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Abstract

We explore the effects of asymmetries in capacity constraints on collusion where market

demand is uncertain and where firms must monitor the agreement through their privately

observed sales and prices. In this private monitoring setting, we show that all firms can infer

when at least one firm’s sales are below some firm-specific “trigger level”. This public infor-

mation ensures that firms can detect deviations perfectly if fluctuations in market demand

are sufficiently small. Otherwise, there can be collusion under imperfect public monitoring

where punishment phases occur on the equilibrium path. We find that symmetry faciliates

collusion. Yet, we also show that if the fluctuations in market demand are sufficiently large,

then the collusive prices of symmetric capacity distributions are actually lower than the

competitive prices of asymmetric capacity distributions. We draw conclusions for merger

policy.
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1 Introduction

The recent collusion theory literature has developed a clear consensus that asymmetries hinder

collusion. For example, this result is robust to whether asymmetries are in terms of firms’

capacity constraints (see Compte et al., 2002; Vasconcelos, 2005; and Bos and Harrington, 2010

and 2015) or the number of differentiated products that each firm sells (see Kühn, 2004). These

papers in particular have been important for merger policy as they have highlighted which types

of mergers can cause coordinated effects, that is, an increased likelihood or sustainability of

tacit collusion post-merger. More specifically, with respect to capacity constraints, Compte et

al. (2002) show that collusion is more difficult as the capacity of the largest firm is increased

through a merger, and Vasconcelos (2005) finds that collusion is hindered when the largest firm

is larger or when the smallest firm is smaller. Bos and Harrington (2010) show that increasing

the capacity of medium-sized firms can facilitate collusion, if only a subset of firms in the market

are involved in the collusion.1

In practice, the degree to which firms can monitor each other’s actions plays an important

part in determining whether a merger causes coordinated effects. Yet, all of the papers above

assume there is perfect observability of rivals’ actions, so deviations from the collusive strategies

will be detected immediately. In contrast, many mergers occur in markets in which there is

the potential for secret price cuts. This may be the case, for example, in upstream business-

to-business markets where transaction prices can be unrelated to posted prices. Consequently,

it is inappropriate to consider the effects of such mergers in terms of collusion under perfect

observability. Instead, they should be considered in the context of imperfect monitoring, where

firms are uncertain over whether their rivals have followed their collusive strategies or not (see

Green and Porter, 1984; and Harrington and Skrzypacz, 2007 and 2011). However, while the

models in this literature provide many interesting insights into the sustainability of collusion, it

is difficult to draw implications for merger policy from them, because they analyse collusion with

symmetric firms.

In this paper, we begin to fill this gap in the literature by exploring the effects of asymmetries

in capacity constraints on collusion under imperfect monitoring. We achieve this by extending

Compte et al. (2002) to a setting where there is demand uncertainty and where firms never

directly observe their rivals’ prices or sales. Thus, similar to the imperfect monitoring setting

1Fonseca and Normann (2008, 2012) also find that asymmetries in capacity constraints hinder collusion in

laboratory experiments.
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first discussed by Stigler (1964), each firm must monitor the collusive agreement using their

own privately observed sales. In this regard, our model is related to Tirole’s (1988, p.262-264)

model of private monitoring that captures the results of Green and Porter (1984) in a Bertrand

framework (see also Campbell et al., 2005, and Amelio and Biancini, 2010). Yet, unlike Tirole

(1988), where there is a chance in each period that market demand will be zero, in our model

market demand is drawn from an interval, where all possible states of demand are positive. We

use this model to investigate whether collusion is facilitated or hindered as capacity is reallocated

among the firms to draw implications for merger policy.

Using information from their privately observed sales, we show that all firms can always infer

when at least one firm’s sales are below some firm-specific “trigger level”. The trigger level

for each firm is determined by the largest possible sales consistent with them or a rival being

undercut on price. Thus, if all firms set a common price, then all firms’ sales will exceed their

respective trigger levels when the realisation of market demand is high, otherwise they can all

fall below the trigger levels. Yet, if all firms do not set a common price, then the highest-priced

firms will receive sales below their trigger levels and the lower-priced firm(s) can infer this.2

Consequently, we restrict attention to equilibria in public strategies, known as perfect public

equilibria, where firms condition their play upon this public information (i.e. whether all firms’

sales are greater than their trigger levels or not). We show that if fluctuations in market demand

are small, then such strategies ensure monitoring is perfect, because firms will only ever receive

sales below their trigger levels if they are undercut. However, if fluctuations in market demand

are large, then collusive sales will also fall below the trigger levels when the realisation of market

demand is low. This implies, in contrast to Compte et al. (2002), that there is uncertainty as to

whether rivals have followed the collusive strategies or not, so punishment phases must occur on

the equilibrium path to provide firms with the correct incentives to collude.

We solve for an optimal perfect public equilibrium.3 We find that asymmetries hinder col-

lusion whether monitoring is perfect or imperfect. For instance, the critical discount factor is

higher when the largest firm is larger or when the smallest firm is smaller. The reason for the

2Note that this information is common knowledge in our framework, because a deviation by a firm impacts

the sales of all of its rivals. In contrast, this information may not be common knowledge in a framework where

firms’ products are spatially differentiated, as in the Salop circle, for example, because then firms located next to

a deviator would experience lower sales but other firms may not.
3In the main paper, we use a strategy profile, similar to Tirole (1988), where firms revert to the static Nash

equilibrium for a number of periods when they receive a bad signal. In an appendix, we use the techniques of

Abreu et al. (1986, 1990) to show that the approach in the main paper generates the maximal equilibrium profits.
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former is that the punishment is weaker when the largest firm has more capacity. The latter is

due to the fact that deviations by the smallest firm are most difficult for rivals to detect, because

each rival’s resultant sales are most similar to its collusive sales. Thus, decreasing the size of the

smallest firm makes monitoring more difficult. Another implication of this is that punishment

phases occur more often on the equilibrium path when the smallest firm has less capacity, and

the optimal equilibrium profits are lower as a result. The size of the other firms’ capacities do

not affect the the equilibrium profits or critical discount factor.

After solving the model, we then use it to draw implications for merger policy. In particular,

we analyse both the coordinated and unilateral effects of mergers in a unified framework. Uni-

lateral effects arise if any firm is likely to have an individual incentive to raise prices post-merger.

It is well understood that unilateral effects are associated with asymmetric post-merger market

structures and coordinated effects are associated with symmetric post-merger market structures

(see Ivaldi et al., 2003a and 2003b). As discussed by Kühn (2001) and Motta et al. (2003), this

implies that there is a tradeoff between such effects when the degree of asymmetry in a market

is altered by a merger or divestiture remedy: increasing asymmetries reduces the likelihood of

coordinated effects but raises the likelihood of unilateral effects, and vice versa. However, in

the previous theoretical literature, these effects have been modelled independently of each other.

For example, in the framework of Compte et al. (2002), either the monopoly price is sustainable

in every period, in which case only coordinated effects matter, or collusion is never sustainable

at any price, so only unilateral effects matter. Consequently, their focus is solely on the coordi-

nated effects of mergers on the critical discount factor. In contrast, our model allows for a more

continuous treatment of unilateral and coordinated effects, because play can alternate between

phases of collusion and competition on the equilibrium path.

The conventional wisdom is that coordinated effects are more harmful to welfare than unilat-

eral effects. The reason, as described by Röller and Mano (2006, p.22), is that “it is preferable

that any coordination is by only a subset of firms (i.e. the merging parties) rather than all firms

(tacitly)”. In other words, the fear is that firms will share the monopoly profits in every future

period if collusion is sustainable, so only a merger to monopoly would be equally as bad in terms

of unilateral effects. This logic also implies that a merger that disrupts collusion, by enhancing

the market power of a single firm, should increase consumer surplus post-merger. However, in

contrast to this conventional wisdom, we show that unilateral effects can be more harmful than

coordinated effects. This is due to the fact that firms are not able to share the monopoly profits

under imperfect monitoring, because punishment phases occur on the equilibrium path. Con-
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sequently, a merger that facilitates collusion by distributing capacity symmetrically can be less

harmful to welfare than one that creates a near monopoly. We demonstrate that if the fluctu-

ations in market demand are sufficiently large, then the collusive prices of symmetric capacity

distributions are lower than the competitive prices of asymmetric capacity distributions.

Finally, our model is distinct from the previous literature that analyses collusion with capacity

constraints and fluctuations in market demand. The main difference is that our focus is on

mergers, which necessarily requires us to model asymmetries in markets with more than two

firms. In contrast, the focus of this other literature is on pricing over the business cycle. For

instance, Staiger and Wolak (1992) and Knittel and Lepore (2010) endogenise the choice of

capacities in an infinitely repeated game. Despite analysing asymmetric games following the

capacity choice stage, they restrict attention to duopoly. Other differences are that there is

perfect observability and market demand is known when prices are set. In a similar setting

to that just described, Fabra (2006) analyses collusion where firms’ capacity constraints are

exogeneous but symmetric.

The rest of the paper is organised as follows. Section 2 sets out the assumptions of the model

and solves for the static Nash equilibrium. In section 3, we analyse the repeated game. We

first show that there is some public information that firms can condition their play on, and find

when monitoring is perfect or imperfect. Then we solve the game and analyse the successfulness

of collusion for different capacity distributions. In section 4, we consider the implications for

merger policy. Section 5 explores the robustness of our results, and section 6 concludes. All

proofs are relegated to appendix A. In appendix B, we use the techniques of Abreu et al. (1986,

1990) to show that the approach in the main body of the paper is an optimal equilibrium in that

it generates the maximal equilibrium profits. This appendix is best read after section 3.2.

2 The Model

2.1 Basic assumptions

Consider a market in which a fixed number of n ≥ 2 capacity-constrained firms compete on price

to supply a homogeneous product over an infinite number of periods. Firms’ costs are normalised

to zero and they have a common discount factor, δ ∈ (0, 1). In any period t, firms set prices

simultaneously where pt = {pit,p−it} is the vector of prices set in period t, pit is the price of firm

i = {1, . . . , n} and p−it is the vector of prices of all of firm i’s rivals. Market demand consists of
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a mass of mt (infintesimally small) buyers, each of whom are willing to buy one unit provided

the price does not exceed their reservation price, which we normalise to 1. We assume that firms

do not observe mτ , for all τ ∈ {0, . . . , t}, but they know that mt is independently drawn from a

distribution G(m), with mean m̂ and density g(m) > 0 on the interval [m,m].

Buyers are informed of prices, so they will want to buy from the cheapest firm. However, the

maximum that firm i can supply in any period is ki, where we let kn ≥ kn−1 ≥ . . . ≥ k1 > 0,

without loss of generality. We denote total capacity as K ≡
∑

i ki and the maximum that firm

i’s rivals can supply in each period as K−i ≡
∑

j 6=i kj . In contrast to the buyers, firm i never

observes firm j’s prices, pjτ , or sales, sjτ , j 6= i, for all τ ∈ {0, . . . , t}. Thus, similar to Tirole

(1988), our setting has the feature that all buyers are fully aware of prices, yet all firms are only

aware of their own prices. Such a setting is consistent with a market in which all buyers are

willing to check the prices of every firm in each period to find discounts from posted prices, but

actual transaction prices are never public information.4

2.2 Demand allocation and sales

Following the literature (for example, see Vasconcelos, 2005; and Bos and Harrington, 2010 and

2015), we make the common assumption that demand is allocated by the following rule:

The proportional allocation rule

Unsupplied buyers want to buy from the firm(s) with the lowest price among those with spare

capacity.

• If the joint capacity of such firms is insufficient to supply all of the unsupplied buyers, then

such capacity is exhausted, and the remaining unsupplied buyers now want to purchase

from the firm(s) with the next lowest price among those with spare capacity, and so on.

• If the joint capacity of such firms suffices to supply all of the unsupplied buyers, then each

firm supplies an amount of buyers equal to its proportion of the joint capacity.

This allocation rule is commonly considered in the literature in terms of a cartel selecting how

much of the market demand each member supplies. Indeed, there are a number of cartels that

have allocated demand in proportion to each member’s capacity (see the examples in Vascon-

celos, 2005, and Bos and Harrington, 2010). However, this seems inappropriate in our model,

4In contrast to Tirole (1988), our main results simply require that enough buyers are informed of prices to

hold, if capacity constraints are binding.
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because members of such cartels are likely to have some knowledge of market demand and rivals’

sales when allocating demand, which is not present in our setup. Instead, we have tacit collusion

in mind where firms play no role in the allocation of the market demand, other than through the

prices they set. Thus, in our framework it seems more appropriate to consider the demand allo-

cation in terms of buyers allocating themselves to firms according to the proportional allocation

rule.

