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Abstract. This paper derives several identities for the iterated integrals of a general
semimartingale. They involve powers, brackets, exponential and the stochastic exponen-
tial. Their form and derivations are combinatorial. The formulae simplify for continuous
or finite-variation semimartingales, especially for counting processes. The results are mo-
tivated by chaotic representation of martingales, and a simple such application is given.

1. Introduction and the main results

We derive several identities involving the iterated integrals X(n) of a general semimartin-

gale X with X0 = 0, defined inductively by X(0) := 1 and X(n) =
∫

X
(n−1)
− dX. Thus,

X(1) = X, X(2) =

∫

X−dX =

∫ ∫ −

dXdX, X(3) =

∫ ∫ − ∫ −

dXdXdX, etc.

Our main result states that the series
∑∞

n=0 X(n) is absolutely convergent and converges
to the Doléans-Dade stochastic exponential E(X) of X:1

(1.1) E(X) =
∞

∑

n=0

X(n).

We derive the formula (1.2) below for X(n) and (1.3) for the powers Xn. For a semi-
martingale X which is sum of its jumps, we show the alternative simpler formula (1.4)
below and apply it to a counting process N to arrive at the identities (1.5) and (1.6). We
derive several related identities and discuss an application to martingale representation.

Eq. (1.1) and the formula for X(n) are well known when X is a continuous semimartin-
gale, e.g., Revuz and Yor [6] (p. 142, 143). In this case, one simply computes

E(X) = eX−[X]/2 =
∞

∑

i=0

X i

i!

∞
∑

j=0

(−1)j[X]j

2jj!
=

∞
∑

n=0

In(X),

†Part-time Professor of Applied Mathematics, FELAB, University of Twente.
‡Cofounder, AtomPro Structured Products, http://www.atomprostructuredproducts.nl/index.html.
††Version 13-Feb-2008. For possible future updates visit wwwhome.math.utwente.nl/˜ jamshidianf.

This paper expands a 2005 version titled, “Various identities for iterated integrals of a semimartingale”.
1See, e.g., Protter [5] for the definition and properties of E(X) and other background assumed here.

1



2 FARSHID JAMSHIDIAN

where2

In(X) :=
∑

i,j≥0; i+2j=n

(−1)j

i!j!2j
X i[X]j.

Eq. (1.1) now follows for the continuous case once one shows X(n) = In(X). Revuz and
Yor [6] show this by applying the stochastic dominated convergence theorem while using
E(λX) =

∑∞
n=0 λnIn(X) and dE(λX) = λE(λX)dX. We prove it by induction using the

recursion below which specializes to nX(n) = XX(n−1)− [X]X(n−2) for the continuous case.
For a Brownian motion X, the formula X(n) = In(X) specializes to that in Itô [1].
For a general semimartingale X with X0 = 0, the definition of In(X) involves addi-

tionally the “power jump processes” X [n]. This notion has been utilized in Naulart and
Schoutens [3], Jamshidian [2], and Yan et.al. [7] in connection with chaotic representation
of martingales. One defines X [n] inductively by X [1] = X and X [n] = [X [n−1], X]. Thus,

X [2] := [X] = [X]c +
∑

s≤·

(∆Xs)
2, X

[n]
t :=

∑

s≤t

(∆Xs)
n for n ≥ 3.

To derive the formula for X(n) for a general semimartingale, we first establish the recursion

nX(n) =
n

∑

i=1

(−1)i−1X [i]X(n−i).

We then substitute by induction for each term in the recursion. The result is

(1.2) X(n) =
∑

i1,··· ,in≥0; i1+2i2+···+nin=n

(−1)i2+i4+···+i2[n/2]

i1! · · · in!2i2 · · ·nin
X i1(X [2])i2 · · · (X [n])in =: In(X).

Note, the sum has finitely many terms, and this definition of In(X) simplifies in continuous
case to the earlier definition for a continuous X, since then X [k] = 0 for k ≥ 3.

To prove (1.1) for a general semimartingale, we first show that if |∆X| < 1 then

E(X) = exp(
∞

∑

k=1

(−1)k−1

k
X [k]),

the series being absolutely convergent when |∆X| < 1. Hence, writing this exponential of
a sum as a product of exponentials and rearranging terms we get,

E(X) =
∞
∏

k=1

e(−1)k−1X[k]/k =
∞
∏

k=1

∞
∑

i=0

(−1)i(k−1)

kii!
(X [k])i =

∞
∑

n=0

In(X).

2The coefficients appearing in n!In(X) are those of the Hermite polynomial of degree n because

(−1)nex2/2 dn

dxn
e−x2/2 = n!

∑

i,j≥0; i+2j=n

(−1)j

i!j!2j
xi.
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Since by (1.2), X(n) = In(X), this proves (1.1) for the case |∆X| < 1. The general case
now follows easily from this and the finite variation case (see (1.4) below), by observing
that if (1.1) holds for two processes X and Y then it holds for X + Y provided [X, Y ] = 0.

