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Abstract

This paper analyses the optimal saving behaviour of a risk-averse and prudent consumer

who faces two sources of income risk: risk as described by a given probability distribution

and risk in the distribution itself. The latter is captured by the randomness in the parameters

underlying the probability distribution and is referred to as distributional risk. Stochastic

volatility, which generally refers to the randomness in the variance, can be viewed as a form of

distributional risk. Necessary and su¢cient conditions by which an increase in distributional

risk will induce the consumer to save more are derived under two speci�cations of preferences:

expected utility preferences and Selden/Kreps-Porteus preferences. The connection (or lack

of) between these conditions and stochastic volatility is addressed. The additional conditions

under which a prudent consumer will save more under greater volatility risk are identi�ed.
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1 Introduction

This paper analyses the optimal saving behaviour of a risk-averse and prudent consumer who

receives a random income drawn from a mixture of probability distributions. A mixture model is

used to capture two sources of income risk: risk as described by a given probability distribution

and risk in the distribution itself. The latter is referred to as distributional risk. The consumer

is said to display a precautionary saving motive against distributional risk if he saves more

when there is an increase in such risk.1 The main purpose of this study is to derive a set of

conditions for this to occur under two speci�cations of preferences: expected utility preferences

and Selden/Kreps-Porteus preferences.2 Our interest in this topic is motivated by the recent

development in the stochastic volatility literature. Stochastic volatility, which generally refers

to the randomness in the variance of some exogenous variables, can be viewed as one form

of distributional risk. There is now ample empirical evidence showing that the volatility of

major economic variables are time-varying and stochastic.3 These �ndings have inspired a surge

of interest in understanding how volatility risk (also known as uncertainty risk) would a¤ect

individual choices and market outcomes.4 In particular, several authors have suggested that an

increase in volatility risk will induce consumers to save more out of precautionary motives.5 The

results in this paper can be used to shed light on the theoretical foundation of such claim.

To analyse the e¤ects of distributional risk on consumption-saving decisions, we adopt a

similar two-period framework as in Leland (1968), Sandmo (1970), Kimball (1990) and Kimball

and Weil (2009). This model focuses on a single risk-averse consumer who faces income risk

only in the second period and who can self-insure by holding a single risk-free asset. In the

present study, the second-period income is assumed to be drawn from a mixture of a collection

of probability distributions, denoted by F = fF (� j �) ; � 2 �g : Each member in this collection

1The consumer may also display a precautionary saving motive against the �rst source of income risk. These
two types of precautionary saving motives are parallel but independent of one another.

2Although expected-utility preferences can be viewed as a special case of Selden/Kreps-Porteus preferences,
the conditions for precautionary savings under these two types of preferences are rather di¤erent. This is true
even in the absence of distributional risk [see Kimball (1990), Gollier (2001, Section 20.3) and Kimball and Weil
(2009)]. Thus, in our main analysis we will deal with these two types of preferences separately.

3At the aggregate level, Stock and Watson (2002) and Sims and Zha (2006), among others, have documented
the time-varying nature of business cycle volatility in postwar US economy. At the household level, Meghir and
Pistaferri (2004), Storesletten et al. (2004) and Guvenen et al. (2014) have shown that the variance of US
household earnings is �uctuating over time and correlated with macroeconomic conditions. In the asset pricing
literature, Bansal and Yaron (2004) have provided evidence of stochastic volatility in US consumption. Other
indicators of volatility risk have been discussed in Bloom (2014).

4See Fernández-Villaverde and Rubio-Ramírez (2013) and Bloom (2014) for concise reviews on models with
stochastic volatility or uncertainty shocks. Following this literature, we will use the terms �risk� and �uncertainty�
interchangeably to describe random events that can be quanti�ed by a well-de�ned probability distribution.

5See, for instance, Bloom (2014, p.165) and Basu and Bundick (2014).
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is indexed by a vector of parameters �; which is itself a random variable. The randomness in

� is what we referred to as distributional risk. The extent of such risk is captured by another

distribution function G (�) : The consumer is assumed to know both F and G so that there is

no ambiguity regarding the probability distribution of the second-period income. Under this

framework, changes in income risk can be due to changes in F (� j �) brought by changes in �, or

changes in the mixing distribution G: Our focus is on the latter. Speci�cally, we examine how an

increase in the riskiness of G would a¤ect individual savings. In light of the stochastic volatility

literature mentioned earlier, such an increase can be the result of deteriorating macroeconomic

conditions which lead to a more volatile prospect for individual consumers.

Our main �ndings can be summarised as follows: Firstly, we observe that the standard

conditions for risk aversion and prudence are not directly applicable to distributional risk. To

see this precisely, consider an expected-utility consumer with von Neumann-Morgenstern utility

function u (�) and marginal utility u0 (�) :6 For explanatory convenience, suppose � is just a

scalar. In the presence of distributional risk, the expected utility of future income is given by
R
E [u (y) j �] dG (�) ; where E [� j �] is the expectation formed under the distribution F (y j �) :

Similarly, de�ne
R
E [u0 (y) j �] dG (�) as the expected marginal utility of future income. Using

the standard textbook de�nition of risk aversion, the consumer is said to dislike distributional

risk if and only if E [u (y) j �] exhibits concavity in �: Likewise, by the same argument as in

Kimball (1990), the consumer is said to be prudent towards distributional risk if and only

if E [u0 (y) j �] exhibits convexity in �:7 The problem is that the concavity of u (�) does not

necessarily imply the concavity of E [u (y) j �] under an arbitrary set of distribution functions

F .8 In fact, it is easy to construct examples in which u (�) is globally concave but E [u (y) j �] is

globally convex in �: Similarly, the convexity of u0 (�) does not necessarily imply the convexity

of E [u0 (y) j �] under an arbitrarily given F . Thus, a convex marginal utility function alone is

not enough to ensure the existence of precautionary savings against distributional risk.

The above discussion makes clear that some restrictions on F are necessary in order to

establish an aversion towards distributional risk and a precautionary saving motive against this

type of risk. The main contribution of this paper is to make clear what these restrictions are.

