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Abstract. 

 

 

In this paper I propose a nonstandard t-test statistic for detecting 1n ≥  level and trend 

breaks of I(0) series. Theoretical and limit-distribution critical values obtained from 

Montecarlo experimentation are supplied. The null hypothesis of anthropogenic 

versus natural causes of global warming is then tested for the period 1850-2006 by 

means of a dynamic GMM model which incorporates the null of 1n ≥  breaks of 

anthropogenic origin. World average temperatures are found to be tapering off since a 

few decades by now, and to exhibit no significant breaks attributable to human 

activities. While these play a minor causative role in climate changes, most natural 

forcings and in particular solar sunspots are major warmers. Finally, in contrast to 

widely held opinions, greenhouse gases are in general temperature dimmers. 
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1. Introduction. 

 

The literature on the topic of time-series structural breaks has significantly 

progressed since Perron’s seminal article (1989) that has modified the traditional 

approach of Unit Root (UR) testing (Dickey and Fuller, 1979). By departing from 

different null hypotheses that include UR with or without drift, trending series with 

I(0) or I(1) errors, with or without Additive Outliers (AO), the alternative hypotheses 

formulated have accordingly included different combinations that range from one 

single level and/or trend break (Zivot and Andrews, 1992) to multiple structural 

breaks of unknown date (Banerjee et al., 1992; Bai and Perron,  2003; Perron and 

Zhu, 2005; Perron and Yabu, 2007). 

The present paper, by drawing from this vast experience, and especially from a 

seminal contribution in the field (Perron and Zhu, 2005), proposes a novel t-statistic 

testing procedure for multiple level and trend breaks occurring at unknown dates 

(Vogelsang, 1997). This procedure is easy and fast at identifying break dates, as it 

compares the critical t statistic, obtained by Montecarlo simulation under the null 

hypothesis of I(0) series with stationary noise, with the actual t statistic obtained 

under the alternative represented by a I(0) model with a constant, a trend term, the 

two structural breaks and one or more stationary noise components.  

The plan of the paper is the following. Section 2 formulates the theoretical null 

and alternative hypotheses maintained, computes the critical values of the t statistics 

of the two structural breaks and produces their finite-sample Montecarlo simulations. 

The Appendix contains some related off-text material. 

Section 3 synthetically explains the characteristics and properties of the 

Generalized Method of Moments (GMM) which is a toolkit necessary to circumvent 

errors in variables, endogeneity and related problems. Parametric and nonparametric 

tests for selecting the ‘best’ GMM model specification among alternative sizes of the 

instrument and regressor sets are introduced and explained, together with the 

dynamic (i.e. sequential) versions of GMM and of the significance-weighted dynamic 

Principal Component Analysis (PCA). 

Section 4 is addressed at testing a red-hot topic that represents the center stage 

of many recent top-level discussions: the anthropogenic origin of global warming, 

supposedly determined by the rapid pace of industrialization and the ensuing 

worldwide  development of productive and commercial activities. The time series of 

mean World temperatures and of several human and natural forcings for the period 

1850-2006 are introduced and then filtered by means of the Hodrick-Prescott 

procedure (HP). Thereafter, Granger causality and selection of the ‘best’ GMM 

model specification are performed. Finally, dynamic GMM estimation results 

producing the time series of the regression coefficients, their t statistics and the 

significance-weighted shares are obtained and exhibited.  

Section 5 concludes by showing there exist no significant breaks in World 

temperatures and that anthropogenic forcings play a minor role in climate changes 

which are, instead, chiefly attributable to natural forcings and especially to solar 

activity.  
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2.1. Testing for Structural Breaks. The Null and the Alternative 

Hypotheses. 

 

The departing point to test for the existence of structural breaks in a time series 

function is the null hypothesis given by the I(0) series 

 

   1)                           1 = t t t ty y y e−Δ ≡ − ;  1 0y =  

 

where 
ty  spans the period t = 1, ..., T, and (0,1)te N∼  corresponds to a standard Data 

Generating Process (DGP) with random draws from a normal distribution whose  

underlying true process is a driftless random walk. 

Let the field of fractional real numbers be { }0 0,1Λ = −λ λ , where 00 1λ< <  is a 

preselect trimming factor, normally required to avoid endpoint spurious estimation in 

the presence of unknown-date breaks (Andrews, 1993). Let the true break fraction be 

λ∈Λ  for 0 00 (1 )λ λ λ< < < −  and 0 0(1 )T T Tλ λ λ≤ ≤ −  the field of integers wherein 

the true break date occurs.  

Given the null hypothesis of eq. 1, the simplest available alternative is provided 

by a I(0) series with a constant and a trend, their respective breaks, and a time vector 

of noise. Specifically, the alternative is represented by an augmented AO model 

(Perron, 1997), usually estimated by Ordinary Least Squares (OLS). In Sect. 3.1, the 

alternative will be augmented with a vector of exogenous I(0) series and estimated by 

GMM to account for heteroskedasticity, autocorrelation and endogeneity. 

After trimming for the time interval now set as { }0 0,(1 )t T Tλ λ= − , 
tyΔ  is the 

endogenous variable such that 

 

2)              1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( );  t t t ty DU t DTμ λ μ λ λ τ λ τ λ λ ε λ λΔ = + + + + ∀ ∈Λ        

 

where the ( )λ  notation refers to the time-changing coefficients and variables of the 

dynamic equation estimation. The disturbance 2( ) . . .(0, )t I I D εε λ σ=  is I(0) with 

[ ]( ) ' ( ) 0; ,t sE t sλ λε ε = ∀ , s t≠  (Perron and Zhu, 2005; Perron and Yabu, 2007).  

The two differently defined unknown-date break dummies tDU  and tDT  are: 

A) 1( )
t tDU t TB= > , a change in the intercept  of tyΔ , 1 0( )μ μ− , namely a break in the 

mean level of 
tyΔ ;  

B) ( )1( )
t t tDT t TB t TB= − > , a change in the trend slope 1 0( )τ τ− , namely a change in 

the inclination of 
tyΔ  around the deterministic time trend. 

The coefficients 0μ  and 0τ  are the respective pre-change values. As a general 

rule there follows, from the above notation, that any of the two structural breaks is 

represented by a vector of integers { }0 0,(1 )
t

TB T Tλ λ∀ ∈ −  (Banerjee et al., 1992). 

From eqs. 1 and 2, ( ) 0
t

E yΔ ≡  and ( )1 0 1 0, ( ) 0E μ −μ τ − τ λ = , namely, breaks 

in mean and trend slope are a temporary phenomenon. Therefore, case A corresponds 
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to unknown-date structural breaks in terms of temporary change(s) in the level of the 

endogenous variable (the "crash" model). Similarly, case B corresponds to temporary 

shifts in its trend slope (the "changing growth" model) (Perron 1997; Banerjee et al., 

1992; Vogelsang and Perron, 1998). Eq. 2, by using both cases together, is defined by 

Perron and Zhu (2005) as a “local disjoint broken trend” model with I(0) errors (their 

“Model IIb”).  

In addition, for ( ) 0
t

E yΔ ≡  in eq. 2, ( )1 1( ), ( ) 0E μ λ τ λ ≠ , i.e. the coefficients 

are expected not to equal zero. The Appendix demonstrates that ( )1 1( ), ( ) 0E μ λ τ λ =  

holds only for a non-breaks alternative model, namely, when 1λ = .  

 As usual in the break literature, eq. 2 is estimated sequentially for all λ∈Λ . 

After dropping the λ  notation for ease of reading from the single coefficients, we 

obtain a time series of length 01 (1 )Tλ+ −  of the coefficient vector 

[ ]1 2 1 2
ˆ( ) , , ,β λ μ μ τ τ≡ which is closely akin to the Kalman filter ‘changing coefficients’ 

procedure. As a by-product, the t statistics of ˆ( )β λ  for the same trimmed interval are 

obtained and defined as ˆ ( )
t

tμ λ  and ˆ ( )
t

tτ λ , respectively. They are nonstandard-

distributed since the corresponding breaks are associated to unknown dates and 

therefore appear as a nuisance in eq. 2 (Andrews, 1993;  Vogelsang, 1999).  

 These t statistics can be exploited to separately detect time breaks of type A 

and/or of type B, just as with the nonstandard F, Wald, Lagrange and Likelihood 

Ratio tests for single breaks (Andrews, 1993; Vogelsang, 1997, 1999; Hansen, 2000) 

and for multiple breaks (Bai and Perron, 2003). However, different from these 

methods that identify the break(s) when a supremum or weighted average is achieved 

and tested for (e.g. Andrews, 1993), all that is required is to sequentially find as many 

t statistics that exceed in absolute terms the appropriately tabulated critical value for a 

preselect magnitude of λ .  

In practice, after producing the critical values for different magnitudes of λ  by 

Montecarlo simulation, respectively denoted as ( , )Tt Lλ  and ( , )Tt Tλ , any 1n ≥  

occurrence for a given confidence level (e.g. 95%) whereby ˆ ( ) ( , )
t Tt t Lμ λ λ>  and 

ˆ ( ) ( , )
t T

t t Tτ λ λ>  indicates the existence of 1n ≥  level and trend breaks, respectively, 

just as with standard t-statistic testing
1
.  

 

2.2. Theoretical and Empirical t statistics. 

 

To achieve this goal, some additional notation is required. Let the 1K -sized 

vector of the deterministic variables of eq. 2 be [ ]1, , ( ), ( )
t t t

X t DU DTλ λ= , and let the 

OLS estimated coefficient vector be   

 

                                                 
1 The empirical distribution of the two simulated t statistics is a standard Normal with positives and negatives entering 

with equal probability weights. Their variances and variance components are discussed further on and  shown in Table .  
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3)   
0 0

0 0

(1 ) (1 )

ˆ( ) '
T T

t t t t

t T t

y X X X
λ λ

λ λ

β λ
− −

= =

= Δ∑ ∑   

 

with variance 
0

0

1
(1 )

2 ( ) '
T

t t

t

X X
λ

ε
λ

σ λ
−

−

=

⎡ ⎤
⎢ ⎥
⎣ ⎦
∑ . Let also the estimated and the true parameter 

vector respectively be defined as [ ]1 1 2 2
ˆ ˆ ˆ ˆ ˆ( ) , , ,β λ μ τ μ τ≡  and * * * * *

1 1 2 2, , ,β μ τ μ τ⎡ ⎤≡ ⎣ ⎦ , such 

that the scaling matrix of the rates of convergence of ˆ( )β λ  with respect to *β  is 

given by 1/ 2 3/ 2 1/ 2 3/ 2, , ,
t

diag T T T T⎡ ⎤ϒ = ⎣ ⎦ .  