To see that buyers can allocate themselves according to the proportional allocation rule in

our framework, note that buyers want to buy from the firm with strictly the lowest price among

those with spare capacity. Consequently, it makes sense that demand is allocated to such a firm

until either its capacity is exhausted or the market demand is supplied.5 However, buyers are

indifferent between purchasing from firms with tied prices. So, suppose buyers break the tie by

randomly selecting such a firm with a probability equal to the firm’s proportion of their joint

capacity. This requires that the size of the firms is observable to the buyers and it captures

the plausible feature that buyers are more likely to be attracted to larger firms when they are

indifferent between two or more firms. Thus, if the joint capacity of the firms with tied prices is

insufficient to supply the unsupplied buyers, then such firms will supply their full capacities and

the remaining unsupplied buyers will then want to purchase from the firm(s) with the next lowest

price among those with spare capacity, and so on. However, if the joint capacity of the firms

with tied prices suffices to supply the unsupplied buyers, then it follows from the law of large

numbers that such firms will each receive demand equal to its proportion of the joint capacity.

We consider the robustness of our results with respect to the allocation rule in section 5.

We also place the following plausible yet potentially restrictive assumption on the capacity

distribution:

Assumption 1. m ≥ K−1.

This says that the joint capacity of the smallest firm’s rivals should not exceed the minimum

market demand, and it ensures that firm i’s sales in period t are strictly positive, for all i and all

mt > m, even if it is the highest-priced firm. To understand the generality of Assumption 1, note

that it is not restrictive if all firms can only ever collectively supply as much as the minimum

market demand, m ≥ K. Otherwise, for a given level of m, there is a restriction on the size

5Note that in the case where this firm’s capacity is insufficient to supply all of the buyers, we do not need

to specify which buyers are supplied, since all consumers have the same reservation price. In contrast, when

consumers’ reservation prices differ, the identities of the buyers who are supplied by the firm has important

implications for welfare (see for example Vives, 1999, p.124-6).
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of the smallest firm in that it cannot be too small. Given the smallest firm’s capacity can be

no larger than for a symmetric duopoly, a necessary condition for Assumption 1 to hold is that

the minimum market demand must be greater than 50% of the total capacity, m ≥ 0.5K. This

is in contrast with Tirole’s (1988) model, which requires the less realistic assumption that the

minimum market demand is zero with some positive probability. Nevertheless, it is clear that

Assumption 1 comes with some loss of generality, so we discuss the implications of relaxing it

under duopoly in section 5. We also argue in section 4 that Assumption 1 is not very restrictive

in the context of mergers. No restriction is placed on the level of the maximum market demand,

m.

Assumption 1 and the proportional allocation rule together imply that firm i’s sales in period

t, sit(pit,p−it;mt), for any pit ≤ 1, are given by (1), where Ω(pit) denotes the set of firms that

price strictly below pit and pmax
t ≡ max{pt}.

sit (pit,p−it;mt) =





ki if pit < pmax
t

min

{
ki

K−
∑

j∈Ω(pit)
kj

(
mt −

∑
j∈Ω(pit)

kj

)
, ki

}
≥ 0 if pit = pmax

t

(1)

This says that a firm will supply its proportion of the residual demand if it is the highest-priced

firm in the market and if capacity is not exhausted, otherwise it will supply its full capacity. This

implies that firm i’s expected per-period profit is πit (pit,p−it) = pit
´m

m
sit (pit,p−it;m) g(m)dm,

where we drop time subscripts if there is no ambiguity. Furthermore, we write πi (p) if pj = p ≤ 1

for all j, such that:

πi (p) =





pki if K ≤ m

pki

(
´K

m
m
K g(m)dm+

´m

K
g(m)dm

)
if m < K < m

pki
m̂
K if m ≤ K,

for all i. So, such profits are maximised for pm ≡ 1.

Finally, an important implication of our assumptions is that a firm will meet all demand up

to its capacity in any given period. This implies that a deviant is not able to attempt to hide

its deviation by limiting the units available at the deviation price. Consequently, our analysis is

likely to be appropriate for markets where collusive prices are agreed at the senior management

level, but the total output of the firm is determined at a lower level by sales representatives who

are unaware of the collusion. This is the setting for many, if not most, cartels (see Harrington,

2006, for evidence from Europe). Nevertheless, we have explored this issue beyond the analysis

presented below and can show that our main results are robust to this alternative setting if
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deviants are only able to limit their sales below demand to some extent and if this is more difficult

for large firms than smaller firms. This may be the case, for example, if the senior managers of

a deviant firm can only imperfectly limit the total output of their sales representatives, who are

unaware of the collusion, and larger firms have more sales representatives which makes this task

more problematic.6

2.3 Static Nash equilibrium

In this subsection, we analyse the stage game. Consistent with the standard Bertrand-Edgeworth

setting, the static Nash equilibrium can be in pure strategies or mixed strategies. While the proof

of the former is trivial, we extend the equilibrium analysis in Fonseca and Normann (2008) to our

setting of demand uncertainty to solve for the latter. This is also equivalent to the equilibrium

analysis of Gal-Or (1984) if firms are symmetric.

Lemma 1. For any given n ≥ 2 and K−1 ≤ m:

i) if m ≥ K, then there exists a unique pure strategy Nash equilibrium, with profits πN
i = ki ∀ i;

ii) if m < K, then there exists a mixed strategy Nash equilibrium, with profits, ∀ i:

πN
i (kn) =





ki

kn

(
´K

m
(m−K−n) g(m)dm+ kn

´m

K
g(m)dm

)
if K < m

ki

kn
(m̂−K−n) if m ≤ K.

(2)

Competition is not effective if the minimum market demand is above total capacity, m ≥ K, so

firms set pi = 1 in equilibrium and receive πN
i = ki for all i. In contrast, if market demand can

be below total capacity, firms are not guaranteed to supply their full capacity for every level of

demand, so they have incentives to undercut each other. However, by charging pi = 1, firm i

can ensure that its expected per-period profit is at least:

πi ≡





´K

m
(m−K−i) g(m)dm+ ki

´m

K
g(m)dm if m < K < m

m̂−K−i if m ≤ K.
(3)

This defines firm i’s minimax payoff. The intuition is that the firm with strictly the highest price

expects to supply its full capacity if the realisation of market demand exceeds total capacity, but

it expects to supply the residual demand otherwise. It follows from this that the largest firm

will never set a price below p ≡ πn/kn in an attempt to be the lowest-priced firm. This implies

6This analysis is available from the authors upon request.
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that the smaller firms i < n can sell their full capacity with certainty by charging a price slightly

below p to obtain a profit of kip ≥ πi. Consequently, the mixed strategy Nash equilibrium profits

are given by πN
i (kn) = kip. This is equivalent to (2), where Assumption 1 is sufficient to ensure

that these are nonnegative for all i. The lower bound of the support is p.

3 Monitoring with Asymmetries

In this section, we analyse the repeated game. We first show that there is some public information

that firms can condition their play on, and find when monitoring is perfect or imperfect. We

then solve the game and compare the results for alternative capacity distributions. Henceforth,

we impose m < K, as collusion is unnecessary otherwise from Lemma 1.

3.1 Information and monitoring

Under our assumptions, repetitions of the stage game generate private and public information

histories. For instance, the private history of firm i in period t is the sequence of its past prices

and sales, denoted zti ≡ (pi0, si0; . . . ; pit−1, sit−1). In contrast, a public history is the sequence of

information that is observed by all firms, regardless of their actions. In this subsection, we show

that the fact that each firm observes its own sales implies that all firms will always know when

at least one firm’s sales are below some firm-specific “trigger level”. As we discuss below, firms

can then use public strategies in which they condition their play on this public information.

Formally, letm∗ (k1,m) ≡
K(m−k1)

K−1

where firm i’s trigger level is s∗i ≡ min
{

ki

Km∗ (k1,m) , ki
}

for all i. As we show below, such trigger levels are determined by the largest possible sales firms

i > 1 can make if all such firms set the same price and firm 1 undercuts to sell its full capacity.

This then guarantees that at least one firm will always receive sales below their trigger level, if

all firms do not set a common price. Now consider the history ht = (y0, y1, . . . , yt−1) where, for

all τ = {0, 1, . . . , t− 1}:

yτ =




y if siτ (piτ ,p−iτ ;mτ ) > s∗i ∀ i

y otherwise.

(4)

This says that yτ = y if all firms’ sales in period τ exceed their trigger levels, but yτ = y if at

least one firm’s sales does not.

We wish to establish that ht is a public history. This requires that yτ is common knowledge

for all τ , for any zti . Clearly, this is the case if the trigger levels are so high that all firms’ sales
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can never exceed them for any prices, that is, s∗i = ki so yτ = y for all τ . This occurs only if the

maximum market demand is above the total capacity, m ≥ K, because then a firm is uncertain

as to whether a rival has undercut it on price, even if the firm sells its full capacity. So consider

m < K, where it is possible for firms to receive sales above their trigger levels, since s∗i < ki. In

this case, if all firms do not set a common price, then the sales of the firm(s) with the highest

price in the market will never exceed their trigger levels. For instance, for any nonempty set of

rivals with a price strictly below pmax, Ω (pmax), the sales of firm i with pi = pmax ≤ 1 are:

si =
ki

K −
∑

j∈Ω(pmax) kj

(
mt −

∑
j∈Ω(pmax) kj

)
≤

ki (m− k1)

K−1
= s∗i < ki, (5)

from (1). This guarantees that ht is also a public history if m < K for the following reasons. If

all firms set a common price p ≤ 1, then the sales of all firms will exceed their respective trigger

levels if the realisation of market demand is high, otherwise they can all fall below the trigger

levels. Yet, as has just been demonstrated, if all firms do not set such a common price, then the

sales of the highest-priced firms will not exceed their trigger levels and their lower-priced rivals

will supply their full capacities.7 Any firm that supplies its full capacity can infer from this that

at least one firm’s sales are below its trigger level. The reason is that each firm knows, from (1),

that it will supply its full capacity only if its price is strictly below the highest in the market.8

This public information allows firms to make inferences about the behaviour of their rivals.

In particular, each firm knows that all firms’ sales will exceed their trigger levels, such that

y = y, if pj = p ≤ 1 for all j and if m > m∗ (k1,m); otherwise, at least one firm’s sales will

not exceed its trigger level, so y = y. It follows from this that if m > m∗ (k1,m), then there is

perfect monitoring of a strategy in which all firms set a common collusive price. This is due to

the fact that each firm would only receive sales below its trigger level, if it has been undercut.

In contrast, there is imperfect monitoring if m ≤ m∗ (k1,m). The reason can be understood by

considering Pr
(
y|pi,p−i

)
which denotes the probability of observing y if firm i sets pi and its

7If any firms’ prices are above 1, then they will receive zero sales, which is below their trigger levels. In this

case, only the firms whose prices do not exceed 1 will supply their full capacities.
8Notice that if the trigger levels were below s∗

i
for all i, then a firm that supplies its full capacity would be

uncertain as to whether at least one rival has received sales below its trigger level. So, any such trigger levels

would not generate a public history. In contrast, trigger levels above s∗
i
for all i would also ensure that ht is a

public history. However, such trigger levels have the strange feature that firms can receive a bad signal y, even

when all firms know that they have set a common price. Consequently, such alternative trigger levels are inferior

to s∗
i
: they raise the critical discount factor and lower equilibrium profits compared to the main analysis.
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rivals price according to p−i. For the case of m ≤ m∗ (k1,m):

Pr
(
y|pi,p−i

)
=





´min{m∗(k1,m),m}

m
g (m) dm ∈ [0, 1] if pj = p ∀j

1 otherwise.
(6)

This says that a firm’s sales can be below its trigger level if the realisation of market demand is

sufficiently low, even when firms set a common price. Thus, for such an outcome colluding firms

face a non-trivial signal extraction problem: each firm does not know whether the realisation of

market demand was unluckily low or whether at least one rival has undercut them.

