ 0. Notice we have also plotted the curve M ′′(v∗) = 0, which is the same as v∗ = vr(x). By

Lemma 4.1, this curve separates the left domain D− further into two parts.

Before we look at the SOR-DR and SOR-TS algorithms in the whole domain D−, let us look

at their performance on a particular option. The option used has moneyness x = −0.5 and

volatility v∗ = 1. For the SOR and SOR-TS algorithms, we set ω = 1 for all the iterations.

Table 1 shows the effect of introducing dynamic relaxation or sequence transformation to the

SOR algorithm. All the numbers are computed using Mathematica 6.0 with (10−16)-precision

arithmetic, except for the rows labeled as 4′ and 5′, where all the numbers are computed with

(10−50)-precision arithmetic. For all three algorithms, the initial estimate v0 is set to be 0.6

in Panel A and 1.4 in Panel B. While all three algorithms converge to the true v∗, the SOR-DR

and SOR-TS algorithms converge much faster. In each of the two latter algorithms, the number

of correct digits roughly double after each iteration, indicating quadratic convergence. For the

SOR-DR algorithm, we also give the value of ωk for each iteration. Notice that ωk approaches

20

Φ(v∗) = 0 quickly, giving rise to quadratic convergence. For the SOR-TS algorithm, we also give

the value of αk for each iteration. As we see, αk approaches a value of 2 quickly. Thus for each

iteration, after getting G(vk), the SOR-TS algorithm will perform an extrapolation, which is the

source of the quadratic convergence. Also notice that the round-off error kicks in and dominates

the total error when vk is extremely close to v∗ if we use (10−16)-precision arithmetic.

We now consider the choice of v0 = v0(x, c∗). For each option characterized by (x, c∗), we

use the following third-order rational approximation for the initial estimate v0:

v0 =

∑
i+j≤3 mij xicj

∗
∑

i+j≤3 nij xicj
∗

, (39)

where mij and nij are coefficients and we set n00 = 1 for normalization. Thus there are a

total of 19 parameters. We search for the optimal values for {mij} and {nij} numerically by

minimizing the uniform error in v∗ from both the SOR-DR and SOR-TS algorithms. Specifically,

let vSOR-DRk and vSOR-TSk denote the numerical estimate of v∗ after k iterations for a fixed set of

parameters {mij} and {nij} from the SOR-DR and SOR-TS algorithms, respectively. Our objective

is to search for the optimal parameters through the following problem:

GD = min
{mij},{nij}

max
(x,v∗)∈D−

g(x, v∗, {mij} , {nij}), (40)

where g is the error function for each fixed option (x, v∗) with parameters {mij} and {nij}:

g(x, v∗, {mij} , {nij}) =
∣∣vSOR-DRk − v∗

∣∣ +
∣∣vSOR-TSk − v∗

∣∣.

We have set k to be the same for all options in domain D− for vectorization consideration.

Vectorization increases the efficiency of our algorithms. To compute the max part of the above

objective function, we populate the domain D− densely with roughly one million options, with

the boundary populated denser than the inner region. Each of these options is characterized by

a different pair of value (x, v∗). For each fixed set of parameters {mij} and {nij}, we compute

vSOR-DRk and vSOR-TSk , and then approximate the uniform error with the maximum error in v∗

of all the options. If the domain D− is populated sufficiently densely, this is a very accurate

approximation. For the min part, we use a downhill simplex method of Nelder and Mead (1965),

which is described in detail in Press et al. (1992). The choice of using the simplex method is

dictated by the fact that we do not have any derivative information of the objective function

with respect to the parameters {mij} and {nij}.
A few details are worth brief mentioning. First, it is extremely difficult to minimize over

uniform errors using simplex methods because uniform errors are prone to problems such as local

minimums, slow convergence, etc. Thus, we actually minimize the following penalized objective

function

Gλ
D = min

{mij},{nij}

(
max

(x,v∗)∈D−

g(x, v∗, {mij} , {nij}) + λ
∑

(x,v∗)∈D−

g(x, v∗, {mij} , {nij})
)

, (41)

21

where λ controls the strength of penalty. When λ is larger, the objective function becomes

smoother but deviates more from the uniform error. We dynamically adjust the value λ so

that we put more weight on the uniform error as we move closer to the optimal values for

{mij} and {nij}. Second, we set k = 5. Numerically, we find that setting k = 5 uniformly

for all options achieves the best combination of accuracy and efficiency. Finally, by design, the

rational approximation estimate v0 is not necessarily close to v∗ for a given option (x, v∗). This

is because vk in our algorithms can “jump” and globally it is not always the case that a closer v0

would result in a quicker convergence to v∗.

Our final choice for the {mij} and {nij} from the above numerical procedure is:

m00 = −0.00006103098165; n00 = 1;

m01 = 5.33967643357688; n01 = 22.96302109010794;

m10 = −0.40661990365427; n10 = −0.48466536361620;

m02 = 3.25023425332360; n02 = −0.77268824532468;

m11 = −36.19405221599028; n11 = −1.34102279982050;

m20 = 0.08975394404851; n20 = 0.43027619553168; (42)

m03 = 83.84593224417796; n03 = −5.70531500645109;

m12 = 41.21772632732834; n12 = 2.45782574294244;

m21 = 3.83815885394565; n21 = −0.04763802358853;

m30 = −0.21619763215668; n30 = −0.03326944290044.

Plugging the above parameters values into equation (39) gives us the initial starting point v0

for the successive over-relaxation algorithms.

5.2. Numerical performance

Table 2 gives the performance of the three algorithms SOR, SOR-DR, SOR-TS inside the domain D−.

The accuracy is measured in terms of both |vk − v∗| and |ck − c∗|. All three algorithms are im-

plemented with (10−16)-precision arithmetic in MATLAB 7.1 on a Dell Dimension 4600 desktop

computer (2.8 GHz, 1G RAM). We report the accuracy of the rational approximation (k = 0),

and of each of the three algorithms when k = 4 and k = 5. The means, medians and maximums

of |vk − v∗| and |ck − c∗| are calculated by uniformly and densely populating the domain D−

with roughly 1 million options. The computing time for all options of each algorithm is also

reported for k = 0, 4 and 5. As we see, the rational approximation has a uniform error of 0.783

for |vk − v∗| and a uniform error of 0.29 for |ck − c∗| in domain D−. Thus, the rational approx-

imation by itself does not give accurate enough estimates for v∗. This is because we have not

tried to obtain the best possible rational approximation per se in our implementation, but rather

we have tried to obtained the best possible rational approximation conditioning on that we are

going to perform five more successive over-relaxation iterations. The rational approximation

22

takes only 0.65 seconds for all roughly one million options. When k = 4, both the accelerated

algorithms SOR-DR and SOR-TS achieve a uniform error in v∗ in the order of 10−8 while that of

the SOR algorithm is 0.078. The medians of the errors in v∗ and c∗ are quite small for all three

algorithms. The larger errors tend to occur near the boundary of the domain D−. All three

algorithms take around 12 seconds. For k = 5, both accelerated algorithms SOR-DR and SOR-TS

achieve a uniform error in v∗ in the order of 10−13 while that of the SOR algorithm is 0.058.

We do not recommend using more than 5 iterations because the round-off error can start to

dominate the total error in v∗. The computing times are still only about 12 seconds for all

roughly one million options. Overall, we see that the performance of the SOR-DR and SOR-TS

algorithms are quite good in terms of both accuracy and speed. Also, numerically we find that

our algorithms work for a much larger domain with only a slight decrease in accuracy.

Most existing methods fail to work in our large domain D−. This is the case, for example, for

the Corrado-Miller method and the rational approximation of Li (2008). Thus we cannot perform

a comparison between these methods and ours. One exception is the Dekker-Brent algorithm.

Table 3 compares the performance of the SOR-TS algorithm, the Newton-Raphson algorithm, and

the Dekker-Brent algorithm for a particular option (x, v∗), where we let x = −1 and v∗ = 2. We

do not consider the SOR-DR algorithm in this comparison, because its performance is very similar

to that of the SOR-TS algorithm, except for the fact that the SOR-DR algorithm is not always

globally well-defined. We start all three algorithms from three different initial values, namely,

0.1, 4, and 20 and report the first 5 iterations (Panel A) together with the errors (Panel B).

As we see, a naive implementation of the Newton-Raphson algorithm fails in all three cases.

The reason is that in each Newton-Raphson iteration, one needs to divide the price error by the

vega in each step. For away-from-the-money options, vega can be extremely small, leading to

numerical instability. Although not reported, for this particular option, if we start from the the

guess v0 =
√

2|x| as was suggested in Manaster and Koehler (1982), then the Newton-Raphson

algorithm converges. However, examples can be easily given where even this choice of v0 =
√

2|x|
leads to failure in the Newton-Raphson algorithm. This happens for large values of |x| and v∗

in our domain D−. On the other hand, both the SOR-TS and Dekker-Brent algorithms converge

in all three cases. The quadratic order of convergence of the SOR-TS algorithm is evident after

only one or two iterations. The Dekker-Brent algorithm uses a combination of bisection and

interpolation and some of the bisection steps are evident in the table. Overall, the SOR-TS

algorithm achieves the best combination of robustness, efficiency and accuracy. One particular

attractive feature of this algorithm is that it is globally convergent for any positive v0.

6. Further Applications

The idea of using successive over-relaxation to compute the implied volatility is useful in other

financial applications. Below we give three examples to demonstrate this point. In our first

example, we consider the implied correlation for an exchange option in the Margrabe framework.

23

In the second example, we consider the implied volatility for call options in the Bachelier model.

The last example considers the critical stock price level in a compound call on call option.

6.1. The Margrabe implied correlation

The most commonly used formula for the price of an exchange option is the Margrabe formula,

which was independently discovered by Fischer (1978) and Margrabe (1978). Margrabe (1978)

considers the price of an option to exchange one asset for another, while Fischer (1978) considers

the price of a call option when the exercise price is uncertain.

Under the Margrabe formula setup, the dynamics of the two stock prices S1(t) and S2(t)

under the risk-neutral measure Q are given by

dSi(t) = (r − δi)Si(t)dt + σiSi(t)dWi(t), (i = 1, 2)

where the two Brownian motions W1(t) and W2(t) are correlated with constant coefficient ρ.

The Margrabe formula gives the time-0 price C of a European option to exchange stock 2 for

stock 1 at time T as follows:

C = S1(0)e−δ1T N(d1) − S2(0)e−δ2T N(d2),

where

d1 =
log[(S1(0)e−δ1T)/(S2(0)e−δ2T)] + σ2T/2

σ
√

T
, d2 = d1 − σ

√
T ,

and σ ≡
√

σ2
1 + σ2

2 − 2ρσ1σ2. Li (2007) contains three different methods to prove the Margrabe

formula.