We obtain an expansion similar to (1.2) for the powers Xn:

(1.3) Xn =
∑

i1,··· ,in≥0; i1+2i2+···+nin=n

(−1)n−i1n!

i2! · · · in!2i2 · · ·nin
X(i1)(X [2])i2 · · · (X [n])in .

When X is continuous, this simplifies to

Xn =
∑

i,j≥0; i+2j=n

n!

j!2j
X(i)[X]j.

When X equals the sum of its jumps, we prove (1.1) directly by first showing that

(1.4) X
(n)
t =

∑

s1<···<sn≤t

∆Xs1 · · ·∆Xsn . (provided Xt =
∑

s≤t

∆Xs)

An interesting case is a “counting process”, i.e., a semimartingale N with N0 = 0
satisfying [N ] = N (equivalently, N equals the sum of its jumps, all of which equal 1), e.g.,
a Poisson process or more generally a Cox process. Eq. (1.4) then simplifies to

(1.5) N (n) = 1N≥n

(

N

n

)

.

Inverting this yields an expression for Nn in terms of the Stirling numbers cn,i:

(1.6) Nn =
n

∑

i=1

cn,iN
(i), cn,i :=

i
∑

j=0

(−1)i−j

(

i

j

)

jn.

Iterated integrals and Eq. (1.1) have well-known applications to the chaotic representa-
tion of martingales in a Brownian filtration; see e.g., Oertel [4] and the references there.3

Different but related chaotic expansions of the powers Xn have been used in [3], [2] and
[7] to exhibit chaotic representation of martingales under a filtration generated by Lévy
(and more general) processes. Here, we illustrate this connection by applying (1.6) to a
Cox process. For example, for a Poisson process N with intensity λ, we get for T > 0,

(1.7) Nn
T =

n
∑

i=0

an,i,T (N − λt)
(i)
T ,

where an,i,T are constants and given by

an,i,T :=
n−i
∑

k=0

k+i
∑

j=1

(−1)k+i−j (k + i)!jn

(k + i − j)!j!k!
λkT k.

3I wish to thank Frank Oertel for bringing to my attention his paper [4], where I encountered Eq. (1.1)
for the first time (for the case of a continuous semimartingale with a deterministic quadratic variation).
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2. The identities for a general semimartingale

In this section we derive the formula (1.2) for X(n) and (1.3) for Xn for a general
semimartingale X with X0 = 0, and prove (1.1) for the case |∆X| < 1. The proof of (1.1)
for the general case is completed using two results from the next section.

It is instructive to first derive these results for the simplest possible case because the
general case uses essentially the same idea. Suppose X is continuous and of finite-variation
with X0 = 0. Then Xn = n

∫

Xn−1dX. Substituting Xn−1 = (n − 1)
∫

Xn−2dX gives

Xn = n(n−1)
∫ ∫

Xn−2dXdX. Continuing in this manner, we see that Xn = n!X(n). This

implies eX =
∑∞

n=0 X(n). But in this case, eX also equals E(X).
There is a simple intuition behind Eq. (1.1). Since by definition X(0) = 1 and dX(n) :=

X
(n−1)
− dX, heuristically (but far from rigorously) it is tempting to argue,

d
∞

∑

n=0

X(n) =
∞

∑

n=1

dX(n) =
∞

∑

n=1

X
(n−1)
− dX =

∞
∑

n=0

X
(n)
− dX.

This and uniqueness of solution of SDE dE(X) = E(X)−dX indicate E(X) =
∑∞

n=0 X(n).

2.1. The recursion formula. The formula (1.2) for X(n) uses the following recursion.

Proposition 2.1. Let X be a semimartingale with X0 = 0. Then for any n ∈ N we have,

(2.1) nX(n) =
n

∑

i=1

(−1)i−1X [i]X(n−i).

Proof. By Itô’s product rule on X [i]X(n−i), and using [X [i], X(n−i)] =
∫

X
(n−i−1)
− dX [i+1],

X [i]X(n−i) =

∫

X
(n−i)
− dX [i] +

∫

X
(n−i−1)
− dX [i+1] +

∫

X
[i]
− dX(n−i).