Proposition 1 finds the conditions for perfect and imperfect monitoring in terms of the max-

imum market demand, holding the minimum market demand constant.

Proposition 1. For any given n ≥ 2, K−1 ≤ m < K, and δ ∈ (0, 1), there exists a unique level

of market demand, x (k1) ∈ (m,K), such that if m ∈ (m,x (k1)), then monitoring is perfect.

Otherwise, there is imperfect monitoring.

Monitoring is perfect if the fluctuations in market demand are sufficiently small, otherwise

there is imperfect monitoring. The critical level is strictly increasing in the capacity of the

smallest firm, k1. The reason is that deviations by the smallest firm are most difficult to detect,

from (5). Furthermore, it follows from this logic that detecting a deviation is less difficult when

the smallest firm is larger. Consequently, if it is just possible for a firm to infer that the smallest

firm has not deviated for a given level of m, then it is also possible for the same level of m if

the smallest firm has more capacity. This implies that deviations can be detected perfectly for a

wider range of fluctuations in market demand if the smallest firm is larger.

Finally, we have so far considered the public information that firms can infer from their

privately observed sales. Before moving on, we should discuss two possible scenarios in which

a firm’s sales can provide it with private information that is not common knowledge among

all firms. In either case though, it should be noted that any such private information is not

payoff relevant if rivals follow public strategies. Thus, it will not be possible for a firm to use

its private information to gain by deviating from an equilibrium in public strategies. The first

case is when a firm knows for sure that it has been undercut. This occurs if firm i’s sales are

inconsistent with all firms setting a common price, si <
ki

Km for some i. Such information is not

common knowledge if monitoring is imperfect, because the deviants j 6= i would be unaware of

the specific levels of its rivals’ sales: they simply knows that at least one rival’s sales are below

its trigger level. The second case is when the smallest firm knows for sure that all firms have set
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a common price, but its rivals i > 1 are uncertain as to whether the smallest firm has undercut

them. This may occur if firm 1 is strictly the smallest firm and if fluctuations in market demand

are not large, such that m < K. In such a case, the highest possible sales of the smallest firm

if it is undercut are k1

K−2

(m− k2) < s∗1. Thus, if the smallest firm’s sales are below its trigger

level, s∗1, yet above
k1

K−2

(m− k2), then it knows for sure that all firms have set a common price.

Nevertheless, the fact that its sales are below its trigger level will inform the smallest firm that

its rivals’ sales are also below their trigger levels.

3.2 Optimal collusive equilibrium profits

We now solve the repeated game restricting attention to sequential equilibria in public strategies,

in which firms condition their play only on the public history. Such equilibria are known as perfect

public equilibria (PPE) (see Fudenberg and Tirole, 1994, p.187-191). We solve the model using

two seemingly different approaches. First, in the main body of the paper, we restrict attention to

a particular class of PPE in which, similar to Green and Porter (1984) and Tirole (1988), firms

punish each other by reverting to the static Nash equilibrium for a fixed number of periods, if

they receive a bad signal in a collusive period. We formally describe the strategy profile for

this approach below and refer to it as trigger-sales strategies. Second, given that restricting

attention to trigger-sales strategies leaves open the question of whether there are other PPE

with higher profits, we solve for the set of PPE in appendix B using the techniques of Abreu

et al. (1986, 1990). This appendix shows that trigger-sales strategies are optimal equilibrium

strategies in that they support the maximal PPE payoffs and they generate the lowest critical

discount factor.

Trigger-sales strategies are formally defined as follows. There are ‘collusive phases’ and

‘punishment phases’. Suppose period t is in a collusive phase. In any such period, a firm

should set the collusive price, pc > p. If yt = y, such that all firms received sales above their

trigger levels, then the collusive phase continues into the next period t+ 1. If yt = y, such that

at least one firm received sales below its trigger level, then firms enter a punishment phase in the

next period t + 1. In the punishment phase, each firm should play the static Nash equilibrium

for T periods, after which a new collusive phase begins. This sequence repeats in any future

collusive phase.

Thus, denoting firm i’s expected (normalised) profit in a collusive phase as kiV
c and its

expected (normalised) profit at the start of a punishment phase as kiV
p, if all firms follow
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trigger-sales strategies, then:

kiV
c = (1− δ)πi (p

c) + δ
[(
1− Pr

(
y|pc

))
kiV

c + Pr
(
y|pc

)
kiV

p
]

kiV
p = (1− δ)

∑T−1
t=0 δtπN

i (kn) + δT kiV
c,

for all i, where Pr
(
y|pc

)
= G (m∗ (k1,m)) from (6). Substituting kiV

p into kiV
c and solving

yields:

kiV
c = πN

i (kn) +
(1− δ)

1− δ +G (m∗ (k1,m)) δ (1− δT )

(
πi (p

c)− πN
i (kn)

)
, (7)

where it is then straightforward to check that πi (p
c) ≥ kiV

c > kiV
p for any T > 0 and that

kiV
p > πN

i (kn) for any T < ∞.

The profile of trigger-sales strategies is a PPE if, for each date t and any history ht, the

strategies yield a Nash equilibrium from that date on. We say that collusion under trigger-sales

strategies is not sustainable if no such equilibrium strategies exist. Given firms play the static

Nash equilibrium during each period of the punishment phase, it is clear that they have no

incentive to deviate in any such periods. Thus, we need only consider deviations during collusive

phases, in which case Pr
(
y|pi, p

c
)
= 1 for any pi 6= pc from (6). The incentive compatibility

constraint (ICC) for firm i is as follows:

kiV
c ≥ (1− δ) kip

c + δkiV
p, ∀ i. (8)

This says that firm i will not deviate in any period in a collusive phase if it cannot gain by

marginally undercutting pc > p to supply its full capacity ki.
9 Note that (8) is never sat-

isfied when the maximum market demand is greater than total capacity, m ≥ K, as then

G (m∗ (k1,m)) = 1, from (6). Thus, collusion under trigger-sales strategies is not sustainable if

m ≥ K, so we can henceforth focus on the case where m < K.

Substituting kiV
p and kiV

c into (8), then rearranging yields:

(1−G (m∗ (k1,m)))K
(
pc − p

)
−
(K − m̂) pc

δ
≥ δT

[
(1−G (m∗ (k1,m)))K

(
pc − p

)
− (K − m̂) pc

]
.

(9)

It follows from the fact that (9) is independent of ki that if the ICC holds for firm i, then it also

holds for all other firms j 6= i. This implies that, despite potential asymmetries, each firm has

the same incentive to deviate as its rivals. Furthermore, note that the left-hand side of (9) is

less than the expression in square brackets on the right-hand side, such that (9) can only hold

9It follows from Lemma 1 that firm i’s optimal deviation is to undercut pc > p for all i. Furthermore, note

that pc > p is a necessary condition for firms to attain collusive profits per-period greater than the static Nash

equilibrium profit.
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if both are positive, since δT ∈ (0, δ] for all T ∈ [0,∞). Thus, similar to Green and Porter

(1984) and Tirole (1988), it follows from (9) that there are three necessary conditions for the

profile of triggers-sales strategies to be a PPE. First, the length of the punishment phase must

be sufficiently long, where the critical duration, denoted T ∗ (k1, kn, p
c), is implicitly defined by

the level of T where (9) holds with equality.10 Second, firms must also be sufficiently patient,

such that:

δ ≥
(K − m̂) pc

(1−G (m∗ (k1,m)))K
(
pc − p

) ≡ δ∗ (k1, kn, p
c) , (10)

in which case the left-hand side of (9) is positive, such that the ICC holds as T → ∞. This

implies that if firms are not sufficiently patient, then even a punishment phase that lasts an

infinite number of periods is insufficient to outweigh the short-term benefit from deviating. Fur-

thermore, the critical punishment phase duration T ∗ (k1, kn, p
c) < ∞ for any δ > δ∗ (k1, kn, p

c)

and T ∗ (k1, kn, p
c) → ∞ if δ = δ∗ (k1, kn, p

c). Third, the probability of receiving a bad signal

must be sufficiently low, where:

G (m∗ (k1,m)) < 1−
(K − m̂) pc

K
(
pc − p

) , (11)

such that the expression in square brackets in (9) is positive. Note that (11) ensures δ∗ (k1, kn, p
c) <

1, which implies that if this condition is not met, then the firms are not sufficiently patient for

any δ, even if a punishment phase lasts an infinite number of periods.

Proposition 2 solves for the optimal PPE profits under trigger-sales strategies. We refer to

this as collusion under imperfect monitoring.

Proposition 2. For any given n ≥ 2 and K−1 ≤ m < K, there exists a unique level of market

demand, x (k1, kn) ∈ (x (k1) ,K), that solves G (m∗ (k1, x (k1, kn))) = K−n

K < 1, such that, if

m ∈ [x (k1) , x (k1, kn)) and if δ ≥ δ∗ (k1, kn) ≡
1

1−G(m∗(k1,m))
kn

K ∈
(
kn

K , 1
)
, then firm i’s optimal

PPE profits under trigger-sales strategies are:

kiV
∗ =

ki
K

(
m̂−G (m∗ (k1,m))K

1−G (m∗ (k1,m))

)
∈

(
πN
i (kn) ,

ki
K

m̂

)
∀ i.

Otherwise, collusion under trigger-sales strategies is not sustainable.

This says that, if the necessary conditions (10) and (11) are satisfied, then the optimal PPE

profits under trigger-sales strategies have the firms set the monopoly price during a collusive

10Although T ∗ (k1, kn, pc) may not be an integer, the expected length of the punishment phase could equal

this length if there were some optimally set publically observable randomisation device that varied the length of

punishment phases.
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phase and the optimal punishment phase duration is T ∗ (k1, kn, p
m) such that the ICC (9) is

binding with no slack. Despite the fact that firms set the monopoly price during collusive

phases, the sum of such equilibrium profits is below the monopoly profit, because punishment

phases occur on the equilibrium path. Finally, if firms set a collusive price below the monopoly

price, it not only lowers profits but it also raises the critical discount factor. Thus, either the

profile of trigger-sales strategies, with firms setting the monopoly price during collusive phases,

is a PPE or it is not an equilibrium strategy profile at any collusive price.

Next, we turn our attention to the case of perfect monitoring, where G (m∗ (k1,m)) = 0.

In this case, any PPE is also a subgame perfect Nash equilibrium (SPNE) and, as we explain

further in a moment, we can easily generate the optimal SPNE profits by letting the punishment

phase last an infinite number of periods, such that T → ∞. Thus, the optimal SPNE profits are

summarised by the following corollary. We refer to this as collusion under perfect monitoring.

Corrolary 1. For any given n ≥ 2 and K−1 ≤ m < m ≤ x (k1), there exists a unique discount

factor δ∗ (kn) ≡
kn

K ∈
(
0, m

K

]
, such that if δ ≥ δ∗ (kn), then firm i’s optimal SPNE profits under

trigger-sales strategies are:

kiV
∗ =

ki
K

m̂ > πN
i (kn) ∀ i.

Otherwise, collusion under trigger-sales strategies is not sustainable.

The firms divide the monopoly profits between them if they are sufficiently patient. The

equilibrium profits are highest and the critical discount factor is lowest when the firms set the

monopoly price. The critical discount factor is the same as in Compte et al. (2002) and it also

coincides with the lowest possible discount factor that sustains collusion given the proportional

allocation rule. The reason is that, as showed by Lambson (1994), the optimal punishments under

the proportional allocation rule are such that the largest firm receives the stream of profits from

its minimax strategy. In our setting, this is the case as T → ∞, because in each period of the

punishment phase the firms receive the static Nash equilibrium profits, which for the largest firm

is equivalent to its minimax payoff. Thus, it is not possible to lower the critical discount factor

below this level, given the proportional allocation rule.

These results are brought together in Figure 1. It highlights that the critical discount factor

under imperfect monitoring, δ∗ (k1, kn), converges to the critical level under perfect monitoring,

δ∗ (kn), at m = x (k1), but it is strictly above δ∗ (kn) for any higher maximum market demand.