6The argument below also applies to Selden/Kreps-Porteus preferences, but in order to explain this precisely
we need to introduce more notations. For this reason, we choose to defer this discussion until Section 3.2.

7More speci�cally, the consumer is said to be prudent towards distributional risk if an increase in the riskiness
of � will raise the expected marginal utility

R
E [u0 (y) j �] dG (�) : In the absence of distributional risk, Kimball

(1990) shows that an expected-utility consumer is prudent if and only if the marginal utility function is convex.
8The integrability of u (�) under F (� j �) is one issue, but the main problem remains even if we focus on those

u (�) and F (� j �) such that E [u (y) j �] exists and is �nite.
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Speci�cally, we provide a necessary and su¢cient condition under which the concavity of u (�)

and the convexity of u0 (�) are inherited by E [u (y) j �] and E [u0 (y) j �] ; respectively. This single

condition thus ensures that both the risk aversion and prudence properties are transferred from

u (�) to E [u (y) j �] : We refer to this condition as stochastic convexity. With expected-utility

preferences, an increase in distributional risk will lead a consumer with convex marginal utility

to save more if and only if the stochastic convexity condition is satis�ed. We also derive an

analogous result for Selden/Kreps-Porteus preferences.

Equipped with these �ndings, we are now in position to comment on the existence of pre-

cautionary savings in stochastic volatility models. The implications of our results are clear: an

increase in volatility risk can induce a risk-averse and prudent consumer to save more if and only

if the stochastic convexity condition is satis�ed. In Section 2.3, we show that while stochastic

volatility can be viewed as a form of distributional risk, it does not imply (and is not implied

by) stochastic convexity. Thus, stochastic convexity is an additional condition needed to ensure

the existence of precautionary savings against volatility risk.

The rest of this paper is organised as follows: Section 2 introduces some basic concepts

and results. Section 3 describes the model environment. Section 4 analyses the existence of

precautionary savings under expected utility preferences and Selden/Kreps-Porteus preferences.

Section 5 provides some concluding remarks.

2 Preliminaries

The purpose of this section is to introduce some basic concepts and results that are essential for

our analysis. In Section 2.1, we present a basic framework for de�ning a mixture of probability

distributions and make clear the meaning of distributional risk. In Section 2.2, we provide a

formal de�nition of stochastic convexity and establish an important characterisation result which

will be used throughout the paper. In Section 2.3, we discuss the connection between stochastic

volatility and distributional risk.

2.1 Mixture of Probability Distributions

Let F = fF (� j �) : � 2 �g be a collection of probability distributions de�ned on the support

S � R: Each member of this collection is indexed by a random vector � drawn from a set

� � Rm; for some m: The probability distribution of � is denoted by G : � ! [0; 1] : Let Y be
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a random variable with probability distribution given by

H (y) � Pr (Y � y) =

Z

�
F (y j �) dG (�) ; for all y 2 S: (1)

In words, H is a mixture or weighted average of the distribution functions in F ; with weights

assigned according to G:9 This setup can be interpreted in a number of ways. For instance, one

can view (Y; �) as a vector of correlated random variables. In this case, � represents a set of

covariates of Y (or background risks) with marginal distribution G; F (y j �) is the distribution

of Y conditioned on � and H is the marginal distribution of Y: In the multiple-prior models of

ambiguity, the mixture equation in (1) is used to represent the subjective beliefs of a decision

maker who is ambiguous about the true distribution of Y: In this context, the second-order

distribution G (�) captures the degree of ambiguity, while F = fF (� j �) : � 2 �g represents a

set of plausible �rst-order distributions or priors.10

In the present study, Y is an exogenous random variable that directly a¤ects the choices of

a risk-averse consumer, whereas � is a set of random parameters that will a¤ect those choices

indirectly through the distribution of Y: For this reason, we refer to the randomness in � as

distributional risk. The extent of such risk in the mixture H is captured by the distribution

function G: There is no ambiguity regarding the probability distributions of � and Y:

2.2 Stochastic Convexity

In order to de�ne the concept of stochastic convexity, we need to introduce some additional

notations. Let C (S) be the set of all real-valued, continuous functions de�ned on S that are

integrable with respect to the probability distributions in F : De�ne an operator � on C (S)

according to

(� ) (�) �

Z

S

 (y) dF (y j �) = E [ (y) j �] ; for all � 2 �: (2)

9The above de�nition can be generalised in at least two ways. First, F can be an arbitrary collection of
multivariate distributions. Second, � can be taken as an arbitrary index set. In other words, the distribution
functions in F need not be parametric. For further details on this, see Teicher (1960).
10See Section 5 for yet another interpretation of the mixture model in (1).
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For any given � 2 �, (� ) (�) is the expectation of the function  under F (� j �) : Our attention

will be focused on those distributions G (�) that satisfy the following condition:

Z

�
E [ (y) j �] dG (�) <1; for all  2 C (S) : (3)

This ensures that every function  in C (S) is integrable with respect to H (�) : The set of all

distribution functions G (�) that satisfy (3) is denoted by L (�) : Since (� ) (�) < 1 for all

 2 C (S) and for all � 2 �; the set L (�) includes all Dirac distributions that assign unit

probability to a single point in �:

Let C0 (S) be an arbitrary subset of C (S) : The operator � de�ned in (2) is said to be

stochastically convex with respect to C0 (S) if � is a convex function of � for all  2 C0 (S) :

For example, if C0 (S) is the set of all increasing functions in C (S) ; then stochastic convexity

means that � will map every increasing function of y in C (S) to a convex function of �: This

form of stochastic convexity has been discussed and analysed in Topkis (1998, Section 3.9.1).

For our purposes here, the relevant form of stochastic convexity is the one with respect to all

decreasing convex functions, so from this point onward C0 (S) denotes the set of all decreasing

convex functions in C (S) :

In practice, it is di¢cult (if at all possible) to check the convexity of � for every function

in C0 (S) : Thus, a more operational characterisation of stochastic convexity is called for. This

is achieved in Theorem 1. For any y 2 S; de�ne an auxiliary function � (�; y) : �! R+ by

� (�; y) �

Z y

y

F (! j �) d!; (4)

where y is the in�mum of S:

Assumption A1 For any y 2 S; the function � (�; y) de�ned in (4) is convex in �:

Theorem 1 states that Assumption A1 is both necessary and su¢cient for � to be stochas-

tically convex with respect to C0 (S) :11 Its corollary follows immediately from the fact that � 

is increasing concave whenever  is decreasing convex. Unless otherwise stated, all proofs can

be found in the Appendix.