 Then, by generating tyΔ  according to eq. 1 we have, for 0 1λ< <  

 

  4)   [ ] 1*ˆ( )   ( ) ( )
L

T T T

−⎡ ⎤ϒ − → Θ Ψ⎣ ⎦β λ β λ λ , 

 

whereby, for ( )W r  a standard Brownian motion in the plane [0,1]r∈ , the following 

limit expressions ensue:  

  5)  

1 1

0 0

( ) (1), (1) ( ) ,(1 ) (1),(1 ) (1) ( )T W W W r dr W W W r drλ σ λ λ
⎡ ⎤⎛ ⎞

Ψ = − − − −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫  

and 

 

  6)    

2

2 3

2

3

(1 )
1 1/ 2 1

2

(1 ) (2 3 )
1/3

2 6
( )

(1 )
1

2

(1 )

3

T

λλ

λ λ λ

λ
λλ

λ

⎡ ⎤−
−⎢ ⎥

⎢ ⎥
− − +⎢ ⎥

⎢ ⎥
Θ = ⎢ ⎥

−⎢ ⎥−⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

 . 

 

 From eq. 4 the limit distribution of the coefficient vector is the same as that 

reported by Perron and Zhu for Model IIb (2005, p.81), while its asymptotic t 

statistics are computed as follows: 

 

  7)      ( )1/ 21( ) ( ) ( ) ( )
T T T T

t λ λ λ λ−= Θ Ψ Ω   

 

where ( ) 12

4( ) I ( )
T T
λ σ λ −Ω = Θ  and 4I  is the 4x4 identity matrix. The theoretical t 

statistics of the level break ( , )Tt Lλ  and of the trend break ( , )Tt Tλ  are thus 
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  8.1)    

[ ]

1

0

1/ 2

(1) ( )

( , ) 3
(1 )

T

W W r dr

t L

λ
λ

λ λ

−
=

−

∫
 

 

 

  8.2)    

1

1/ 2 0

1/ 2
2

(3 1) (1) 2(2 1) ( )

( , ) 3
(1 )(3 3 1)

T

W W r dr

t T

λ λ λ
λ

λ λ λ λ

− − −
=

⎡ ⎤− − +⎣ ⎦

∫
       

  

 The empirical critical values of the t statistics are obtained by Montecarlo 

simulation
2
. For select magnitudes of λ  running from 0.10 to 0.90, and for a 

reasonable sample size (T = 200), the 1%, 5% and 10% finite-sample critical values 

of eqs. 8.1 and 8.2 are reported in Table 1. These are obtained after performing N = 

10,000 draws of the T-sized vector of artificial discrete realizations of tyΔ  of eq. 1. 

Each of these realizations is in turn given by the cumulative sum of 1,000 values of 

( )* . . . 0,1 1,000
t

y N I DΔ ∼  with *

1 0y = .  

Thereafter, the Brownian functionals of eq. 5 are approximated by such sums, 

which are independently and identically distributed, and eqs. 8.1 and 8.2 

subsequently computed. Finally, the critical absolute values are obtained by finding 

the extremes falling in the 99%, 95% and 90% percentiles together with their 10% 

upper and lower confidence bands.  

 From Table 1 the critical values can be seen to achieve minimal absolutes at 

λ =0.50 and larger values at both ends of  λ . Finally, except for λ =0.50, ( , )Tt Lλ  is 

smaller than ( , )Tt Tλ  by a factor that reaches 1.2 at both ends
3
.  

In addition, the N-draws artificially computed t statistics for given values of λ , 

considering positives and negatives, are normally distributed with zero mean and 

variance given by the squares of eqs. 8.1 and 8.2 with the numerators (excluding the 

integers) replaced by their own standard error obtained by simulation. These 

numerators are respectively denoted as ( , ) _Tt L numλ and ( , ) _Tt T numλ . Their 

components, the T-length and N-draws series W(1) and 

1

0

( )W r dr∫  in eqs. 8.1 and 8.2, 

are zero-mean I(0) Gaussian processes. However, independent of λ , the former 

exhibits unit variance and the latter a variance close to 1/3, being respectively 

distributed as a standard normal and as a doubly truncated normal distribution with 

                                                 
2 By construction, the squares of the two t statistics, for given λ , correspond to their respective limit Wald-test 

statistics. As for the first of them see for instance Bai and Perron (2003). For both see Vogelsang (1999) although the 

simulation method adopted therein differs from that of the present paper. 
3 Although unreported for ease of space, Montecarlo simulations of eqs. 81 and 8.2 were performed also for T=100 ,300 

and 500 producing very similar critical values as those reported in Table 1. Therefore, such values are demonstrated to 

be independent of T. 
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extremes close to 5% and to 95%. These are the only constant variances, since all the 

others are strictly dependent on the magnitude of λ . 

The results of the numerators and other statistics are reported in Table 2 with  

T=200. The variances of the estimated numerators of eqs. 8.1 and 8.2 achieve a 

minimal value at λ =0.50, being more than twofold for the first and more than tenfold 

for the second at both ends. Both (1)Wλ  and (3 1) (1)Wλ λ −  grow, as their variances 

respectively are 2λ  and ( )2
(3 1)λ λ − . The variance of the second component of the 

numerator of eq. 8.2, 

1

0

2(2 1) ( )W r drλ − ∫ , achieves a minimum of zero at λ =0.50 and 

rises at both ends. Similarly for the variances of the simulated t statistics (shown in 

the last two columns of Table 3), which attain a minimal value in correspondence of 

λ =0.50, where they share an almost equal value and then increase by eight and ten 

times at both ends, respectively. Finally, the estimated variance of the first statistic is 

on average 40% smaller than the second, reflecting the similar albeit smaller gap in 

their critical values, as reported in Table 1. 

 

         3.1. The Dynamic Generalized Method of Moments (GMM).  

 

A 2K -sized vector of stationary stochastic components 
2

,1 ,,...,
Kt t t

X x x⎡ ⎤= ⎣ ⎦
� � �  is 

now introduced alongside with the vector of deterministic components tX  described 

in Sect.2.2. 
t

X�  may include contemporary and/or 1 H T≤ <  lags or leads of their 

observations. Together with 
tX , it constitutes the entire K-sized vector of regressors 

X
t t t

X X⎡ ⎤= ⎣ ⎦
�# , where 1 2K K K= + . 

Eq. 2, in an OLS setting, can thus be extended to produce the following 

dynamic estimating equation: 

 

9)     X ( )' ( )t t ty B eλ λΔ = +  

 

where 
11 2 1 2 1( ) , , , , ,..., KB ⎡ ⎤= ⎣ ⎦λ μ μ τ τ ξ ξ  and 2, 1,...,k k K=ξ  , are the coefficients of 

t
X� , 

∀λ∈Λ . Finally, 2( ) . . .(0, )
t e

e I I Dλ σ= .  

Eq. 9, just as eq. 2, enables constructing a time series of length 01 (1 )Tλ+ −  of 

the coefficient vector ( )B λ  and of the ensuing two t statistics ˆ ( )
t

tμ λ  and ˆ ( )
t

tτ λ 4
. 

GMM estimation of ( )B λ  requires the introduction of an L-sized tZ  instrument set 

( )L K≥ . In many cases, tZ  is represented by lag transformations of the set 
t

X�  such 

that 1,
t t m

Z X −⎡ ⎤= ⎣ ⎦
� , for 1,...m M=  lags and 1 H M T≤ ≤ < .  

                                                 
4 This feature allows eq. 9 to belong to the class of partial structural change models as envisaged, for instance, by Bai 

and Perron (2003). 
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The L-sized vector of sample moments for the trimmed time interval is  

 

10)     
0

0

(1 )

ˆ ˆ( , ) ( )
T

t t t

t T

g Z e
λ

λ

β λ λ
−

=

= ∑  

 

where the coefficient vector β̂  and the first-stage residuals 
t̂e  stem from a (possibly) 

consistent TSLS estimation of eq. 9. The sample means of the above are 

 

[ ] 1

0
ˆ ˆ( , ) (1 ) ( , )

t
g T gβ λ λ β λ−= −  

 

with the orthogonality property that ˆ( ) 0
t

E g β⎡ ⎤ ≡⎣ ⎦ .  

Let also the ensuing L L×  weight matrix be 

 

 11)   
0

0

(1 )
1

0
ˆ ˆ ˆ( , ) (1 ) ( , ) ( , ) '

T

t t

t T

W T g g
λ

λ

β λ λ β λ β λ
−

−

=

⎡ ⎤= −⎣ ⎦ ∑  

 

such that ( )1ˆ ˆ ˆ ˆ( ) arg min ( , ) ( , ) ( , )
GMM

g W g
β

β λ β λ β λ β λ−

∈Β
= .  

 Computation of the partial first derivatives of the sample moments yields the 

L K×  Jacobian matrix  

12)   
0

0

(1 )

1
0

( ) (1 ) '
T

t t t

t T

G T z x

λ

λ

λ λ
−

−

=

⎡ ⎤= −⎣ ⎦ ∑   

 

where ,  t tz x  respectively are the L.th and the K.th element of vectors tZ  and Xt . 

Finally the efficient GMM estimator, by letting 
0

0

(1 )

'
T

t t

t T

Z y z y
λ

λ

−

=

= Δ∑  is 

 

13)      
1

1 1ˆ ˆ ˆ( ) '( ) ( , ) ( ) '( ) ( , ) '
GMM t t t t

G W G G W Z yβ λ λ β λ λ λ β λ
−

− −⎡ ⎤= ⎣ ⎦   

 

where, specifically 

 

14)   
11 2 1 2 1

ˆ ˆ ˆˆ ˆ ˆ ˆ( ) , , , , ,...,
GMM K

β λ μ μ τ τ ξ ξ⎡ ⎤= ⎣ ⎦   

 

whose asymptotic normality property is 

 

( )1/2 *ˆ ˆ( )   N 0, ( , )
d

GMM
T Sβ λ β β λ⎡ ⎤− →⎣ ⎦  
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where 

 

15)   
0 0

1
1

(1 ) (1 )
ˆ ˆ( , ) '( ) ( , ) ( )

T T
S G W Gλ λβ λ λ β λ λ

−−
− −

⎡ ⎤= ⎢ ⎥⎣ ⎦  

 

is the “sandwich” matrix. 