The optimal equilibrium profits under trigger-sales strategies, kiV
∗, equal the monopoly level
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Figure 1: Parameter space of collusion

at or below x (k1) for all δ ≥ δ∗ (kn), and they equal the static Nash equilibrium profits at

m = x (k1, kn) where δ
∗ (k1, kn) = 1. Furthermore, assuming a mean-preserving spread, they are

strictly decreasing in m between x (k1) and x (k1, kn). Before moving on, the reader may wish

to check appendix B, where we use the techniques of Abreu et al. (1986, 1990) to show that the

optimal equilibrium profits under trigger-sales strategies are the maximal PPE payoffs. Thus,

henceforth we refer to them as the optimal equilibrium profits.

3.3 Comparing capacity distributions

We want to analyse the effects of mergers in our setting. Before doing so, it is helpful to get

a clear understanding of how the capacity distribution affects collusion by analysing changes in

the capacity distribution, when the number of firms and the total capacity are held constant.

This implies that any such changes in the capacity of a given firm will require capacity to be

reallocated from a rival. For example, increasing the size of the smallest firm in a duopoly implies

that the capacity of the largest firm decreases. Thus, throughout this subsection, we assume

that when the capacity of firm j changes by a small amount, other things equal, the capacities

of the other firms change to the extent that ∂ki

∂kj
∈ [−1, 0] for all i 6= j, where

∑
i 6=j

∂ki

∂kj
= −1.

However, in what follows we restrict the discussion to capacity reallocations that directly affect
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the equilibrium analysis, and this is the case for changes to the capacity of the smallest firm or

the largest firm.

Proposition 3 analyses the effects of reallocating capacity among the firms on the critical

discount factor, which ensures that the ICC holds as T → ∞.

Proposition 3. For any given n ≥ 2 and K−1 ≤ m < K:

i) if m ∈ [m,x (k1)), then δ∗ (kn) is strictly increasing in the capacity of the largest firm, kn;

ii) if m ∈ [x (k1) , x (k1, kn)), then δ∗ (k1, kn) is strictly increasing in the capacity of the largest

firm, kn, and strictly decreasing in the capacity of the smallest firm, k1.

Consistent with Compte et al. (2002), increasing the size of the largest firm hinders collusion.

The reason is that a punishment that lasts an infinite number of periods is weaker when the

largest firm is larger, because the static Nash equilibrium profits increase for each firm, so

the critical discount factor rises. In contrast to Compte et al. (2002), increasing the size the

smallest firm facilitates collusion. This is due to the fact that firms can monitor an agreement

more successfully when the smallest firm is larger, because it is less likely that firms’ sales will be

below their trigger levels when they set a common price. This does not affect the critical discount

factor under perfect monitoring but, as we saw in section 3.1, it does imply that monitoring is

perfect for a wider range of fluctuations in market demand. Under imperfect monitoring, it is

less likely that a collusive phase will switch to a punishment phase on the equilibrium path when

the smallest firm is larger. Consequently, the expected future profits from collusion are higher

than before, which implies that a punishment that lasts an infinite number of periods is relatively

harsher, so the critical discount factor falls.11

Next, we analyse the effects of reallocating capacity among the firms on the optimal equilib-

rium profits. For convenience, we transform such profits to an average price and compare it to

the average static Nash equilibrium price, given by p̂N (kn) ≡
K
m̂

(m̂−K−n)
kn

for all m < K. The

average price of the optimal equilibrium profits under perfect monitoring is independent of the

capacity distribution, since firms set pm in each period if they are sufficiently patient. So, Propo-

sition 4 investigates the effect of reallocating capacity on the average price associated with the

optimal equilibrium profits under imperfect monitoring. We refer to this as the optimal average

price, and this is given by p̂c (k1,m) ≡ K
m̂V ∗ in expectation, where p̂N (kn) < p̂c (k1,m) < pm.

11Both results are consistent with the findings of Vasconcelos (2005). The underlying incentives for his results

are very different to ours though, as they rely on capacities affecting marginal costs in a setting of perfect

observability.
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Proposition 4. For any given n ≥ 2, K−1 ≤ m < x (k1) < m < x (k1, kn) and δ ≥ δ∗ (k1, kn),

the optimal average price, p̂c (k1,m), is strictly increasing in the capacity of the smallest firm,

k1.

The optimal average price is increasing in the capacity of the smallest firm for two reasons.

First, as the capacity of the smallest firm increases, it is less likely that firms’ sales will be below

their trigger levels when they set a common price. Thus, profits rise on the equilibrium path,

other things equal, because collusive phases are less likely to switch to punishment phases than

before. Second, such an increase in profits also introduces slack into the ICC. Consequently, the

optimal punishment phase duration shortens to ensure that the ICC is binding with no slack,

which increases equilibrium profits further.

Surprisingly, the optimal average price is independent of the capacity of the largest firm,

when the capacity of the smallest firm is held constant. This is due to the fact that there are two

effects that perfectly offset each other. The first effect is that an increase in the capacity of the

largest firm raises profits on the equilibrium path, other things equal, because the static Nash

equilibrium profits of each firm are greater than before. However, this also tightens the ICC, so

the second effect is that the optimal punishment phase duration lengthens to ensure that the

ICC is binding with no slack. This second effect cancels out the first, implying the size of the

largest firm has no effect on the optimal average price.

It follows from the above analysis that asymmetries hinder collusion under perfect and im-

perfect monitoring. In summary, Proposition 3 implies that the parameter space of collusion

is greatest when firms’ capacities are symmetric, because the punishment is harshest when the

largest firm is as small as possible, and since monitoring is most successful when the smallest firm

is as large as possible. The latter also implies that the optimal average price is higher if firms

are symmetric from Proposition 4. Furthermore, since the optimal average price is independent

of the size of the largest firm, it follows that the optimal average price is highest for a symmetric

duopoly and that, for example, it would be higher for a symmetric triopoly than an asymmetric

duopoly with k1 < K/3.

Despite the fact that symmetry is ideal for collusion, Proposition 5 next shows that the

competitive prices of asymmetric capacity distributions can be higher than the collusive prices

of less asymmetric capacity distributions. To prove this result, we compare the optimal average

price of one distribution, (k1, kn), to the static Nash equilibrium average price of another, denoted

(k′1, k
′
n).
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Proposition 5. For any given n ≥ 2, K−1 ≤ m < K and δ ≥ δ∗ (k1, kn), if k
′
n > kn, such that

k′1 ≤ k1, then there exists a unique level of market demand, x (k1, k
′
n) ∈ (x (k1) , x (k1, kn)), that

solves G (m∗ (k1, x (k1, k
′
n))) = 1 −

k′
n

K < 1, where if m ∈ (x (k1, k
′
n) , x (k1, kn)), then the static

Nash equilibrium average price of (k′1, k
′
n) is greater than the optimal average price of (k1, kn),

p̂N (k′n) > p̂c (k1,m).

This says that if fluctuations in market demand are sufficiently large, then the competitive

prices of asymmetric capacity distributions are higher than the collusive prices of less asymmetric

capacity distributions. The intuition is that an increase in the maximum market demand raises

the likelihood that firms’ sales will be below their trigger levels when firms set a common price.

Thus, punishment periods are expected to occur on the equilibrium path more often than before.

As a result, the optimal average price of (k1, kn) falls towards its corresponding static Nash

equilibrium average price as the maximum market demand increases towards the critical level

x (k1, kn). Yet, the average static Nash equilibrium price is strictly increasing in the capacity of

the largest firm, kn. So, consider an alternative distribution (k′1, k
′
n) that is more asymmetric

than the original in the sense that k′n > kn (so k′1 ≤ k1). It follows that if the maximum market

demand is sufficiently close to x (k1, kn), then (k′1, k
′
n) will have a higher average static Nash

equilibrium price than the optimal average price of (k1, kn). The critical level x (k1, k
′
n) is the

point at which p̂c (k1,m) = p̂N (k′n) for all δ ≥ δ∗ (k1, kn). Furthermore, the condition that

the maximum market demand exceeds x (k1, k
′
n) guarantees that collusion under trigger-sales

strategies is not sustainable for (k′1, k
′
n). This is due to the fact that collusion under trigger-sales

strategies requires that the maximum market demand is below x (k′1, k
′
n) , but this is contradicted

since x (k′1, k
′
n) ≤ x (k1, k

′
n) < m for all k′1 ≤ k1.

4 Monitoring and Mergers

We now use our equilibrium analysis to draw implications for merger policy. A merger in our

framework amounts to the merging firms consolidating their capacity, so we draw on the analysis

of section 3.3. However, the following analysis differs to section 3.3 in that a merger will reduce

the numbers of firms and can increase both the size of the smallest and largest firm at the same

time. We also consider the firms’ incentives to merge and analyse the welfare effects. Following

the terminology of Farrell and Shapiro (1990), we henceforth refer to the merging firms as insiders

and those not involved in the merger as outsiders. We say that a merger is privately optimal if the
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sum of insiders’ profits post-merger is strictly greater than the sum of their profits pre-merger.

Finally, with respect to welfare, we focus on the effects of mergers on consumer surplus for two

reasons. First, expected total welfare is independent of the capacity distribution, so mergers do

not affect it. Second, ensuring consumer surplus does not fall post-merger is commonly perceived

to be the main objective of merger control (see Lyons, 2002).

We are particularly interested in comparing unilateral and coordinated effects in our frame-

work. Such effects have been considered independently of each other in the previous literature.

For instance, Compte et al. (2002) and Vasconcelos (2005) analyse models where firms can share

the monopoly profits if they are sufficiently patient, and as a consequence they both focus solely

on the coordinated effects of mergers on the critical discount factor. Bos and Harrington (2010)

analyse the coordinated effects of mergers on the price of a cartel that does not encompass all

firms in the market. They find that mergers that increase the capacity controlled by the cartel

can raise the cartel price towards the monopoly level. However, in contrast to our model, they

restrict attention to capacity distributions for which there is a unique pure strategy static Nash

equilibrium price equal to marginal cost, so unilateral effects are not an issue. Thus, such papers

are consistent with the conventional wisdom that collusive post-merger outcomes are worse than

non-collusive outcomes. In our setting, collusion under imperfect monitoring does not enable

firms to share the monopoly profits in every period. As a result, the conventional wisdom will

not hold, if competition in the noncollusive outcome is weak and hence prices are high. Below we

explore for which mergers the conventional wisdom does not hold and discuss the implications.

Before doing so, we return to discuss the generality of Assumption 1 in the context of mergers.

Recall that this restricts the smallest firm’s capacity from being too small. In this context, the

necessary condition for Assumption 1 to hold is stricter than before, due to the fact that we

are only interested in mergers with at least 2 firms post-merger. Thus, there must be n > 2

firms pre-merger, in which case the minimum market demand must be greater than n−1
n of the

total capacity, m ≥
(
n−1
n

)
K. The reason is that the smallest firm’s capacity can be no larger

pre-merger than for a symmetric capacity distribution, k1 = K/n. This implies that Assumption

1 is more restrictive when there are more firms in the market pre-merger. However, Assumption

1 is likely to hold for a large number of mergers that raise concerns of collusion pre- and/or

post-merger. For example, Davies et al. (2011) found that the European Commission was

concerned about post-merger collusion between duopolists in all bar one of the cases that were

seriously investigated for tacit collusion between 1990 and 2004 (see also Davies and Olczak,

2010). Consequently, there were usually only three main players pre-merger, such that the
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necessary condition is m ≥ 2
3K. Moreover, given collusion is likely to occur when asymmetries

are small, Assumption 1 is especially unrestrictive for the cases in which there is collusion pre-

merger.

4.1 The competitive effects of mergers

In this subsection, we analyse mergers that change the equilibrium analysis either by only in-

creasing the size of the smallest firm or by only increasing the size of the largest firm. We discuss

each in turn. Figure 2 builds on the illustration in Figure 1 to depict the effects of such mergers

on the parameter space of collusion. A merger that increases the size of both the smallest and

the largest firm will have a mix of the effects described here, and this issue is discussed more in

the following subsections. All other mergers will not affect the equilibrium analysis.