11 It is also possible to derive a necessary and su¢cient condition under which � exhibits stochastic convexity with
respect to all convex functions in C (S) : This condition, however, is stronger than Assumption A1 as it enforces
stochastic convexity on a larger set of functions. In this study, we choose to exploit both the monotonicity and
concavity/convexity of the von Neumann-Morgenstern utility function u (�) and its �rst derivative u0 (�) so that
stochastic convexity can be obtained under a weaker condition, which is Assumption A1.
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Theorem 1 Let C0 (S) be the subset of C (S) consisting of decreasing convex functions. For any

 2 C0 (S) ; � is a convex function of � if and only if Assumption A1 is satis�ed.

Corollary 2 For any increasing concave function  in C (S) ; � is a concave function of � if

and only if Assumption A1 is satis�ed.

Examples of distribution functions that satisfy Assumption A1 can be easily constructed as

follows: Let F1 (�) and F2 (�) be two distribution functions with support in S: For each � 2 �;

de�ne F (� j �) according to

F (y j �) � p (�)F1 (y) + [1� p (�)]F2 (y) ; for all y 2 S; (5)

where p : �! [0; 1] is a weighting function. The function � de�ned in (4) then becomes

� (�; y) = p (�)

Z y

y

[F1 (!)� F2 (!)] d! +

Z y

y

F2 (!) d!:

Suppose F2 (�) is a mean-preserving spread of F1 (�) : Then for any y 2 S, � (�; y) is convex in �

if and only if p (�) is a concave function.12

Alternatively, since convexity is preserved by integration, Assumption A1 is satis�ed if

F (y j �) is convex in � for all y 2 S:

Stochastic Dominance and Stochastic Convexity

Before proceeding further, it is useful to discuss the di¤erences between stochastic dominance

and stochastic convexity. In the context of equation (2), stochastic dominance can be viewed as

de�ning the monotonicity of E [ (y) j �] in � for a certain class of function  , whereas stochastic

convexity de�nes the convexity of E [ (y) j �] in � for a certain class of  : When viewed in this

light, it is clear that there is no direct connection between these two concepts. To give a concrete

example, suppose F (� j �1) �rst-order stochastically dominates F (� j �2) for any �1 � �2 in �:

In words, this means the likelihood of drawing a large value of Y is monotonically increasing in

�: It follows that the expected value of Y under F (� j �1) is greater than that under F (� j �2) :

Thus, in this setting distributional risk (i.e., the randomness in �) implies the randomness in

the �rst moment of Y: This type of stochastic dominance is also equivalent to the assertion that

E [ (y) j �] is increasing in � for all increasing function  in C (S) :

12This uses the fact that F2 (�) is a mean-preserving spread of F1 (�) if and only if
R y
y
[F1 (!)� F2 (!)] d! � 0,

for all y 2 S:
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The di¤erence between this type of stochastic dominance and stochastic convexity can also

be seen as follows: Recall that a necessary and su¢cient condition for �rst-order stochastic

dominance is that F (y j �) is decreasing in � for all y 2 S: Clearly, this condition does not imply

and is not implied by Assumption A1. This again con�rms that there is no direct connection

between the two. But they are not incompatible. In particular, it is possible to construct a

collection F whereby F (y j �) is decreasing in � and � (�; y) is convex in � for all y 2 S:

Another example is the second-order stochastic dominance criterion. This type of ordering is

closely related to the notion of stochastic variance, hence it will be discussed in the next section.

2.3 Stochastic Volatility and Distributional Risk

If the variance of Y is a function of �, then stochastic volatility of Y can be generated by the

randomness in �: One way to achieve this is by imposing the following assumptions: (i) all

distributions in F share the same mean, and (ii) F (� j �1) second-order stochastically dominates

F (� j �2) whenever �1 � �2: These conditions are equivalent to the assertion that E [ (y) j �] is

increasing in � for all concave functions  de�ned on S: This in turn implies that the variance

under F (� j �1) is lower than that under F (� j �2) : Hence, the randomness in � will imply the

randomness in the variance of Y:

How is this type of stochastic dominance related to stochastic convexity? Given the equal

mean assumption, a necessary and su¢cient condition for second-order stochastic dominance is

that � (�; y) is decreasing in � for all y 2 S: In other words, this type of stochastic dominance is

characterised by the monotonicity of � (�; y) in �; whereas stochastic convexity is characterised

by its convexity. Thus, there is no direct connection between the two but they are also not

mutually exclusive. We illustrate this by means of two examples. First, consider the set of

probability distributions fF (� j �) : � 2 �g de�ned by (5). Since F2 (�) is a mean-preserving

spread of F1 (�) ; all the distributions in this collection will have the same mean but di¤erent

variances. In particular, a random � will generate a random variance of Y; regardless of the

shape of p (�) : But the condition of stochastic convexity is satis�ed only when p (�) is concave.

In the second example, Y is generated by a simple linear model:

y = �+ �"; (6)

where � is a deterministic constant, " is a random variable with zero mean and unit variance,
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and � is a positive random variable that captures stochastic volatility. The parameter � is now

a scalar which corresponds to the inverse of � (i.e., the precision). Let J (") be the distribution

function of " de�ned over the support [";1) : The function � (�; y) is then given by13

� (�; y) �

Z y

y

F (! j �) d! =

Z

S

max fy � !; 0g dF (! j �)

=
1

�

Z 1

"

max f"� �; 0g dJ (�)

=
1

�

Z "

"

J (�) d�;

which is strictly decreasing and strictly convex in � for all " in [";1) : The linear model in (6)

thus entails both stochastic volatility and stochastic convexity.

3 The Model

Consider a single risk-averse consumer who lives for two periods. The consumer is endowed with

a known amount of wealth z > 0 in the �rst period, and faces a random income y in the second

period. The consumer can self-insure by saving or borrowing at a single risk-free interest rate.