 The reasons for selecting a GMM estimation model in the present context are 

the following: 

1) the model perfectly suits the I(0) model of eq. 2 so that the estimated relevant t 

statistics are easily comparable to their simulated critical values of Table 1; 

2) the estimated coefficients are scale-free relative to equations in levels as the 

regressors in origin are often differently indexed with the risk of producing, 

otherwise, spurious coefficient results; 

3) GMM estimation automatically corrects for autocorrelation and heteroskedasticity 

of the error term by using the Heteroskedasticity and Autocorrelation Consistent 

(HAC) method (Newey and West, 1987); 

4) By accordingly selecting the optimal instrument vector, GMM disposes of 

parameter inconsistency deriving from error-in-variables estimation. 

 In particular, the second point implies the fact that nonstationary series, unless 

cointegrated, produce spurious coefficient t statistics, error autocorrelation and a 

bloated 2
R  (Granger and Newbold, 1974; Phillips, 1986). Spuriousness is also found 

between series generated as independent stationary series with or without linear 

trends and with seasonality (Granger et al., 2001) or with structural breaks (Noriega 

and Ventosa-Santaulària, 2005). These occurrences are found in this literature with 

OLS regressions where the t statistics – in particular those of the deterministic 

components – diverge as the number of observations gets large
5
.  

In the context of Instrumental Variables regressions with a stationary 

endogenous variable, however, spuriousness of the coefficient t statistics arises when 

many instruments and/or a large bandwidth are used. This is the reason why the 

appropriate bandwidth and number of instruments must be chosen (Koenker and 

Machado, 1999; Hansen and West, 2002; Kiefer and Vogelsang, 2002)
 6

. 

 

 

 

 

                                                 
5 By means of some applied experimenting with Montecarlo simulation, it is shown that in a standard OLS (T=200) 

model with an I(0)  endogenous variable and 1T K≥ ≥ regressors, the t statistics of the coefficients of the deterministic 

components, by departing from values below unity at K=1, diverge toward a value of 2.00 at a rate of 1/ 6
K . With an 

I(1) endogenous variable, the same t statistics depart at K=1 from values over 8.0 and 15.0 for the constant and the 

trend,  respectively, and remain virtually unchanged with increasing K.  
6 In a setting characterized by an I(0) endogenous variable, selection of the appropriate HAC bandwidth (HB) and   

number of instruments (L) is crucial, since large values of both give rise to spurious t statistics of the regressor 

coefficients and of their higher-fractile values. In fact, by means of the same kind of applied experimenting as the 

above, it is found that for T=200, three regressors (constant, trend and a stationary variable) and select HB = 0,1,5,30, 

the t statistics grow respectively at rates 1 5 1 4 1 3,  ,  L L L  and 1 2
L , and in general 1 2

L  for HB and L T→ . Similar results 

follow for additional stationary regressors. 
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3.2. Parametric and Nonparametric Tests for the Selection of Alternative 

GMM Models, and Dynamic Principal Component Analysis. 

   

 In GMM modeling of the static version of eq. 9, the researcher is faced with a 

large variety of choices regarding the size of the regressor and instrument sets 

(provided L K≥ ), especially when lags and/or leads of these can be included. In fact, 

coefficient estimates and their efficiency and significance can be very sensitive to 

different choices (Hansen and West, 2002). The search for the ‘best’ or ‘optimal’ 

model specification is thus no easy task, since it is based on a careful weighting 

procedure among a batch of selection tests.  

These tests are applicable to the static version of eq. 9, namely, to the single 

regression that covers the sample time span. Since this regression provides a mean of 

the coefficients and statistical tests of all the regressions for ∈Λλ , the appropriate 

selection can be easily performed. The most commonly used model selection tests fall 

into two categories: parametric and nonparametric, as follows 

1) the Akaike and Schwarz Criteria (AIC and BIC) utilized to select optimal lag 

length of the regressor set; 

2) the Durbin-Watson (DW) test for first-order autocorrelation;  

3) the J statistic for overidentifying restrictions (Hansen, 1982), distributed as 2

L K−χ ; 

4) the Anderson-Rubin (AR) and the LM tests for TSLS instrument weakness 

proposed by Andrews and Stock (2007), respectively distributed as 2

,  and  
L T L L

F − χ . 

5) the minimum eigenvalue (MIE) of the HAC weight matrix ˆ( )W β  to assess its 

magnitude, i.e., the closeness to zero (orthogonality) of the GMM sample moment 

means ˆ( )tg β ;  

6) the MIE of the T-scaled sandwich matrix ˆ( )S β  (eq. 15), to test for the magnitude 

of the variance of eq. 9, that is, for model efficiency; 

7) the maximum eigenvalue (MAE) of the matrix [ ] 1
' ' '

t t t t t t
X Z Z Z Z X

−� � , to test for 

first-stage TSLS instrument size reduction;  

8) the MIE of the first-stage TSLS matrix which, for 't te eΩ = , is defined as 

[ ] 11 1G ' ' '
T t t t t t t

X Z Z Z Z X
−− −= Ω Ω� � , a slight variant of the weak-instrument testing 

proposed in the literature (Stock et al., 2002; Stock and Yogo, 2003); 

The first, rather than parametric, may be defined as a scoring test, while the 

other three are parametric with known distributions. Instead, the eigenvalue-based 

tests and their implied null hypothesis are typically  nonparametric and require some 

explanation. Specifically, the first three eigenvalue tests (5 to 7) stem from central 

Wishart ensembles whose entries derive from Gaussian series 2. . .(0, )N I D σ . These 

ensembles are real p.d. symmetric covariance or correlation matrices, here denoted as 

V ( 2 2K K× ), which belong to random matrix theory (e.g. Johnstone, 2001 and the 

literature cited therein). The last eigenvalue test (8) comes instead from a non-central 

Wishart distribution (Stock et al., 2002; Stock and Yogo, 2003).  
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Critical values of the latter are supplied by the authors, while those of the 

former are exhibited in Table 3 for N.I.D.(0,1) and sample series of different sizes, 15 

and 70, chosen to accommodate the actual samples used in this paper, and lengths 

(T=100, 150 and 500). N=1,000 Montecarlo draws for each simulation were used. V 

is a standard covariance matrix in the first two cases (5 and 6) and a pseudo-

covariance in the third (7)
7
. For this purpose, Panels a and b are respectively 

exhibited in Table 3. 

For V a covariance or correlation matrix originated from 2. . .(0, )N I D σ  series, 

the bulk spectrum (screeplot) limiting joint distribution of the sample eigenvalues is 

close to normal if 2K  is small, and converges to the Marčenko-Pastur distribution as 

2K  gets larger (Johnstone, 2001). Moreover, the sample mean of the eigenvalues is T 

(unity) if V is a covariance (correlation) matrix, independent of 2K  and T. Instead, the 

limiting joint distribution of the centered and scaled MAEs follows the left-skewed 

Tracy-Widom joint distribution (Johnstone, 2001; Tracy and Widom, 2002), while 

the limiting joint distribution of the centered and scaled MIEs is usually very close to 

normality
8
.  

In random matrix theory, the MIE is of particular relevance to establish the 

‘magnitude’ of a matrix when the MAE→∞  whereby no precise guidance could be 

supplied in the field of indefinite numbers. The MAE is of equal relevance, especially 

when the MIE 0→ , although it addresses a different target by catching, together with 

the corresponding eigenvector, a larger if not most part of the variations of the bulk 

of the components of V.  

Both eigenvalue-based tests are used for comparative purposes among different 

models and entail specific null hypotheses. In fact, the null hypothesis of the MIE is 

that of no conditioning of the entire vector of components (i.e. instrument weakness), 

while the null hypothesis of the MAE conforms with size reduction of PCA. By 

consequence, for a preselect significance level, a MIE (MAE) larger than the critical 

value of Table 3 rejects no bulk conditioning (no size reduction). 

Given 
t

X�  (Sect. 3.1), define by virtue of the Spectral Decomposition Theorem 

the symmetric covariance matrix '
t t

X X ERE=� � , where R is the 2 2K K×  diagonal 

matrix of the eigenvalues 2, ( 1,..., )ir i K=   in descending order, and E the same sized 

matrix of eigenvectors with column elements , 2,  ( 1,..., )
i j

v j K= . For each jth 

eigenvector 
j

E , define the scalar 2arg max( ),  ( 1,..., ;  )
m j

v E m K m i= = ≠  such that the 

                                                 
7 The matrix '

t t
X Z�  is rectangular insofar as 2L K> . Hence the eigenvalues of the matrix [ ] 1

' ' '
t t t t t t

X Z Z Z Z X
−� �  are 

not the same as those of a standard random square matrix, because they are independent of T as shown in Table 3. Also, 

the distribution of the MAEs is somewhat different, as stated in the subsequent footnote. 
8 Upon Montecarlo experimentation of N.I.D.(0,1) series of length T=150 and N=1,000 conducted on the covariance 

(pseudo-covariance) matrix V with 2K = 70, the empirical Tracy-Widom distribution of the centered and scaled MAEs 

is found to exhibit skewness and excess kurtosis respectively close to 0.30 and 0.15 (.40 and .30). Notice that the 

covariance case produces results very similar to those reported by Tracy and Widom (2002) for a large-sized Gaussian 

Orthogonal Ensemble. With a smaller size ( 2K =15), skewness and excess kurtosis are much higher. Finally, the 

distribution of the centered and scaled MIEs  is found to be close to normality, although somewhat skewed (-0.15).  
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static PCA shares, corresponding to the eigenvalues in descending order, are 

described as follows 

 

16)     
2

1

( | )
K

i i m i

i

s r v r
=

= ∑ . 

 

After defining mα  the mth. regressor’s marginal significance of the coefficient, 

the time series of length 01 (1 )Tλ+ −  of the mth. regressor’s dynamic and 

significance-weighted share measured over the trimmed interval { }0 0,(1 )t T Tλ λ∈ −   

may be expressed as 

 

17)   ( ) ( )
2

1

(1 )( | ) ;  
K

i m i m i

i

s r v r
=

⎡ ⎤
λ = − α λ ∀λ∈Λ⎢ ⎥

⎣ ⎦
∑ ,  

 

which provides the Dynamic PCA to be exploited in the following Sections. 

 Apart from the dynamics involved, eq. 17 is preferable to eq.16 because it 

weighs each component share by the statistical significance appended to its 

coefficient. Traditional PCA, in fact, by ignoring this evidence and by sticking to 

nominal shares, may overstate in quite a few instances the components whose role is 

virtually close to zero. 