In practice, people often use the Margrabe formula to compute the implied correlation ρ

from the observed option price C, with σ1 and σ2 estimated using some other methods. Our

methods can be applied directly to compute the implied correlation. This is because if we define

c = C/(S1e
−δ1T), x = log[(S1(0)e−δ1T)/(S2(0)e−δ2T)], v = σ

√
T , (43)

then the Margrabe formula reduces to the dimensionless Black-Scholes formula in (1). The

parameter v can then be computed using either the SOR-DR or the SOR-TS algorithm. Once v is

computed, the implied correlation can be computed by

ρ =
σ2

1T + σ2
2T − v2

2σ1σ2T
. (44)

6.2. The Bachelier implied volatility

We now consider the Bachelier formula (Bachelier, 1900) for a European call option. This

formula was discovered by L. Bachelier, who was among the first to analyze Brownian motion

24

mathematically. Schachermayer and Teichmann (2007) contain an interesting comparison of

Bachelier’s formula with that of Black and Scholes. The original Bachelier formula considers

interest rate r = 0. There are a few approaches to extend it to nonzero interest rates. We adopt

the following one which models the risk-neutral dynamics of the stock price process as:

dSt = rStdt + σe(r−δ)tdWt.

Notice that we have introduced a nonzero dividend rate δ too. In this case, ST has the explicit

solution ST = e(r−δ)T (S0 +σWT), and the Bachelier formula for the time-0 price of a call option

is given by

C = σ
√

Te−δT n(d) + (S0e
−δT − Ke−rT)N(d), (45)

where

d =
S0e

−δT − Ke−rT

σ
√

Te−δT
.

In practice, people observe the actual price C∗ and compute the volatility parameter σ∗ which

satisfies the Bachelier formula. This parameter (after sometimes normalizing it by S0) is called

the Bachelier implied volatility. It is also often called the normal volatility by practitioners

because future stock price is assumed to be normally distributed in the Bachelier model.

Recently, Choi, Kim and Kwak (2007) develop a closed-form numerical approximation for

the Bachelier implied volatility, which is found to be very accurate. In this paper, we will apply

our successive over-relaxation method to compute the Bachelier implied volatility. We first make

the following parameter reduction. Define the normalized call price c, moneyness x and volatility

v as follows:

c = C/(S0e
−δT), x = 1 − Ke−rT

S0e−δT
, v = σ

√
T/S0. (46)

Then Bachelier’s formula in equation (45) reduces to the following dimensionless Bachelier’s

formula

c = cB(x, v) = v n(x/v) + xN(x/v). (47)

Notice that like the Black-Scholes formula, the Bachelier option price is also a strictly increasing

function of v because the Bachelier vega is given by ∂cB(x, v)/∂v = n(x/v) > 0.

Like the dimensionless Black-Scholes formula, we only need to consider call options because

put-call parity is also satisfied in the Bachelier framework. Also, we only need to consider

out-of-the-money call options because of the following “in-out” duality in the Bachelier formula:

cB(x, v) − cB(−x, v) = x.

25

That is, to compute the Bachelier implied volatility for an option with positive moneyness x and

normalized price c∗, we could just compute the volatility for its dual option with moneyness −x

and normalized option price c∗ − x.

Let v∗ be the true Bachelier implied volatility. That is, c∗ = cB(x, v∗). Define the iteration

function GB(v;x, v∗, ω) as follows:

GB(v; x, v∗, ω) =
c∗ − xN(x/v) + ωvn(x/v)

(1 + ω)n(x/v)
. (48)

We will sometimes just write GB(v). One possible successive over-relaxation method is the

following, which we label as the SOR-B algorithm:

1. Select an initial point v0;

2. (SOR-B) After obtaining vk, select ωk and compute vk+1 by

vk+1 = GB(vk; x, v∗, ωk), (49)

3. Stop when |vk − v∗| < ǫ or |ck − c∗| < ǫ, for some ǫ small.

It turns out that with the choice ωk = 0, the SOR-B algorithm is globally well-defined and

converges to v∗ with a quadratic order of convergence.

Theorem 6.1. (convergence properties of the SOR-B algorithm) Let ωk ≡ 0 in the SOR-B

algorithm. Then the sequence {vk} is globally well-defined. If x = 0, then vk = v∗ for all k ≥ 1.

If x < 0 and v0 6= v∗, then v1 > v∗ and vk monotonically decreases to v∗ afterwards with a

quadratic order of convergence.

The efficiency of the SOR-B algorithm can be improved by introducing a rational approxi-

mation like the one we did for the Black-Scholes implied volatility case. We omit the details

here. Another way to extend the Bachelier model to nonzero interest rate is to model the stock

price process as dSt = (r − δ)Stdt + σdWt. In this case, a different formula from equation (45)

will be obtained. See, Musiela and Rutkowski (2005). However, our method of using successive

over-relaxation to compute the Bachelier implied volatility is still applicable after some minor

modifications.

6.3. The critical stock price in a compound option

Compound options are options on options. Their pricing and various applications are considered

by Geske (1977), Geske (1979), Hodges and Selby (1987), and Chandrasekhar and Gukhal (2004),

among others. Below we consider a call on call option in the standard Black-Scholes framework.

We will design a successive over-relaxation method to compute the critical stock price. For other

types of compound options, such as call on put, put on put and put on call, our method still

applies with minor modifications.

26

Let the current date be 0, and T1 and T2 be two future dates with T2 > T1 > 0. We will

let τ = T2 − T1. Let the current stock price be S0, the constant interest rate be r, the dividend

rate be δ, and the volatility of the stock be σ. At time T1, the holder of the compound option

is entitled to receive either cash K1, or a call option with strike price K2 and maturity date T2.

The time-0 value Cc of the compound option is given by

Cc = S0e
−qT2N2(a1, b1;

√
T1/T2) − K2e

−rT2N2(a2, b2;
√

T1/T2) − e−rT1K1N(a2),

where N2(· , · ; ρ) is the cumulative bivariate normal distribution function with correlation ρ, and

a1 =
log(S0/S∗) + (r − q + σ2/2)T1

σ
√

T1
, a2 = a1 − σ

√
T1,

b1 =
log(S0/K2) + (r − q + σ2/2)T2

σ
√

T2
, b2 = b1 − σ

√
T2.

The formula for Cc is in closed form except that the critical stock price level S∗ at time T1 to

exercise the compound option is given implicitly by

K1 = S∗e
−qτN

(
1

σ
√

τ
log

S∗e
−qτ

K2e−rτ
+

σ
√

τ

2

)
− K2e

−rτN

(
1

σ
√

τ
log

S∗e
−qτ

K2e−rτ
− σ

√
τ

2

)
.

A Newton-Raphson algorithm can be used to compute S∗, but it is subject to the same numerical

instability we encountered before. To implement a successive over-relaxation method, we first

perform a dimension reduction. Defining modified strike κ, moneyness x, and total volatility v by

κ =
K1

K2e−rτ
, x = log

S∗e
−qτ

K2e−rτ
, v = σ

√
τ , (50)

the critical stock price equation becomes

κ = κ(x, v) = exN(x/v + v/2) − N(x/v − v/2). (51)

The problem is then to compute the moneyness x∗ that satisfies the above equation with observed

modified strike κ∗ and assumed value of the total volatility v.

Notice that κ∗ = κ(x∗, v). Define the iteration function GCS(x; v, x∗, ω) by

GCS(x; v, x∗, ω) = log

(
κ(x∗, v) + N(x/v − v/2) + ωexN(x/v + v/2)

(1 + ω)N(x/v + v/2)

)
. (52)

One possible successive over-relaxation method is the following SOR-CS algorithm:

1. Select an initial point x0;

2. (SOR-CS) After obtaining xk, select ωk and compute xk+1 by

xk+1 = GCS(xk; v, x∗, ωk); (53)

3. Stop when |xk − x∗| < ǫ or |κk − κ∗| < ǫ, for some ǫ small.

27

Notice that unlike the Newton-Raphson algorithm, in the SOR-CS algorithm, no evaluation

of the standard normal density function n(·) is required. The following theorem shows that

the SOR-CS algorithm is globally well-defined and converges to x∗ with a quadratic order of

convergence.

Theorem 6.2. (convergence properties of the SOR-CS algorithm) Let x∗ ∈ R and v > 0.

Let ωk ≡ 0 in the SOR-CS algorithm. Then the sequence {xk} is globally well-defined. Further-

more, if x0 6= x∗, then x1 > x∗ and xk monotonically decreases to x∗ afterwards with a quadratic

order of convergence.

Although we do not give detailed report here, numerically we find that the above algorithm

converges extremely fast and is very robust. One critical advantage of the above method versus

Newton-Raphson is that it is not very sensitive to the initial guess x0 for all reasonable values

of x∗ and v. Also, a rational approximation can be employed on the initial value x0 to enhance

convergence. We omit the details here.

7. Conclusion

The Black-Scholes formula is one of the most frequently used formula in finance. In most of the

applications, it is used backwards to compute the implied volatility. Some traditional methods,

such as the Newton-Raphson algorithm, use derivative information and are thus subject to

numerical instability. Numerically more stable methods, such as the Dekker-Brent algorithm,

are usually slow and often not able to handle the real-time computation of the implied volatility

in bulk volume.

In this paper, we design a successive over-relaxation (SOR) algorithm which does not use the

derivative information. We analyze the well-definedness, local and global convergence properties

of the SOR algorithm in detail. With mild conditions, the algorithm is globally well-defined and

converges to the true implied volatility.

The SOR algorithm generally has a linear order of convergence. By introducing dynamic

relaxation or sequence transformation techniques, both new algorithms SOR-DR and SOR-TS

achieve quadratic order of convergence, the same order as the Newton-Raphson algorithm. The

efficiency of the algorithms are further enhanced by introducing a rational approximation on the

initial estimates. It is shown that uniformly in a very large inversion domain, our accelerated

algorithms converge to the true implied volatility with very few iterations. Thus, the accel-

erated algorithms serve as good alternatives to the traditional methods because of their good

performance in terms of speed, accuracy and robustness.

Finally, we extend our successive over-relaxation method to the computation of implied

correlation in the Margrabe formula, the normal implied volatility in the Bachelier formula, and

the critical stock price level in a compound option. These three examples demonstrate that the

idea of successive over-relaxation is applicable in a much wider range of financial problems.

28

Appendix

Proof of Lemma 3.1:

For x < 0, we have

∂N+(x, v)

∂v
= n+(v)

(|x|
v2

+
1

2

)
,

∂N−(x, v)

∂v
= n+(v)

(|x|
v2

− 1

2

)
,

∂c(x, v)

∂v
= n+(v),

∂2c(x, v)

∂v2
=

n+(v)

v

(
|x|2
v2

− v2

4

)
,

∂c+(x, v)

∂v
= n+(v)

2 |x|
v2

,

where we have used the identity e−xn(x/v− v/2) = n(x/v + v/2) in the second equation. These

prove statements 1 through 4. For statement 5, assume u < v without loss of generality. Thus

c(v) − c(u) =

∫ v

u

∂c+(x, ξ)

∂ξ

ξ2

2 |x|dξ <
v2

2 |x|

∫ v

u

∂c+(x, ξ)

∂ξ
dξ =

v2

2 |x|
[
c+(v) − c+(u)

]
.