Figure 2: The effects of mergers on the parameter space of collusion

A merger that only increases the size of the smallest firm will facilitate collusion. It follows

from Proposition 3 that the parameter space of collusion will expand and Proposition 4 implies

that the average price may also rise post-merger. More specifically, the price will rise if collusion

is sustainable to some degree post-merger and if either the pre-merger outcome is noncollusive or

collusion pre-merger is less than perfect. Furthermore, similar to other models where collusion
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pre-merger implies firms share the monopoly profits, such a merger has no effect on the average

price if there is collusion under perfect monitoring pre- and post-merger. Thus, the complete

parameter space for which such a merger raises the average price is illustrated in the shaded

area of Figure 2(a). Any such merger that raises the average price is privately optimal and it

also strictly increases the profits of the outsiders. This follows since the present discounted value

of profits for any set of firms M , given an average price p̂, is
∑

i∈M ki
m̂
K

(
p̂

1−δ

)
, where this is

higher post-merger only if the average price rises. As a consequence, such a merger will also

lower consumer surplus, since the expected consumer surplus per unit is 1− p̂. Thus, consistent

with the conventional wisdom, any collusive outcome that has been facilitated by a merger that

only increases the size of the smallest firm is worse than the pre-merger outcome.12

A merger that only increases the size of the largest firm will hinder collusion. Proposition 3

implies that the parameter space of collusion will contract. Yet, in contrast to the conventional

wisdom, it follows from Proposition 5 that such a merger may actually increase prices if collusion

under imperfect monitoring is destabilised by the merger and if fluctuations in market demand

are sufficiently large. The parameter space for which such a merger raises the average price

is illustrated in the shaded area of Figure 2(b). Outside of this shaded area, the conventional

wisdom holds if collusion under imperfect monitoring is destabilised post-merger. Nevertheless,

our model suggests that it is only in the insiders’ interests to propose such a merger, if the

average price rises post-merger. This follows since such a merger is privately optimal for any set

of firms M if
∑

i∈M ki
m̂
K

(
p̂N(k′

n)
1−δ

)
>
∑

i∈M ki
m̂
K

(
p̂c(k1,m)

1−δ

)
. Consequently, the condition that

guarantees the insiders’ profits increase post-merger also ensures that the average price rises post-

merger. Moreover, the same condition also guarantees that such a merger increases the profits

of the outsiders and lowers consumer surplus. Finally, it should be noted for completeness that

if there is no collusion pre- or post-merger, then such a merger would increase the average price

post-merger through unilateral effects.

4.2 An example

We now complement our general results by analysing an example. We do this for three reasons.

First, we wish to show that average prices can be substantially lower (and hence consumer surplus

can be higher) for collusive merger outcomes than for noncollusive outcomes. Second, we want to

12It also follows from this that larger firms i > 1 can actually increase their profits by divesting capacity to

the smallest firm, so that monitoring is easier. Such divestments are not unheard of in actual merger cases (see

Compte et al., 2002; and Davies and Olczak, 2010).
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analyse the effects of a merger that increases the size of the smallest and largest firm at the same

time. Third, we wish to explore the effects of divestment remedies on post-merger consumer

surplus.

With these objectives in mind, we consider an example where total capacity is K = 100

and suppose that this is divisible into 6 equal sized parts. There is an asymmetric triopoly pre-

merger, denoted (1/6, 2/6, 3/6), where firm 1 has 1/6 of this capacity, firm 2 has 2/6 and firm 3

has 3/6. We then consider three alternative merger outcomes: a symmetric duopoly, (3/6, 3/6);

an asymmetric duopoly, (2/6, 4/6); and a very asymmetric duopoly, (1/6, 5/6). These three

post-merger outcomes can be thought of in two ways. First, each outcome could arise directly

from a merger. For example, (3/6, 3/6) can result from a merger between firms 1 and 2; (2/6,

4/6) from a merger between firms 1 and 3; and (1/6, 5/6) from a merger between firms 2 and

3. Alternatively, one outcome could arise directly from a merger and the other two could result

from divestment remedies of this merger. For example, if (1/6, 5/6) is created from a merger

between firms 2 and 3, then (2/6, 4/6) and (3/6, 3/6) could result from a remedy of that merger,

where capacity of the merged entity is divested to the outsider to remedy concerns of unilateral

effects.

We analyse the effects of such mergers on the expected consumer surplus per unit of the

most profitable equilibrium, denoted CS (p̂∗) ≡ 1 − p̂∗. The preceding analysis implies that

p̂∗ is the static Nash equilibrium average price if collusion under trigger-sales strategies is not

sustainable, otherwise it is either the optimal average price or the monopoly price. Figure 3

plots CS (p̂∗) as a function of ∆m ≡ m−m
m̂ for the various scenarios, assuming demand is drawn

from a uniform distribution. Parameter values are chosen such that m̂ = 92 for all ∆m and that

K−1 ≤ 5
6 (100) ≤ m ≤ m ≤ K = 100, so Assumption 1 holds. We let δ → 1 such that collusion

under trigger-sales strategies is not sustainable only if m ≥ x (k1, kn) . Finally, the analysis above

implies that each merger is privately optimal whenever CS (p̂∗) is strictly lower post-merger than

pre-merger.

Each of the plotted lines in Figure 3 has a similar shape. If CS (p̂∗) = 0, then monitoring

is perfect and the average price is pm. If CS (p̂∗) is upward-sloping, then there is imperfect

monitoring and the optimal average price is strictly decreasing in ∆m. If CS (p̂∗) is positive

and constant, then it is the expected consumer surplus per unit of the static Nash equilibrium,

because the outcome is noncollusive. Furthermore, note that comparing (1/6, 2/6, 3/6) with

(3/6, 3/6) for increasing values of ∆m in Figure 3 is consistent with moving horizontally from

left to right in Figure 2(a) for δ → 1, because only the capacity of the smallest firm changes.
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Figure 3: G(m) = m−m
m−m , m̂ = 92, K−1 ≤ 5

6 (100) < 100 = K, and δ → 1

Likewise, comparing (1/6, 2/6, 3/6) with (1/6, 5/6) for increasing values of ∆m is consistent

with moving horizontally from left to right in Figure 2(b) for δ → 1, because only the capacity

of the largest firm changes. For (2/6, 4/6), both the capacities of the smallest and the largest

firms are larger than compared with (1/6, 2/6, 3/6).13

First, consider the merger that creates the very asymmetric duopoly (1/6, 5/6). This merger

only increases the size of the largest firm, so it can cause unilateral effects even when it destabilises

collusion. This happens at around ∆m = 0.025 where, in contrast to the conventional wisdom,

the pre-merger expected consumer surplus per unit is approximately four times greater than

post-merger, despite the fact that there is collusion pre- but not post-merger. Next, consider the

merger that creates a symmetric duopoly (3/6, 3/6). This merger only increases the size of the

smallest firm, so it can only cause coordinated effects. In the worst cases, and consistent with

the conventional wisdom, it can substantially lower consumer surplus per unit from 9% of total

welfare per unit to 0%. This happens approximately over the range 0.02 < ∆m < 0.06. However,

the difference between the pre- and post-merger expected consumer surplus per unit becomes

smaller as ∆m increases towards 0.09 and collusion post-merger becomes increasingly difficult to

13If δ < 1, then there would be a discontinuity in each of the CS (p̂∗) lines at the threshold of ∆m where the

outcome is noncollusive. At this thresholds, a line would jump up to the expected consumer surplus per unit

of the static Nash equilibrium, such that this level of consumer surplus extends for lower levels of ∆m than in

Figure 3.
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monitor. Finally, consider the merger that creates (2/6, 4/6) where the size of the smallest and

the largest firm has increased. This merger has a mix of the two effects just discussed. It causes

coordinated effects at approximately ∆m < 0.04, otherwise it causes unilateral effects.

Figure 3 also shows that our analysis has important consequences for the appropriate di-

vestment remedies. For instance, if the logic of the conventional wisdom were followed, then a

collusive post-merger outcome would be remedied by a divestment that increases asymmetries to

ensure that collusion is destabilised. However, our model shows that this will not always result in

a less harmful outcome. For example, consider the merger that creates (3/6, 3/6). Post-merger

asymmetries between the firms can be created by divesting some of the capacity of the merged

entity to the outsider to create either (2/6, 4/6) or (1/6, 5/6). Notice that, consistent with

the conventional wisdom, at around ∆m = 0.06 such remedies do indeed raise the post-merger

expected consumer surplus per unit compared to (3/6, 3/6). However, in contrast to the conven-

tional wisdom, they do the opposite close to ∆m = 0.09. Here, the expected consumer surplus

per unit for (3/6, 3/6) is approximately four times greater than for (1/6, 5/6) and two times

greater than for (2/6, 4/6), despite the fact that there is collusion only in the symmetric duopoly.

Of course, the reverse is also true: for the mergers that create the asymmetric duopolies, (1/6,

5/6) or (2/6, 4/6), divesting capacity from the merged entities to the outsiders to create (3/6,

3/6) would lead to a less harmful post-merger outcome at around ∆m = 0.09, even though it

facilitates collusion. Such remedies would not be implemented if the conventional wisdom were

followed.

4.3 Relation to European merger decisions

Finally for this section, we briefly relate our analysis to two merger decisions by the European

Commission that at first glance seem questionable but can make sense in terms of our model.

The first concerns the merger between Linde and BOC where the Commission used both the

unilateral and coordinated effects theories of harm simultaneously to justify an intervention.14

Such interventions have arisen since 2004, when a key change to the European Commission

Merger Regulation made clear that interventions for unilateral effects below the level of single

dominance were possible (see Röller and Mano, 2006).15 The intervention in question concerned

the global helium wholesale market, where pre-merger there were three relatively symmetric firms

14Linde/BOC, Commission decision of 6 June 2006, case number COMP/M.4141, paragraphs 150-192.
15For a similar intervention in a different merger, see T.Mobile Austria/Tele.ring, Commission decision of 26

April 2006, case number COMP/M.3916, paragraphs 50-129.
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and two smaller firms: the largest firms were Air Products, Praxair and BOC, whose market

shares were approximately 25%, and the smaller firms were Air Liquide and Linde, who supplied

about 15% and 5% of market, respectively. Thus, the merger between BOC and the recent

entrant Linde had the potential to remove the smallest firm from the market and increase the

size of the largest firm marginally at the same time.

The Commission’s decision that this merger could lead to either unilateral or coordinated

effects goes against the view that such effects should be mutually exclusive for a given market.

This view is based on the fact that theory has consistently shown that asymmetries increase

the likelihood of unilateral effects but decrease the likelihood of coordinated effects (see Kühn,

2001, p.13-15). In contrast to this view but consistent with the approach of the Commission

in Linde/BOC, it can be justifiable in our framework to intervene in a merger on the grounds

of coordinated and unilateral effects simultaneously, if both the smallest and the largest firms

increase as a result of the merger. For example, consider the merger that creates (2/6, 4/6) in

the scenario of section 4.2, where the capacities of the smallest and largest firms have increased

compared to pre-merger (1/6, 2/6, 3/6). As we noted in the previous subsection, such a merger

can lead to coordinated effects if the fluctuations are small, due to the fact that the smallest

firm is larger post-merger. Yet, if for some reason the firms are unable to coordinate on any

collusive equilibrium, then the merger could also lead to unilateral effects over the same range

of fluctuations, because the largest firm is larger post-merger. This can be seen in Figure 1 by

extending back to the vertical axis the horizontal lines, which relate to the expected consumer

surplus of the static Nash equilibrium. Then at around ∆m = 0.025 the merger could cause

unilateral or coordinated effects, depending on the equilibrium selection of the firms.

The second decision is the merger between Nestlé and Perrier in the French bottled mineral

water market, which has been the subject of much discussion.16 Pre-merger there were three main

players in the market: according to various sources (see Compte et al., 2002, p.19-23, and Motta,

2004, p.279-286), Perrier had a market share of about 30%, BSN had 25% and Nestlé between 20-

25%, with the remaining sales made up from a competitive fringe. Nestlé’s acquistion of Perrier

would have created a firm with a market share over 50%, and the Commission subsequently

made clear that they would have been concerned over the merged entity’s dominant position.

Anticipating this, Nestlé had also agreed that, upon successful completion of the merger, it

would transfer some of the acquired assets to BSN. However, this transfer would have effectively

created a symmetric duopoly post-merger, where each firm had a 38% share of the market, so it

16Nestlé/Perrier, Commission decision of 22 July 1992, case number IV/M.190
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was rejected by the Commission on the grounds of coordinated effects. Therefore, an additional

divestment was offered by the merging parties in which some more capacity would be sold to a

suitable entrant, thereby ensuring the post-merger market had the same number of firms as pre-

merger but with reduced asymmetries. The Commission allowed the merger to proceed subject

to this additional divestment.