 

4.1.  Global Warming and Forcings During the Period 1850-2006.  

 

 Planet Earth has passed through many waxing and waning climate episodes 

during the entirety of its life. For instance, the Mid-Cretaceous (120-90 million years 

ago) and the  Paleocene-Eocene Thermal Maximum (PETM, 55 million years ago) 

have experienced temperatures distinctly warmer than today, with animals and plants 

living at much higher latitudes and with higher carbon dioxide (CO2) levels, roughly 

two to four times than the present-day ones.  

Abrupt climate changes have occurred also during the more recent Phanerozoic 

eon (Shaviv and Veizer, 2003), like the last glacial period (Alley, 2000), the 

Medieval Warm Period, centered around 1000 A.D., and the Maunder Minimum in 

Europe during the years 1645-1715 A.D. Many of these changes have affected human 

activities, like the disappearance of the Neanderthal man and countless population 

migrations, e.g. the Siberian exodus toward the Americas, the Dravidian occupation 

of Ceylon, and the short-lived experience of the Vikings in Greenland.  

In quite a few cases, climate changes are even held responsible, although not 

entirely, for the collapse of some civilizations like the Akkadians and the Mayans, 

struck by severe droughts respectively in the 22nd. century B.C. and 800-900 A.D. 

(Gill, 2000; Cullen et al., 2000). Many more human-driven episodes have directly 

affected climatic conditions and local environments: for instance the desertification 
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of Northern Africa, partly commenced since the late Roman Empire and that of 

Australia, caused by extensive burn-and-slash practices of the aboriginals.  

While the above cited may be casual episodes of the often perverse relationship 

between humans and nature, the by now secular global warming phenomenon is 

undoubtedly cause of concern. In fact, the last hundred years or so have experienced 

a renewed climate change by exhibiting a rise in the mean global surface temperature 

by about 0.6 ± 0.2°C since the late 19th century, and by about  0.35 ±0.05° C over the 

last 40 years (Chenet et al., 2005). This global warming phenomenon, while 

definitely not being unique in Earth’s history (Baliunas and Soon, 2003), has spurred 

intense debate on the analysis of its causes and is by now a worldwide major issue 

which involves popular media, scientists, corporations, governments and political 

organizations. 

In fact, while the rise in temperatures is of undisputed evidence, yet at a lower 

pace in the last decades, the search for a main culprit is still in progress and well 

alive, and is being characterized by two opposing fronts regarding its causes: the 

advocates and the skeptics of the anthropogenic origin. 

Advocates of the human-induced greenhouse effects, purportedly caused by 

CO2 emissions and industrial aerosols, include several scientists (e.g. Hansen et al., 

2007), the UN-mandated Nobel-prized Intergovernmental Panel on Climate Change 

(IPCC), and large sections of governments and politicians, involved in fostering 

public scares, fund raising, propaganda, data mining and even red tape
9
.  

Skeptics, on the other hand, form a scientifically-based consensus that supports 

and proves the prevalence of long-run evolving natural causes, defined as “global 

forcings”, like solar activity and Cosmic Ray Flux (CRF) (Shaviv and Veizer, 2003; 

Svensmark, 1998; Bard and Frank, 2006, Usoskin et al., 2003), volcanic aerosols 

(Mann et al., 2005) and ocean currents (Gray et al., 1997). This consensus is based on 

reliable paleoclimatological dataset reconstructions (e.g. Crowley, 2000; Lean, 2000, 

2004; Usoskin et al, 2003, 2004a, 2004b; Mann et al., 2005; Krivova et al., 2007), 

most of which are downloadable from the National Oceanic and Atmospheric 

Administration (NOAA) website. 

Clearly, the analysis of the interaction of the variables implied in the secular 

global warming process is very complex, as it requires countless and valuable in-

depth experimenting stemming from different scientific fields, such as astrophysics, 

climatology, biology and chemistry. Statistics and econometrics may contribute to the 

current state of knowledge by supplying interesting insights into causality occurring 

in a casual environment. Not much work has been produced hitherto in this field, 

except for few though valuable contributions (e.g. Lanne and Liski, 2004; Kaufmann 

et al., 2006). Certainly more will come in the future. 

                                                 
9
 See the 4th. Assessment Report (AR4, 2007), which uses spurious techniques to estimate the trending behavior of 

temperatures over the past 150 years and derives unwarranted conclusions. Even more technically unfounded (but 

maybe equally funded) than Nobel Peace Prize Al Gore’s statements (e.g. the Capitol Hill testimony on global warming 

in March 2007) is, among many politicians, the contribution of the jolly Italian ex-minister of the Department for 

Environment, A. Pecoraro Scanio. He is in fact poised of having stated to the public media that the average 

temperatures in his country, during the last quarter century, have grown by fourfold more than those of the neighboring 

countries ! 



 15

Global warming is identifiable with data sets on land and sea temperature 

recordings collected by different agencies for select periods, areas, altitudes, 

hemispheres, etc. Of these, the Best Estimated Anomaly (BEA) of the updated 

HADCRUT3 dataset (Brohan et al., 2005), available for the period 1850-2006 on an 

annual basis, was here selected due both to its spatial and temporal breadth. 

Therefore, the BEA index represents the endogenous variable used in eq. 9, whose 

GMM estimated parameter vector is given by eq. 13.  

In line with BEA, which constitutes a time series of 157 observations and is 

synonym of global warming and climate change
10

, an ample dataset of forcings was 

retrieved from different sources worldwide available over the internet, and especially 

from the NOAA website. The list of forcings which play the role of regressors and 

instruments in GMM estimation is exhibited in the Data Description and Sources, and 

is made of the following two main categories: anthropogenic and natural forcings.  

The anthropogenic forcings include average real GDP percapita of the total 12 

Western Europe major countries and of its overseas offshoots (U.S.A., Canada, 

Australia and New Zealand), and their total population (Maddison, 2007)
11

. They are 

respectively labeled INCOME and TPOP. Anthropogenic forcings also include the 

components of trace or greenhouse gases (GHGs), which are given by four measures 

of emissions: carbon dioxide in global volume (Marland et al., 2007), and final 

emissions of CO2, methane and nitrous oxide expressed in terms of Radiative 

Forcing (RF) (Robertson et al., 2001). They are respectively labelled as: CO2V, 

FCO2, FCH4 and FN2O. While the first may be considered as a stock, the other three 

are a flow. 

The category of natural forcings includes the average yearly number of 

monthly sunspot series (NGDC, 2007), a measure of total solar irradiance received at 

the outer surface of Earth's atmosphere in terms of RF (Krivova et al., 2007), 

combined solar and volcanic RF, composite solar RF, combined solar and volcanic 

RF, composite volcanic RF, tropical volcanic RF (Mann et al., 2005) and, finally, 

Pacific Decadal Oscillations (Shen et al., 2006). In sequence, these forcings are 

labelled as: SUNSPOTS, TSI, VOLSOL, COMPSOL, COMPVOL, VOL and PDO. 

When unavailable for the more recent years, the data series are forecasted by 

the autoregressive method, with lags p selected via minimum BIC. Other available 

data, such as  tropical solar RF (Mann et al., 2005), tropospheric aerosols represented 

by sulphur and fossil-fuel black carbon emissions (Crowley, 2000), and measures of 

Beryllium 10 (10 Be ) and Radiocarbon 14 (14C ) that proxy CRF (Crowley, 2000), 

were left out of the list because of excess collinearity with some of the above. In fact, 

after performing appropriate HP filtering (Hodrick and Prescott, 1997) of all level 

forcings – logged when applicable
12

 – and extracting their cyclical component, these 

                                                 
10 On the subtle, yet not insignificant difference between climate and temperatures see Baliunas and Soon (2003). 
11 By dating back to 1850, this data subset - albeit limited - is the only available in Maddison’s comprehensive statistics 

that stretches the period chosen. 
12 All level forcings are loggable, exclusion made for the volcanic activity variables (VOL, VOLSOL and COMPVOL) 

which come in negatives. In such case the raw data were used. The smoothing parameter of the HP filter, given annual 

observations, was chosen to be 15, twice as the value suggested by Ravn and Uhlig (2001). The (rather arbitrary) 

motivation stands in the attempt at compromising between some highly trended raw series (e.g. incomes) and others of 
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were found to be correlated at levels higher than 0.85, and then discarded because of 

the risk of obtaining downsized coefficients and t statistics during regression 

estimation. 

Table 4 reports some descriptive raw statistics of BEA and of the 13 selected 

forcings. Of interest are the large differences between the minima and the maxima of 

SUNSPOTS, PDO and CO2V, expressed in terms of their volatility coefficients. 

Also, the majority of the ADF t-test statistics reveals nonstationarity, justifying the 

need for filtering in order to achieve nonspurious regression results (Sect. 3.1). 

Finally, Figs. 1 to 3 illustrate the levels and the HP-filtered differences of the 

logs of BEA and of the 13 forcings. From the left panel of Fig. 1, global warming can 

be shown to exhibit a trending behavior since 1850
13

, which is ostensibly stationary 

when appropriately differenced. All of the human forcings exhibit a trend, but 

methane (FCH4) seems to taper off in the last decade. On the other hand, the natural 

forcings are mostly cyclical, with SUNSPOTS exhibiting a known regularity of 

around 11 years.  

 While retaining their labels, all the variables used in calculations and 

estimations that will follow are henceforth understood, unless otherwise defined, to 

be represented by their HP-filtered magnitudes (see fn. 12). 

 

4.2. Expected Effects of Forcings over Global Warming. 

 

The 13 listed forcings by means of ongoing research are expected to bear 

specific effects over the World temperature changes represented by BEA. Whether 

founded or ungrounded, these purported effects are at first presented, then tested for 

by means of Granger causality testing (Granger, 1969). 

Of the human forcings, economic activity and the size of population (INCOME 

and POPULATION) are expected to raise BEA via GHG emissions, extensive 

deforestation and generalized use of inefficient technologies. The United States and 

China nowadays, appear by some estimates to be the main responsible for CO2 

volume emissions, and especially the second is poised to double its GHG emissions 

within a decade or so. 