Similarly for the left-hand inequality in equation (9).

For x = 0,all the statements can be quickly verified.

Proof of Lemma 3.2:

We have F ′(v) = n+(v)
(
|x|
v2 + 1

2

)
[ω − Φ(v)] , and ω = Φ(v) if and only if v = ṽ(ω). Thus, if

ω ≥ 1, then F ′(v) > 0. If ω ∈ (−1, 1), then ṽ satisfies ω = Φ(ṽ). Since Φ(v) is strictly increasing

in v, we have F ′(v) > 0 for v < ṽ and F ′(v) < 0 for v > ṽ.

Proof of Lemma 3.3:

Since ω = Φ(ṽ), we have H ′(ω) = N+(ṽ) − 1. Hence, H(ω) is strictly decreasing in ω for

ω ∈ (−1, 1). By Lemma 3.1, we have limω→−1 H(ω) = c∗ > 0, and limω→+1 H(ω) = c∗ − 1 < 0.

Therefore, there exists a unique ω̂ such that H(ω) ≥ 0 for ω ≤ ω̂ and H(ω) < 0 for ω > ω̂.

Proof of Theorem 3.1:

Note that vk+1 is well-defined if and only if 0 < F (vk) < 1 + ω.

By Lemma 3.2, when ω ≥ 1, F (v) is positive, strictly increasing in v, and bounded above by

F (+∞) = c∗ + ω, which is less than 1 + ω. Hence, {vk} is well-defined for any v0 ∈ R+.

When ω ∈ (−1, 1), by Lemma 3.2 and 3.3, we know that if ω > ω̂, then for any v ∈ R+,

c∗ + N− (v) + ωN+ (v) − (1 + ω) ≤ H(ω) < 0.

29

By Lemma 3.2, for all v ∈ R+, we also have

F (v) = c∗ + N− (v) + ωN+ (v) > min
{
F (0+), F (+∞)

}
= min {c∗, c∗ + ω} .

Thus, if ω ≥ −c∗ additionally, we have 0 < F (v) < 1 + ω. This guarantees that {vk} is

well-defined for any v0 ∈ R+.

Conversely, if ω < −c∗, then F (+∞) < 0, so for sufficiently large v0, we have F (v0) < 0 and

v1 = G(v0) is not defined. If ω ≤ ω̂, then if v0 = ṽ(ω), we have F (v) − (1 + ω) = H(ω) ≥ 0. So

v1 = G(v0) is not defined.

Proof of Lemma 3.4:

Take any v ∈ DomG. Equation (19) can be obtained by differentiating

c∗ + N−(v) + ωN+(v) = (1 + ω)N+(G(v))

with respect to v and using Lemma 3.1. Since 0 < F (v∗) < 1 + ω, for v sufficiently close to v∗,

we also have 0 < F (v) < 1 + ω, thus v∗ ∈ DomG. For equation (20), notice that G(v∗) = v∗.

All the other statements can be quickly verified.

Proof of Lemma 3.5:

Since Q′(v) = n+(v) + n+(G(v))G′(v) for v ∈ DomG, substituting the expression for G′(v) in

Lemma 3.4 gives us the formula for Q′(v). The higher-order derivatives of Q(v) when ω = Ψ(v∗)

can be obtained by recursively differentiating Q′(v) and using Lemma 3.4.

Proof of Theorem 3.2:

First consider the case x < 0. Since v∗ ∈ DomG by Lemma 3.4, there exists a neighborhood

Vǫ = (v∗−ǫ, v∗+ǫ) of v∗ such that G(v) is smooth on Vǫ and M ≡ sup {|G′′(v)| /2 : v ∈ Vǫ} < ∞.

Suppose ω < Ψ(v∗) and vk converges to v∗. Then, since G′(v∗) = [ω − Φ(v∗)] /(1 + ω) is

strictly increasing in ω, we have G′(v∗) < (Ψ(v∗) − Φ(v∗))/(1 + Ψ(v∗)) = −1. Pick a k0 ∈ N

large such that |vk − v∗| < min {ǫ, δ}, where δ = (|G′(v∗)| − 1)/(2M). Then, since vk+1 − v∗ =

G(vk)−G(v∗), a Taylor expansion gives |(vk+1 − vk) − G′(v∗)(vk − v∗)| ≤ M(vk − v∗)
2. That is,

|vk+1 − v∗| ≥
∣∣G′(v∗)

∣∣ |vk − v∗| − M(vk − v∗)
2

≥ |vk − v∗| +
(∣∣G′(v∗)

∣∣ − 1 − Mδ
)
|vk − v∗| > |vk − v∗| .

This contradicts that vk converges to v∗. Thus, a necessary for local convergence is ω ≥ Ψ(v∗).

Now, suppose ω = Ψ(v∗), 12v2
∗ − v4

∗ +4x2 < 0, and vk converges to v∗. Then, by Lemma 3.5,

Q′(v∗) = Q′′(v∗) = 0 and Q′′′(v∗) < 0.

Thus, there exists a neighborhood Vǫ = (v∗ − ǫ, v∗ + ǫ) of v∗ such that Q(v) ≥ 0 on (v∗ − ǫ, v∗]

and Q(v) ≤ 0 on [v∗, v∗ + ǫ). Since Q(vk) = (1 + ω) [N+(vk) − N+(vk+2)] , we have that

30

vk+2 < vk if vk < v∗, and vk+2 > vk if vk > v∗. This contradicts that vk converges to v∗. So, a

further necessary condition 12v2
∗ − v4

∗ + 4x2 ≥ 0 is needed for local convergence. The proof that

12v2
∗ − v4

∗ + 4x2 > 0 is sufficient is similar.

We now show that ω > Ψ(v∗) is sufficient for local convergence. Notice that |G′(v∗)| < 1.

Pick any number λ ∈ (|G′(v∗)| , 1). Let δ = λ−|G′(v∗)|
2M

. Then, if |vk − v∗| < min {ǫ, δ}, we have

|vk+1 − v∗| ≤
∣∣G′(v∗)

∣∣ |vk − v∗| + M |vk − v∗|2

≤
(∣∣G′(v∗)

∣∣ + Mδ
)
|vk − v∗| < λ |vk − v∗| .

So, vk converges to v∗.

Next, we consider the case x = 0. A very similar proof to the above shows that ω ≥ 0 is

necessary and ω > 0 is sufficient for local convergence. However, when ω = 0 and v0 6= v∗,

we always have v1 6= v∗, and the sequence oscillates on the set {v0, v1}. Thus, if v0 6= v∗, the

sequence {vk} will never converge when ω = 0.

Proof of Lemma 3.6:

First consider the case x < 0. Before proving that φ(u, v) is continuous on R2
+, we will first

prove that for any fixed v, φ(u, v) is continuous and strictly increasing in u and φ1(u, v) is also

continuous in u. Take any v ∈ R+. When u 6= v, differentiating φ(u, v) with respect to u gives

φ1(u, v) =
n+(u)

[N+(u) − N+(v)]2

{
x

u2
[c(u) − c(v)] +

1

2

[
c+(u) − c+(v)

]}
. (54)

By Lemma 3.1, φ1(u, v) > 0 when u 6= v. When u = v, by L′Hospital’s rule, we have

φ1(v, v) ≡ lim
w→v

φ(w, v) − Φ(v)

w − v
= lim

w→v
φ1(w, v).

Thus φ1(u, v) is continuous in u for all u ∈ R+. Applying L′Hospital’s rule two more times to

equation (54), we have

φ1(v, v) = n+(v) lim
w→v

x
w2 [c(w) − c(v)] + 1

2 [c+(w) − c+(v)]

[N+(w) − N+(v)]2

=

|x|
v3

|x|
v2 + 1

2

lim
w→v

c(w) − c(v)

N+(w) − N+(v)
=

4 |x| v
(v2 + 2 |x|)2 > 0.

The partial derivative of φ(u, v) with respect to v can be easily obtained by noticing that

φ(u, v) = φ(v, u). Since φ(u, v) is strictly increasing in both u and v, we have

−1 < Φ(min(u, v)) ≤ φ(u, v) ≤ Φ(max(u, v)) < 1.

Finally, we show that φ(u, v) is continuous on R2
+. If u 6= v, the continuity is obvious. So we

assume u = v. Note first that Φ(v) = φ(v, v) is continuous, strictly increasing in v, so for any

31

ǫ > 0, there exists a δ > 0 such that |a − v| < δ implies |φ(a, a) − φ(v, v)| < ǫ/4. Consider an

open disc that centers at (v, v) and has a diameter of δ. Then, by triangular inequality, for any

(a, b) in the disc, we have

|φ(a, b) − φ(v, v)| ≤ |φ(a, b) − φ(a, v)| + |φ(a, v) − φ(v, v)|
< 2 |φ(v + δ/2, v + δ/2) − φ(v − δ/2, v − δ/2)| < ǫ.

For the case x = 0, notice that c+(u) ≡ 1 on R+ by Lemma 3.1, so φ(u, v) ≡ 1.

Proof of Lemma 3.7:

Rearranging the iteration equation c∗ + N−(vk) + ωN+(vk) = (1 + ω)N+(vk+1), we have

c(v∗) − v(vk) = (1 + ω)
[
N+(vk+1) − N+(vk)

]
.

Since both c(v) and N+(v) are strictly increasing in v by Lemma 3.1, v∗ − vk always have the

same sign as vk+1 − vk when vk 6= v∗.

Proof of Lemma 3.8:

Rearranging the iteration equation c∗ + N−(vk) + ωN+(vk) = (1 + ω)N+(vk+1), we have

(
N+(vk) − N+(v∗)

) [
ω − φ(vk, v∗)

]
= (1 + ω)

[
N+(vk+1) − N+(v∗)

]
.

Since vk+1 6= v∗, we have ω 6= φ(vk, v∗). Furthermore, if ω > φ(vk, v∗), then vk and vk+1 are on

the same side of v∗. If ω < φ(vk, v∗), then vk and vk+1 are on the opposite side of v∗.

Proof of Lemma 3.9:

Subtracting two consecutive iteration equations, we get

(
N+(vk+1) − N+(vk)

) [
(1 + 2ω) − φ(vk, vk+1)

]
= (1 + ω)

[
N+(vk+2) − N+(vk)

]
.

Hence, if 1 + 2ω > φ(vk, vk+1), then vk+1 and vk+2 are on the same side of vk. If 1 + 2ω <

φ(vk, vk+1), then vk+1 and vk+2 are on the opposite side of vk. If 1 + 2ω = φ(vk, vk+1), then

vk+2 = vk.