Multiplying by (−1)i−1, summing to n − 1, and shifting the index of the second sum,

n−1
∑

i=1

(−1)i−1X [i]X(n−i) =

n−1
∑

i=1

(−1)i−1

∫

X
(n−i)
− dX [i] +

n
∑

j=2

(−1)j

∫

X
(n−j)
− dX [j] +

n−1
∑

i=1

(−1)i−1

∫

X
[i]
− dX(n−i)

= X(n) + (−1)nX [n] +
n−1
∑

i=1

(−1)i−1

∫

X
[i]
− X

(n−1−i)
− dX,

where for the last equality, we telescoped the first two sums to get some cancellations and

we substituted dX(n−i) = X
(n−1−i)
− dX in the third sum. Therefore, taking the second term

to the left side and applying induction to the third term, we have
n

∑

i=1

(−1)i−1X [i]X(n−i) = X(n) + (n − 1)

∫

X
(n−1)
− dX = nX(n).
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The proof by induction is complete. �

If X is continuous, then X [k] = 0 for k ≥ 3, so we obtain

Corollary 2.2. Let X be a continuous semimartingale with X0 = 0. Then

(2.2) nX(n) = XX(n−1) − [X]X(n−2).

2.2. Iterated integrals. Eq. (1.2) for X(n) follows simply by substituting via induction
for X(k) in the right-hand side of the recursion (2.1), followed by index manipulation. Since
the continuous case is more straightforward, for pedagogical reasons we do it first.

Proposition 2.3. Let X be a continuous semimartingale with X0 = 0. Then

(2.3) X(n) =
∑

i,j≥0, i+2j=n

(−1)j

i!j!2j
X i[X]j.

Proof. Substituting in (2.2) from induction, followed by index manipulations,

nX(n) =
∑

i′,j≥0, i′+2j=n−1

(−1)j

i′!j!2j
X i′+1[X]j −

∑

i,j′≥0, i+2j′=n−2

(−1)j′

i!j′!2j′
X i[X]j

′+1

=
∑

i−1,j≥0, i+2j=n

i(−1)j

i!j!2j
X i[X]j +

∑

i,j−1≥0, i+2j=n

2j(−1)j

i!j!2j
X i[X]j

=
∑

i,j≥0, i+2j=n

i(−1)j

i!j!2j
X i[X]j +

∑

i,j≥0, i+2j=n

2j(−1)j

i!j!2j
X i[X]j

=
∑

i,j≥0, i+2j=n

(i + 2j)(−1)j

i!j!2j
X i[X]j = n

∑

i,j≥0, i+2j=n

(−1)j

i!j!2j
X i[X]j.

The proof by induction is complete. �

A similar argument, but based on (2.1) and with multi-indices, yields the general result:

Theorem 2.4. Let X be a semimartingale with X0 = 0. Then for any n ∈ N we have,

(2.4) X(n) =
∑

i1,··· ,in≥0; i1+2i2+···+nin=n

(−1)i2+i4+···+i2[n/2]

i1! · · · in!2i2 · · ·nin
X i1(X [2])i2 · · · (X [n])in .

Proof. First we note that the sign can be alternatively written as

(2.5) (−1)i2+i4+···+i2[n/2] = (−1)i2+2i3+···+(n−1)in .

Also, for simplicity, let us denote Xi := X [i]. Then , by induction, for all m < n, we have

X(m) =
∑

i1+2i2+···+mim=m; i1,··· ,im≥0

(−1)i2+2i3+···+(m−1)im

i1! · · · im!2i2 · · ·mim
X i1

1 · · ·X im
m .
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Now, because of the constraint i1 + 2i2 + · · · + mim = m in the sum, we can also write
the sum over multi-indices i1, · · · , in ≥ 0 subject to i1 + 2i2 + · · · + nin = m, which of

course implies ij = 0 for j > m (and so X
ij
j = 1 and (−1)(j−1)ij = 1 for j > m). Thus,

X(m) =
∑

i1+2i2+···+nin=m; i1,··· ,in≥0

(−1)i2+2i3+···+(n−1)in

i1! · · · im!2i2 · · ·nin
X i1

1 · · ·X in
n .

Substituting these in the right hand side of the recursion formula (2.1) we get,

nX(n) =
n

∑

m=1

(−1)m−1Xm

∑

i1+2i2+···+nin=n−m; i1,··· ,in≥0

(−1)i2+2i3+···+(n−1)in

i1! · · · in!2i2 · · ·nin
X i1

1 · · ·X in
n

=
n

∑

m=1

∑

i1+2i2+···m(in+1)+···+nin=n; i1,··· ,in≥0

(−1)i2+2i3+···(m−1)(im+1)+···+(n−1)in

i1! · · · in!2i2 · · ·nin
X i1

1 · · ·X im+1
m · · ·X in

n

For the m-th summand, we change the index im by setting jm = im + 1. In the m-th
summand X im+1

m = Xjm
m appears. There, we also substitute 1/im! = jm/jm! and 1/mim =

m/mjm . The sign becomes (−1)i2+2i3+···(m−1)jm+···+(n−1)in . In the m-summand jm ≥ 1, but
we can run the sum from jm = 0 because the factor jm/jm! vanishes when jm = 0. After
these substitutions, we replace the symbol jm with im in the m-th summand. We obtain,

nX(n) =
n

∑

m=1

∑

i1+2i2+···+nin=n; i1,··· ,in≥0

mim
(−1)i2+2i3+···+(n−1)in

i1! · · · in!2i2 · · ·nin
X i1

1 · · ·X in
n .