 Solar activity manifests itself in different forms that may significantly affect 

climate variability. Sunspot numbers (SUNSPOTS), total solar irradiance (TSI) and 

solar cosmic rays (CRF) are highly correlated and constitute the ensemble of “solar 

forcing”. Their long-run reconstructions stem from direct measurements, like the 

                                                                                                                                                                  
cyclical nature (e.g. sunspots). Too low a smoothing parameter applied to low-frequency raw series would in fact 

produce a cyclical output not strictly comparable with that obtained from high-frequency raw series, thereby giving rise 

to spurious coefficients in regression estimation. 
13 The logged level of the BEA equation can best be represented as follows 

4 6 2 2

1(BEA)   1.103-10 10 .578 (BEA) ; R .829,  D.W.=1.981

                         (6.4) (2.1)     (3.9)       (8.8)

t t
Log T T Log

− −
−= − + =

 

where the t-statistics are reported in brackets, and T and 2
T  respectively are the linear and the squared trend. Although 

partly spurious, the equation is still good at showing a negative relationship between levels and T, such that their 

derivative with respect to time is 4(BEA) 1.16(10 )Log T
−∂ ∂ = − . This is clearly indicative of an overtime mild but 

significant  tapering off of the series. 
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sunspot numbers since Galileo, or from solar proxy variables like the accumulated 

layers of 10 Be  in ice cores and 14C  in tree rings. Whether directly or through cloud 

formation or by changes in the Earth’s albedo, solar forcings are in many cases 

shown to sizably affect the Earth’s climate (Usoskin et al., 2003, 2006; Shaviv and 

Veizer, 2003; Svensmark, 1998).  

 In particular, increased sunspot activity – according to some theories – causes a 

cooling of the Sun’s surface by trapping its energy output. This was evidenced by 

telescope measurements made from 1976 to 1980, which showed that the sun's 

surface had cooled by about 6° C as the number and size of sunspots increased. Also, 

it is known that the Little Ice Age coincided with a sunspot minimum. However, the 

matter is debated, since according to other theories the correlation between climate 

changes and sunspot numbers is positive (Baliunas and Soon, 2003). 

 TSI is expected to raise the Earth’s temperatures via increased luminosity, 

although there is no general agreement on its size and significance nor on its 

relationship with sunspots, since its variability (only 0.1%-0.2% over the 11-year 

cycle) is so low as to deserve the nickname of ‘solar constant’ (Fouka et al., 2006). 

TSI is likely to operate in conjunction with the CRF by negatively affecting climate 

via low-altitude cloud cover and increased rainfalls (Svensmark, 1998; Svensmark 

and Frijs-Christensen, 2007; Shaviv, 2005).  

Volcanic activity is also poised to affect climate, especially in the Northern 

Hemisphere (Shindell et al., 2004). The release of aerosols rich of sulphates and CO2 

reflects sunlight away from the surface of the Earth causing a climate cooling due to 

dust veils (tephra) suspended in the atmosphere. At the same time, however, aerosols 

absorb solar and infrared radiation leading to warming of the surrounding air masses. 

This applies in particular to large volcanic eruptions whose effects may last for years, 

as in occasion of the eruptions of Krakatoa in 1883, El Chichón in 1982 and Pinatubo 

in 1991. The net effect on overall climate is therefore still matter of dispute (Shindell 

et al., 2004; Mann et al., 2005; Chenet et al., 2005).  

 The IPCC doggedly defends since at least a decade the anthropogenic 

hypothesis by stating in its Third Assessment Report (AR3 2001) that "forcing due to 

changes in the Sun's output over the past century has been considerably smaller than 

anthropogenic forcing…Its level of scientific understanding [is] very low, whereas 

GHGs forcing continues to enjoy the highest confidence level….[and] the temporal 

evolution indicates that the net natural forcing has been negative over the past two 

and possibly even the past four decades….[It is thus] unlikely that natural forcing can 

explain the warming in the latter half of this century".    

In its Fourth Assessment Report (AR4, 2007) the IPCC, while maintaining  that: 

“There is very high confidence that the net effect of human activities since 1750 has 

been one of warming”, issues severe warnings about melting glaciers and Polar ice 

sheets, increased hurricane intensity due to substantial changes in wind patterns, 

average sea level rise, worsening droughts and heavier precipitations and, finally, a 

growing gap between human-driven and solar RFs. Warming would thus be 

attributed to solar forcing by a 10% share with the remaining 90% attributable to 

human forcing in terms of GHG emissions, supposedly capable of absorbing infrared 
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energy within the troposphere
14

. 

The contentions here produced can be on a first instance checked by means of 

Granger Causality testing, which uses a regression of the following kind: 

 

18)    , , , t

1 1

+ +         
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where a is the constant term, and tυ  is an IID disturbance. 
,i t

X�  is the preselect forcing 

regressed against a constant, lags of itself and lags of a preselect cross forcing ,j t
X� , 

i j≠ . The parameters 
pθ  and  

p
ϑ  refer to their own arguments for lags [1, ]p P∈ .  

After setting a range of P from 1 to 35 years, the BIC is chosen as the proper 

lag selection criterion, since for small samples the AIC – by prefering longer lags – is 

notoriously inconsistent. Results of the most relevant causalities are exhibited in 

Table 5, with the proviso that they are merely descriptive being of bivariate nature 

and that only multivariate econometric modeling, especially in the dynamic form 

adopted in this paper, provides the necessary guidance for drawing grounded 

conclusions regarding causality. 

 Specifically, the only significant Granger causalities (beneath 5% marginal 

significance) are those recorded from TSI to SUNSPOTS, which is negative, and 

those from volcanic activity and PDO over BEA, which respectively are positive and 

negative. Apart from these, no causality is acceptable by common standards, 

excluding the one running from CO2V to BEA (which stands beneath 10% marginal 

significance and is positively signed). Far from drawing from this evidence hasty and 

unwarranted conclusions, the long-debated IPCC contention finds some support, let 

alone the results emerging from the following Section.  

 

4.3. GMM Model Selection and Preliminary Empirical Results. 

 

 As advanced in the Introduction, testing for breaks in the time series of global 

warming and its causes is equivalent to testing for the null hypothesis of its 

anthropogenic nature. Natural causes during the period 1850-2006, in fact, do not 

exhibit any known substantial break worldwide.  

The detection of single and multiple breaks, obtained by means of the Zivot- 

Andrews (1992) and of the Bai-Perron (2003) procedures, produces conflicting 

results which are very sensitive to both the lags of the endogenous variable and of the 

forcings included
15

. This is an additional reason for proceeding, after performing the 
                                                 
14 According to some IPPC estimates, “a GHG level of 650 ppm would “likely” warm the global climate by around 

3.6°C, while 750 ppm would lead to a 4.3°C warming, 1,000 ppm to 5.5°C and 1,200 ppm to 6.3°C. Future GHG 

concentrations are difficult to predict and will depend on economic growth, new technologies and policies and other 

factors”  (Press conference, Paris, February 2, 2007) 
15
 As to the former single-break test, the dates of 1875 and 1877 are selected depending on the lags included in the 

endogenous variable. As to other test, which is set to allow a maximum of four level breaks, there is a large multiplicity 

of level breaks depending on the lags attributed to the forcings. By sticking to the lowest BIC among these alternatives, 

the break dates range from 1874 to 1975,  passing through the Fifties and the Sixties. 



 19

optimal static GMM model selection, along the lines of the proposed dynamic 

method so as to analyze the time series of breaks, coefficient and shares of the 

forcings that determine global warming.  

Table 6 shows, with reference to Sect. 3.2, the magnitudes of the different tests 

adopted to select the optimal H/M combination among different static GMM model 

specifications
16

. While the magnitude of the Durbin-Watson statistic (DW) definitely 

rules out H=3, the AR and especially the LM test statistic (Andrews and Stock,  

2007) significantly point to the combination H=2 and M=6, for a size of the 

instrument set L=66 and a HAC bandwidth (HB) equal to 2. DW, the AIC and BIC 

also prefer M=6 with respect to M=7. 

In addition, the first two MIE tests for H=2 included in Table 6 exceed the 99% 

critical values reported in Table 3 Panel a for similar sizes, thereby rejecting the null 

of no weakness, so much as the last MIE test, whose magnitude exceeds its critical 

value (Stock et al., 2002; Stock and Yogo, 2003). Finally, the MAE test statistic falls 

short of the corresponding  tabulated values in Table 3 Panel b, significantly not 

rejecting the null of no size reduction. 

Finally, the combination of the MIE and MAE with the AIC and BIC results 

lend support for the optimal H/M parsimonious combination to be made up of 2 

regressor and 3 instrument lags, for a size of the instrument set L=66. Table 7 shows 

the coefficient and share results of the corresponding static GMM specification. The 

shares reported are both expressed in nominal and in significance-weighted terms. As 

to the latter, the sum of the natural and of the human forcing contributions 

respectively are roughly 55% and 35%, well off the mark of 10% and 90% 

established by the IPCC (AR4, 2007). Interestingly enough, when passing from 

nominal to weighted shares, the contribution of CO2V dramatically falls while that of 

FN2O slightly rises. 

Table 8 eventually produces the statistics of the dynamic GMM estimation 

with breaks. Due to a trimming factor 
0 .10λ = , the period covered is restricted to 

1864-1990. The weighted share means reported
17

 assign to the trend and to changes 

in the major natural forcings (SUNSPOTS, TSI and PDO) a tally of over 70%. Only 

one of the weighted shares of changes in the anthropogenic forcings exceeds 5%, and 

their tally is no more than 20%. In particular, the share of CO2 volume emissions is 

responsible of climate changes in terms of global warming by 5.6% only, well far 

away from the 90% statistic concocted by the IPCC (AR3, 2001). 

The mean coefficients are also of interest. Changes in TSI, FCO2 and FN2O 

have a negative effect over climate changes independent of their magnitude, which 

reflects the different scales of the forcings (see Table 4). Hence, they are on average 

                                                 
16 The combination H=3 and M=8 is not included due to some matrix singularities. With H=1, the statistical significance 

of the J statistics is unacceptably low and its results go unreported. Finally, larger H magnitudes than those reported 

exceedingly reduce the degrees of freedom given the length of T. The repetition of the “Count” column in the Table is 

merely included for readability purposes. Although unreported for ease of space, the ADF t-test statistics of the 

disturbance  significantly reject the null of no stationarity. 
17 The means of the weighted shares do not tally 1.0 because their standard errors are left out. For each observational 

year they of course do. The share of the constant term is always zero by definition, while the trend coefficient is on 

average expected to be zero, as shown in Sect. 2.1, but can be nonzero in a dynamic model with breaks (Appendix). 
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temperature dimmers. There follows, thus far, that two out of three GHGs expressed 

in RF do not cause warming, but on the contrary prevent solar irradiance to reach the 

Earth’s surface.  