Proof of Theorem 3.3:

We only consider the case x < 0. The case x = 0 can be similarly shown by noticing that the

necessary and sufficient condition for local convergence when x = 0 is ω > 0.

First we consider ω > Φ(v∗). By Lemma 3.6, there exists an ǫ > 0 such that ω > φ(v, v∗) for

all v ∈ (v∗−ǫ, v∗+ǫ). Since vk converges to v∗, there exists a k0 ∈ N such that vk ∈ (v∗−ǫ, v∗+ǫ)

for all k ≥ k0. Suppose vk0
< v∗. Then, by Lemmas 3.8 and 3.9, vk < vk+1 < v∗ for all k ≥ k0.

Thus, vk (k ≥ k0) strictly increases to v∗. Similarly, if vk0
> v∗, then vk (k ≥ k0) strictly

decreases to v∗

32

Next, suppose ω = Φ(v∗). Since φ(v, v∗) is strictly increasing in v and φ(v∗, v∗) = Φ(v∗) by

Lemma 3.6, there exists an ǫ > 0 such that ω > φ(v, v∗) for all v ∈ (v∗ − ǫ, v∗) and ω < φ(v, v∗)

for all v ∈ (v∗, v∗ + ǫ). If vk0
< v∗, then we get vk < vk+1 < v∗ for all k ≥ k0, so the sequence

is eventually monotonically increasing. If vk0
> v∗, then we have vk0+1 < v∗ by Lemma 3.8 and

the sequence is eventually monotonically increasing too.

Now suppose ω < Φ(v∗). By Lemma 3.6, there exists an ǫ > 0 such that ω < φ(v, v∗)

for all v ∈ Vǫ ≡ (v∗ − ǫ, v∗ + ǫ). Since vk converges to v∗, by Lemma 3.7 and 3.8, there

exists k1 ∈ N, such that vk1+m ∈ Vǫ, with vk1+2m < v∗ and vk1+2m+1 > v∗ for all m ∈ N.

We are left to show that the subsequences {vk1+2m} and {vk1+2m+1} indexed by m are both

eventually monotone. For this purpose, consider the function Q(v) defined in equation (21).

Recall Q(vk) = (1+ω)[N+(vk)−N+(vk+2)]. Notice that for any δ > 0, Q(v) cannot be constant

on any interval [v∗, v∗ + δ) or (v∗ − δ, v∗], because then we will have vk = vk+2m for all m ∈ N

for some k sufficiently large and this contradicts that vk converges to v∗. Since the function

Q(v) is continuous and Q(v∗) = 0, there exists a δ > 0, such that Q(v) has determinate signs

on (v∗ − δ, v∗) and (v∗, v∗ + δ). There are four possible cases but the only one that does not

contradict convergence is Q(v) > 0 if v ∈ (v∗, v∗ + δ) and Q(v) < 0 if v ∈ (v∗ − δ, v∗). All other

three cases will result in a subsequence of vk which does not converge to v∗. This shows that

the subsequences {vk1+2m} and {vk1+2m+1} are both eventually monotone. The proof is now

complete by selecting k0 > k1 sufficiently large and vk0
< v∗.

Proof of Theorem 3.4:

By Theorem 3.3, if {vk} converges, the sequence is either eventually monotone or eventually

oscillating around v∗. It is obvious that |ck − c∗| eventually decreases to zero monotonically if

{vk} is eventually monotone. In the case of oscillating convergence, consider the function Q(v).

The proof of Theorem 3.3 establishes that to guarantee convergence, there exists a δ > 0, such

that Q(v) > 0 on (v∗, v∗+δ) and Q(v) < 0 on (v∗−δ, v∗). Thus, for sufficiently large k, if vk > v∗,

then |ck+1 − c∗| − |ck − c∗| = −Q(vk) < 0. If vk < v∗, then |ck+1 − c∗| − |ck − c∗| = Q(vk) < 0.

In any case, |ck − c∗| is eventually strictly decreasing.

Proof of Theorem 3.5:

By Theorem 3.3, if {vk} converges, the sequence is either eventually monotone or eventually

oscillating around v∗. It is obvious that |vk − v∗| eventually decreases to zero monotonically

if {vk} is eventually monotone. Thus we only consider the case ω < Φ(v∗), where {vk} is

oscillating around v∗ if k ≥ k0. Without loss of generality, we assume vk0
< v∗. Thus, we have

vk0
< vk0+2 < · · · < v∗ < · · · < vk0+3 < vk0+1.

Define a function J(v) as

J(v) = c∗ + N−(v) + ωN+(v) − (1 + ω)N+(2v∗ − v). (55)

33

Then, J(v∗) = 0, and

J ′(v∗) = n+(v∗)
v2
∗ + 2 |x|

v2
∗

(ω − Ψ(v∗)) .

First consider the case ω > Ψ(v∗). In this case, J ′(v∗) > 0. Hence, there exists an ǫ > 0 such

that J(v) < 0 for v ∈ (v∗ − ǫ, v∗) and J(v) > 0 for v ∈ (v∗, v∗ + ǫ). Suppose vk ∈ (v∗ − ǫ, v∗ + ǫ)

for k ≥ k0. Then, for points to the right of v∗, we have

(1 + ω)
[
N+(vk0+2m+1) − N+(2v∗ − vk0+2m)

]

= c∗ + N−(vk0+2m) + ωN+(vk0+2m) − (1 + ω)N+(2v∗ − vk0+2m) (56)

= J(vk0+2m) < 0,

and hence vk0+2m+1 < 2v∗ − vk0+2m. That is, |vk0+2m+1 − v∗| < |vk0+2m − v∗|. Similarly, for

points to the left of v∗,

(1 + ω)
[
N+(vk0+2m+2) − N+(2v∗ − vk0+2m+1)

]
= J(vk0+2m+1) > 0, (57)

and hence |vk0+2m+2 − v∗| < |vk0+2m+1 − v∗|. Therefore, |vk − v∗| strictly decreases to 0 after

k ≥ k0.

Now consider the case ω = Ψ(v∗). In this case, J(v∗) = J ′(v∗) = 0, and

J ′′(v∗) =
n+(v∗)

4v3
∗

(v4
∗ − 4x2).

If v∗ 6=
√

2|x|, then either J ′′(v∗) < 0 or J ′′(v∗) > 0. Thus, on sufficiently small neighborhood

of v∗, we have either J(v) ≥ 0, or J(v) ≤ 0. Equations (56) and (57) tell us that in either case,

|vk − v∗| fails to be monotonically decreasing. If v∗ =
√

2|x|, we need the third-order derivative

of J(v):

J ′′′(v∗) =
3√

2πv2
∗

> 0.

Hence, there exists an ǫ > 0 such that J(v) < 0 for v ∈ (v∗ − ǫ, v∗) and J(v) > 0 for v ∈
(v∗, v∗+ǫ), and equations (56) and (57) again hold. Thus when ω = Ψ(v∗), |vk−v∗| is eventually

monotonically decreasing if and only if v∗ =
√

2|x|.

Proof of Theorem 3.6:

When x = 0, we have Φ(v) = 1 and φ(u, v) = 1 for all (u, v) ∈ R2
+.

1) If ω > 1, then the SOR algorithm is globally well-defined by Theorem 3.1. Furthermore,

since ω > φ(u, v) for all (u, v) ∈ R2
+, by Lemmas 3.7 and 3.8, if v0 > v∗, then vk strictly

decreases, and if v0 < v∗, vk strictly increases. By Lemma 3.1, it is easy to show that the limit

points have to be v∗.

34

2) If ω = 1, then the SOR algorithm is globally well-defined by Theorem 3.1. In fact, since

ω = φ(v0, v∗), by Lemma 3.8, we have vk = v∗ for all k ≥ 1.

3) If 0 < ω < 1, then we have ω < φ(u, v) and 1+2ω > φ(u, v) for all (u, v) ∈ R2
+. Hence, as

long as G(v0) is defined, the SOR algorithm is well-defined. By Lemma 3.9, the two subsequences

above and below v∗ are both monotone. Thus, they converge to two limit points, say vL and vH ,

with vL ≤ v∗ and vH ≥ v∗. We need to show that vL = vH = v∗. Suppose vL < vH . Taking a

limit on the iteration equation for odd and even k, we have

c∗ + N−(vL) + ωN+(vL) = (1 + ω)N+(vH),

c∗ + N−(vH) + ωN+(vH) = (1 + ω)N+(vL).

Subtracting the above two equations gives us 1 + 2ω = φ(vL, vH) = 1. This contradicts that

ω > 0. Thus, the sequence {vk} is convergent and eventually oscillating around v∗.

Proof of Theorem 3.7:

We first focus on the well-definedness. Suppose v∗ ≤
√

2 |x|. If v ≥ v∗, then

c∗ + N−(v) = N+(v∗) − N−(v∗) + N−(v) ≤ c+(v) < 1,

and if v < v∗, then

c∗ + N−(v) = N+(v∗) − N−(v∗) + N−(v) < N+(v∗) < 1.

Hence, 0 < c∗ + N−(v) < 1 for all v ∈ R+.

Suppose v∗ >
√

2 |x| and c∗ + N−(v0) < 1. Then,

0 < c∗ + N−(v1) = N+(v1) − N−(v0) + N−(v1) < c+(v1) < 1.

Hence, v2 is well-defined. By induction, the whole sequence {vk} in the SOR algorithm is well-

defined. Furthermore, if either v0 ≥ v∗ or v0 ≤ 2|x|/v∗, then N−(v) ≤ N−(v∗) and we have

0 < c∗ + N−(v) ≤ N+(v∗) < 1.

Let us turn to the proof of convergence, assuming that the sequence {vk} is well-defined.

Note that ω = 0 in this case, and thus 1 + 2ω > φ(u, v) for all (u, v) ∈ R2
+ by Lemma 3.6. We

consider three cases.

1) v∗ <
√

2 |x|. Then, we have 0 = ω > Φ(v∗). Suppose first v0 > v∗. If ω > φ(v0, v∗), then,

by Lemma 3.8, we have a strictly decreasing, convergent sequence. If ω < φ(v0, v∗), then we

have v1 < v∗. From here, since ω > Φ(v∗) > φ(v1, v∗), we have a strictly increasing, convergent

sequence. Suppose now v0 < v∗. Since ω > Φ(v∗) > φ(v0, v∗), we have a strictly increasing,

convergent sequence.

2) v∗ =
√

2 |x|. Then, we have 0 = ω = Φ(v∗). Since φ(v, v∗) is strictly increasing in v and

φ(v∗, v∗) = Φ(v∗) by Lemma 3.6, we have ω > φ(v, v∗) for all v < v∗ and ω < φ(v, v∗) for all

35

v > v∗. This guarantees that {vk} is eventually monotonically increasing. It is easy to show

that the limit point is v∗.