= n
∑

i1+2i2+···+nin=n; i1,··· ,in≥0

(−1)i2+2i3+···+(n−1)in

i1! · · · in!2i2 · · ·nin
X i1

1 · · ·X in
n ,

where the last equality follows because
∑n

m=1 mim = n due to the constraint i1 + 2i2 +
· · · + nin = n in the inner sum. In view of (2.5), the inductive proof is complete. �

For example, for n ≤ 5 we have,

2X(2) = X2 − [X].

6X(3) = X3 − 3[X]X + 2X [3].

4!X(4) = X4 − 6[X]X2 + 3[X]2 + 8XX [3] − 6X [4].

5!X(5) = X5 − 10X3[X] + 20X2X [3] + 15X[X]2 − 30XX [4] − 20[X]X [3] + 4!X [5].

For n ≥ 6, monomials involving three or more X [k] also appear. For example, 6!X [6]

contains the term −120X[X]X [3]. Of course, they do not appear in the continuous case
because X [k] = 0 for k ≥ 3. So, for example, when X is continuous we have

6!X(6) = X6 − 15[X]X4 + 45[X]2X2 − 15[X]3.
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2.3. The stochastic exponential. The us begin with the simpler continuous case. For
positive real numbers x and y, we have,

ex+y = exey =
∞

∑

i=0

xi

i!

∞
∑

j=0

yj

j!
=

∞
∑

n=0

∑

i,j≥0; i+2j=n

xi

i!

yj

j!
.

The rearrangement of the sums is justified because all the terms are positive and the series
convergent. Thus by the triangle inequality the calculation is valid for all x and y as the
series on the right is absolutely convergent. Replacing x by X and y by −[X]/2, and using
the formula E(X) = eX−[X]/2, we thus obtain in view of Eq. (2.3) the following result.

Proposition 2.5. Let X be a continuous semimartingale with X0 = 0. Then E(X) =
∑∞

n=0 X(n), with the series absolutely convergent.

Now, instead of x+ y, consider an absolutely convergent series
∑∞

k=1 xk. Then similarly,

(2.6) e
∑∞

k=1 xk =
∞
∏

k=1

exk =
∞
∏

k=1

∞
∑

i=0

xi
k

i!
=

∞
∑

n=0

(
∑

i1,··· ,in≥0; i1+2i2+···nin=n

xi1
1 · · ·xin

n

i1! · · · in!
).

Again, the rearrangement is justified for it holds for xi ≥ 0 and since in general the series
on the right is absolutely convergent, in fact absolutely bounded by e

∑∞
1 |xk|. With this in

mind, we next derive an expression for E(X) in terms of the X [k] (recall X [1] := X).

Proposition 2.6. Let X be a semimartingale such that |∆X| < 1. Then we have,
∑∞

k=1 |X
[k]/k| < ∞. Moreover,

(2.7) E(X) = exp(
∞

∑

k=1

(−1)k−1

k
X [k]).

Proof. We utilize the well-known formula (e.g., [5]) that in general

E(X) = eX−[X]c/2
∏

s≤·

(1 + ∆Xs)e
−∆Xs = eX−[X]c/2+

∑
s≤·(log(1+∆Xs)−∆Xs)

(The infinite product and sum are absolutely convergent and of finite variation.) Hence,

E(X) = eX−[X]c/2+
∑

s≤·

∑∞
k=2(−1)k−1(∆Xs)k/k

= eX−[X]c/2+
∑∞

k=2(−1)k−1
∑

s≤·(∆Xs)k/k = e
∑∞

k=1 (−1)k−1X[k]/k.

Above, for the first equality we used the expansion log(1 + x) − x =
∑∞

k=2(−1)k−1xk/k,
which is absolutely convergent for |x| < 1. For the second equality, we interchanged the
sums over s and k, which is possible since

∑

s≤·

∑∞
k=2 |∆Xs|

k/k = H(x) ∗ µ < ∞, where
H(x) = 1|x|<1(log(1 + |x|) − |x|) and µ and is the random measure associated X. We also

have
∑∞

k=1 |X
[k]/k| = |X| + [X]c/2 + H(x) ∗ µ < ∞. The proof is complete. �

We are now ready for the main step in the proof of Eq. (1.1).
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Lemma 2.7. Let X be a semimartingale with X0 = 0 such that |∆X| < 1. Then, E(X) =
∑∞

n=0 X(n), with the series absolutely convergent.