An ad hoc borrowing constraint is in place to limit the amount of debt that the consumer can

have. Our main focus is on the consumption-saving decision in the �rst period.

The novelty of this model lies in the introduction of distributional risk as de�ned in Section

2.1. Speci�cally, let � be the parameter space which is a convex subset of Rm; and let F =

fF (� j �) ; � 2 �g be a collection of probability distributions with support S =
�
y;1

�
; where

y > 0: The parameter � is itself a random variable with distribution function G : � ! [0; 1]

that satis�es (3). The unconditional probability distribution of y is then de�ned by (1). The

consumer is assumed to have perfect knowledge regarding F and G (�) when he makes his choices

in the �rst period. For ease of future reference, we will refer to y as the random income generated

by fF ; Gg :

3.1 Preferences

Two speci�cations of preferences are considered in this paper. The �rst one is the standard

expected utility (EU) speci�cation under which preferences are separable over time and across

13The second equality uses integration by parts. The third equality uses the equations: y = � + �" and
! = �+ ��; where ! and � are dummy variables of integration.
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state of nature. The second one is the Selden/Kreps-Porteus (SKP) preferences which allow for

a separation between attitude towards risk and attitude towards intertemporal substitution.

Let c1 and c2 denote consumption in the �rst and the second period, respectively. Under

the EU speci�cation, the consumer�s preferences are represented by

E [U (c1; c2)] = u (c1) + �E [u (c2)] ;

where E is the expectation operator conditioned on the information available in the �rst period,

� 2 (0; 1) is the subjective discount factor and u (�) is the von Neumann-Morgenstern (vNM)

utility function. The vNM utility function is assumed to satisfy the following properties.

Assumption A2 The function u : R+ ! R is continuous, di¤erentiable, increasing and

concave. Both u (�) and u0 (�) are integrable with respect to the distribution functions in F :

Under the SKP speci�cation, the consumer�s preferences are given by

E [U (c1; c2)] = v (c1) + �v (M (c2)) ; (7)

where v (�) is the period utility function for non-stochastic values, and M (�) is a certainty

equivalent operator de�ned by

M (c2) = ��1 fE [� (c2)]g : (8)

The function � (�) is the atemporal vNM utility function. As is well-known in this literature, the

curvature of v (�) captures the consumer�s willingness to smooth consumption over time, while

the curvature of � (�) captures his attitude towards risk. These two functions are assumed to

have the following properties:

Assumption A3 The function v : R+ ! R is continuous, di¤erentiable, increasing and con-

cave.

Assumption A4 The function � : R+ ! R is continuous, di¤erentiable, strictly increasing

and concave. Both � (�) and �0 (�) are integrable with respect to the distributions in F :

The properties in Assumptions A3 and A4 largely mirror those in Assumption A2. The
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function � (�) is required to be strictly increasing so that its inverse is a well-de�ned function.

In what follows, we will refer to a consumer with an increasing concave vNM utility function as

risk averse.

3.2 Attitude Towards Distributional Risk

Does a risk-averse consumer necessarily dislikes distributional risk? The answer to this question

is (surprisingly) no.14 In this subsection, we show that a risk-averse consumer (under both

types of preferences) dislikes distributional risk if and only if Assumption A1 is satis�ed. We

also provide an example to show that in the violation of this assumption such a consumer will

actually prefer more distributional risk to less.

To start, let G0 (�) and G00 (�) be two arbitrary distributions in L (�) : Suppose G0 (�) is smaller

than G00 (�) under the multivariate convex order (denoted by G0 �cx G
00), i.e.,

Z

�
� (�) dG0 (�) �

Z

�
� (�) dG00 (�) ; (9)

for any real-valued convex function � de�ned on �; provided the expectations exist. The above

ordering can be viewed as a multivariate version of the standard second-order stochastic domi-

nance criterion (the two coincides when � is a scalar).15 Let y0 and y00 be the random incomes

generated by fF ; G0g and fF ; G00g ; respectively. Then y00 is said to have a larger degree of

distributional risk than y0:

A risk-averse EU consumer is said to dislike distributional risk if his expected utility under

y0 is greater than that under y00; i.e.,

Z

�

Z

S

u
�
y0
�
dF
�
y0 j �

�
dG0 (�) �

Z

�

Z

S

u
�
y00
�
dF
�
y00 j �

�
dG00 (�) : (10)

Theorem 3 states that (10) is true if and only if Assumption A1 is satis�ed. Intuitively, this result

states that the only way to transfer the risk aversion property from u (y) to eu (�) � E [u (y) j �]

is by imposing the stochastic convexity condition. This result thus highlights the importance of

Assumption A1 in characterising the consumer�s attitude towards distributional risk.16

14Under the expected-utility hypothesis, the consumer is indi¤erent between a compound lottery form by fF ; Gg
and another lottery with the same distribution as H (without compounding). This, however, does not imply that
the consumer is indi¤erent between two di¤erent compound lotteries fF ; G0g and fF ; G00g :
15For a textbook treatment of the multivariate convex order, see Shaked and Shanthikumar (2007, Chapter 7) .
16Theorem 3 can also be interpreted as follows: Let H 0 and H 00 be the compound distributions generated by

fF ; G0g and fF ; G00g ; respectively. Suppose G0 �cx G
00: Then H 00 second-order stochastically dominates H 0 if

and only if Assumption A1 is satis�ed.
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Theorem 3 Let u (�) be an increasing concave function in C (S). Then any expected-utility

consumer with utility function u (�) will prefer y0 over y00 if and only if Assumption A1 is satis�ed.