Focussing on only the coordinated effects of the merger, Compte et al. (2002) showed that

collusion would have been easier to sustain under the accepted asymmetric triopoly market

structure than had the merger proceeded unconditionally and without the transfer to BSN, which

would have created a very asymmetric duopoly post-merger. They argued that, in its analysis

of the appropriate remedy, the Commission had focused too little on the degree of asymmetry

of the post-merger market structure and too much on the number of active firms post-merger.

While they convincingly show that this was the case, there are two reasons in our framework

as to why restoring the number of firms to the pre-merger level can be beneficial, even when

this is at the expense of reduced asymmetries. First, if the newly created firm is the smallest,

then it will reduce the degree to which firms can monitor each other. Second, if the new firm

is created out of the capacity of the largest firm and if the post-merger outcome is noncollusive,

then competition will be more intense post-merger.

This second effect is especially important when deciding between alternative outcomes where

either unilateral or coordinated effects are possible. To illustrate its importance, consider the

distributions (1/6, 5/6) and (1/6, 2/6, 3/6) in the scenario of section 4.2, which resemble the

two market structures just discussed in the paragraph above. For these two distributions, the

ability of firms to monitor each other is the same, because the size of the smallest firms is

constant, so only the second effect is important in this case. As can be seen in Figure 1, the

expected consumer surplus per unit for (1/6, 2/6, 3/6) is (weakly) higher than (1/6, 5/6) for all

∆m. This implies that it would be worse to have two firms with large asymmetries than three

firms with limited asymmetries, even when the latter is collusive. The reason is that, due to

the fact that collusion is difficult in (1/6, 5/6), this outcome is noncollusive for most levels of

∆m. Consequently, given it is a very asymmetric distribution, the expected competitive prices

are very close to the monopoly level. Furthermore, despite the fact that collusion is sustainable

for a larger range of fluctuations in market demand in (1/6, 2/6, 3/6) than in (1/6, 5/6), this

collusion entails a sufficient number of price wars on the equilibrium path, which contrary to

the conventional wisdom leads to higher consumer surplus than the near monopoly distribution

of (1/6, 5/6). More generally, our analysis implies that, as δ → 1 and holding the size of the
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smallest firm constant, consumer surplus is always higher for outcomes with symmetric firms

than outcomes with fewer firms and greater asymmetries, even if the symmetric firms collude.

5 Robustness

In this section, we explore the robustness of our results. We first consider the implications of

relaxing Assumption 1, then we analyse an alternative allocation rule. For simplicity, we restrict

attention to duopoly throughout this section, such that K−1 = k2 and k1 ≤ K
2 .

5.1 Relaxing Assumption 1

Up to this point, we have assumed that the minimum market demand is not too low, such that

m ≥ K−1 (see Assumption 1). One reason for this restriction is that it substantially simplifies the

mixed strategy Nash equilibrium analysis when there are more than 2 firms and when capacities

are asymmetric. However, as discussed above, this implies a loss generality because it restricts

the size of the smallest firm in that it cannot be too small. In this subsection, we demonstrate

that this assumption is not a necessary condition for firms to monitor each other through their

privately observed sales. Whilst beyond the scope of the current paper, this implies that it would

be possible to follow the rest of our analysis to replicate our other results.

Our results rely on the fact that ht = (y0, y1, . . . , yt−1) is a public history, where yτ is defined

in (4). Recall that this implies that all firms can always infer from their sales when at least

one firm’s sales are below its trigger level. Thus, to demonstrate that Assumption 1 is not a

necessary condition for firms to monitor each other through their sales, we establish that ht is

still a public history for some m < K−1. So, first consider the sales of firm i in period t, for any

pit ≤ 1, if m < K−1:

sit (pit, pjt;mt) =





min {mt, ki} if pit < pjt

max

{
0,min

{
ki

K−Φ (pit) kj
(mt − Φ (pit) kj) , ki

}}
if pit ≥ pjt,

where Φ(pit) = 1 if pit is strictly above pjt and 0 otherwise. This says that firm i’s sales are the

same as (1) except that if firm i now sets the highest price, then its sales are no longer guaranteed

to be strictly positive for all mt > m. The reason is that the low-priced firm j will supply the

whole market demand, if the realisation of market demand is sufficiently low, such that mt < kj .

Next, consider whether yτ is common knowledge for all τ , for any zti , such that ht is a public

history. Recall that m < K is the interesting case where it is possible for firms to receive sales
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above their trigger levels, since then s∗i =
ki(m−k1)

K−1

< ki. We now establish that ht is still a

public history if m > m
KK−1. The reason is as follows. If both firms set a common price p ≤ 1,

then the sales of both firms will exceed their respective trigger levels if the realisation of market

demand is high, otherwise they can both fall below the trigger levels. Yet, if both firms do

not set such a common price, then the sales of the high-priced firm will not exceed its trigger

level and the low-priced firm will supply either the whole market demand or their full capacity,

min {mt, ki}. Consequently, if the low-priced firm’s sales are always strictly greater than its

highest possible collusive sales, then it can still infer from its sales that its rival’s sales are below

its trigger level. Given firm 2’s highest possible collusive sales are larger than firm 1’s, it follows

that both firms can make such inferences if m > m
KK−1.

It follows from the above that ht is a public history only if m > m
KK−1, where

m
KK−1 < K−1

for all m < K, so Assumption 1 is not a necessary condition for our results. However, the

above also implies that there is now a new restriction on the smallest firm that is less strict but

still similar to Assumption 1. The reason for this new restriction is that if m ≤ m
KK−1 and if

firm i receives very high sales, such that sit ≥ m, then it is unsure whether market demand is

fortunately high or whether its rival j has overcut it on price. Thus, the firm would not know

from such sales whether its rival’s sales are below its trigger level or not. Nevertheless, this new

restriction is also not a necessary condition for firms to monitor each other through their sales.

The reason is that there can be a public history in the case of m ≤ m
KK−1 if we also include a

second ‘upper’ trigger level where firms also receive a bad signal, such that yτ = y, if sit ≥ m

for all i. Thus, the upper trigger level is sui ≡ ki
m

K−1

for all i, which is strictly greater than the

standard lower trigger if m > m − k1 such that sui > s∗i . An implication of this is that if both

firms set a common price, then they will only receive a good signal, such that yτ = y, if the

realisation of market demand is not too low and not too high. Yet, if both firms do not set a

common price, then both firms will always receive a bad signal, because the low-priced firm’s

sales will be above its new upper trigger level and the high-priced firm’s sales will be below its

standard lower trigger level. Finally, firms will always receive a bad signal if m ≤ m − k1, in

which case collusion under trigger-sales strategies will not be sustainable.

5.2 Allocation rule

Throughout the paper we have assumed that demand is allocated among firms with a common

price in proportion to their joint capacity. As explained in section 2.2, this is a common as-
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sumption in the literature and it captures the plausible feature that buyers are more likely to be

attracted to larger firms when prices are equal. However, it is not the only possible allocation

rule. So, in this subsection, we consider the implications for monitoring if demand is instead

allocated equally between the duopolists when they set a common price. We demonstrate that

monitoring is more difficult than under the proportional allocation rule.

Under Assumption 1, K−1 ≤ m, and assuming m ≤ 2k1 ≤ K, the sales of firm i in period t,

for any pit ≤ 1, are now:

sit (pit, pjt;mt) =




ki if pit < pjt

1
2−Φ(pit)

(mt − Φ (pit) kj) ∈ [0, ki] if pit ≥ pjt.

(12)

This says that firm i’s sales are the same as (1) except that if firms set a common price, then firm

i’s sales are now 1
2mt, where m ≤ 2k1 guarantees that 1

2mt ≤ ki for all t and all i. Trigger levels

are again determined by the largest possible sales that firm 2 can make if firm 1 undercuts and

supplies its full capacity, such that at least one firm will receive sales below its trigger level if a

rival undercuts. It follows from (12) that each firm’s trigger level is se ≡ 1
2m

e (k1,m) ≤ ki, where

me (k1,m) ≡ 2 (m− k1). This implies, in contrast to the main analysis, that the trigger level is

the same for both firms. Firm 2’s trigger level is the same as under the proportional allocation

rule since the smallest firm still supplies its full capacity if it undercuts, leaving unchanged the

largest possible sales of firm 2 in such an event. However, for any strictly asymmetric capacity

distribution, such that k1 < K/2, firm 1’s trigger level has increased to the level of firm 2’s. The

reason is that firm 1’s share of market demand when firms set a common price has now increased

and it equals firm 2’s share.17

Both firms can receive sales above the trigger level, if se = m− k1 < ki for all i, which is the

case if m < 2k1. Recall that the equivalent conditon in the main text is m < K. Consequently,

for any strictly asymmetric capacity distribution, this necessary condition is now more stringent

than before. The reason is that the smallest firm’s share of the market demand at equal prices

is now higher, so it supplies its full capacity for smaller fluctuations in market demand. As a

result, it cannot infer for fluctuations in market demand as large as before whether it has set

the same price as or undercut its rival. Furthermore, it follows from me (k1,m) > m∗ (k1,m)

17Similar to the main analysis, it can be the case that the smallest firm knows for sure that both firms have

set a common price, but its rival is uncertain as to whether it has been undercut. This can occur in this case if

the highest possible sales of the smallest firm when it is undercut are less than the trigger level, m−K−1 < se,

which requires k1 < K/2. Nevertheless, if its sales are above m − K−1 but below se, then it can infer that the

largest firm’s sales are also below the trigger level.
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for any k1 < K/2 that both firms’ sales when they set a common price can now be below the

trigger level for higher realisations of market demand than under the proportional allocation

rule. This is due to the fact that, whilst the largest firm’s trigger level remains the same, its

share of market demand is now lower when firms set a common price. Thus, the largest firm’s

collusive sales are now consistent with a deviation by the smallest firm for higher levels of market

demand. Consequently, monitoring is more difficult than in the main text. Finally, replicating

the steps of section 3.2, it is easy to establish that collusive profits under imperfect monitoring

are lower than under the proportional allocation rule, because punishment phases occur on the

equilibrium path more often than before.

6 Concluding remarks

We have explored the effects of asymmetries in capacity constraints on collusion in a setting

where there is demand uncertainty and where firms never directly observe their rivals’ prices

and sales. Despite the fact that each firm must monitor the collusive agreement using their

privately observed prices and sales, we have shown that firms can perfectly detect deviations

if demand fluctuations are sufficiently small, and that the critical level is determined by the

capacity of the smallest firm. Otherwise, monitoring is imperfect and punishment phases occur

on the equilibrium path. Consistent with the previous literature, we found that asymmetries

hinder collusion. Yet, we also analysed both the unilateral and coordinated effects of mergers

in a unified framework. We showed that if demand fluctuations are sufficiently large, then the

competitive prices of asymmetric capacity distributions are actually higher than the collusive

prices of less asymmetric capacity distributions.

Our results have three main implications for merger policy. First, although market trans-

parency is rightly an important criterion in the assessment of coordinated effects in practice, our

model re-emphasises the fact that a lack of transparency about rivals’ prices and sales is not a suf-

ficient condition to rule out such effects: firms may be able to monitor a collusive agreement using

their private information. Second, while the possible effects of imperfect monitoring are explicitly

mentioned in general terms in the most recent US and European horizontal merger guidelines,

our model suggests that such monitoring will be difficult in markets where firm asymmetries

are large. Third, and most importantly, collusive merger outcomes should not be presumed to

be more harmful than more asymmetric noncollusive merger outcomes. A collusive agreement

may require sufficiently frequent price wars that actually lead to higher consumer surplus than a
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more asymmetric outcome in which one firm’s market power is strengthened unilaterally. Con-

sequently, it can be inappropriate for a competition authority to remedy a collusive post-merger

outcome by imposing a divestment that creates a more asymmetric market structure. Likewise,

it can be appropriate to remedy a merger outcome with a singularly dominant firm by imposing

a divestment that creates a symmetric market structure, even if this faciliates collusion under

imperfect monitoring.

Finally, an important avenue for future research is to develop techniques that can assess

accurately in practice whether a collusive merger outcome is better than a noncollusive outcome.