Proof. Apply Eq. (2.6) with xk = (−1)k−1X [k]/k. Since
∑∞

1 xk is then absolutely conver-
gent by Prop. 2.6, we have by (2.6) (using also (2.5)) the absolutely convergent series

E(X) =
∞

∑

n=0

(
∑

i1,··· ,in≥0; i1+2i2+···+nin=n

(−1)i2+i4+···+i2[n/2]

i1! · · · in!2i2 · · ·nin
X i1(X [2])i2 · · · (X [n])in).

The desired result thus follows by Theorem 2.4. �

We now prove (1.1) in general, using two independent results from the next section.

Theorem 2.8. Let X be a semimartingale with X0 = 0. Then,

(2.8) E(X) =
∞

∑

n=0

X(n),

with the series absolutely convergent.

Proof. . Define the semimartingale Z by Zt =
∑

s≤t 1|∆Xs|≥1∆Xs. Set Y := X − Z. By
Lemma 2.7, the Theorem holds for Y . And by Proposition 3.1 below the Theorem holds for
Z. Since [Y, Z] = 0, it follows from Lemma 3.3 that the Theorem holds for Y +Z = X. �

2.4. The powers. Eq. (2.4) for X(n) can be “inverted” by to yield a formula for Xn:

Theorem 2.9. Let X be a semimartingale with X0 = 0. Then for n ∈ N, we have

(2.9) Xn =
∑

i1,··· ,in≥0; i1+2i2+···+nin=n

(−1)n−i1n!

i2! · · · in!2i2 · · ·nin
X(i1)(X [2])i2 · · · (X [n])in .

Proof. The result follows from Eq. (2.4) simply by induction. But, let us give a more
natural derivation for the case |∆X| < 1, using Eq. (2.7) and (2.8). Applied to λX,
|λ| < 1, these equations imply (using (λX)(n) = λnX(n), (λX)[n] = λnX [n]),

∞
∑

j=0

λjX(j) = E(λX) = e
∑∞

k=1(−1)k−1λkX[k]/k.

Hence,
∞

∑

n=0

λn Xn

n!
= eλX = (

∞
∑

j=0

λjX(j))e
∑∞

k=2(−1)kλkX[k]/k

= (
∞

∑

j=0

λjX(j))
∞
∏

k=2

∞
∑

i=0

(−1)ki

ki
λki(X [k])

=
∞

∑

n=0

(λn
∑

i1,··· ,in≥0; i1+2i2+···+nin=n

(−1)2i2+···+nin

i2! · · · in!2i2 · · ·nin
X(i1)(X [2])i2 · · · (X [n])in).

Eq. (2.9) now follows by setting the coefficients of λn on the two sides equal and noting
that (−1)2i2+···+nin = (−1)n−i1 due to the constraint in the inner sum. �
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Let us also give a direct inductive proof of (2.9) for the continuous case which uses a
recursive relation similar to that Sections 2.1 and 2.1. By Itô’s formula,

Xn = n

∫

Xn−1dX +
1

2
n(n − 1)

∫

Xn−2d[X].

Hence, substituting for Xn−1 and Xn−2 by induction, we get,

Xn =
∑

i,j≥0, i+2j=n−1

n!

j!2j

∫

[X]jX(i)dX +
∑

i,j≥0, i+2j=n−2

n!

j!2j+1

∫

X(i)[X]jd[X]

=
∑

i,j≥0, i+2j=n−1

n!

j!2j

∫

[X]jdX(i+1) +
∑

i,j≥0, i+2j=n−2

n!

(j + 1)!2j+1

∫

X(i)d[X]j+1

=
∑

i,j≥0, i+2j=n

n!

j!2j

∫

[X]jdX(i) +
∑

i,j≥0, i+2j=n

n!

j!2j

∫

X(i)d[X]j

=
∑

i,j≥0, i+2j=n

n!

j!2j
X(i)[X]j.

Above, in the last equality we integrated by parts, and in the third equality shifted by 1
the dummy index i (resp. j) of the first (resp. second) sum. For example, we have

X2 = 2X(2) + [X].

X3 = 6X(3) + 3[X]X.

X4 = 24X(4) + 12[X]X(2) + 3[X]2.

X5 = 120X(5) + 60[X]X(3) + 15[X]2X.

X6 = 720X(6) + 360[X]X(4) + 90[X]2X(2) + 15[X]3.

For a general semimartingale X with X0 = 0, one can give a similar (albeit more
complex) inductive proof based on the recursion Xn =

∑n
i=1

(

n
i

) ∫

Xn−i
− dX [i] from [2].

3. Iterated integrals of finite-variation processes

3.1. Sum of jump processes. The following was used in the proof of Theorem 2.8.

Proposition 3.1. Let X be a finite variation semimartingale with X0 = 0 which is the

sum of its jumps, i.e., Xt =
∑

s≤t ∆Xs. Then

(3.1) X
(n)
t =

∑

s1<···<sn≤t

∆Xs1 · · ·∆Xsn .