3) v∗ >
√

2 |x|. Then, since 0 = ω < Φ(v∗), there exists an ǫ > 0 such that ω < φ(v, v∗)

for all v ∈ (v∗ − ǫ, v∗ + ǫ). First suppose v0 < v∗. Let vk0
be the first point in {vk} such that

ω < φ(vk, v∗). Such a k0 exists since ω < Φ(v∗) and if ω > φ(v, v∗), then we have v < G(v) < v∗.

Then, since we always have 1 + 2ω > φ(u, v), by Lemma 3.9, we have

vk0
< vk0+2 < · · · < v∗ < · · · < vk0+3 < vk0+1.

Let vL = limm vk0+2m and vH = limm vk0+2m+1. Suppose vL < vH . Then, from the iteration

equation, we have c∗ + N−(vL) = N+(vH) and c∗ + N−(vH) = N+(vL). Subtracting these two

equations leads to c+(vL) = c+(vH). This is a contradiction since c+ is strictly increasing. Thus,

vL = vH = v∗. That is, vk converges to v∗. Now suppose v0 > v∗. Then, since 0 = ω < φ(v0, v∗),

we immediately have v1 < v∗. Thus, the proof reduces to the above with the role of v0 replaced

by v1.

Proof of Theorem 3.8:

When v0 < v∗, we have ω > φ(v0, v∗) and hence we have v0 < v1 < v∗. We still have ω >

φ(v1, v∗), and thus v1 < v2 < v∗. Hence, by induction, vk strictly increases to v∗.

When v0 > v∗,

1) If ω > φ(v0, v∗), then we have v∗ < v1 < v0. At the second step, we still have ω > φ(v1, v∗),

and thus v∗ < v2 < v1. Hence, vk strictly decreases to v∗.

2) If ω = φ(v0, v∗), then, by Lemma 3.8, v1 = v∗ and thus vk = v∗ for all k ≥ 1.

3) If Φ(v∗) ≤ ω < φ(v0, v∗), then we have v1 < v∗ if v1 is defined. Since ω > φ(v1, v∗), we

have v1 < v2 < v∗ and we still have ω > φ(v2, v∗), and thus v∗ < v2 < v3. Hence, vk strictly

increases to v∗.

Proof of Theorem 3.9:

By Theorem 3.8, we know that when ω ≥ Φ(v∗), as long as the first jump over v∗ (in this case

always G(v0)) is well-defined, the SOR algorithm is well-defined and converges to v∗. Hence, we

will consider only the case ω < Φ(v∗) in the following proof.

We first establish a very useful result. When ω ≥ Ψ(
√

2v∗), each iteration of the successive

over-relaxation will decrease the distance of ck to c∗, provided that vk+1 is well-defined. To

show this, take any v ∈ DomG. Suppose that v and G(v) are on the opposite side of v∗. If

ω ≥ Ψ(
√

2v∗), then

(|x|
v2

+
|x|

G(v)2

)
+

ω

1 + ω
>

|x|
v2
∗

+
ω

1 + ω
> 0.

Thus, Q′(v) > 0 by Lemma 3.5. Since Q(v∗) = 0, Q(v) > 0 if v > v∗ and Q(v) < 0 if v < v∗,

provided that v and G(v) are on the opposite side of v∗. Regardless of whether v > v∗ or v < v∗,

36

by the definition of Q(v), this guarantees

|c(G(v)) − c∗| < |c(v) − c∗| (58)

whenever (v − v∗)(G(v) − v∗) < 0. Suppose now that v and G(v) are on the same side of v∗.

Then by Lemma 3.7, |G(v) − v∗| < |v − v∗|, so equation (58) is still true.

We now consider the well-defined of the sequence {vk}. For any v with ω > φ(v, v∗), it is easy

to show that G(v) is always well-defined and lies in the region between v and v∗. If ω = φ(v, v∗),

then G(v) is also well-defined and equals v∗. Now let vk0
be the first point in {vk} such that

ω < φ(vk, v∗) and suppose G(vk0
) is defined. We need to show that vk is also well-defined for

any k > k0 + 1. Notice that by Lemma 3.8, (vk0
− v∗)(vk0+1 − v∗) < 0. Suppose first vk0

< v∗.

Then vk0+1 > v∗. From ω < φ(vk0+1, v∗), we have

F (vk0+1) = c∗ + N−(vk0+1) + ωN+(vk0+1) < (1 + ω)N+(v∗) < 1 + ω.

From equation (58), we have 2c∗ − ck0
− ck0+1 > 0. Thus,

F (vk0+1) = c∗ + N−(vk+1) + ωN+(vk0+1) = c∗ − ck0+1 + (c∗ + N−(vk0
) + ωN+(vk0

))

= 2c∗ − ck0
− ck0+1 + (1 + ω)N+(vk0

) > (1 + ω)N+(vk0
) > 0.

Thus, vk0+2 = G(vk0+1) is well-defined and vk0
< vk0+2 < v∗. Similarly, if vk0

> v∗, then

vk0+2 = G(vk0+1) is well-defined and vk0
> vk0+2 > v∗. Exactly the same proof now shows that

vk is well-defined for any k > k0 +2 and lies in between vk−1 and v∗. This shows that the whole

sequence {vk} is well-defined if and only if G(vk0
) is defined.

Now assume that {vk} is well-defined. We know the two subsequences consisting of points

above v∗ and below v∗ respectively are both monotone. Thus they converge to two limit points,

say vH and vL. Taking the limit on the iteration equation for odd and even k then gives

vL = G(vH) and vH = G(vL). Suppose vH > vL. Notice vL = G(G(vL)). This is a contradiction,

however, because since |G(G(vL)) − v∗| has to be smaller than |vL − v∗| by equation (58), we

must have G(G(vL)) > vL. Thus vH = vL and the sequence {vk} converges.

Proof of Theorem 3.10:

By Theorem 3.6, we only consider x < 0. Furthermore, by Theorem 3.8, we need only to consider

the case ω < Φ(v∗).

If v0 > v∗, then v1 < v∗ since ω < Φ(v∗) < φ(v0, v∗). Thus without loss of generality, we

assume v0 < v∗. We consider three cases.

1) If ω < φ(v0, v∗), then we have v1 > v∗. Clearly, we still have ω < φ(v1, v∗) and thus

v2 < v∗. By the assumption 1 + 2ω > φ(v∗, v), we have 1 + 2ω > φ(v0, v1) since φ(u, v) is

increasing in both u and v by Lemma 3.6. This guarantees v0 < v2 < v∗ by Lemma 3.9. Hence,

we still have ω < φ(v2, v∗) and thus v3 > v∗. Again, we have 1 + 2ω > φ(v1, v2) and hence

v∗ < v3 < v1. Repeating this process gives us v0 < v2 < · · · < v∗ < · · · < v3 < v1. Let

37

vL = limk v2k and vH = limk v2k+1. Suppose vL < vH . Then, taking the limit on the iteration

equation for both odd and even k, we have

c∗ + N−(vL) + ωN+(vL) = (1 + ω)N+(vH),

c∗ + N−(vH) + ωN+(vH) = (1 + ω)N+(vL).

Subtracting these two equations leads to 1 + 2ω = φ(vL, vH). This contradicts the assumption

1 + 2ω > φ(v∗, v). Hence, we have vL = vH = v∗.

2) If ω = φ(v0, v∗), then we have vk = v∗ for all k ≥ 1.

3) If ω > φ(v0, v∗), then we have v0 < v1 < v∗. Let k0 be the first k such that ω < φ(vk, v∗).

Then, starting from vk0
, the proof reduces to that of case 1.

Proof of Lemma 3.10:

We will write v for G(u). Suppose u < v. By Lemma 3.4 and 3.6, we have

φ(u,G(u))′ = φ1(u, G(u)) + φ2(u,G(u))G′(u)

=
n+(u)

[N+(u) − N+(v)]2
×

{
(c(v) − c(u))

[
− |x|

v2

(
|x|
u2 − 1

2

)
+ ω

(
|x|
u2 + 1

2

)

(1 + ω)
(
|x|
v2 + 1

2

) +
|x|
u2

]

+
1

2
(c+(v) − c+(u))

[
− 1 +

(
|x|
u2 − 1

2

)
+ ω

(
|x|
u2 + 1

2

)

(1 + ω)
(
|x|
v2 + 1

2

)
]}

= M

{
(c(v) − c(u))

[
−|x|

v2
A +

|x|
u2

]
+

1

2

(
c+(v) − c+(u)

)
[−1 + A]

}
,

where M = n+(u)/ [N+(u) − N+(v)]
2

> 0, and

A =

(
|x|
u2 + 1

2

)

(1 + ω)
(
|x|2

v2 + 1
2

) [ω − Φ(u)] .

Since u < v and 1 + ω > 0, it can be easily shown that − |x|
v2 A + |x|

u2 > 0. Using the inequality

between c and c+ in Lemma 3.1, we have

φ(u,G(u))′ ≥ M

{
u2

2 |x|
(
c+(v) − c+(u)

) [
−|x|

v2
A +

|x|
u2

]
+

1

2

(
c+(v) − c+(u)

)
[−1 + A]

}

=
M

2

(
c+(v) − c+(u)

) [
1 − u2

v2

]
A ≥ K (ω − Φ(u)) .

Notice that ṽ is finite when ω < Φ(v∗). Furthermore, ṽ < v∗ since Φ(v) is strictly increasing.

Since u < ṽ < v∗, by Lemma 3.7, we have G(u) > u. Also, we have ω = Φ(ṽ) > Φ(u). Thus,

φ(u,G(u))′ > 0.

38

Proof of Theorem 3.11:

When x = 0, the condition in the theorem becomes ω > 0 and guarantees convergence by

Theorem 3.6. Thus we assume x < 0. Furthermore, we assume ω < Φ(v∗) since if ω ≥ Φ(v∗),

then Theorem 3.8 guarantees convergence.

By Lemma 3.10, φ(u,G(u)) is increasing in u when u < ṽ. Thus, supu<ṽ φ(u,G(u)) =

φ(ṽ, G(ṽ)). The condition in the theorem then implies that 1 + 2ω > supu<v∗ φ(u,G(u)). By

Lemma 3.2, we have G(ṽ) = max
v∈DomG

G(v).

If v0 > v∗, then v1 < v∗ since ω < Φ(v∗) < φ(v0, v∗). Thus without loss of generality, we

assume v0 < v∗. Since the sequence obviously converges if vk = v∗ for some k, we will assume

vk 6= v∗ for all k. This in particular implies that vk 6= vk+1 for all k, and ω 6= φ(vk, v∗) for any k.

We consider two cases.