As an illustration of this result, consider the collection of distribution functions F de�ned

by (5). The expected utility under fF ; Gg can be expressed as

Z

�

Z

Y

u (y) dF (y j �) dG (�)

=

�Z

�
p (�) dG (�)

� �Z

S

u (y) dF1 (y)�

Z

S

u (y) dF2 (y)

�
+

Z

S

u (y) dF2 (y) :

In this example, the e¤ect of distributional risk is entirely captured by the expected value of the

weighting function. In particular if p (�) is a linear function, then

Z

�
p (�) dG0 (�) =

Z

�
p (�) dG00 (�) ;

which means the consumer is neutral or indi¤erent towards distributional risk. If p (�) is convex,

then we have Z

�
p (�) dG0 (�) �

Z

�
p (�) dG00 (�) :

This, together with the assumption that F2 (�) is a mean-preserving spread of F1 (�) ; implies

the following: (i) � (�; y) is a concave function in � for any y 2 S; and (ii) any risk-averse EU

consumer is either indi¤erent or strictly prefers more distributional risk to less, i.e.,

Z

�

Z

S

u
�
y0
�
dF
�
y0 j �

�
dG0 (�) �

Z

�

Z

S

u
�
y00
�
dF
�
y00 j �

�
dG00 (�) :

Finally, the result in Theorem 3 can be easily extended to SKP preferences. Since v (�) is

increasing, the consumer is averse to distributional risk if and only if the certainty equivalence

under y0 is greater than that under y00; i.e.,

��1
�Z

�

Z

S

�
�
y0
�
dF
�
y0 j �

�
dG0 (�)

�
� ��1

�Z

�

Z

S

�
�
y00
�
dF
�
y00 j �

�
dG00 (�)

�
:

Since ��1 (�) is also strictly increasing, this essential boils down to

Z

�

Z

S

�
�
y0
�
dF
�
y0 j �

�
dG0 (�) �

Z

�

Z

S

�
�
y00
�
dF
�
y00 j �

�
dG00 (�) : (11)

It is immediate to see that (11) can be obtained by replacing u with � in (10). This leads to the
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following slightly revised version of Theorem 3, which we state without proof.17

Theorem 4 Let � (�) be a strictly increasing concave function in C (S). Suppose Assumption

A1 is satis�ed. Then any consumer with SKP preferences will prefer y0 over y00:

4 Precautionary Saving

We now explore the conditions under which an increase in distributional risk will promote

savings under EU preferences and SKP preferences. Regardless of the preference speci�cation,

the consumer�s �rst-period choices are subject to the sequential budget constraints: c1 + s = z

and c2 = y+ (1 + r) s; and an ad hoc borrowing constraint: s � �b; where r > 0 is the risk-free

interest rate, s denotes savings in the �rst period, and b > 0 is the borrowing limit.

4.1 EU Preferences

Consider an EU consumer with utility function u (�) that satis�es Assumption A2. The con-

sumer�s problem in the �rst period is given by

max
s2[�b;z]

�
u (z � s) + �

Z

�

Z

S

u [y + (1 + r) s] dF (y j �) dG (�)

�
: (P1)

Since the objective function is continuous and the constraint set is compact, the above problem

has at least one solution.18 By the concavity of u (�) ; the Kuhn-Tucker �rst-order conditions are

both necessary and su¢cient to identify the solutions of (P1). To rule out the uninteresting case

where �rst-period consumption is zero (i.e., s = z), the condition � (1 + r) < 1 is imposed.19 It

follows that a feasible value s is optimal if and only if it satis�es the Euler equation

u0 (z � s) � � (1 + r)

Z

�

Z

S

u0 [y + (1 + r) s] dF (y j �) dG (�) ; (12)

with equality holds if s > �b: The left side of (12) captures the marginal cost of saving more,

while the expression on the right is the discounted gain in expected future utility brought by an

17Note that we have lost the �only if� part in Theorem 4. This is because � (�) is required to be strictly
increasing so that ��1 (�) is a well-de�ned function. Thus, in the �only if� part, starting from (2) we can only
establish the stochastic convexity property of � with respect to all strictly increasing concave function in C (S) ;
which is a smaller set than C0 (S) :
18Obviously one can characterise the solution of (P1) more sharply by imposing some stronger conditions on

u (�) ; such as strict concavity and the Inada condition. By doing so, however, we will sacri�ce the necessity of
Assumption A1 in our main result.
19Since u0 (�) is decreasing, we have

R
�

R
S
u0 [y + (1 + r) z] dF (y j �) dG (�) � u0 (0) : This, together with

� (1 + r) < 1; implies that the marginal bene�t of consuming more in the �rst period is strictly greater than
the marginal cost of doing so. Hence, it is not optimal to have c1 = 0:

13



increase in savings. An increase in distributional risk will induce the consumer to save more if

and only if the marginal bene�t of saving is higher under a riskier distribution of �. Formally,

let G0 (�) and G00 (�) be two distributions in L (�) such that G0 �cx G
00: Let y0 and y00 be the

random incomes generated by fF ; G0g and fF ; G00g ; respectively. Let s00 be any solution of (P1)

under y00: Then an increase in distributional risk will lead the consumer to save more out of

precautionary motives if and only if

Z

�

Z

S

u0
�
y00 + (1 + r) s00

�
dF
�
y00 j �

�
dG00 (�) �

Z

�

Z

S

u0
�
y0 + (1 + r) s00

�
dF
�
y0 j �

�
dG0 (�) :

(13)

In words, this means saving s00 under y00 will give a greater expected marginal bene�t than saving

the same amount under y0: This will then induce the consumer to save less under y0; where the

degree of distributional risk is lower.

As is well-known in the precautionary saving literature, in the absence of distributional risk,

a precautionary motive of saving exists if and only if the EU consumer is prudent, i.e., the

marginal utility function u0 (�) is convex.20 Thus, it seems natural to ask whether this type of

consumer will save more when there is an increase in distributional risk. The answer is provided

in Theorem 5, which states that condition (13) holds for any decreasing convex u0 (�) if and only

if the condition for stochastic convexity is satis�ed.

Theorem 5 Suppose Assumption A2 and � (1 + r) < 1 are satis�ed. Then any prudent expected-

utility consumer will save more under y00 than under y0 if and only if Assumption A1 is satis�ed.

The intuition of this result is straightforward. An increase in the dispersion of � will increase

the marginal bene�t of saving if and only if the expected marginal utility E fu0 [y + (1 + r) s00] j �g

is convex in �: On the other hand, the convexity of u0 (�) will transpire into the convexity of

E fu0 [y + (1 + r) s00] j �g if and only if Assumption A1 is satis�ed. Thus, the only way to transfer

the prudence property from u (y) to eu (�) � E [u (y) j �] is by imposing the stochastic convexity

condition.