Moreover we have,

(3.2) E(X) =
∏

s≤·

(1 + ∆Xs) =
∞

∑

n=0

X(n),

with the sum absolutely convergent - in fact,
∑∞

n=0 |X
(n)| ≤ exp(

∑

s≤· |∆Xs|) < ∞.
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Proof. Since X is the sum of its jump, so it X(n) by induction. Moreover, since dX(n) =

X
(n−1)
− dX, we have ∆X(n) = X

(n−1)
− ∆X. Hence, using induction,

X
(n)
t =

∑

s≤t

∆X(n)
s =

∑

s≤t

X(n−1)
s−

∆Xs

=
∑

s≤t

(
∑

s1<···<sn−1≤s−

∆Xs1 · · ·∆Xsn−1)∆Xs

=
∑

s1<···<sn−1<s≤t

∆Xs1 · · ·∆Xsn−1∆Xs.

This proves (3.1). Permuting s1 < · · · < sn and using the commutativity of product, we get
from (3.1) also a sum over distinct jumps (below s1 6= · · · 6= sn means the si are distinct):

X
(n)
t =

1

n!

∑

s1 6=···6=sn≤t

∆Xs1 · · ·∆Xsn .

Hence,

|X
(n)
t | ≤

1

n!

∑

s1 6=···6=sn≤t

|∆Xs1 | · · · |∆Xsn|

≤
1

n!

∑

s1,··· ,sn≤t

|∆Xs1| · · · |∆Xsn|

=
1

n!

n
∏

i=1

∞
∑

si=1

|∆Xsi
| =

1

n!
(
∑

s≤t

|∆Xs|)
n.

Therefore,
∞

∑

n=0

|X(n)| ≤
∞

∑

n=0

1

n!
(
∑

s≤·

|∆Xs|)
n = exp(

∑

s≤·

|∆Xs|),

which is finite since
∑

s≤t |∆Xs| < ∞ a.s., as X is of finite variation. We further have,

E(X)t =
∏

s≤t

(1 + ∆Xs)

= 1 +
∞

∑

n=1

∑

s1<···<sn≤t

∆Xsn · · ·∆Xsn =
∞

∑

n=0

X
(n)
t ,

where the first equality is standard and last equality follows from (3.1). �

Comparing Eq. (3.1) with (1.2) yields the following the purely combinatorial identity:

∑

1≤j1<···<jn≤m

n
∏

k=1

xjk
=

∑

i1,··· ,in≥0; i1+2i2+···+nin=n

(−1)i2+i4+···+i2[n/2]

i1! · · · in!2i2 · · ·nin

n
∏

k=1

(
m

∑

j=1

xk
j )

ik ,

for m ≥ n and real x1, · · · , xm. When n = m, this is a “polarization” identity for x1 · · ·xn.
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3.2. Iterated integrals of a sum. The following result will be useful.

Proposition 3.2. Let X and Y be semimartingales satisfying X0 = Y0 = 0 and [X, Y ] = 0.
Then for n ∈ N we have,

(3.3) (X + Y )(n) =
n

∑

i=0

X(i)Y (n−i).

Proof. We employ induction. Using the definition of iterated integral, induction, the defi-
nition again, some index manipulations, and integration by parts using [X,Y ] = 0,

(X + Y )(n) =

∫

(X + Y )
(n−1)
− dX +

∫

(X + Y )
(n−1)
− dY

=
n−1
∑

i=0

∫

X
(i)
− Y

(n−1−i)
− dX +

n−1
∑

i=0

∫

X
(i)
− Y

(n−1−i)
− dY

=
n−1
∑

i=0

∫

Y
(n−1−i)
− dX(i+1) +

n−1
∑

i=0

∫

X
(i)
− dY (n−i)

=
n

∑

i=1

∫

Y
(n−i)
− dX(i) +

n−1
∑

i=0

∫

X
(i)
− dY (n−i)

= X(n) +
n−1
∑

i=1

∫

Y
(n−i)
− dX(i) +

n−1
∑

i=1

∫

X
(i)
− dY (n−i) + Y (n)

= X(n) +
n−1
∑

i=1

X(i)Y (n−i) + Y (n) =
n

∑

i=0

X(i)Y (n−i).

This completes the inductive proof. �

The following consequence of Proposition 3.2 was used in the proof of Theorem 2.8.

Lemma 3.3. Let X and Y be semimartingales satisfying X0 = Y0 = 0 and [X, Y ] = 0.
Suppose E(X) =

∑∞
n=0 X(n) and E(Y ) =

∑∞
n=0 Y (n) with both sums absolutely convergent.

Then, E(X + Y ) =
∑∞

n=0(X + Y )(n), with the sum absolutely convergent.