In addition, changes in TSI on average are dimmers while SUNSPOTS are 

warmers. This counterintuitive evidence can be explained by the recently reckoned 

phenomenon that solar flares, which occur to the accompaniment of TSI, generate 

storms of solar-magnetic flux that partially shield the Earth from cosmic radiation 

and promote cloud formation (Svensmark, 1998; Svensmark and Frijs-Christensen, 

2007). On the other hand, sunspot numbers are on average warmers because, by 

raising total solar output, they negatively affect mean cloudiness and outweigh the 

effect of TSI (Baliunas and Soon, 2003; Usoskin et al., 2003). 

 

4.4. Time Series of Breaks, Coefficients and Shares of the Selected GMM 

Model. 

 

Of even greater interest than the results above reported is the analysis of the 

overtime evolution of breaks, coefficients and weighted shares obtained from the 

selected dynamic GMM model estimation. 

Fig. 4 shows the time series of the coefficients and of the t-statistics of the level 

and trend breaks. Neither of these exceeds in absolute terms the critical values 

provided in Table 1 for any of the given λ  magnitudes. In fact, their minima 

(maxima) respectively are -1.897 and -0.415 (2.754 and 1.775), well within the 

absolute value of any of the tabulated figures. The purported null hypothesis of one or 

more structural breaks associated to human forcings is therefore rejected, different 

from the results previously achieved with the Zivot-Andrews and the Bai-Perron tests 

(Sect. 4.3), and similar in kind to those of Lanne and Liski (2004). 

The trimmed time series of the level and trend break coefficients are shown in 

Fig. 4. The first exhibits no trend and has a nonzero mean, while the second has zero 

mean and is slightly declining with time, i.e., it has a negative trend. This reinforces 

the finding that the endogenous variable (BEA) tapers off overtime, as shown in Sect.  

4.1. 

Fig. 5 shows the time series of the coefficients of the individual forcings, 

whose descriptive statistics are provided in Table 8. For most part of the trimmed 

sample, the impact of changes in the GHGs (FCO2, FCH4 and FN2O) over BEA is of 

negative sign, confirming their dimming as opposed to warming effect over climate 

changes. Only the impact of the CO2 volume is mostly positive, but it shows a severe 

drop since the second half of the Seventies, perhaps because of the improved 

worldwide controls over its emissions (Lanne and Liski, 2004). In any case, the sign 

positiveness of CO2V is explained by condensation of FCO2 emissions into clouds 

and aerosols formed by their cooling of the troposphere. This accumulative process 

after several decades, by absorbing solar infrared energy, causes like volcanic activity 

a greenhouse effect (Hansen et al., 2007) and/or a magnified transmission of solar 

irradiance over the Earth’s surface.   

The time-changing impact of SUNSPOTS and TSI over BEA is systematically 
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positive and negative in sign, respectively. Their patterns are somehow specular in 

trend, since the first peaks in the years 1940-50 and the second troughs a decade later. 

Specifically, the coefficient of SUNSPOTS has been falling during the last half-

century or so, while that of TSI has been rising. While retaining the conclusion that 

the first variable is a warmer and the second a dimmer, the net dynamics of the 

coefficients are consistent with the tapering off of BEA, which is demonstrated to be 

caused by a reduced impact of sunspot activity and a growing impact of solar 

irradiance. Of varying intensity, and positively signed, are also the coefficients that 

represent the impact of volcanic activity (VOL) and of the Pacific Decadal 

Oscillation (PDO) over climate changes. While VOL’s  ‘winter warming’ impact 

(Shindell et al., 2004) is falling since the early 20th. century after the Krakatoa effect, 

the PDO’s impact is widely cyclical, but exhibits a drop during the last decades (Gray 

et al., 1997).  

Since the coefficients of other forcings are mostly irrelevant, there remains to 

interpret the time-changing effects, both positively signed, of the remaining two 

anthropogenic forcings: incomes and total population. INCOME’s impact over BEA 

shows a dramatic drop since the early sixties, maybe because of the large introduction 

of more efficient techniques and of the progressive abandonment of coal as a source 

of energy. It again rises since the early Nineties in conjunction with TPOP’s impact, 

maybe because of the large-scale industrialization process enjoyed by China and 

India, where energy consumption is still out of check. 

Figs. 6 and 7 show the HP-smoothed composite and individual weighted shares 

of all forcings obtained by applying the dynamic PCA criterion introduced in Sect. 

3.2
18

. While letting the explanatory role of coefficients unabated, the time-varying 

shares gauge the size of the contribution of the forcings in the variance of climate 

changes. In particular, from Fig.6, the share of all solar forcings (SUNSPOTS, TSI, 

VOLSOL and COMPSOL) unmistakably rises during the trimmed period considered 

from 28% to nearly 45%, while that of population and incomes more than halves 

from an initial value of 12%. The other two composite shares, represented by all 

emission forcings (CO2V, FCO2, FCH4 and FN2O) and by nonsolar natural forcings 

(VOL, COMPVOL and PDO), remain essentially constant though exhibiting slight 

troughs within the first third of the trimmed sample. They respectively average 13% 

and 26%, as computable from Table 8.   

In Fig. 7 the evolution of the individual weighted shares is shown. Of special 

interest are those of SUNSPOTS and TSI, VOLSOL and COMPVOL, all on the rise. 

The last of these compensates the falling VOL’s share so as to safely conclude – even 

more so after adding the contribution of VOLSOL – that the major volcanic eruptions 

during the period considered (Krakatoa, Mount St.Helen’s, Pinatubo and a few more) 

have played a significant role in global warming, although with an overtime falling 

effectiveness as previously observed.  

Of the GHGs, all shares are declining except for the share of CO2V, which 

                                                 
18 The original weighted shares exhibit jags much like the corresponding coefficients. For ease of inspection, they are 

trended by means of HP filtering with a coefficient of smoothing equal to 16,000, large enough to produce the 

continuous lines shown in the graphs.   
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grows from 2% to 8%. This evidence confirms the previous finding of accumulated 

CO2 emissions suspended in the atmosphere. However, if the trends in the shares of 

FCO2 do not change, like of those of the other two pollutants, the share of CO2V is 

eventually destined to drop. Of interest is also the decaying share of the linear trend 

which reinforces the finding of a progressive fall in the rate of growth of BEA. 

Finally, worth of notice are the shares of population and incomes. While 

exhibiting positively signed effects over BEA, their shares are in steep descent over 

the period considered although they seem to resume somewhat toward the end of the 

sample, much in line with the behavior of their coefficients.  

 

5. Conclusions. 

 

The first and foremost finding of this paper is the following: human forcings of 

whatever nature are barely responsible for the climate changes that have occurred on 

Planet Earth during the past 150 years.  

Along this period no significant break has ever occurred in the mean world 

temperatures that may be attributable to human forcings. While global warming is of 

undisputable evidence, although subject to a progressive tapering off, the greenhouse-

gas emissions play a minor causative role that does not exceed the 15% contributive 

share over climate changes and, in general, act as temperature dimmers and not 

warmers. In other words these emissions, rather than preventing heat from escaping 

into the atmosphere, tend to shield the Earth from solar output. Only after 

condensation and suspension in the troposphere do they cause some global warming, 

via a greenhouse effect and/or a magnified transmission of solar irradiance. 

A host of natural forcings should be much more incisively held responsible for 

climate changes, although with different intensities and effects during the period 

analyzed. Nonsolar forcings, of which chiefly volcanic activity and Pacific Decadal 

Oscillations, are significant and sizable temperature warmers while, out of solar 

forcings, sunspot numbers act as a warmer and solar irradiance as a dimmer. The 

combined net effect of these natural forcings over climate changes has been growing 

overtime and has by now exceeded the 75% share.  

 These results demonstrate that the much-vaunted and daunting IPCC thesis of 

human forcing over climate change is seriously ungrounded by any empirical means. 

While still suggesting national governments and politicians alike to control for GHG 

emissions to avoid from that direction a cooling of our planet, this paper has shown 

that global warming is a process destined to wane shortly, essentially because of the 

decaying effect of solar sunspots since a few decades by now.  

In conflict with IPCC’s prediction of a more than century-lasting mean 

temperature increase from now, with its purported worldwide spate of cataclysms, 

today’s estimated fading warming will simply appear as a blip in the next 

generations’ time series analysis of the Earth’s climate changes.  
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Data description and sources. 

 

1) BEA: Best Estimated Anomaly scaled to 14 degrees C, HADCRUT3 dataset, 

Brohan et al., 2005. 

2) SUNSPOTS: Yearly averages of monthly sunspot numbers, National Geophysical 

Data Center (NGDC), 2007. 

3) CO2V: CO2 total emissions measured in million metric tons of carbon:  Gas + 

Liquid and solid fuels + CO2 emissions from cement production + CO2 emissions 

from gas flaring, Marland et al., 2007. 

4) INCOME: Average of real GDP percapita of total 12 Western Europe, and its 

offshoots (GDDPC, 1990 International Geary-Khamis dollars), Maddison, 2007. 

5) TPOP: total population in Western Europe and its offshoots, Maddison, 2007. 

6) TSI:  Total solar irradiance RF reconstruction, Krivova et al., 2007. 

7) VOLSOL: Combined solar and volcanic natural RF, Model result estimates (Niño-

3 index, anomalies in degrees C), Mann et al., 2005. 

8) COMPSOL: Composite solar RF only, Model result estimates (Niño-3 index, 

anomalies in degrees C), Mann et al., 2005. 

9) COMPVOL: Composite volcanic RF only, Model result estimates (Niño-3 index, 

anomalies in degrees C), Mann et al., 2005. 

10) VOL: Tropical Volcanic RF, Mann et al., 2005. 

11) PDO: Pacific Decadal Oscillation Reconstruction, Shen et al., 2006. 

12) FCO2: Carbon Dioxide, final globally averaged volumetric concentration in 

ppmv, Robertson et al., 2001. 

13) FCH4: Methane, final globally averaged volumetric concentration in ppbv, 

Robertson et al., 2001. 

14)  FN2O: Nitrous Oxide, final globally averaged volumetric concentration in ppbv, 

Robertson et al., 2001. 
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Appendix. 

 

Limit Distributions of the t Statistics of Level and Trend Breaks with 

Different Alternatives.  

 

 The elements of eq. 5, for 
tε  and σ  from *

t
yΔ  given in the text (Sect. 2.1), are 

obtained as  follows 
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while in eqs. 8.1 and 8.2  
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These two Brownian functionals are I.I.D.(0,v), with v finite variance. Hence, if    
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which implies that, independent of λ , the two functionals tend to zero with different 

rates of convergence as T grows. In other words, the Central Limit Theorem applies 

independent of λ .  