4.2 SKP Preferences

We now repeat the same exercise under SKP preferences. Consider a consumer with preferences

de�ned by (7)-(8). Suppose Assumptions A3 and A4 are satis�ed. De�ne the composite function

20 If u (�) is thrice-di¤erentiable, then this is equivalent to u000 (c) � 0 for all c > 0: Our main result, however,
does not require u (�) to be thrice-di¤erentiable.

14



 (x) � v
�
��1 (x)

�
: Since both v (�) and ��1 (�) are continuous, di¤erentiable and increasing, so

is  (�) : The consumer�s problem is now given by

max
s2[�b;z]

�
v (z � s) + � 

�Z

�

Z

S

� [y + (1 + r) s] dF (y j �) dG (�)

��
: (P2)

Gollier (2001, Section 20.3) shows that, in the absence of distributional risk, precautionary

savings under SKP preferences exist if two additional conditions are satis�ed. The �rst one

requires �0 (�) to be a convex function, and the second one requires  (�) to be concave.21 Here

we will refer to a consumer with SKP preferences that satisfy these two additional conditions as

a prudent SKP consumer. But it is important to note that there is more than one way to de�ne

prudence under SKP preferences.22 We choose to use this set of conditions because it is a direct

generalisation of the prudence condition for the EU speci�cation. To see this, �rst note that

the EU speci�cation corresponds to the case when  (x) � v
�
��1 (x)

�
is a linear (hence weakly

concave) function. Once this is granted, the convexity of �0 (�) is equivalent to the convexity of

u0 (�) in the EU model.

Our next lemma summarises the main properties of a solution of (P2) under these conditions.

Lemma 6 Suppose Assumptions A3-A4 and � (1 + r) < 1 are satis�ed. In addition, suppose

�0 (�) is convex and  (�) � v
�
��1 (�)

�
is concave. Then a solution to (P2) exists. A feasible

value s is optimal if and only if it satis�es

v0 (z � s) (14)

� � (1 + r) 0
�Z

�

Z

S

� [y + (1 + r) s] dF (y j �) dG (�)

� Z

�

Z

S

�0 [y + (1 + r) s] dF (y j �) dG (�) ;

with equality holds if s > �b:

Equation (14) is the counterpart of (11) under SKP preferences, and can be interpreted in

the same way. Speci�cally, the left side of (14) captures the marginal cost of saving, while the

right side captures the marginal bene�t. By the same logic as in Section 4.1, an increase in

distributional risk will induce the consumer to save more if and only if the marginal bene�t

of saving is increased. Under the same conditions in Lemma 6, this happens if and only if

Assumption A1 is satis�ed. This result is formally stated in Theorem 7. This, together with

21The second condition is equivalent to requiring that the period utility function v (�) be more concave than
the atemporal vNM utility function � (�) :
22See Kimball and Weil (2009) for an alternative set of su¢cient conditions.
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Theorem 5, demonstrates the importance of Assumption A1 in creating a precautionary saving

motive against distributional risk.

Theorem 7 Suppose Assumptions A3-A4 and � (1 + r) < 1 are satis�ed. Then any prudent

SKP consumer will save more under y00 than under y0 if and only if Assumption A1 is satis�ed.

5 Some Concluding Remarks

This paper introduces the concept of distributional risk into an otherwise standard model of

precautionary saving. In a broader context, this paper is an e¤ort to explore the e¤ects and

implications of distributional risk. We believe our results, especially Theorem 1, can �nd use

in many di¤erent applications. Here we will provide two other interpretations of this result.

Suppose � is a set of covariates of Y as described in Section 2.1. Then Theorem 1 states

that stochastic convexity is a necessary and su¢cient condition under which an increase in

background risk will increase the riskiness of Y: All other results in this paper can be rephrased

accordingly. The mixture model in (1) can also be used to represent within-goup and between-

group heterogeneity. Speci�cally, consider a population that is divided into di¤erent groups,

each indexed by a value � 2 �: The function F (y j �) then denotes the distribution of Y within

group � (within-group heterogeneity); G (�) denotes the distribution across groups (between-

group heterogeneity) and H is the distribution of Y in the entire population. In this context,

Theorem 1 states that stochastic convexity is a necessary and su¢cient condition under which

an increase in between-group dispersion will lead to an increase in the dispersion of Y in the

entire population. This type of result is potentially useful for measuring inequality and analysing

redistributive policies. We leave these possibilities for future research.
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Appendix

Proof of Theorem 1

Su¢ciency of Assumption A1

The proof of su¢ciency is divided into two main steps. First, we construct a sequence of

functions f
n (m)g which converges pointwise to (� ) (�) �
R
S
 (!) dF (!j�) for any given

function  2 C0 (S) : Second, we show that under Assumption A1 each 
n (m) is a convex

function de�ned on �: Hence, the limiting function (� ) (�) is also convex.

Let  be an arbitrary function in C0 (S) : Let @ (y) be the subdi¤erential of  at y 2 S:

Since  is continuous and convex, there exists a non-negative decreasing function � : S ! R+;

� (y) 2 @ (y) for all y 2int S; such that

 (y) =  
�
y
�
�

Z y

y

� (!) d!; for all y 2 S: (15)

For a proof of this statement, see for instance Niculescu and Persson (2006) Sections 1.5 and

1.6. For any positive integer n � 1; form the interval Sn =
�
y; y + n

�
and partition it into

subintervals of equal length 2�n: The end-points of these subintervals are denoted by f"ni g ;

where

"ni = y +
i� 1

2n
; for i = 1; 2; :::; n2n + 1:

De�ne a sequence of functions f�n (�)g according to

�n (!) =

8
><
>:

�
�
"ni+1

�
if ! 2

�
"ni ; "

n
i+1

�
;

0 if ! � y + n:

for each n � 1: This function can be rewritten as a linear combination of simple functions, i.e.,

�n (!) =
n2nX

i=1

�i;nI[!�"ni+1]
; (16)

where I[!�"ni+1]
= 1 if ! � "ni+1 and zero otherwise and the coe¢cients are given by