Proof. Using [X, Y ] = 0 and the assumption on E(X) and E(Y ), we have

E(X + Y ) = E(X)E(Y ) =
∞

∑

n=0

∞
∑

m=0

X(n)Y (m)

with the double sum absolutely convergent. Hence, we can rearrange the double summation
to get,

E(X + Y ) =
∞

∑

n=0

n
∑

i=0

X(i)Y (n−i) =
∞

∑

n=0

(X + Y )(n),

with the last equality following from Proposition 3.2. �
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Lemma 3.3 and Proposition 3.1 provide a direct proof of Eq. (1.1) for a finite-variation
semimartingale X without the use of Section 2. This is because X = Y + Z, where
Y :=

∑

s≤· ∆Xs and Z := X − Y is a continuous finite-variation process, and we know
both Y and Z satisfy (1.1). Moreover, applying Propositions 3.1 and 3.2 we get,

X
(n)
t =

n
∑

i=0

1

(n − i)!
(

∑

s1<···<sn≤t

∆Xs1 · · ·∆Xsn)(Xt −
∑

s≤t

∆Xs)
n−i.

Proposition 3.2 also applies to the continuous-discontinuous decomposition of a semi-
martingale because they have zero covariation.

It is possible to derive a formula for (X + Y )(n) in general, without the assumption
[X,Y ] = 0. Since we will not need this, we content ourselves with the continuous case.

Proposition 3.4. Let X and Y be continuous semimartingales with X0 = Y0 = 0. Then,

(3.4) (X + Y )(n) =
∑

i,j,k≥0; i+j+2k=n

(−1)k

k!
X(i)Y (j)[X, Y ]k.

Proof. Since X and Y are continuous, we have for any real number λ,

E(λ(X + Y )) = E(λX)E(λY )e−λ2[X,Y ].

Hence by Proposition 2.5 (applied thrice) we have,

∞
∑

n=0

λn(X + Y )(n) =
∞

∑

i=0

λiX(i)

∞
∑

j=0

λjY (j)

∞
∑

k=0

(−1)k

k!
λ2k[X, Y ]k

=
∞

∑

n=0

λn
∑

i,j,k≥0; i+j+2k=n

(−1)k

k!
X(i)Y (j)[X, Y ]k.

The desired result follows by comparing the coefficients of λn on both sides. �

4. The case of a counting process

We call a semimartingale N with N0 = 0 a counting process if [N ] = N , or equivalently,
N is the sum of its jumps all which equal 1, implying N is piecewise constant, increasing,
and integer valued. Examples are Poisson processes, or more generally, Cox processes.
Another example is a finite sum of the indicator processes of independent stopping times.

Proposition 4.1. Let N be a counting process. Then for λ, a ∈ R and n ∈ N, we have:

(4.1) (1 + λ)N =
∞

∑

n=0

λnN (n);

(4.2) eaN =
∞

∑

n=0

(ea − 1)nN (n);
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(4.3) N (n) = 1N≥n

(

N

n

)

;

(4.4) Nn =
n

∑

i=1

cn,iN
(i),

where

cn,i :=
i

∑

j=0

(−1)i−j

(

i

j

)

jn, n, i = 0, 1, 2 · · · (c0,0 := 1)

Proof. Proposition 3.1 applied to X = λN yields (using jumps of N equal 1),
∞

∑

n=0

λnN (n) = E(λN) =
∏

s≤·

(1 + λ∆Ns) = (1 + λ)N .

Eq. (4.1) follows. As for (4.2), set λ = (ea−1). Then (1+λ)N = eaN . So, (4.2) follows from

(4.1). Next, we have (1 + λ)N =
∑N

n=0

(

N
n

)

λn. Thus (4.3) follows from (4.1) by comparing
the coefficients λn on both sides. Finally, to show (4.4), we note that by Eq. (4.2),

∞
∑

n=0

an

n!
Nn = eaN =

∞
∑

i=0

(ea − 1)iN (i) =
∞

∑

i=0

i
∑

j=0

(−1)j

(

i

j

)

ejaN (i)

=
∞

∑

i=0

i
∑

j=0

∞
∑

n=0

(−1)j

(

i

j

)

jn an

n!
N (i) =

∞
∑

n=0

∞
∑

i=0

cn,i
an

n!
N (i).

Eq. (4.4) follows by comparing the coefficients of an and using cn,0 = 0 = cn,i for i > n. �

The numbers cn,i/i! are the Stirling numbers of the second kind, i.e., the number of
partitions of {1, · · · , n} into i subsets.4 (One has cn,0 = 0, cn,n = n!, cn,i = 0 for 1 ≤ n < i.)

Another way to see (4.3) is that by Proposition 4.1, N
(n)
t =

∑

1≤i1<···<in≤Nt
∆NTi1

· · ·∆NTin

where (Ti)
Nt
i=1 are the jump times of N on [0, t]. If Nt < n, then the sum is taken over

the empty set and is zero. Otherwise, since ∆NTi
= 1, the sum counts the multi-indices

1 ≤ i1 < · · · < in ≤ Nt, i.e., the number of subsets of {1, · · · , Nt} with n elements.