 Given the null and the alternative models represented by eqs. 1 and 2 in the 

text, here both replicated 

 

A.1)      1 = t t t ty y y e−Δ ≡ −  

 

A.2)   1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( );  t t t ty DU t DTμ λ μ λ λ τ λ τ λ λ ε λ λΔ = + + + + ∀ ∈Λ  
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the coefficients’ limit distributions (Perron and Zhu, 2005) for 2( ) . . .(0, )t I I Dε λ σ∼ , 

are 

 
1/ 2 * 2

1 1
ˆ( ) (0,4 / )T Nμ μ σ λ− ∼ , 3/ 2 * 2 3

1 1
ˆ( ) (0,12 / )T Nτ τ σ λ− ∼ , 

( )1/ 2 * 2

2 2
ˆ( ) 0,4 / (1 )T Nμ μ σ λ λ− −∼  and 3/ 2 * 2

2 2
ˆ( ) (0,12 )T Nτ τ σ− Φ∼ ,  

 

where 2 3 3(3 3 1) /(1 )λ λ λ λΦ = − + − .  

The nonstandard t statistics derived from A.2, by construction, symmetrically 

fall then rise for increasing values of λ∈Λ  and achieve their minimum at 0.50λ = , 

with expected values of eq. 8.1 slightly smaller than those of eq. 8.2, as shown in 

Table 1. 

 Of interest are the t statistics of the constant ( 1μ ) and of the trend ( 1τ ) of eq. 

A.2, respectively denoted as * ( , )Tt Lλ  and * ( , )Tt Tλ . They are  
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and, as 1λ→ , *( , ) ( , )
T T

t L t Lλ λ− →∞ , while *( , ) ( , )
T T

t T t Tλ λ−  for low values of λ  

is negative and otherwise positive. In other words, the t statistic of the constant is 

always smaller than that of its break, and the t statistic of the trend is larger (smaller) 

than that of its break if λ  is small (large). 

As an exercise, after dropping henceforth for ease of reading the notation ( )λ , 

suppose now that the alternative I(0) non-break model with constant and trend were 

given by  

 

A.3)   1 1t ty tμ τ εΔ = + +   

 

so that, for 2. . .(0, )
t

I I Dε σ∼ , the coefficients’ limit distributions are 

 

  1/ 2 * 2

1 1
ˆ( ) (0,4 )T Nμ μ σ− ∼  and 3/ 2 * 2

1 1
ˆ( ) (0,12 )T Nτ τ σ− ∼ . 

  

The variances of 1 1
ˆ ˆ and μ τ are lower than their break counterparts derived from 

eq. A.2 ( 2 2 2 2 34  and 12  vs.  4 /  and 12 /σ σ σ λ σ λ , respectively). By consequence 

their standard errors are also smaller. 
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 The standard t statistics of eq. A.3, respectively denoted as * ( )
T

t L  and * ( )
T

t T  are 
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which respectively correspond to those of eqs. A.2.1 and A.2.2 if 1λ = . They are 

smaller than these and of those reported in eqs. 8.1 and 8.2. Incidentally, for both 

statistics to be asymptotically equal to the standard value of 1.96, the 95% fractile 

values of W(1) and 

1

0

( )W r dr∫  must respectively equal 7.31 and 3.09. 

 The (asymptotic) coefficients of eq. A.3 are:  
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which may be confronted with those of eq. A.2: 
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If 1 1 2 21,   and λ μ μ μ μ= = = . Instead, for 1 1 2 20,    and  λ μ μ μ μ→ < < , namely, 

the coefficients of the non-break alternative model are smaller than those of the break 

model, especially if the true breaks occur at early dates. 

 As a further exercise, we assume now that the alternative I(0) model is made of 

the two breaks only , i.e.   

 

 A.4)   2 2( ) ( ) ( ) ( )t t t ty DU DTλ μ λ τ λ ε λΔ = + +  

 

The resulting t statistics, respectively denoted as **( , )
T
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which correspond to those of eqs. A.3.1 and A.3.2, respectively, if 0λ = . 

Finally, if  the disturbance tε  in Eq. 2 is I(1) as in Perron and Zhu (2005), then 

eq. 6 is 
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whereby the t-statistics of the breaks, the counterparts of eqs. 8.1 and 8.2, are given 

by the following 
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which are, for the same values of λ , distinctively larger than their I(0) counterparts, 

reflecting the spuriousness of the equation they are derived from.  
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Table 1. 

Critical values of ( , )Tt Lλ  e ( , )Tt Tλ  for select magnitudes of λ  and different marginal significance levels 

(bold), and 10% confidence bands. T=200. 
  1%   5%   10%  

λ =0.10 

( , )
T

t Lλ  12.18 11.53 10.88 8.88 8.23 7.58 7.16 6.51 5.86 

( , )
T

t Tλ  14.50 13.73 12.97 10.41 9.64 8.88 8.29 7.52 6.76 

          

λ =0.20 

( , )
T

t Lλ  8.14 7.73 7.32 5.67 5.26 4.85 4.53 4.12 3.71 

( , )
T

t Tλ  9.43 8.94 8.44 6.64 6.15 5.65 5.28 4.79 4.29 

          

λ =0.30 

( , )
T

t Lλ  5.45 5.15 4.85 4.08 3.78 3.48 3.21 2.91 2.61 

( , )
T

t Tλ  6.81 6.46 6.11 4.81 4.46 4.11 3.84 3.49 3.14 

          

λ =0.40 

( , )
T

t Lλ  4.78 4.53 4.28 3.42 3.17 2.92 2.70 2.45 2.20 

( , )
T

t Tλ  4.98 4.72 4.45 3.58 3.31 3.05 2.82 2.55 2.29 

          

λ =0.50 

( , )
T

t Lλ  4.38 4.15 3.91 3.18 2.94 2.71 2.54 2.31 2.08 

( , )
T

t Tλ  4.18 3.95 3.72 3.16 2.93 2.70 2.51 2.27 2.04 

          

λ =0.60 

( , )
T

t Lλ  4.44 4.20 3.95 3.25 3.01 2.77 2.63 2.38 2.14 

( , )
T

t Tλ  4.96 4.70 4.44 3.60 3.34 3.08 2.86 2.60 2.34 

          

λ =0.70 

( , )
T

t Lλ  5.83 5.53 5.23 4.02 3.72 3.42 3.22 2.92 2.62 

( , )
T

t Tλ  6.75 6.40 6.05 4.73 4.38 4.03 3.77 3.42 3.07 

          

λ =0.80 

( , )
T

t Lλ  7.82 7.41 7.00 5.60 5.19 4.78 4.37 3.96 3.56 

( , )
T

t Tλ  9.30 8.81 8.32 6.66 6.17 5.68 5.19 4.70 4.21 

          

λ =0.90 

( , )
T

t Lλ  11.78 11.13 10.48 8.86 8.21 7.56 7.02 6.37 5.72 

( , )
T

t Tλ  13.97 13.20 12.44 10.43 9.66 8.89 8.27 7.50 6.73 

The marginal significance levels (1%,5% e 10%) represent the unit complements of the fractiles  (99%, 95% and  90%) of the 

distribution of the t statistic of an artificial Random Walk of N=10,000 Montecarlo replications. The confidence bands are obtained by 

applying 2 standard deviations. 
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Table 2.  
Variances of  the t statistic of a break in level ( , )

T
t Lλ  and of  the t statistic of a break in trend ( , )

T
t Tλ and of 

their components. 10,000 Montecarlo draws of eq.1 for sample size T=200 and break fractions 0.10 0.90λ≤ ≤ .

λ  ( , ) _
T

t L numλ  ( , ) _
T

t T numλ  (1)Wλ (3 1) (1)Wλ λ −  

1

0

2(2 1) ( )W r drλ − ∫  
( , )

T
t Lλ  ( , )

T
t Tλ  

        

0.10 0.25 0.76 0.01 0.00 0.86 24.85 34.76 

0.20 0.18 0.40 0.04 0.01 0.48 10.08 14.45 

0.30 0.13 0.19 0.09 0.00 0.21 5.32 7.29 

0.40 0.10 0.09 0.16 0.00 0.05 3.65 4.15 

0.50 0.09 0.06 0.25 0.01 0.00 3.23 3.15 

0.60 0.10 0.09 0.36 0.23 0.05 3.52 4.05 

0.70 0.13 0.19 0.49 0.60 0.21 5.33 7.21 

0.80 0.18 0.40 0.64 1.26 0.48 9.89 14.12 

0.90 0.25 0.76 0.81 2.35 0.86 24.94 34.79 

( , ) _
T

t L numλ and ( , ) _
T

t T numλ are the simulation estimated numerator of eq. 8.1 and 8.2, respectively. (1)W  and 

1

0

( )W r dr∫ are 

defined in the text (Sect. 4) and bear overall constant variances equal to unity and to roughly 1/3, respectively. (1)Wλ is the first 

term of the numerator of eq. 8.1, while the other two elements, (3 1) (1)Wλ λ −  and 

1

0

2(2 1) ( )W r drλ − ∫ , are the components of the 

numerator of eq. 8.2. 

 

Table 3.  
Descriptive statistics of maximum and minimum eigenvalues of covariance and pseudo-covariance random 

matrices. N=1,000 Montecarlo draws of NID(0,1). 

Panel a). Covariance Random Matrix: '
t t

X X� � .  

Size of 
tt

X�   T Maxmean Maxmax Maxfr99 Maxfr95 Maxfr90 Minmean Minmin Minfr99 Minfr95 Minfr90

15 100 177.856 218.303 207.630 198.611 194.181 41.761 27.357 52.388 49.261 47.484 

15 150 242.425 319.511 279.579 266.785 260.535 76.366 52.966 90.757 86.469 84.235 

15 500 662.182 759.202 717.819 699.876 690.897 357.259 306.282 389.269 380.125 375.284 

70 100 320.349 374.571 358.838 344.710 337.925 3.130 1.348 4.570 4.199 3.956 

70 150 406.441 468.604 445.066 430.120 425.182 16.554 10.379 20.663 19.502 18.885 

70 500 920.239 996.735 973.616 957.054 946.193 203.071 177.039 219.361 215.092 212.522 

Panel b). Pseudo-Covariance Random Matrix: [ ] 1
' ' '

t t t t t t
X Z Z Z Z X

−� �  

Size of 
tt

X� , 
t

Z  T Maxmean Maxmax Maxfr99 Maxfr95 Maxfr90 Minmean Minmin Minfr99 Minfr95 Minfr90

15,70 100 136.95 188.65 168.98 156.50 150.89 23.76 14.12 31.15 29.01 28.04 

15,70 150 137.17 183.81 165.36 155.45 150.63 23.65 12.82 31.83 29.01 27.97 

15,70 500 137.35 170.20 163.21 155.82 151.92 23.55 13.16 31.57 28.87 27.71 

70,70 100 265.66 313.13 300.59 288.78 282.38 0.01 0.00 0.06 0.04 0.02 

70,70 150 265.92 317.41 300.87 289.05 281.88 0.01 0.00 0.07 0.04 0.03 

70,70 500 265.36 304.46 296.60 286.63 282.27 0.01 0.00 0.06 0.04 0.03 

Maxmean and Minmean respectively are the mean of the maximum and of the minimum eigenvalue, while Maxmax and Minmin are their 

maximum and minimum. Maxfr99, Maxfr95 and Maxfr90 are the 99%,95% and 90% fractiles of the maximum eigenvalue. Similarly for 

Minfr99, Minfr95 and Minfr90 for the minimum eigenvalue. 
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Table 4. 
Descriptive statistics of mean World temperatures (BEA) and of selected forcings. Period: 1850-2006. 