1) ω < φ(v0, v∗). We have v1 > v∗. Since ω < φ(v1, v∗), v2 < v∗. By equation (7), we

have 1 + 2ω > φ(v0, v1), so v0 < v2 < v∗ by Lemma 3.9. Now since ω < φ(v2, v∗), we have

v3 > v∗. Since ω < φ(v3, v∗), we get v4 < v∗. Again, because 1 + 2ω > φ(v2, v3), v2 < v4 < v∗.

Repeating this process gives us v0 < v2 < v4 < · · · < v∗, and v∗ < v2k+1 < G(ṽ) for all k ≥ 0.

We now show v2k+1 is decreasing. Suppose v3 > v1. Since G(v) is strictly decreasing for v > ṽ

by Lemma 3.4, we get v4 = G(v3) < G(v1) = v2. This is a contradiction. Hence, we also have

v∗ < · · · < v5 < v3 < v1. Let vL = limk v2k and vH = limk v2k+1. Suppose vL < vH . Similar

argument as in the proof of Theorem 3.6 gives that when vL 6= vH , we have 1 + 2ω = φ(vL, vH).

This contradicts equation (7). Hence, we have vL = vH = v∗.

2) ω > φ(v0, v∗). We have v0 < v1 < v∗. Let k0 be the first k such that ω < φ(vk, v∗). Notice

k0 is finite by Lemma 3.7 and the fact that ω < Φ(v∗). For otherwise, vk would strictly increase

to a limit point other than v∗, which is impossible since v∗ is the only fixed point of v = G(v).

The proof now reduces exactly to the previous case, with vk0
playing the role of v0.

Proof of Theorem 4.1:

From the proof of Theorem 3.2, we have

vk+1 − v∗ = G(vk) − G(v∗) = G′(v∗)(vk − v∗) + O(vk − v∗)
2.

Since vk converges to v∗, we have

lim
k→+∞

|vk+1 − v∗|
|vk − v∗|

=
∣∣G′(v∗)

∣∣ .

Notice that ω ≥ Ψ(v∗) implies that |G′(v∗)| ≤ 1. By Lemma 3.4, we have G′(v∗) = 0 if and only

if ω = Φ(v∗). Also, |G′(v∗)| = 1 if and only if ω = Ψ(v∗). Thus, {vk} has sublinear convergence

when ω = Ψ(v∗), superlinear convergence when ω = Φ(v∗), and linear convergence in all other

cases.

Proof of Theorem 4.2:

39

When x = 0, by Lemma 3.6, we have ω0 = Φ(v0) = Φ(v∗) = φ(v0, v∗) = 1 for any v0 ∈ R+.

Hence, by using a similar proof as in Lemma 3.8, we have that vk = v∗ for all k ∈ N.

Now suppose x < 0. When v0 > v∗, by Lemma 3.7 and 3.8, we have that v1 is well-defined

and v∗ < v1 < v0 since ω0 = Φ(v0) > φ(v0, v∗). Again, since ω1 = Φ(v1) > φ(v1, v∗), we have

that v2 is well-defined and v∗ < v2 < v1. Hence, vk strictly decreases to v∗.

When v0 < v∗, by Lemma 3.8 we have v1 > v∗ if v1 is well-defined, since ω0 = Φ(v0) <

φ(v0, v∗). The proof now reduces to the previous case, with v1 playing the role of v0.

Proof of Theorem 4.3:

By Theorem 4.2, vk converges to v∗ from above if v1 is well-defined. Thus ωk = Φ(vk) converges

to Φ(v∗). Let us write G(vk; ωk) for G(vk; x, v∗, ωk). Since v∗ ∈ DomG by Lemma 3.4, there

exists a neighborhood Vǫ = (v∗ − ǫ, v∗ + ǫ) of v∗ such that G(v; ω) is smooth on Vǫ and

M1(ω) ≡ sup
{∣∣G′′(v; ω)

∣∣ /2 : v ∈ Vǫ

}
< ∞,

for each fixed ω. Also, since G(v;ω) is smooth in ω, we can assume

M2 = sup
{∣∣G′′(v; ω)

∣∣ /2 : v ∈ Vǫ, ω ∈ Ωǫ

}
< ∞,

where Ωǫ = (Φ(v∗) − ǫ, Φ(v∗) + ǫ).

Now, Taylor expansion gives us

vk+1 − v∗ = G(vk; ωk) − G(v∗; ωk) = G′(vk; ωk)(vk − v∗) +
1

2
G′′(ξk, ωk)(vk − v∗)

2,

where ξk ∈ (vk, v∗). Hence, using L′Hospital’s rule, we have

lim
k→∞

|vk+1 − v∗|
|vk − v∗|2

≤ lim
k→∞

|G′(vk; ωk)|
|vk − v∗|

+ M2 = lim
k→∞

|ωk − Φ(v∗)| /(1 + ωk)

|vk − v∗|
+ M2

=
|Φ′(v∗)|

1 + Φ(v∗)
+ M2 =

4 |x|
v∗(v2

∗ + 2 |x|) + M2 < ∞.

This shows that the convergence is of at least quadratic order.

Proof of Lemma 4.1:

Notice that when ω = 1, we have

M(v) =
2

1 + Φ(v)
G(v) +

(
1 − 2

1 + Φ(v)

)
v =

L(v)

1 + Φ(v)
, (59)

where L(v) = 2G(v) + (Φ(v) − 1) v. The derivative of M(v) with respect to v follows directly

from Lemma 3.4.

We now show that M(v) > 0 for all v ∈ R+. Fix v > 0. Note that G′(u) > 0 for all u ∈ R+,

and L′(u) > 0 for all u ≥
√

2 |x| since

L′(u) = 2G′(u) +
4 |x| (u2 − 2 |x|)

(u2 + 2 |x|)2 . (60)

40

Notice also M(v∗) = v∗ > 0 and L(v∗) > 0. Thus, we assume v 6= v∗.

Suppose first v < v∗. Then, we have v < G(v) < v∗ and thus M(v) > G(v) > 0.

Next, we consider v > v∗. We prove M(v) > 0 by dividing the proof into two cases:√
2|x| ≤ v∗ and v∗ <

√
2|x|.

Case 1:
√

2 |x| ≤ v∗. Since L′(u) > 0 for all u ≥
√

2 |x|, we have

M(v) =
L(v)

1 + Φ(v)
≥ L(v∗)

1 + Φ(v)
> 0.

Case 2: v∗ <
√

2 |x|. There are two subcases to consider. First, suppose v∗ < v ≤
√

2 |x|.
By equation (35), we have

M ′(u) = K

[
−2G3u + G2u2 +

n+(u)

n+(G)
G2u2 + 2

n+(u)

n+(G)
G2 |x| − 4Gu |x| + 2u2 |x|

]
,

where G = G(u) and K > 0. Since u > G(u) and n+(u) > n+(G) for all u ∈ (v∗,
√

2 |x|], we

have

M ′(u) ≥ K
[
− 2G3u + 2G2u2 + 2G2 |x| − 4Gu |x| + 2u2 |x|

]

= K
[
2G2u(u − G) + 2 |x| (u − G)2

]
> 0

for all u ∈ (v∗,
√

2 |x|]. Therefore, we have M(v) > M(v∗) > 0 for all v∗ < v ≤
√

2 |x|.
Second, suppose v∗ <

√
2 |x| < v. Since L′(u) > 0 for all u >

√
2 |x| by equation (60), we

have L(v) > L(
√

2 |x|). Hence,

M(v) ≥ L(
√

2 |x|)
1 + Φ(v)

=
M(

√
2 |x|)

1 + Φ(v)
>

M(v∗)

1 + Φ(v)
> 0,

where we have used the fact that M(
√

2 |x|) > M(v∗) in the proof of the previous case.

That M ′(v∗) = 0 follows directly from equation (35) and the fact that G(v∗) = v∗. The

second order derivative M ′′(v∗) follows from direct computation and Lemma 3.4.

We now examine the function m(v, x). Notice first that

lim
v→0+

m(v, x) = 8x3 < 0, lim
v→+∞

m(v, x) = +∞.

Furthermore, we have

∂m(v, x)

∂v
= 2v

(
− 4x2 − 4(4 + x)v2 + 3v4

)
= 6v(v2 − z1)(v

2 − z2),

where

z1 =
2

3

[
4 + x + 2

√
(x + 1)2 + 3

]
> 0, z2 =

2

3

[
4 + x − 2

√
(x + 1)2 + 3

]
< 0.

41

Thus, for fixed x < 0, m(v, x) as a function of v is strictly decreasing on (0,
√

z1), and strictly

increasing on (
√

z1, +∞). By taking into account the limiting behavior of m(x, v), we see that

m(v, x) = 0 has a unique root vr = vr(x) >
√

z1. Furthermore, m(v, x) < 0 when v < vr, and

m(v, x) > 0 when v > vr.

Proof of Theorem 4.4:

The case with x = 0 can be easily verified, so we assume x < 0 below.

By Lemma 4.1, when ω = 1, for any v ∈ R+, M(v) is well-defined and M(v) > 0. Thus the

SOR-TS algorithm is globally well-defined. Since M ′(v∗) = 0, M(v) is locally contracting near v∗

since M(v) is smooth function of v. Hence, if v0 is sufficiently close to v∗ then the sequence {vk}
converges to v∗.

We now show that the SOR-TS algorithm converges globally when B(x, v∗) < 1. Assume

vk 6= v∗ for all k ∈ N. We consider the following two cases.

Case 1: v0 > v∗. In this case, the sequence {vk} is bounded below by Mmin(x, v∗). But then

the assumption B(x, v∗) implies that M(v) is globally contracting on [Mmin(x, v∗),∞), since for

any v ∈ [Mmin(x, v∗),∞), there exists ξ between v and v∗, such that

|M(v) − v∗| = |M ′(ξ)| · |v − v∗| < |v − v∗|.

Thus, {vk} converges to v∗.

Case 2: v0 < v∗. In this case, we have M(v0) > G(v0) > v0. If the sequence {vk} is bounded

above by v∗, then vk < vk+1 < v∗ for all k ∈ N. Thus vk monotonically increases. It is easy to

show that it converges to v∗. The other case is when there exists k0 ∈ N such that vk0
> v∗,

which reduces to Case 1 above.

The convergence pattern follows from the following Taylor expansion

vk+1 − v∗ =
1

2
M ′′(v∗)(vk − v∗)

2 + O(vk − v∗)
3. (61)

Notice that when v∗ < vr(x), by Lemma 4.1, M ′′(v∗) > 0. This implies that for any vk

sufficiently close to v∗ and vk 6= v∗, we have v∗ < M(vk) < vk. By induction, the sequence {vk}
monotonically decreases to v∗. The case v∗ > vr(x) can be proven similarly. Finally, notice

that when v∗ = vr(x), M ′′(v∗) = 0. In this case, the local behavior of the algorithm around v∗

depends on M ′′′(v∗), which can be either nonnegative or nonpositive.