�i;n =

8
><
>:

�
�
"ni+1

�
� �

�
"ni+2

�
for i = 1; 2; :::; n2n � 1;

�
�
"ni+1

�
for i = n2n:
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Since � (�) is non-negative and decreasing, we have �i;n � 0 for all i: Hence, �n (!) � 0 for all

! 2 S: In addition, the sequence f�n (�)g will converge pointwise to � (�) :

In order to apply the monotone convergence theorem, we need to show that f�n (�)g is a

monotonically increasing sequence of functions, i.e., �n (!) � �n+1 (!) for any n � 1 and for any

! 2 S: There are three possible cases to consider: (i) ! � y + n+ 1; (ii) y + n+ 1 > ! � y + n;

and (iii) ! 2 Sn: In the �rst scenario, we have �n (!) = �n+1 (!) = 0: In the second scenario, we

have �n (!) = 0 � �n+1 (!) : In the third scenario, if ! �
�
"ni + "

n
i+1

�
=2; then

�n+1 (!) = �

�
"ni + "

n
i+1

2

�
� �

�
"ni+1

�
= �n (!) ;

If ! >
�
"ni + "

n
i+1

�
=2; then �n+1 (!) = �n (!) : Hence, f�n (�)g is a monotonically increasing

sequence of non-negative functions.

De�ne a sequence of functions f'n (�)g according to

'n (y) �

Z y

y

�n (!) d!: (17)

By the monotone convergence theorem,

lim
n!1

'n (y) =

Z y

y

h
lim
n!1

�n (!)
i
d! =

Z y

y

� (!) d!; for all y 2 S:

Note that f'n (�)g is itself a monotonically increasing sequences of non-negative functions.

Finally, for each n � 1; de�ne a function 
n (�) : R+ ! R according to


n (�) �  
�
y
�
�

Z

S

'n (y) dF (y j �) : (18)

Applying the monotone convergence theorem on f'n (�)g gives

lim
n!1


n (�) =  
�
y
�
� lim
n!1

Z

S

'n (y) dF (y j �)

=  
�
y
�
�

Z

S

h
lim
n!1

'n (y)
i
dF (y j �)

=

Z

S

"
 
�
y
�
�

Z y

y

� (!) d!

#
dF (y j �)

=

Z

S

 (y) dF (y j �) ;

for any � 2 �: The last equality is obtained by using (15). This completes the �rst step of the
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proof, which is to construct a sequence of functions f
n (�)g that converges pointwise to � :

Fix n � 1: We now establish the convexity of 
n (�) : First, combining (16) and (17) gives

'n (y) =

n2nX

i=1

�i;n

Z y

y

I[!�"ni+1]
d!;

where Z y

y

I[!�"ni+1]
d! = min

�
y; "ni+1

	
� y:

Substituting these into (18) gives


n (�) =  
�
y
�
+ y

n2nX

i=1

�i;n �
n2nX

i=1

�i;n

Z

S

min
�
!; "ni+1

	
dF (! j �) ; (19)

where

Z

S

min
�
!; "ni+1

	
dF (! j �) =

Z "ni+1

y

!dF (! j �) + "ni+1

Z 1

"ni+1

dF (! j �)

= "ni+1F
�
"ni+1 j �

�
�

Z "ni+1

y

F (!j�) d! + "ni+1
�
1� F

�
"ni+1 j �

��

= "ni+1 � �
�
�; "ni+1

�
: (20)

The second line is obtained after using integration by parts on the �rst integral. Finally, com-

bining (19) and (20) gives


n (�) =  
�
y
�
+ y

n2nX

i=1

�i;n �
n2nX

i=1

�i;n
�
"ni+1 � �

�
�; "ni+1

��

=  
�
y
�
�
n2nX

i=1

�i;n
�
"ni+1 � y

�
+
n2nX

i=1

�i;n�
�
�; "ni+1

�
:

By Assumption A5, � (�; y) is convex in � for every y 2 S: Since �i;n � 0; it follows that 
n (�)

is a convex function. Hence, we have constructed a sequence of convex functions f
n (�)g that

converges pointwise to (� ) (�) �
R
S
 (!) dF (! j �) : By Theorem 10.8 in Rockafellar (1970),

the limiting function � is also a convex function. This establishes the su¢ciency of Assumption

A1.
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Necessity of Assumption A5

Suppose � is a convex function in � for all  2 C0 (S) : Fix y 2 S and de�ne  y (!) =

max fy � !; 0g for all ! 2 S; which is decreasing and convex. Applying � on  y (�) gives

�
� y

�
(�) =

Z

S

max fy � !; 0g dF (! j �) =

Z y

y

F (! j �) d!:

Since
�
� y

�
(�) is convex in � for any y 2 S, the condition in Assumption A1 is satis�ed. This

establishes the necessity part and also completes the proof of Theorem 1.

Proof of Theorem 3

Let u (�) be an increasing concave function in C (S). Since both G0 (�) and G00 (�) are taken from

L (�) ; the expectations in (10) are �nite. Consider the �if� part. Suppose Assumption A1 is

satis�ed. Then by the corollary of Theorem 1, the expected value
R
S
u (y) dF (y j �) is a concave

function in �: Equation (10) follows immediately from the assumption that G0 �cx G
00:

Next, consider the �only if� part. Suppose (10) holds for all the distributions in L (�)

and for all increasing concave u (�) : Pick any two points �1 and �2 in �: For any � 2 (0; 1) ;

de�ne �� = ��1 + (1� �) �2: Since � is convex, it also contains ��: Take G
0 (�) to be the Dirac

distribution at �� and G
00 (�) be the distribution that assigns probability � to �1 and probability

(1� �) to �2: Then for any real-valued convex function � on �; we have

Z

�
� (�) dG0 (�) = � (��) � �� (�1) + (1� �) � (�2) =

Z

�
� (�) dG00 (�) ;

which means G0 �cx G
00 holds. The condition in (10) can now be rewritten as

Z

S

u
�
y0
�
dF
�
y0 j ��

�
� �

Z

S

u
�
y00
�
dF
�
y00 j �1

�
+ (1� �)