 

Count Variable Mean Minimum Min. date Maximum Max. date Volatility ADF 

1 BEA 13.821 13.419 1911 14.546 1998 0.018 -0.229 

2 SUNSPOTS 56.001 1.442 1913 189.850 1957 0.781 0.330 

3 CO2V 2107.936 54.000 1850 8545.000 2006 1.109 3.868 

4 INCOME 8037.477 1710.500 1850 25871.454 2006 0.836 5.284 

5  TPOP 389676 169848 1850 684212 2006 0.390 7.296 

6 TSI 1365.740 1365.207 1923 1366.808 1958 0.000 -1.854 

7 VOLSOL 0.449 0.171 1855 1.113 1993 0.330 -3.995 

8 COMPVOL 0.525 0.151 1972 1.146 1983 0.303 -3.871 

9 COMPSOL 0.683 0.443 1973 0.975 1884 0.167 -8.495 

10 VOL 0.831 0.024 1992 1.000 1850 0.327 -3.442 

11 PDO 1.233 0.134 1917 9.785 1983 1.009 -10.33 

12 FCO2 312.331 285.200 1850 379.465 2006 0.079 3.146 

13 FCH4 1131.896 826.700 1850 1767.183 2003 0.281 13.03 

14 FN2O 296.091 288.200 1850 308.460 2006 0.020 -7.827 

The variables listed are the raw levels appearing in the Section entitled Data Description and Sources. Min. date and max. date 

refer to the year when the corresponding minimum and maximum occurs. Volatility is the standard error divided by the mean. 

ADF is the  t-test version. Critical values: 1%= -3.473 5%= -2.880 10%= -2.576. 

 

Table 5. 
Select Granger Causality test statistics of solar and nonsolar forcings (eq.18). 

 

Nonsolar forcings over BEA 

Count Forcing over BEA Lag BIC Fstat  p-value Sum of forcing coeff. 

1 CO2V 3 -10.288 7.541 0.057 0.036 

2 INCOME 2 -10.292 4.260 0.119 -0.020 

3 TPOP 2 -10.276 2.060 0.357 0.020 

4 COMPVOL 2 -10.270 0.774 0.679 2.429 

5 VOL 7 -10.305 29.922 0.000 0.004 

6 PDO 3 -10.339 16.292 0.001 -0.014 

7 FCO2 2 -10.276 1.343 0.511 0.006 

8 FCH4 2 -10.267 0.124 0.940 0.000 

9 FN2O 2 -10.267 0.018 0.991 0.000 

Solar forcings over BEA 

1 SUNSPOTS 2 -10.270 0.342 0.843 0.000 

2 TSI 2 -10.273 2.285 0.319 0.209 

3 VOLSOL 2 -10.269 0.415 0.812 2.528 

4 COMPSOL 2 -10.267 0.020 0.990 0.000 

SUNSPOTS and TSI over one another 

Count Forcing over solar Lag BIC Fstat  p-value Sum of forcing coeff. 

1 SUNSPOTS 9 -2.025 35.433 0.000 -62.365 

2 TSI 3 -13.051 1.246 0.742 0.000 

BIC: Bayesian Information Criterion, Fstat: F statistic of achieved lag, p-value: marginal significance level of Fstat. 
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Table 6. 
Alternative static GMM model specifications and selection tests. 

 

        

Count H M  Ninst. HB AIC BIC DW 

1 2 3 27 1 -9.668 -9.370 1.513 

2 2 4 40 1 -9.973 -9.675 1.871 

3 2 5 53 2 -9.975 -9.675 1.896 

4 2 6 66 2 -10.025 -9.724 1.848 

5 2 7 79 1 -9.989 -9.686 1.783 

6 3 4 27 1 -9.124 -8.826 0.900 

7 3 5 40 1 -7.921 -7.621 0.250 

8 3 6 53 1 -9.182 -8.881 0.910 

9 3 7 66 1 -9.419 -9.117 1.149 

        

Count J-sig. AR LM MIEW MIESA MAE2 MIESY 

1 0.853 0.221 5.958 107.936 275.607 46.898 4.887 

2 0.937 1.118 44.677 114.458 149.894 50.528 8.347 

3 0.968 1.192 0.611 188.695 180.068 54.258 15.524 

4 0.959 10.268 53.154 182.746 136.891 55.562 26.811 

5 0.916 10.497 29.970 136.200 69.199 57.606 46.985 

6 1.000 0.374 10.098 7.255 20.823 46.898 4.554 

7 1.000 1.531 61.206 12.401 23.278 50.528 8.210 

8 0.989 2.401 9.307 45.443 85.690 54.258 15.524 

9 0.797 18.438 801.430 73.063 85.414 55.562 26.425 

H: lags of regressor set, M: lags of instrument set, Ninst.: number of instruments, HB=HAC bandwidth,  AIC: Akaike 

Information Criterion, BIC: Bayesian Information Criterion, DW: Durbin-Watson statistic, J-sig: Significance level of 

the J statistic for overidentifying restrictions, AR and LM: Anderson-Rubin and LM tests of Andrews and Stock (2007), 

MIEW: Minimum eigenvalue of ˆ( )W β , MIESA: Minimum eigenvalue of sandwich matrix, MAE2: Maximum 

eigenvalue of TSLS matrix [ ] 1
' ' '

t t t t t t
X Z Z Z Z X

−� � , MIESY: Minimum eigenvalue of  Stock et al. (2002) and Stock and 

Yogo (2003). 
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Table 7. 

Selected static GMM specification, 2 regressor (forcing) lags, HAC bandwidth 

= 2 lags, 3 to 6 instrument lags. In total: 13 regressors excluding constant and 

trend, and 66 instruments. 

Count Forcing  Nominal share Coefficient t.statistic Weighted share 

1 Constant 0.000 -0.002 -0.716 0.000 

2 TREND 0.072 0.000 0.754 0.056 

3 SUNSPOTS 0.117 0.001 1.856 0.154 

4 CO2V 0.113 0.004 0.297 0.037 

5 INCOME 0.029 0.029 1.725 0.037 

6 TPOP 0.065 0.363 2.708 0.090 

7 TSI 0.157 -5.210 -1.270 0.176 

8 VOLSOL 0.042 0.002 1.194 0.046 

9 COMPVOL 0.000 0.002 1.856 0.000 

10 COMPSOL 0.000 0.003 1.340 0.000 

11 VOL 0.046 0.002 2.619 0.064 

12 PDO 0.084 0.001 2.079 0.113 

13 FCO2 0.055 0.646 0.857 0.047 

14 FCH4 0.142 -0.265 -0.551 0.083 

15 FN2O 0.079 -6.362 -1.548 0.098 

Nominal and weighted shares respectively refer, in static terms, to eqs. 16 and 17.  
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Table 8. 
Results of selected dynamic GMM model with breaks. Trimmed period: 1864-1990. 

 

Count Forcing Weighted share Coefficient 

          

  Share mean Share min. Share max. Volatility Mean Minimum Maximum Volatility 

1 Constant 0.000 0.000 0.000 N.A. 0.014 0.003 0.026 0.292 

2 TREND 0.119 0.000 0.270 0.673 0.000 -0.001 0.000 -0.716 

3 DU 0.049 0.000 0.238 1.203 0.000 -0.020 0.020 -42.18 

4 DT 0.002 0.000 0.017 2.765 0.001 0.000 0.001 0.475 

5 SUNSPOTS 0.147 0.087 0.199 0.133 0.002 0.001 0.003 0.311 

6 CO2V 0.056 0.002 0.104 0.500 0.009 -0.008 0.026 0.647 

7 INCOME 0.032 0.000 0.046 0.277 0.037 0.015 0.069 0.340 

8 TPOP 0.034 0.000 0.105 0.779 0.111 -0.627 0.406 1.302 

9 TSI 0.189 0.062 0.259 0.211 -8.769 -16.391 -1.65 -0.362 

10 VOLSOL 0.040 0.000 0.065 0.409 0.002 0.000 0.004 0.417 

11 COMPVOL 0.002 0.000 0.056 5.024 0.002 0.000 0.003 0.355 

12 COMPSOL 0.000 0.000 0.000 N.A. 0.001 -0.003 0.005 1.335 

13 VOL 0.056 0.000 0.077 0.257 0.002 0.000 0.003 0.288 

14 PDO 0.206 0.111 0.277 0.122 0.001 0.001 0.002 0.197 

15 FCO2 0.019 0.000 0.050 0.586 -0.275 -1.122 0.468 -0.983 

16 FCH4 0.016 0.000 0.065 0.826 0.026 -0.400 0.409 4.915 

17 FN2O 0.035 0.002 0.098 0.657 -2.165 -6.765 1.843 -0.703 

Weighted shares refer to eq. 17. Volatility is the ratio between the forcing’s standard error and the mean. DU and DT respectively 

are the break in level and in trend. 
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FIGURE 1.

MEAN WORLD TEMPERATURES. LOG LEVELS AND HP DIFFERENCES.
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FIGURE 2.

LOG LEVELS OF SELECTED FORCINGS.
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FIGURE 3.

HP DIFFERENCES OF SELECTED FORCINGSS.
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FIGURE 4.

COEFFICIENTS AND T-STATISTICS OF BREAKS.
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FIGURE 5.

TIME SERIES OF COEFFICIENTS OF INDIVIDUAL FORCINGS.
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FIGURE 6.

SMOOTHED WEIGHTED SHARES OF SUMMED FORCINGS.
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FIGURE 7.

SMOOTHED WEIGHTED SHARES OF INDIVIDUAL FORCINGS.
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