We believe that there are two existing methodologies that are a good place to start to address this

issue. First, if collusion is expected to be facilitated post-merger, then more advanced merger

simulation techniques may enable the likely effects to be simulated. While these techniques

have been criticised in the past for not allowing the conduct of firms post-merger to differ

from that assumed pre-merger (see Whinston, 2007), recent developments have have gone some

way to address this. For example, Davis and Huse (2010) and Ivaldi and Lagos (2015) use

the standard simulation methodology of unilateral effects to develop empirical techniques that

simulate coordinated effects on the critical discount factor in differentiated goods market under

perfect observability. Thus, to be applicable to the current context, these techniques would have

to be extended to the case of imperfect monitoring. Second, if the pre-merger status quo is

thought to be collusive, then it may be possible to use the screening devices for collusion on pre-

merger data to estimate the extent to which such collusion is imperfect (see Harrington, 2008,

for a review of these devices). For example, one such technique, developed by Porter (1983) and

Ellison (1994), discovers collusion under imperfect monitoring by finding evidence of price wars

(that is, abrupt changes in prices that cannot be explained by fluctuations in cost or demand).

Such price wars are inconsistent with models of competition and with perfect collusion, so if

there is no evidence of them pre-merger (and price is at or near the monopoly level), then it is

likely that the coventional wisdom will hold if collusion pre-merger is expected to be destabilised

post-merger. On the other hand, evidence of frequent or long price wars pre-merger could suggest

that collusion is sufficiently imperfect that the conventional wisdom will not hold.
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Appendix A

Proof of Lemma 1. There exists a unique pure strategy Nash equilibrium if m ≥ K, where

πN
i = ki ∀ i. This follows from πi(pi,p−i) = piki ∀ pi ≤ 1, so the best reply of firm i is pi = 1 for

any p−i, ∀ i. There is no pure strategy Nash equilibrium if m < K. To see this, note that any

such candidate equilibrium requires pj = p ∀ j. Otherwise, firm i ∈ Ω (pmax) has an incentive to

increase its price towards pmax, from πi (pi,p−i) = piki ∀ pi < pmax. However, for any p ∈ (0, 1],

firm i has an incentive to lower its price, since πi(p − ǫ, p) > πi(p) if m < K, where ǫ > 0 but

small. Moreover, for p = 0, firm i has an incentive to raise its price, since Assumption 1 ensures

πi(ǫ, 0) > 0 ∀ i.

Nevertheless, if K > m ≥ K−1, the existence of a mixed strategy Nash equilibrium is guaran-

teed by Thereom 1 of Dasgupta and Maksin (1986). To characterise this equilibrium, let Hi(p)

denote the probability that firm i charges a price less than or equal to p. Below we demonstrate

that the equilibrium profits are given by (2) for all i and that:

Hi(p) =
1

ki


 (πn − pkn)

pkn

(
´min{K,m}

m
(m−K) g (m) dm

)
n∏

j=1

kj



1/(n−1)

, (13)

where firm i’s expected profits are given by πi in (3), if it is strictly the highest-priced firm with

pi = 1. This converges to the analysis in Fonseca and Normann (2008) as m → m.

In equilibrium, firm i must receive the following expected profit from charging p ≤ 1:

p


∏

j 6=i

Hj(p)πi +


1−

∏

j 6=i

Hj(p)


 ki


 =

ki
kn

πn, ∀ i (14)

where
∏

j 6=i Hj(p) is the probability that firm i is the highest-priced firm. To solve for the right-

hand side of (14), notice firm i has no incentive to price below πi/ki ≡ p
i
, where p

n
≥ p

n−1
≥

. . . ≥ p
1
. Moreover, any firm j < n can guarantee profits of

kj

kn
πn ≥ πj by charging a price

marginally below p
n
, so all firms have no incentive to price below p

n
. Finally, the fact that all

firms j < n place positive probability on charging p
n
is necessary and sufficient to ensure p

n
is

also the lowest price that firm n will charge. Thus, the lower bound of Hi(p) is p = p
n
= πn/kn

∀ i. Manipulating (14) yields:

Hi(p) =
pkn (πi − ki)

πn − pkn

∏

j

Hj(p)
1

ki
. (15)

Noting that πi − ki =
´min{K,m}

m
(m−K) g (m) dm ∀ i for any K > m from (3), it follows from
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(15) that:

∏

j

Hj(p) =



pkn

(
´min{K,m}

m
(m−K) g (m) dm

)

πn − pkn

∏

j

Hj(p)



n

n∏

l=1

(
1

kl

)
.

Thus, solving for
∏

j Hj(p) and substituting into (15) shows that Hi(p) is as claimed in (13).

It follows from (13) that Hi(1) ⋚ 1 if
kn−1

i∏
j 6=n kj

R 1. This has two implications. First, if

kn−1

i∏
j 6=n kj

≥ 1, then firm i randomises over
[
p, 1
]
and puts mass of 1−Hi(1) on a price of 1 when

the inequality is strict. Note that
kn−1

i∏
j 6=n kj

> 1 never holds if ki = k ∀ i but always holds for

firm n if kn > k1. Second, if
kn−1

i∏
j 6=n kj

< 1 for some i < n, then firm i randomises over
[
p, pi

]

where pi < 1 solves Hi (pi) = 1. Consequently, the probability distributions of the larger firms

with higher upper bounds must be adjusted accordingly. For example, if pi < 1 only for firm

1 (which is the case for any triopoly with k1 < k2), then the largest n − 1 firms play with the

Hi(p) adjusted so that n− 1 replaces n over [p1, 1]. Note that
kn−1

i∏
j 6=n kj

< 1 never holds if n = 2

or if ki = k ∀ i for any n ≥ 2. �

Proof of Proposition 1. There is perfect monitoring if m > m∗ (k1,m) and imperfect monitoring

otherwise. Given ∂m∗

∂m > 0, it follows that there is a unique level of m that solves m∗ (k1,m) = m.

Substituting in for m∗ (k1,m) and rearranging yields m = k1

(
K−m
K

)
+ m ≡ x (k1), where

x (k1) ∈ (m,K) for any m < K. Thus, monitoring is perfect if m < x (k1), as this implies

m > m∗ (k1,m). Otherwise, there is imperfect monitoring. �

Proof of Proposition 2. Given kiV
c in (7) is strictly decreasing in T , the optimal equilibrium

profits for firm i can be found by evaluating it at T ∗ (k1, kn, p
c). Thus, it follows from (9) that:

1− δT
∗

=
(1− δ) (K − m̂) pc

δ
[(
1−G (m∗ (k1,m))K

(
pc − p

)
− (K − m̂) pc

)] . (16)

Then, substituting this into (7) yields:

kiV
c =

ki
K

(
m̂−G (m∗ (k1,m))K

1−G (m∗ (k1,m))

)
pc, ∀ i.

This is strictly increasing in pc, so pc = 1 and kiV
∗ is as claimed. Substituting pc = 1 into (10)

and (11) yields:

δ ≥
1

1−G (m∗ (k1,m))

kn
K

≡ δ∗ (k1, kn)
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and

G (m∗ (k1,m)) <
K−n

K
,

respectively. Furthermore, note that δ∗ (k1, kn, p
c) is strictly increasing in pc, such that collusion

under trigger-sales strategies is not sustainable for any δ < δ∗ (k1, kn). Finally, it follows from

∂G(m∗)
∂m > 0 that there is a unique level ofm, denoted x (k1, kn), that setsG (m∗ (k1,m)) = K−n

K <

1, where x (k1, kn) < K and where G (m∗ (k1,m)) ∈
(
0, K−n

K

)
for all m ∈ [x (k1) , x (k1, kn)).

This implies δ∗ (k1, kn) ∈
(
kn

K , 1
)
and kiV

∗ ∈
(
πN
i (kn) , ki

m̂
K

)
for all m ∈ [x (k1) , x (k1, kn)). �

Proof of Proposition 3. Differentiating δ∗ (k1, kn) =
1

(1−G(m∗(k1,m)))
kn

K with respect to kj yields:

∂δ∗

∂kj
=

1

K [1−G (m∗)]

[
∂kn
∂kj

+ kn
g (m∗)

1−G (m∗)

∂m∗

∂k1

∂k1
∂kj

]
.

Thus, ∂δ∗

∂k1

< 0 from ∂kn

∂k1

∈ [−1, 0], ∂m∗

∂k1

< 0 and ∂k1

∂k1

= 1. Furthermore, ∂δ∗

∂kn
> 0 from ∂kn

∂kn
= 1,

∂m∗

∂k1

< 0 and ∂k1

∂kn
∈ [−1, 0]. Finally, δ∗ (kn) =

kn

K implies ∂δ∗

∂kn
> 0. �

Proof of Proposition 4. Differentiating p̂c (k1,m) = K
m̂V ∗ with respect to kj yields:

∂p̂c

∂kj
=

K

m̂

∂V ∗

∂kj
= −

(K − m̂) g (m∗)

m̂ (1−G(m∗))
2

∂m∗

∂k1

∂k1
∂kj

.

Thus, ∂p̂c

∂k1

> 0 from 0 < m̂ < m < K, ∂m∗

∂k1

< 0 and ∂k1

∂k1

= 1. �

Proof of Proposition 5. We first show that p̂N (k′n, m̂) > p̂c (k1,m) if m > x (k1, k
′
n) . This

follows since p̂N (k′n, m̂) > p̂c (k1,m) if G (m∗ (k1,m)) > 1 −
k′
n

K . Furthermore, in Proposition

2, x (k1, kn) is defined as the level of m that solves G (m∗ (k1, x (k1, kn))) = 1 − kn

K . Thus,

x (k1, k
′
n) is the level that solves G (m∗ (k1, x (k1, k

′
n))) = 1−

k′
n

K where x (k1, k
′
n) > x (k1). This

and ∂G(m∗)
∂m > 0 implies that if m > x (k1, k

′
n), such that G (m∗ (k1, x (k1, kn))) > 1 −

k′
n

K , then

p̂N (k′n, m̂) > p̂c (k1,m).

Next, note that this comparison is only meaningful ifm < x (k1, kn) and if δ ≥ δ∗ (k1, kn) such

that p̂c (k1,m) is an equilibrium average price. So, we next show that x (k1, k
′
n) < x (k1, kn) if

k′n > kn such that k′1 ≤ k1. Using the implicit function theorem on Z ≡ 1− kn

K −G (m∗ (k1,m)) =

0 yields:

∂x

∂kj
= −

∂Z
∂kj

∂Z
∂m

= −
1(

g (m∗) ∂m∗

∂m

)
(

1

K

∂kn
∂kj

+ g (m∗)
∂m∗

∂k1

∂k1
∂kj

)
.
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It follows from this that ∂x
∂kn

< 0, since ∂m∗

∂m > 0, ∂kn

∂kn
= 1, ∂m∗

∂k1

< 0 and ∂k1

∂kn
∈ [−1, 0]. So, if

k′n > kn, then x (k1, k
′
n) < x (k1, kn).

Thus, the above implies that, for any δ ≥ δ∗ (k1, kn), if k
′
n > kn (so k′1 ≤ k1), then there

exists a unique x (k1, k
′
n) ∈ (x (k1) , x (k1, kn)) such that if x (k1, k

′
n) < m < x (k1, kn), then

p̂N (k′n) > p̂c (k1,m). Finally, notice that if x (k1, k
′
n) < m < x (k1, kn), then x (k′1, k

′
n) < m

from k′1 ≤ k1 and ∂x
∂k1

> 0. Consequently, it follows from Proposition 2 that collusion under

trigger-sales strategies is not sustainable for (k′1, k
′
n). �

Appendix B

One possible limitation of the analysis in the main paper is that restricting attention to trigger-

sales strategies leaves open the question of whether there are other PPE with higher payoffs.

Consequently, to check the robustness of our results, we now use the techniques of Abreu et al.