4.1. Alternative derivations. It is instructive to give alternative derivations of Eq. (4.4).
One derivation uses the following identity from [2] for a semimartingale X with X0 = 0:

Xn =
n

∑

p=1

∑

i1,··· ,ip∈N; i1+···+ip=n

n!

i1! · · · ip!

∫ ∫ −

· · ·

∫ −

dX [i1] · · · dX [ip−1]dX [ip].

Since N [i] = N for all i, the iterated integral above is just N (p) here. Therefore,

Nn =
n

∑

p=1

∑

i1,··· ,ip∈N; i1+···+ip=n

n!

i1! · · · ip!
N (p) =

n
∑

p=1

cn,pN
(p),

4We refer to the online-encyclopedia Wikipedia [7] for the basic properties of Stirling numbers.
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as desired, where we used the readily verified identity, cn,p =
∑

i1,··· ,ip∈N; i1+···+ip=n
n!

i1!···ip!
.

Another proof applies the recursion Xn =
∑n−1

i=0

(

n
i

) ∫

X i
−dX [n−i] from [2]. It follows,

Nn =
n−1
∑

i=0

(

n

i

)
∫

N i
−dN.

Hence, substituting on the right hand side for N i
− and using induction (and ci,0 = 0),

Nn =
n−1
∑

i=0

(

n

i

)
∫

(
i

∑

j=0

ci,jN
(j))−dN

=
n−1
∑

i=0

(

n

i

) i
∑

j=0

ci,jN
(j+1) =

n−1
∑

j=0

N (j+1)

n−1
∑

i=j

(

n

i

)

ci,j

=
n

∑

j=1

N (j)

n−1
∑

i=j−1

(

n

i

)

ci,j−1 =
n

∑

j=1

N (j)cn,j,

where, in the last equality we used the easily verified fact that
∑n−1

i=j−1

(

n
i

)

ci,j−1 = cn,j.

4.2. Martingale representation of the powers. Let Λ be the (necessarily increasing)
compensator of N . For example, if N is Poisson process of intensity λ, then Λt = λt.

Set M := N − Λ. So, M is a local martingale.

Proposition 4.2. With notation as above, assume Λ is continuous. Then for any n ∈ N,

(4.5) Nn =
n

∑

i=0

An,iM (i),

where

An,i
t :=

n−i
∑

k=0

k+i
∑

j=1

(−1)k+i−j (k + i)!jn

(k + i − j)!j!k!
Λk

t .

Proof. Since Λ is continuous and of finite variation, Λ(n) = Λn/n!. Hence by Prop. 3.2,

N (j) =

j
∑

i=0

M (i)Λ(j−i) =

j
∑

i=0

M (i) Λj−i

(j − i)!
.

Therefore by Eq. (4.4) (and using cn,0 = 0),

Nn =
n

∑

j=0

cn,jN
(j) =

n
∑

j=0

j
∑

i=0

cn,jM
(i) Λj−i

(j − i)!

=
n

∑

i=0

(
n

∑

j=i

cn,j
Λj−i

(j − i)!
)M (i) =

n
∑

i=0

(
n−i
∑

k=0

cn,k+i
Λk

k!
)M (i).

Substituting the expression for cn,k+i completes the proof. �
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When Λ is deterministic, then so are An,i. Thus, for T > 0, Eq. (4.5) furnishes an
explicit martingale representation of Nn

T in terms of the martingales M (n). In particular,

E Nn
T = An,0

T :=
n

∑

k=1

k
∑

j=1

(−1)k−jjn

(k − j)!j!
Λk

T .

(Also, from (4.2) and the formula E eaNT = e(ea−1)ΛT , on easily gets, E N
(n)
T = Λn

T /n!.)
Next suppose N is a Cox process, that is Λ is adapted to the subfiltration (FW

t ) generated
by a (vector) Brownian motion W . Assume also Λk

T is integrable for all k. Then, as An,i
T

is FW
T -measurable, it has a representation An,i

T = Mn,i
T , where Mn,i = E(An,i

T ) +
∫

Hn,idW
for some predictable (vector) process Hn,i (depending on T ). Hence, by (4.5) we have,

Nn
T =

n
∑

i=0

Mn,i
T M

(i)
T = Mn,0

T +
n

∑

i=1

(

∫ T

0

Mn,i
t dM

(i)
t +

∫ T

0

M
(i)
t−dMn,i

t ),

where we integrated by parts using [M (i), Mn,i] = 0. So, all Nn
T can be represented in terms

of the martingales M := N − Λ and W . When the law of NT is exponentially decreasing,
random variables of the form f(NT ) can be approximated in mean-square by a polynomial
in NT (e.g., [2]). Thus, such random variables admit a chaotic representation as described.
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