Proof of Theorem 4.5:

If vk converges to v∗, by equation (61) we have

lim
k→∞

|vk+1 − v∗|
|vk − v∗|2

=
1

2

∣∣M ′′(v∗)
∣∣ < ∞.

Hence, the SOR-TS algorithm with ω = 1 has at least a quadratic order of convergence. In

particular, when v∗ = vr(x), the convergence has at least a cubic order.

42

Proof of Theorem 6.1:

The SOR-B algorithm with ωk ≡ 0 is always well-defined since for any v ∈ R+, GB(v) is well-

defined.

We now show that the SOR-B algorithm always converges. First consider the case x = 0.

Notice GB(v; 0, v∗, 0) ≡
√

2πc∗ = v∗ for ∀v ∈ R+. Thus the SOR-B algorithm lands on v∗ after

one iteration.

Now let x < 0. Define two function f(v) and g(v) as follows:

f(v) = |x|
[
N

(x

v

)
− N

(x

v∗

)]
− v∗

[
n
(x

v

)
− n

(x

v∗

)]
,

g(v) = |x|
[
N

(x

v

)
− N

(x

v∗

)]
−

[
vn

(x

v

)
− v∗n

(x

v∗

)]
.

Then f(v∗) = g(v∗) = 0, and

f ′(v) =
|x|2n(x/v)

v3
(v − v∗), g′(v) = −n(x/v) < 0.

Thus, f(v) ≥ 0 with equality if and only if v = v∗, and g(v) < 0 if v > v∗. Since GB(v) > v∗ if

and only if f(v) > 0 when ω ≡ 0, we have v1 > v∗ for any v0 ∈ R+. Since for v > v∗, GB(v) < v

if and only if g(v) < 0, we have v∗ < vk+1 < vk for all k ∈ N. Thus the sequence {vk} (k ≥ 1)

monotonically decreases to a limit point v∞. Taking a limit on the iteration equation then gives

c∗ = cB(x, v∞). Since vega is strictly positive in the Bachelier formula, we have v∗ = v∞.

To see that the convergence is of quadratic order, notice that when vk is sufficiently close

to v∗, a Taylor expansion of the iteration equation gives

vk+1 − v∗ =
x2

2v3
∗

(vk − v∗)
2 + O(vk − v∗)

3,

and thus

lim
k→+∞

|vk+1 − v∗|
|vk − v∗|2

=
x2

2v3
∗

> 0.

Proof of Theorem 6.2:

Since ωk = 0 and κ(x, v) > 0 for all x ∈ R and v > 0, GCS(x; v, x∗, 0) is well-defined for any

x ∈ R. Thus, the sequence {xk} is well-defined.

We now show the global convergence of the SOR-CS algorithm. We will simply write G(x)

for GCS(x; v, x∗, 0). Define two functions f(x) and g(x) by

f(x) = ex∗N
(x∗

v
+

v

2

)
− ex∗N

(x

v
+

v

2

)
− N

(x∗

v
− v

2

)
+ N

(x

v
− v

2

)
,

g(x) = ex∗N
(x∗

v
+

v

2

)
− exN

(x

v
+

v

2

)
− N

(x∗

v
− v

2

)
+ N

(x

v
− v

2

)
.

43

By the definition of G(x) = G(x; v, x∗, ω), we have

f(x) =
(
eG(x) − ex∗

)
N

(x

v
+

v

2

)
, g(x) =

(
eG(x) − ex

)
N

(x

v
+

v

2

)
.

To examine the signs of f(x) and g(x), notice f(x∗) = g(x∗) = 0, and

f ′(x) =
1

v
n
(x

v
+

v

2

)
(ex − ex∗) , g′(x) = −exN

(x

v
+

v

2

)
,

where we have used the identity n
(

x
v

+ v
2

)
ex = n

(
x
v
− v

2

)
in deriving the above derivatives. Since

f ′(x) > 0 when x > x∗, and f ′(x) < 0 when x < x∗, f(x) achieves minimum at x = x∗. Thus

f(x) ≥ 0 on R with f(x) = 0 if and only if x = x∗. On the other hand, the function g(x) is

monotonically decreasing on R. In particular, for any x > x∗, we have f(x) > 0 and g(x) < 0.

Now let x0 6= x∗ in the SOR-CS algorithm. We have f(x0) > 0 by the above analysis. That

is, x1 = G(x) > x∗. The above analysis then shows that x∗ < xk+1 < xk for any k ∈ N. Thus

xk monotonically decreases to a limit x∞. It can be easily shown that x∞ = x∗ since x∗ is the

only fixed point of G(x).

To see the convergence is of quadratic order, notice that when xk is sufficiently close to x∗,

a Taylor expansion of the iteration equation gives

xk+1 − x∗ =
n
(x

v
+

v

2

)

2vN
(x

v
+

v

2

)(xk − x∗)
2 + O(xk − x∗)

3,

and thus

lim
k→+∞

|xk+1 − x∗|
|xk − x∗|2

=
n
(x

v
+

v

2

)

2vN
(x

v
+

v

2

) > 0.

44

References

Bachelier, L. 1900. Théorie de la spéculation, Annales de l’Ecole Normale Superiure 17 21–86.

Bharadia, M. A., N. Christofides, G. R. Salkin. 1996. Computing the Black Scholes implied
volatility. Advances in Futures and Options Research 8 15–29.

Black, F., M. Scholes. 1973. The pricing of options and corporate liabilities. Journal of Political
Economy 81 637–654.

Brenner, M., M. G. Subrahmanyam. 1988. A simple formula to compute the implied standard
deviation. Financial Analysts Journal 5 80–83.

Carr, P., L. Wu. 2003. The finite moment log stable process and option pricing. The Journal of
Finance 58 753–777.

Chambers, D. R., S. J. Nawalkha. 2001. An improved approach to computing implied volatility.
The Financial Review 38 89–100.

Chance, D. M. 1993. Leap into the unknown. Risk 6 60–66.

Chance, D. M. 1996. A generalized simple formula to compute the implied volatility. The Fi-
nancial Review 31 859–867.

Chandrasekhar, C. R., R. Gukhal. 2004. The compound option approach to American options
on jump-diffusions. Journal of Economic Dynamics and Control 28 2055–2074.

Chargoy-Corona, J., C. Ibarra-Valdez. 2006. A note on Black-Scholes implied volatility. Phys-
ica A 370 681–688.

Choi, J., K. Kim, M. Kwak. 2007. Numerical approximation of the implied volatility under
arithmetic Brownian motion. Available at SSRN: http://ssrn.com/abstract=990747.

Corrado, C. J., T. W. Jr Miller. 1996a. A note on a simple, accurate formula to compute implied
standard deviations. Journal of Banking and Finance 20 595–603.

Corrado, C. J., T. W. Jr Miller. 1996b. Volatility without tears. Risk 7 49–52.

Fischer, S. 1978. Call option pricing when the exercise price is uncertain, and the valuation of
index bonds. The Journal of Finance 33 169–176.

Geske, R. 1977. The valuation of corporate liabilities as compound options. Journal of Financial
and Quantitative Analysis 12 541–552.

Geske, R. 1979. The valuation of compound options. Journal of Financial Economics 7 63–81.

Heston, S. L. 1993. A closed-form solution for options with stochastic volatility with applications
to bond and currency options. Review of Financial Studies 6 327–343.

Hodges, S. D., M. J. P. Selby. 1987. On the evaluation of compound options. Management
Science 33(3) 347–355.

Isaacson, E., H. B. Keller. 1994. Analysis of Numerical Methods. Dover Publications, New York.

Jäckel, P. 2006. By implication. Wilmott (November 2006) 60–66.

Kelly, M. A. 2006. Faster implied volatilities via the implicit function theorem. The Financial
Review 41(4) 589–597.

Latané, H., R. Rendleman. 1976. Standard deviations of stock price ratios implied in option
prices. The Journal of Finance 31 369–382.

45

Li, M. 2007. The impact of return nonnormality on exchange options. Journal of Futures Markets
(forthcoming).

Li, M. 2008. Approximate inversion of the Black-Scholes formula using rational functions. Eu-
ropean Journal of Operations Research 185(2) 743–759.

Manaster, S., G. Koehler. 1982. The calculation of implied variances from the Black-Scholes
model. The Journal of Finance 38 227–230.

Margrabe, W. 1978. The value of an option to exchange one asset for another. The Journal of
Finance 33 177–186.

Merton, R. C. 1973. The theory of rational option pricing. Bell Journal of Economics and
Management Science 4 141–183.

Merton, R. C. 1976. Option pricing when underlying stock returns are discontinuous. Journal
of Financial Economics 3 125–143.

Musiela, M., M. Rutkowski. 2005. Martingale Methods In Financial Modelling (2nd edition),
Springer, New York.

Nash, S. G. 1990. A History of Scientific Computing. ACM Press, New York, 180–194.

Nelder, J. A, R. Mead. 1965. A simplex method for function minimization. Computer Journal 7
308–313.

Press, W. H., B. P. Flannery, S. A. Teukolsky, W. T. Vetterling. 1992. Numerical Recipes in C:
The Art of Scientific Computing. Cambridge University Press, Cambridge.

Schachermayer, W., J. Teichmann. 2007. How close are the option pricing formulas of Bachelier
and Black-Merton-Scholes? Mathematical Finance (forthcoming).

Schmalensee, R., R. Trippi. 1978. Common stock volatility expectations implied by option pre-
mia. The Journal of Finance 33 129–147.

Sidi, A. 2002. Practical Extrapolation Methods: Theory and Applications. Cambridge University
Press, Cambridge.

Stoll, H. R. 1969. The relationship between put and call option prices. The Journal of Finance 31
319–332.

Young, D. M. 1954. Iterative methods for solving partial difference equations of elliptic type.
Transactions of the Mathematical Society 76 92–111.

46

Table 1

The SOR, SOR-DR and SOR-TS algorithms

This table gives the values of vk for the first five iterations in the SOR, SOR-DR and SOR-TS

algorithms. The option used has moneyness x = −0.5 and volatility v∗ = 1 so that Φ(v∗) = 0.
For the SOR and SOR-TS algorithms, we set ω = 1 for all the iterations. The initial estimate
is chosen to be v0 = 0.6 or 1.4 for all three algorithms. All the rows are computed with
(10−16)-precision arithmetic, except that the rows 4′ and 5′ are computed with (10−50)-precision
arithmetic.