(1986, 1990) to find the set of perfect public equilibria. This analysis shows that trigger-sales

strategies are a strategy profile that supports the maximal PPE payoffs, such that there are no

such equilibria with higher payoffs, and it also shows that trigger-sales strategies generate the

lowest critical discount factor. Following the main text, we impose K−1 ≤ m < K, such that

Assumption 1 is satisfied and the static Nash equilibrium is in mixed strategies. We also let

m ∈ [x (k1) ,K) to restrict attention to the case where G (m∗ (k1,m)) ∈ (0, 1) such that there

is imperfect monitoring.18 Finally, we make the common assumption that, after observing yt,

the firms observe the realisation of a publically observable randomisation device, which allows

them to select among the continuation equilibria. This ensures that the set of PPE payoffs is

convex. For a similar analysis to the below, see Athey and Bagwell (2001) and Hanazono and

Yang (2007).19

Following Abreu et al. (1986, 1990), we define an operator B (W ) that, for any set W ⊆ R,

yields the set of PPE payoffs per unit of capacity as the largest invariant set. The operator is

defined as follows:

B (W ) ≡ {V : ∃ p ∈ [0, 1] and V p, V c ∈ co (W ) , such that

V = (1− δ) m̂
K p+ δ [G (m∗ (k1,m))V p + (1−G (m∗ (k1,m)))V c] and

kiV ≥ (1− δ)πi (p
∗
i , p) + δkiV

p ∀ i} ∪ p,

18The set of PPE payoffs coincide with the set of SPNE payoffs when there is perfect monitoring, so the latter

set can be easily generated for m < m < x (k1) by setting G (m∗ (k1,m)) = 0 in the below.
19In contrast to our analysis below and Athey and Bagwell (2001), Hanazono and Yang (2007) restrict attention

to PPE that are strongly symmetric in the sense that each firm uses an identical strategy after every public history.
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where p is the expected static (mixed strategy) Nash equilibrium profits per unit of capacity,

which may be used as an off-the-equilibrium path punishment. This operator decomposes play on

the equilibrium path into a current period price, p, and continuation payoffs per unit of capacity,

V p and V c, that are drawn from the convex hull of the set W . The inequality is the ICC that

ensures that no firm is able to gain by a (one-stage) deviation from the public strategy, where

firm i’s optimal deviation profit from any price p ∈ [0, 1] is:

πi (p
∗
i , p) ≡





kip if p ≥ πi/ki

πi if p < πi/ki.

This says that firm i’s optimal deviation from p is to undercut p marginally, if p is sufficiently

high, otherwise firm i should supply the residual demand at the monopoly price. Recall that

πi = m̂−K−i for any m < K from (3) such that πi (p
∗
i , p) is (weakly) increasing in p.

Next, we establish that the operator B (W ) maps compact sets to compact sets, which is the

critical property for applying the techniques of Abreu et al. (1990).

Lemma 2. For any given n ≥ 2 and K−1 ≤ m, B (W ) maps compact sets to compact sets.

Proof. Notice that the feasible set of payoffs per unit of capacity is real-valued, bounded and

closed, e.g.
[
0, m̂

K

]
, hence it is compact. Then B(W ) is bounded and closed, because the con-

straints entail weak inequalities and each component of the value function and the constraints is

real-valued, continuous, and bounded. Thus, B(W ) is compact. �

Given the operator is compact, we can use the following algorithm to compute the set of PPE.

Let W0 =
[
0, m̂

K

]
such that it is compact and it contains all feasible payoffs per unit of capacity,

and let Wz+1 = B (Wz), for any z > 0. Then B (W ) implies that B (Wz) = Wz+1 ⊆ Wz such

that we have a monotonic sequence. It follows from this, and the fact that Wz is non-empty

(since p is in every Wz), that W ∗ = limz→∞Wz is a non-empty, compact set. Following the

arguments in Abreu et al. (1990), we can conclude that W ∗ is the largest invariant set of B (W )

and hence it is the set of PPE payoffs per unit of capacity. Thus, it can be represented by the

interval [V , V ] and solving for this set reduces to the problem of finding the minimal V and the

maximal V that satisfy [V , V ] = B
(
[V , V ]

)
. Proposition 6 solves for V and V .

Proposition 6. For any given n ≥ 2 and K−1 ≤ m < K, if m ∈ [x (k1) , x (k1, kn)), such that

G (m∗ (k1,m)) ∈
(
0, K−n

K

)
, and if δ ≥ δ∗ (k1, kn) =

1
1−G(m∗)

kn

K , then V = 1
K

(
m̂−G(m∗)K
1−G(m∗)

)
and

V = p.
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Proof. First, we find V by solving the following constrained maximisation problem:

V = maxV
p,V p

c

subject to:

V c = (1− δ) m̂
K p+ δ [G (m∗ (k1,m))V p + (1−G (m∗ (k1,m)))V c] (17)

knV
c ≥ (1− δ)πn (p

∗
n, p) + δknV

p (18)

p ∈ [0, 1] and V p ∈
[
V , V

]

The first constraint (17) is just an identity that says that the target continuation payoff per unit

of capacity, V c, can be decomposed into the profit per unit of capacity of the stage game and

a continuation payoff function, where if y, the each firm gets V p per unit of capacity, but if y,

they each get V c per unit of capacity. The second constraint (18) is the ICC for firm n, which

is a necessary and sufficient condition for the ICC to be satisfied for all i and all p ∈ [0, 1].

The Lagrangian function for this constrained maximisation problem is:

L = V c + λcξcn,

where ξcn denotes the slack in the ICC for firm n, such that ξcn = knV
c−(1− δ)πn (p

∗
n, p)−δknV

p,

λc represents the Lagrange multiplier, and:

V c =
(1− δ) m̂

K p+ δG (m∗ (k1,m))V p

1− δ (1−G (m∗ (k1,m)))
,

from rearranging (17). It is helpful to solve the constrained maximum for a given p ∈ [0, 1], and

then take this solution to its maximum with respect to p. Thus, the necessary Kuhn-Tucker

conditions for a maximum are:

∂L

∂V p
=

∂V c

∂V p
+ λc

(
kn

∂V c

∂V p
− δkn

)
= 0

∂L

∂λc
= ξcn ≥ 0, λc ≥ 0, λcξcn = 0.

These conditions are necessary and sufficient to determine a maximum, because the Lagrangian

is concave.

We begin the solution by noting that the Kuhn-Tucker conditions are not satisfied if ξcn > 0

such that λc = 0, because then ∂L
∂V p > 0, which is a contradiction. So, consider the case of ξcn = 0

such that λc ≥ 0. Rearranging ∂L
∂V p = 0 yields λc = − ∂V c

∂V p

(
1

kn
∂V c

∂V p −δkn

)
> 0 for any m ≥ x (k1).

Thus, the solution to the problem sets ξcn = 0, where:

V p = V c −
1− δ

δ

(
πn (p

∗
n, p)

kn
− V c

)
.
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Substituting the above into (17) yields V c =
(

1
1−G(m∗)

)(
m̂
K p−G (m∗)

πn(p
∗
n,p)

kn

)
. Given this is

strictly increasing in p, for all p ∈ [0, 1], it follows that V has p = 1 such that πn (p
∗
n, p) = kn

and V = m̂−G(m∗)K
K(1−G(m∗)) . The above conditions imply that the strategy profiles that support the

maximal PPE payoffs can be chosen in the following form: for t = 1, each firm sets p = 1; for

every t > 1, each firm sets p = 1 if yt−1 = y; otherwise firms adopt any PPE strategy profile

that supports V p = V − 1−δ
δ

(
1− V

)
per unit of capacity. Thus, it remains to construct such

a PPE profile. One way to achieve this is to use the public randomisation device, where firms

choose some probability α ∈ [0, 1] such that V p = (1−α)V +αV . Substituting in for V p, V and

V = p (which we prove below) yields:

α =
(1− δ) kn

δ [K (1−G (m∗ (k1,m)))− kn]
, (19)

where α > 0 if m ∈ [x (k1) , x (k1, kn)), such that G (m∗ (k1,m)) ∈
(
0, K−n

K

)
, and where α ≤ 1 if

δ ≥ δ∗ (k1, kn).

Next, we find V by solving the following constrained minimisation problem:

V = minV
p,V c

p

subject to:

V p = (1− δ) m̂
K p+ δ [G (m∗ (k1,m))V p + (1−G (m∗ (k1,m)))V c] (20)

knV
p ≥ (1− δ)πn (p

∗
n, p) + δknV

p (21)

p ∈ [0, 1] and V c ∈
[
V , V

]

Similar to the problem above, the first constraint (20) is just an identity and the second constraint

(21) is the ICC for firm n.

The Lagrangian function for this constrained minimisation problem is:

L = V p − λp (knV
p − πn (p

∗
n, p)) ,

where λp represents the Lagrange multiplier, the term in brackets represents the slack in the ICC

for firm n, and:

V p =
(1− δ) m̂

K p+ δ (1−G (m∗ (k1,m)))V c

1− δG (m∗ (k1,m))
, (22)

from rearranging (20). We again solve the constrained minimum for a given p ∈ [0, 1], and then

take this solution to its minimum with respect to p. Thus, the necessary Kuhn-Tucker conditions

for a minimum are:
∂L

∂V c
=

∂V p

∂V c
− λpkn

δ (1−G (m∗ (k1,m)))

1− δG (m∗ (k1,m))
= 0
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∂L

∂λp
= − (knV

p − πn (p
∗
n, p)) ≤ 0, λp ≥ 0, λp (knV

p − πn (p
∗
n, p)) = 0.

The Lagrangian is concave so these conditions are necessary and sufficient to determine a mini-

mum.

Note that the Kuhn-Tucker conditions are not satisfied if knV
p > πn (p

∗
n, p) such that λp = 0,

because then ∂L
∂V c > 0, which is a contradiction. So, consider the case of knV

p = πn (p
∗
n, p) such

that λp ≥ 0. Rearranging ∂L
∂V c = 0 yields λp = 1/kn > 0, so the solution to the problem is

V p =
πn(p

∗
n,p)

kn
such that:

V c =
πn (p

∗
n, p)

kn
+

(
1− δ

δ (1−G (m∗ (k1,m)))

)(
πn (p

∗
n, p)

kn
− m̂

K p

)
,

from (22). Note that V p is (weakly) increasing in p, for all p ∈ [0, 1], so V p is at its minimum if

p ≤ p such that V = p and V c = p + (1− δ)
(
p− m̂

K p
)
> p for all p ≤ p. Finally, note that the

above conditions imply that a strategy profile that supports the minimal PPE payoffs can be

chosen in the following form: for t = 1, each firm sets some p ∈
[
0, p
]
; for t > 1, each firm sets p if

yt−1 = y; otherwise, firms adopt any PPE strategy profile that supports V c. Thus, it remains to

show that we can construst such a PPE profile. Again, using the randomisation device, suppose

firms choose some probability β ∈ [0, 1] such that V c = (1 − β)V + βV . Substituting in for V c

and V yields:

β = 1−

(
1− δ

δ (1−G (m∗ (k1,m)))

)(
p− m̂

K p

V − p

)
,

where if m ∈ [x (k1) , x (k1, kn)), such that G (m∗ (k1,m)) ∈
(
0, K−n

K

)
, then β < 1 for all p ≤ p.

Finally, β ≥ 0 if:

p ≥
K

m̂

(
p−

δ (1−G (m∗ (k1,m)))
(
V − p

)

1− δ

)
≡ p∗,

where δ ≥ δ∗ (k1, kn) suffices for p∗ < p.

Thus, the above implies that if m ∈ [x (k1) , x (k1, kn)), such that G (m∗ (k1,m)) ∈
(
0, K−n

K

)
,

and if δ ≥ δ∗ (k1, kn), then V = 1
K

(
m̂−G(m∗)K
1−G(m∗)

)
and V = p. �

This and Proposition 2 imply that the maximal PPE payoffs for all i are the same as the

optimal PPE payoffs under trigger-sales strategies, kiV = kiV
∗ ∀ i. Furthermore, the critical

discount factor and the necessary condition on G (m∗ (k1,m)) are also the same. To understand

the reason, note that the minimal PPE payoffs for all i are the same as the static Nash equilibrium

profits, kiV = πN
i (kn) ∀ i. Thus, in place of the randomisation device to construct the PPE

strategy profile that supports V p = V − 1−δ
δ

(
1− V

)
in the proof of Proposition 6, we could
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instead have required firms to play the static Nash equilibrium for T periods, and then switch to

the maximal PPE. In such a case, T must satisfy kiV
p =

(
1− δT

)
πN
i (kn) + δT kiV , where after

substiting in for V p, πN
i (kn) and V , we find that the condition required for V p to be a PPE is

the same as in (19), except that 1 − δT replaces α. Then (19) is the same as (16) with pc = 1,

so the profile of trigger-sales strategies with pc = 1 and T = T ∗ is equivalent to the one that

supports the maximal PPE payoffs in Proposition 6.
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