Z

S

u
�
y00
�
dF
�
y00 j �2

�
;

or equivalently

(�u) (��) � � (�u) (�1) + (1� �) (�u) (�2) :

Since �u (�) is an arbitrary member of C0 (S) ; the above condition implies that the operator �

maps every function in C0 (S) to a convex function in �: By Theorem 1, this is true if and only

if Assumption A1 is satis�ed. This completes the proof of Theorem 3.
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Proof of Theorem 5

This proof uses the same line of reasoning as in the proof of Theorem 3. Let u0 (�) be an

arbitrary function in C0 (S) and let s00 be any solution of (P1) under y00: Suppose Assumption

A1 is satis�ed. Then by Theorem 1, the expected marginal utility

Z

S

u0
�
y + (1 + r) s00

�
dF (y j �) ;

is a convex function in �: The inequality in (13) follows immediately from the hypothesis that

G0 �cx G
00:

Next, suppose (13) holds for all the distributions in L (�) and for any arbitrary function in

C0 (S) : Pick any two points �1 and �2 in � and de�ne the mixture �� = ��1 + (1� �) �2 for

� 2 (0; 1) : Take G0 (�) to be the Dirac distribution at �� and G
00 (�) be the distribution that

assigns probability � to �1 and probability (1� �) to �2: The inequality in (13) can now be

rewritten as

�

Z

�

Z

S

u0
�
y00 + (1 + r) s00

�
dF
�
y00 j �1

�
+ (1� �)

Z

�

Z

S

u0
�
y00 + (1 + r) s00

�
dF
�
y00 j �1

�

�

Z

�

Z

S

u0
�
y0 + (1 + r) s00

�
dF
�
y0 j ��

�
:

In words, this means the operator � maps every function in C0 (S) to a convex function in �;

which is true if and only if Assumption A1 is satis�ed. This completes the proof of Theorem 5.

Proof of Lemma 6

Since the objective function is continuous and the constraint set is compact, (P2) has at least one

solution. Since v (�) ;  (�) and � (�) are all increasing concave functions, the objective function

is also concave in s. Hence, the Kuhn-Tucker �rst-order conditions are both necessary and

su¢cient to identify the solutions of (P2). What remains is to show that we can rule out the

corner solution s = z with the help of � (1 + r) < 1: First, since � (�) is increasing, we have

Z

�

Z

S

� [y + (1 + r) z] dF (y j �) dG (�) � � (0)

)M (y + (1 + r) z) � 0: (21)
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Second, note that the derivative of  (�) is given by

 0 (x) =
v0
�
��1 (x)

�

�0
�
��1 (x)

� :

Since  0 (�) is decreasing and ��1 (�) is strictly increasing, it follows that v0 (q) =�0 (q) is decreasing

in q: This, together with (21) implies

 0
�Z

�

Z

S

� [y + (1 + r) z] dF (y j �) dG (�)

�
=
v0 [M (y + (1 + r) z)]

�0 [M (y + (1 + r) z)]
�
v0 (0)

�0 (0)
: (22)

Finally, using (21)-(22) and � (1 + r) < 1 gives

� (1 + r) 0
�Z

�

Z

S

� [y + (1 + r) z] dF (y j �) dG (�)

� Z

�

Z

S

�0 [y + (1 + r) s] dF (y j �) dG (�) < v0 (0) :

This condition states that the marginal bene�t of increasing c1 from zero outweighs the marginal

cost of doing so. Hence, it is not optimal to choose c1 = 0: Thus, any solution of (P2) must be

strictly less than z and is characterised by the Euler equation in (14) which is implied by the

Kuhn-Tucker conditions. This completes the proof of Lemma 6.

Proof of Theorem 7

As in Theorem 5, let G0 (�) and G00 (�) be two distributions in L (�) such that G0 �cx G
00: Let y0

and y00 be the random incomes generated by fF ; G0g and fF ; G00g ; respectively. Let s00 be any

solution of (P2) under y00: Suppose Assumption A1 is satis�ed. We want to show that

 0
�Z

�

Z

S

�
�
y00 + (1 + r) s00

�
dF
�
y00 j �

�
dG00 (�)

� Z

�

Z

S

�0
�
y00 + (1 + r) s00

�
dF
�
y00 j �

�
dG00 (�)

�  0
�Z

�

Z

S

�
�
y0 + (1 + r) s00

�
dF
�
y0 j �

�
dG0 (�)

� Z

�

Z

S

�0
�
y0 + (1 + r) s00

�
dF
�
y0 j �

�
dG0 (�) :(23)

By Theorem 4 (and the preceding discussion), we have

Z

�

Z

S

�
�
y00 + (1 + r) s00

�
dF
�
y00 j �

�
dG00 (�) �

Z

�

Z

S

�
�
y0 + (1 + r) s00

�
dF
�
y0 j �

�
dG0 (�) :
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The concavity of  (�) then implies

 0
�Z

�

Z

S

�
�
y00 + (1 + r) s00

�
dF
�
y00 j �

�
dG00 (�)

�

�  0
�Z

�

Z

S

�
�
y0 + (1 + r) s00

�
dF
�
y0 j �

�
dG0 (�)

�
: (24)

On the other hand, since �0 (�) is a decreasing convex function in C (S) ; so by Theorem 1 we can

get

Z

�

Z

S

�0
�
y00 + (1 + r) s00

�
dF
�
y00 j �

�
dG00 (�)

�

Z

�

Z

S

�0
�
y0 + (1 + r) s00

�
dF
�
y0 j �

�
dG0 (�) : (25)

Since all the quantities involved in (24) and (25) are nonnegative, these two inequalities together

imply (23).

Next, suppose (23) holds for all convex �0 (�) and all concave  (�) � v
�
��1 (�)

�
: Take  to

be any linear function with strictly positive slope. Then (23) can be simpli�ed to become

Z

�

Z

S

�0
�
y00 + (1 + r) s00

�
dF
�
y00 j �

�
dG00 (�) �

Z

�

Z

S

�
�
y0 + (1 + r) s00

�
dF
�
y0 j �

�
dG0 (�) :

The rest of the proof is essentially the same as the proof for the �only if� part of Theorem 5.

This completes the proof of Theorem 7.
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