Panel A: v0 < v∗

SOR SOR-DR SOR-TS

k vk |vk − v∗| vk |vk − v∗| ωk vk |vk − v∗| αk

0 0.6000 0.4000 0.6000 0.4000 −0.4706 0.6000 0.4000 3.7778

1 0.7284 0.2716 1.2429 0.2429 0.2141 1.0850 0.0850 1.8495

2 0.8327 0.1673 1.0192 0.0192 0.0190 1.0016 0.0016 1.9968

3 0.9050 0.0950 1.0002 2×10−4 2×10−4 1.0000 6×10−7 2.0000

4 0.9489 0.0511 1.0000 2×10−8 2×10−8 1.0000 1×10−13 2.0000

5 0.9735 0.0265 1.0000 7×10−16 1.0000 4×10−16

5′ 0.9735 0.0265 1.0000 1×10−16 1.0000 3×10−27

Panel B: v0 > v∗

SOR SOR-DR SOR-TS

k vk |vk − v∗| vk |vk − v∗| ωk vk |vk − v∗| αk

0 1.4000 0.4000 1.4000 0.4000 0.3243 1.4000 0.4000 1.5102

1 1.1507 0.1507 1.0413 0.0413 0.0404 1.0235 0.0235 1.9546

2 1.0675 0.0675 1.0008 8×10−4 8×10−4 1.0001 1×10−4 1.9997

3 1.0321 0.0321 1.0000 3×10−7 3×10−7 1.0000 4×10−9 2.0000

4 1.0157 0.0157 1.0000 5×10−14 5×10−14 1.0000 4×10−16 2.0000

5 1.0077 0.0077 1.0000 1×10−16 1.0000 4×10−16

4′ 1.0157 0.0157 1.0000 5×10−14 5×10−14 1.0000 5×10−18 2.0000

5′ 1.0077 0.0077 1.0000 1×10−27 1.0000 6×10−36

47

Table 2

Accuracy of the SOR, SOR-DR and SOR-TS algorithms in D−

This table gives the accuracy of the SOR , SOR-DR and SOR-TS algorithms in domain D−.
All three algorithms are implemented with (10−16)-precision arithmetic in MATLAB 7.1 on
a Dell Dimension 4600 desktop computer (2.8 GHz, 1G RAM). The relaxation parameter ω
is chosen to be 1 in both SOR and SOR-TS algorithms. The result for k = 0 represents the
rational approximation, which is the same for all three algorithms. The means, medians and
maximums are calculated by uniformly and densely populating the domain D− with roughly 1
million options. An asterisk (*) indicates that the number is in the order of or smaller than the
machine accuracy (10−16). For a given k, the computing times reported are for all the options
in the domain D−.

SOR SOR-DR SOR-TS

mean median max mean median max mean median max

|v0 − v∗| 0.356 0.319 0.783

|c0 − c∗| 0.038 0.022 0.290

Time (s) 0.65

|v4 − v∗| 0.003 2×10−6 0.078 2×10−11 1×10−15 2×10−8 5×10−11 ∗ 2×10−8

|c4 − c∗| 9×10−4 2×10−7 0.024 6×10−12 * 6×10−9 4×10−12 * 5×10−10

Time (s) 9.43 9.70 10.43

|v5 − v∗| 0.002 8×10−8 0.058 4×10−15 * 1×10−13 3×10−15 * 1×10−13

|c5 − c∗| 6×10−4 8×10−9 0.015 * * 4×10−14 * * 2×10−14

Time (s) 11.58 12.60 13.17

48

Table 3

Comparing the Newton-Raphson, Dekker-Brent, and SOR-TS algorithms

This table compares the performance of the Newton-Raphson (NR) algorithm, the Dekker-Brent
(DB) algorithm and the SOR-TS algorithm for a particular option (x, v∗), where we let x = −1
and v∗ = 2. We start all three algorithms from three different initial values, namely, 0.1, 4,
and 20. The Newton-Raphson algorithm is implemented naively, that is, without any safe-
guarding feature such as checking for positivity. The initial Dekker-Brent bracketed region is
taken to be [0.0005, max(v0, 10)]. Panel A reports the values of each iteration while Panel B
reports the errors. Inf is the IEEE arithmetic representation for positive infinity, while NaN

is the IEEE arithmetic representation for Not-a-Number. A NaN is obtained as a result of
mathematically undefined operations like 0.0/0.0 and Inf−Inf. An asterisk (*) indicates that
the number is in the order of or smaller than the machine accuracy (10−16).

Panel A: vk

k NR DB SOR-TS

0 0.1 4 20 0.1 4 20 0.1 4 20

1 4×1021 −0.8315 −4×1021 0.0005 0.0005 0.0005 161.14 2.0292 2.1750

2 Inf 7.0268 Inf 10 2.2010 10.1975 2.2515 2.0000 2.0011

3 NaN −353.15 NaN 5.1476 1.8917 5.0990 2.0022 2.0000 2.0000

4 NaN Inf NaN 2.6238 2.0042 2.5497 2.0000 2.0000 2.0000

5 NaN Inf NaN 2.0668 2.0001 2.0518 2.0000 2.0000 2.0000

Panel B: |vk − v∗|

k NR DB SOR-TS

0 1.9 2 18 1.9 2 18 1.9 2 18

1 4×1021 2.8315 −4×1021 1.9995 1.9995 1.9995 159.14 0.0292 0.1750

2 Inf 5.0268 Inf 8 0.2010 8.1975 0.2515 3×10−5 0.0011

3 NaN 355.15 NaN 3.1476 0.1083 3.0990 0.0022 7×10−11 7×10−8

4 NaN Inf NaN 0.6238 0.0042 0.5497 2×10−7 * *

5 NaN Inf NaN 0.0668 0.0001 0.0518 3×10−15 * *

49

−3

−2

−1

0

1

2

3

0

1

2

3

4

5

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 x
 v

 c

Figure 1. Normalized Black-Scholes call price c as a function of moneyness x and
total volatility v. This surface implicitly gives v as a function of x and c. In the regions where
x/v ≤ −3 and x/v ≥ 3, option prices are very insensitive to changes in v, implying that the
inversion of Black-Scholes formula is not very meaningful in these regions.

50

0.5 1 1.5 2 2.5
0

0.5

1

1.5

 v

 G

0.5 1 1.5 2 2.5
0

0.5

1

 v

 G
 ′

0.5 1 1.5 2 2.5
0.5

1

1.5

 v

 G

0.5 1 1.5 2 2.5
−1

0

1

2

 v

 G
 ′

0.5 1 1.5 2 2.5
0

2

4

 v

 G

0.5 1 1.5 2 2.5

−2

0

2

4

 v

 G
 ′

0.5 1 1.5 2 2.5
2

4

6

 v

 G

0.5 1 1.5 2 2.5
−50

0

50

 v

 G
 ′

0.5 1 1.5 2 2.5
0

2

4

6

8

 v

 G

0.5 1 1.5 2 2.5
−50

0

50

 v

 G
 ′

Figure 2. The function G(v;x, v∗, ω) and its derivative G′(v; x, v∗, ω). Each row corre-
sponds to a different combination of parameters (x, v∗, ω). The dots indicate the positions of v∗.
As the graphs show, the function G(v) can fail to be globally well-defined, globally contracting,
or locally contracting.

51

x = 0

1. v0 > v∗

ω > 1

•
v∗

◦

v1

◦

v0

ω = 1

•
v∗ = v1

◦

v0

0 < ω < 1

◦

v1

◦

v3

•
v∗

◦

v2

◦

v0
2. v0 = v∗

•
v∗ = v0

3. v0 < v∗

ω > 1

◦

v0

◦

v1

•
v∗

ω = 1

◦

v0

•
v∗ = v1

0 < ω < 1

◦

v0

◦

v2

•
v∗

◦

v3

◦

v1

x < 0

1. v0 > v∗

ω ≥ φ(v0, v∗)

•
v∗

◦

v0

Φ(v∗) ≤ ω < φ(v0, v∗)

◦

v1

◦

v2

•
v∗

◦

v0

Ψ(v∗) ≤ ω < Φ(v∗)

◦

v1

◦

· · ·
◦

vk

◦

vk+2

•
v∗

◦

vk+1

◦

v0
2. v0 = v∗

•
v∗ = v0

3. v0 < v∗

ω ≥ Φ(v∗)

◦

v0

◦

v1

•
v∗

Ψ(v∗) ≤ ω < Φ(v∗)

◦

v0

◦

· · ·
◦

vk

◦

vk+2

•
v∗

◦

vk+1

oo §§ ££ ¿¿¤¤

// »» ÀÀ££ ¾¾

oo ££ // }} ÀÀ¡¡

// ÀÀ¡¡

Figure 3. Convergence patterns for the SOR algorithm. This figure shows all the possible
convergence patterns for the SOR algorithm. The two cases x = 0 and x < 0 are listed separately.
Except for the two cases whose conditions are boxed, all the conditions above each subplots are
both sufficient and necessary for each particular convergence pattern to occur. The two boxed
conditions are only necessary conditions.

52

x = 0

SOR-DR

1. v0 > v∗

•
v∗ = v1

◦

v0

SOR-TS (ω = 1)

1. v0 > v∗

•
v∗ = v1

◦

v0

2. v0 = v∗

•
v∗ = v0

2. v0 = v∗

•
v∗ = v0

3. v0 < v∗

◦

v0

•
v∗ = v1

3. v0 < v∗

◦

v0

•
v∗ = v1

x < 0

1. v0 > v∗

•
v∗

◦

v1

◦

v0

1. M ′′(v∗) ≥ 0

•
v∗

◦

∃vk

2. v0 = v∗

•
v∗ = v0

2. M ′′(v∗) ≤ 0

◦

∃vk

•
v∗

3. v0 < v∗ v0 ∈ DomG

◦

v0

•
v∗

◦

v2

◦

v1

3. M ′′(v∗) = 0

◦

vk

◦

vk+2

•
v∗

◦

vk+3

◦

vk+1

¤¤ ¤¤

¾¾ ¾¾

oo oo

//

ÂÂoo ""{{ ""

Figure 4. Convergence patterns for the SOR-DR and SOR-TS (ω = 1) algorithms. The
left and right half of the figure shows all the possible convergence patterns for the SOR-DR and
SOR-TS ω = 1 algorithms, respectively. The two cases x = 0 and x < 0 are listed separately.
The two algorithms are always globally well-defined, except that when v0 < v∗ and x < 0, we
need G(v0) to be well-defined to guarantee that {vk} is defined.

53

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

x = 0

c∗ ≡ c(x, v∗)

v
∗

0.5

1

1.5

2

2.5

3

−3

−2.5

−2

−1.5

−1

−0.5

Domain D

D−

M ′′(v∗) = 0

M ′′(v∗) < 0

M ′′(v∗) > 0

Figure 5. Domain of inversion D. D is constructed using four criteria, namely, 0.0005 ≤
v∗ ≤ 6, |x| ≤ 3, 0.0005 ≤ c∗ ≤ 0.9995 and |x|/v∗ ≤ 3. Because of the “in-and-out” duality, only
options with x ≤ 0 will be considered. The curve M ′′(v∗) = 0 divides the left half domain D−

further into two parts.

54

